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Type of material 

 

Radome 

material 

Circuits 

Tissue/ 

Phantom 

Chemical 

Absorber 

Food 

Graphene 

Meta-materials 
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Type of material 

Industry Application/Products 

Electronics 
Capacitors, substrates, PCB antennas, ferrites, 

absorbers, SAR phantom materials 

Aerospace/ 

Defense  

Stealth, RAM (radiation absorbing 

materials),radomes  

Industrial/ 

Materials 

Ceramics & composites: A/D and automotive 

components, coatings 

Polymers & plastics: Fibers, films, Insulation 

materials  

Hydrogel: Disposable diaper, soft contact lens  

Liquid crystal: Displays  

Other products containing these materials: Tires, 

paint, adhesives, etc. 

Food & 

Agriculture  

Food preservation (spoilage) research, food 

development for microwave, packaging, moisture 

measurements 

Mining 
Moisture measurements in wood or paper, oil 

content analysis  
  

Pharmaceutical 

& Medical 

Drug research and manufacturing, bio-implants, 

human tissue characterization, biomass, 

fermentation 
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Permitivity … 
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interaction of a material in the presence 

of an external electric field.  

Permittivity  
(Dielectric Constant) 
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Permitivity and Permeability 
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interaction of a material in the presence 

of an external electric field.  
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interaction of a material in the presence 
of an external magnetic field.  

Permittivity  
(Dielectric Constant) 

Permeability 
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Electromagnetic field interaction 

"'
rrr j "'

rrr j 

Electric Magnetic 

Permittivity Permeability 

Fields Fields 

STORAGE 

MUT 

STORAGE 
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Electromagnetic field interaction 

"'
rrr j "'

rrr j 

Electric Magnetic 

Permittivity Permeability 

Fields Fields 

STORAGE 

LOSS 

MUT 

STORAGE 

LOSS 
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Loss tangent 
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Relaxation constant 

t = Time required for 1/e of 

an aligned system to return 

to equilibrium  or random 

state, in seconds. 
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Material evaluation 

measurement system 

Composed by 3 main pieces: 

• Precise measurement instruments 

• Test fixtures that hold the MUT 

• Software that can calculate & display basic material 

parameters 

 

The measurement instrument and the test fixtures are 

determined by the measurement technique chosen. 
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Measurement techniques 

Parallel 

Plate 

Resonant 

Cavity 

Transmission Line  

& 

Free Space 

Coaxial 

Probe 
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Which method is best? 

It Depends… 
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Which method is best? 

It Depends… on 

  Frequency of interest 

  Expected value of er  and mr 

  Required measurement accuracy 
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Which method is best? 

  Frequency of interest 

  Expected value of er  and mr 

  Required measurement accuracy 

  Material properties (i.e., homogeneous, isotropic) 

  Form of material (i.e., liquid, powder, solid, sheet) 

  Sample size restrictions 

It Depends… on 
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Which method is best? 

  Frequency of interest 

  Expected value of er  and mr 

  Required measurement accuracy 

  Material properties (i.e., homogeneous, isotropic) 

  Form of material (i.e., liquid, powder, solid, sheet) 

  Sample size restrictions 

  Destructive or non-destructive 

  Contacting or non-contacting 

  Temperature 

It Depends… on 
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Measurement methods 

 vs. frequency and material loss 

Parallel 
Plate 

Frequency 

Loss 

Transmission line 

Resonant Cavity 

Coaxial Probe 

Microwave RF Millimeter-wave Low frequency 

High 

Medium 

Low 

Free Space 

50 MHz 20 GHz 40 GHz 60 GHz 5 GHz 500+ GHz 
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Measurement methods 
vs. frequency and material loss 

Frequency 

Loss 

Coaxial Probe 

Microwave RF Millimeter-wave Low frequency 

High 

Medium 

Low 

50 MHz 20 GHz 40 GHz 60 GHz 5 GHz 500+ GHz 
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Measurement methods 
vs. frequency and material loss 

Frequency 

Loss 

Coaxial Probe 

Microwave RF Millimeter-wave Low frequency 

High 

Medium 

Low 

50 MHz 20 GHz 40 GHz 60 GHz 5 GHz 500+ GHz 
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Measurement methods 
vs. frequency and material loss 

Frequency 

Loss 

Transmission line 

Coaxial Probe 

Microwave RF Millimeter-wave Low frequency 

High 

Medium 
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vs. frequency and material loss 
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Measurement methods 
vs. frequency and material loss 

