Designing a Carrier Class TV Broadcast Network using P2MP MPLS-TE

Jean-Louis Le Roux, Orange France Telecom Group

jeanlouis.leroux@orange-ftgroup.com

Outline

- → Point-to-Multipoint MPLS-TE: Overview
- Case Study: Orange TV Service
 - ▶ IP TV service growth and requirements
 - Various deployment scenarios
 - Various protection approaches
- Ongoing studies
- Closing remarks

P2MP MPLS-TE Overview

- P2MP MPLS-TE = Extensions of P2P MPLS TE mechanisms for setting up explicitly routed P2MP LSPs (aka P2MP TE-LSPs)
 - ▶ Relies upon P2MP RSVP-TE, an extension to RSVP-TE for trees
 - See RFC 4875
- Properties: Multicast Traffic Engineering and Fast Recovery
 - Allows setting up minimum cost trees (MCT, aka Steiner trees)=> bandwidth savings
 - Multicast admission control: P2MP Resources reservation
 - Multicast fast recovery: P2MP Fast Reroute => sub-50ms recovery
- Applications: Multicast services with High bandwidth & Availability requirements
 - TV Broadcasting
 - Some Multicast VPN services

P2MP MPLS-TE Theory of operations

A P2MP TE-LSP from R1 to {R3, R4, R5}

1: P2MP TE-LSP configuration on R1

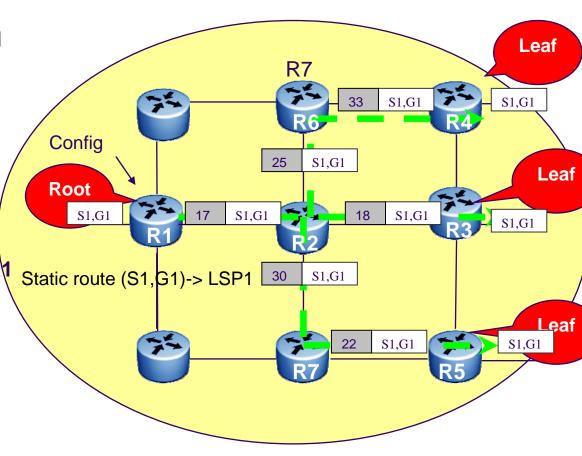
Destinations: R3, R4, R5

TE constraint: Bandwidth = 2Gbps

2: Tree Computation on R1
Taking into account TE constraints

R1-R2-R3

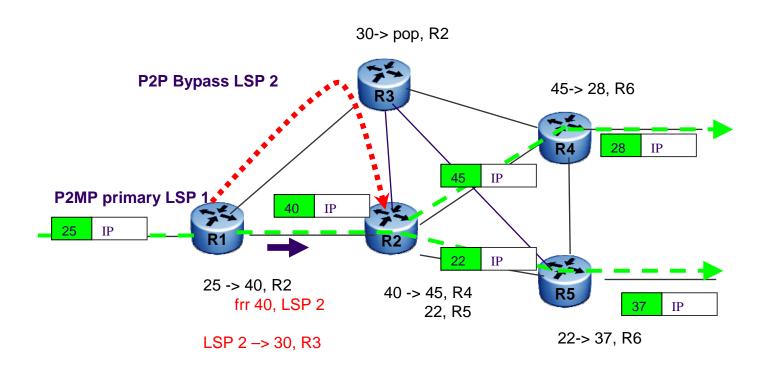
R1-R2-R6-R4


R1-R2-R7-R5

3: P2MP TE-LSP Setup initiated by R

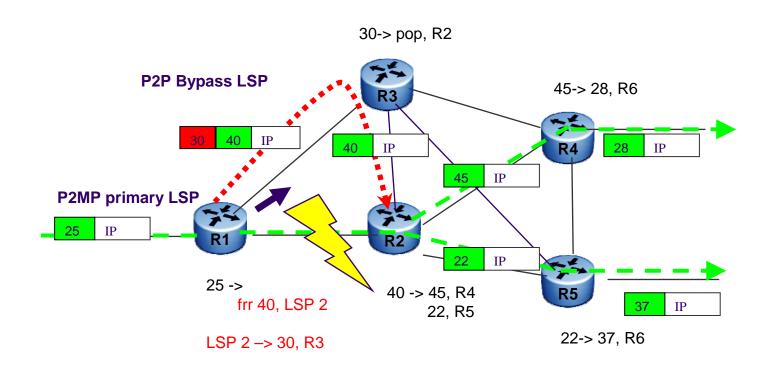
P2MP RSVP-TE along the computed paths Explicit routing, label distribution, bandwidth reservation

4: LSP Utilization


Example: Static IP multicast route

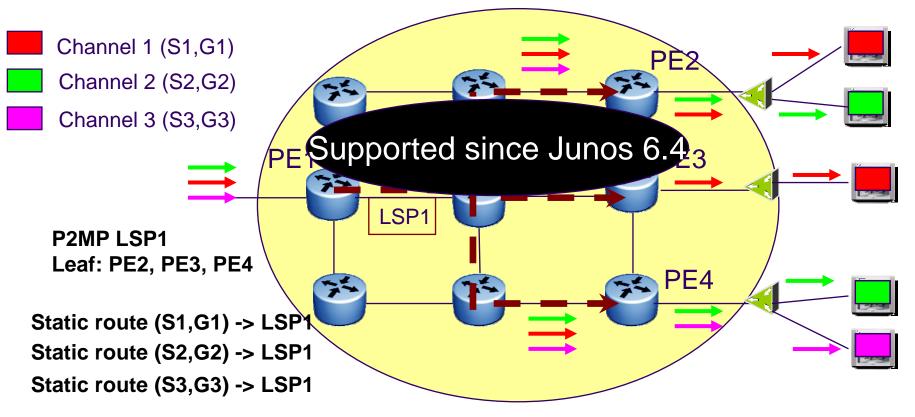
Root Initiated LSP Setu Explicit routing