Parallel 
Plate 

Frequency 

Loss 

Transmission line 
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Measurement methods 
vs. frequency and material loss 

Parallel 
Plate 

Frequency 

Loss 

Transmission line 

Resonant Cavity 

Coaxial Probe 

Microwave RF Millimeter-wave Low frequency 

High 

Medium 

Low 

Free Space 

50 MHz 20 GHz 40 GHz 60 GHz 5 GHz 500+ GHz 
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Parallel plate capacitor system 

Dielectric Test Fixture 

(magnetic 

fixture also 

available) 

𝜀′𝑟 =  
𝐶

𝜀0  
𝐴
𝑡

 tan 𝛿 = 𝐷 
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Parallel capacitor technique 
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Effect of guard electrode 
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Contacting electrode method 

Page 31 



Agilent Technologies 

February 2014 

Air gap effects 
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Non-contacting electrode method 
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Parallel plate measurement 

methods comparison 

Method Accuracy Application MUT Operation 

Contacting 

electrode 

LOW Solid material with a flat 

and smooth surface 

1 measurement 

Non-Contacting 

electrode 

MEDIUM Solid material with a flat 

and smooth surface 

2 measurements 

Thin film 

electrode 

HIGH Thin film electrode must 

be applied onto surfaces 

1 measurement 
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Coaxial probe system 

Dielectric measurement setup for liquid using the coaxial probe method 

Page 36 



Agilent Technologies 

February 2014 

Coaxial probe 

Assumptions: 

• Semi-infinite thickness 

• Non-magnetic material 

• Isotropic and homogeneous 

• Flat surface 

• No air gaps or bubbles 

Technique features: 

• Broadband 

• Simple and convenient 

     (non destructive) 

• Limited εr accuracy 

• Limited tan δ low loss resolution 

• Best for liquids of semi-solids 
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Three probe designs 

1. High temperature probe 

High Temperature Probe 

 

•0.200 – 20GHz (low end 0.01GHz with impedance analyzer) 

•Withstands -40 to 200 degrees C  

•Survives corrosive chemicals 

•Flanged design allows measuring flat surfaced solids. 
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Three probe designs 

2. Slim form probe 

Slim Form Probe 

 
•0.500 – 50GHz 

•Low cost consumable design 

•Fits in tight spaces, smaller sample sizes  

•For liquids and soft semi-solids only 
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Three probe designs 

3. Performance probe 

Performance Probe 

Page 40 

Combines rugged high temperature performance with high 

frequency performance, all in one slim design. 

 
•0.500 – 50GHz 

•Withstands -40 to 200 degrees C 

•Hermetically sealed on both ends, OK for autoclave 

•Food grade stainless steel 



Agilent Technologies 

February 2014 

Coaxial probe system 

Calibration is required!!! 

Page 41 
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Coaxial probe system calibration 

Three standards:  

Air, Short, Water  

 

Air, Short, Load  

 

User Defined Debye Cole  

 

Cole Cole-Davidson  

 

Permittivity Data  
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Refresh calibration 

If the perturbation is small, the change can be 

characterized by the measuring of a single 

calibration standard. 
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Coaxial probe example data 

The perfect martini 
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Coaxial probe example data 
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Coaxial probe example data 
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USDA Fruit ripeness research 
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CPAC Carbon nanotube research 
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Transmission line system 

Network Analyzer 

Sample holder  

connected between coax cables 

Calibration is required 

Coaxial 

Waveguide 
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Transmission line 

Assumptions: 

• Sample fill fixture across section 

• No air gaps at fixture walls 

• Smooth, flat faces, perpendicular 

to long axis 

• Homogeneous 

Technique features: 

• Broadband (low freq. limited by 

practical sample length) 

• Limited low loss resolution 

(depends on sample length) 

• Measures magnetic materials 

• Anisotropic materials can be 

measured in waveguide 
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Transmission algorithms 

(85071E also has three reflection algorithms) 

Algorithm Measured S-parameters Output 

 Nicolson-Ross  S11,S21,S12,S22 
r and r  

 

Precision (NIST) S11,S21,S12,S22 r 

Fast S21,S12 r 
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Free space system 

Dielectric measurement setup for free space measurement 
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Free space system 

l 

Reflection 

(S11 ) 

Transmission 

(S21 ) 

Assumptions: 

• Flat parallel faced samples 

• Sample in non-reactive region 

• Beam spot is contained in 

sample 

• Known thickness > 20/360 λ 

Technique features: 

• Non-contacting, non-destructive 

• High frequency (low freq. Limited by 

practical sample size) 

• Useful for high temperature 

• Antenna polarization may be varied 

for anisotropic materials 

• Measures magnetic materials 
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Free space system requires calibration 

Before a measurement can be made, a calibration must be performed 

to remove systematic errors. 
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TRL calibration 

Thru 

Reflect 

Line 

Move the antenna away to 

compensate for the 

thickness of the short. 

Move it back for the next 

step. 

Move the antenna away 

on a quarter-wavelength 

and then back in the 

original position. 
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Gated, reflect, line (GRL) calibration 

Two port calibration at waveguide or coax input into antennas 

removes errors associated with network analyzer and cables. 

ECal, SOLT or TRL 

Cal done here 

Two Tiered Calibration 
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Gated, reflect, line (GRL) calibration 

Two additional free space calibration standards remove errors 

from antennas and fixture. 

Reflect  

(metal plate of  

known thickness) 

Line  

(empty fixture)  

Two Tiered Calibration 
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Quasi-optical VNA measurements 

RF, LO & IF 

Signal 

Cables 

50 GHz 

VNA 
VDI WR-2.2 

Extenders 

Quasi-optical 

Dielectric 

Measurement 

Setup 

325-500 

GHz 

• Quasi-optical dielectric measurements performed at Agilent 
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THz graphene characterization 

Frequency domain measurements of the absolute value of 

multilayer graphene (MLG) and single-layer graphene 

(SLG) sheet conductivity and transparency from DC to 1 THz 

Measurement details 

THz source 

Paper details 

Terahertz Graphene Optics 

Nima Rouhi1, Santiago Capdevila2, Dheeraj Jain1, Katayoun Zand1, Yung 

Yu Wang1, Elliott Brown3, Lluis Jofre2, 

and Peter Burke1 (􀀍) 

1 Integrated Nanosystems Research Facility, Department of Electrical 

Engineering and Computer Science, University of California, 

Irvine, CA 92697, USA 

2 Universitat Politècnica de Catalunya, Barcelona, Spain 

3 Wright State University, Dayton, OH 45435, USA 

Received: 13 June 2012 / Revised: 7 August 2012 / Accepted: 9 August 

2012 

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012 

Frequency extenders allow 

measurements to 1.1 THz 
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Agilent Split Cylinder Resonator 
IPC TM-650-2.5.5.5.13 

Split Post Dielectric 
Resonators from QWED 

ASTM 2520 Waveguide 
Resonators 

Resonant cavity system 
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Resonant cavity technique 

 
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ffV





fc = Resonant Frequency of Empty Cavity 

fs = Resonant Frequency of Filled Cavity 

Qc = Q of Empty Cavity 

Qs = Q of Filled Cavity 

Vs = Volume of Empty Cavity 

Vc = Volume of Sample 

ASTM 2520 

f f c 

Q c 

empty cavity 

S21 
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Resonant cavity technique 

 
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empty cavity 

sample inserted 
fc = Resonant Frequency of Empty Cavity 

fs = Resonant Frequency of Filled Cavity 

Qc = Q of Empty Cavity 

Qs = Q of Filled Cavity 

Vs = Volume of Empty Cavity 

Vc = Volume of Sample 

ASTM 2520 

S21 

Page 65 



Agilent Technologies 

February 2014 

Resonant cavity technique 
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empty cavity 

sample inserted 
fc = Resonant Frequency of Empty Cavity 

fs = Resonant Frequency of Filled Cavity 

Qc = Q of Empty Cavity 

Qs = Q of Filled Cavity 

Vs = Volume of Empty Cavity 

Vc = Volume of Sample 

ASTM 2520 

S21 
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Resonant cavity technique 
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Resonant cavity example data 
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Resonant vs. broadband transmission 

Resonant  Broadband 

Low Loss materials 
Yes 

er” resolution ≤10-4 

No 

er” resolution ≥10-2-10-3 

Thin Films and Sheets 

Yes 

10GHz sample thickness  
<1mm  

No 

10GHz optimum thickness ~ 
5-10mm 

Calibration Required No Yes 

Measurement Frequency 
Coverage 

Discrete Frequencies Broadband or Banded 
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Summary technique and strengths 
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