P2MP MPLS-TE Fast Reroute

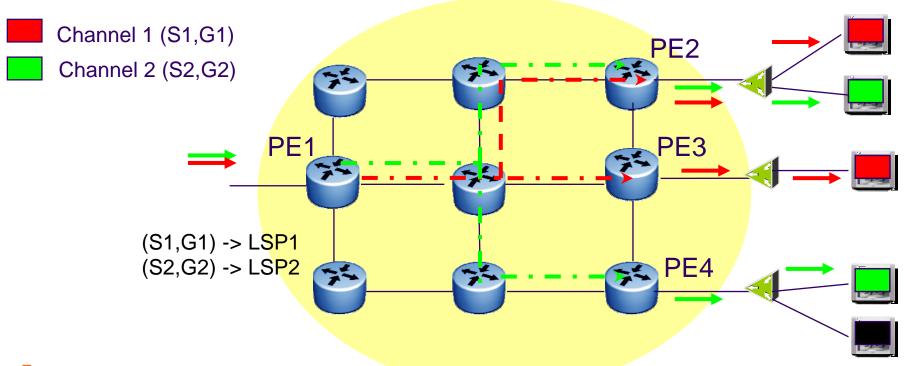


- → P2MP primary LSP protected by a Link protection P2P Bypass LSP
 - Reuse existing FRR mechanisms
- Upon link failure all traffic is rerouted onto the Bypass LSP.
- → Sub-50 ms recovery
 - Failure detection + MPLS Table update on the PLR

P2MP MPLS-TE Fast Reroute

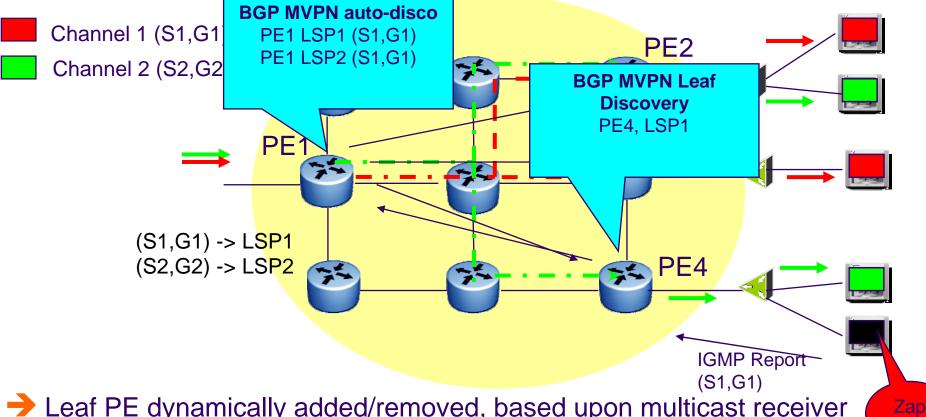


- → P2MP primary LSP protected by a Link protection P2P Bypass LSP
 - ▶ Reuse existing FRR mechanisms
- Upon link failure all traffic is rerouted onto the Bypass LSP
- → Sub-50 ms recovery
 - Failure detection + MPLS Table update on the PLR

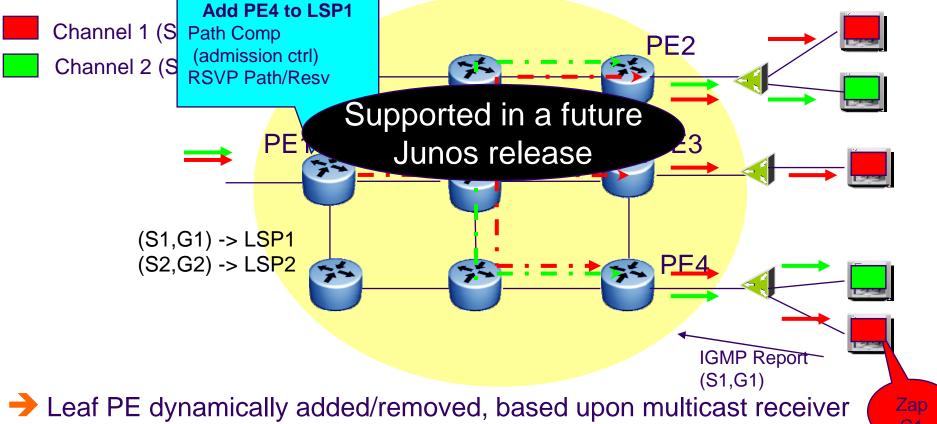


P2MP LSP Utilisation: Static mode

- Fixes leaves => No dynamic Leaf addition/removal upon multicast receiver activity
- Static Routing => multicast traffic is statically routed within P2MP LSPs
- → Traffic transported to PEs with no receivers => potential bandwidth wastings
- Well Suited when leaf PEs aggregate a lot of receivers


P2MP TE-LSP Utilization: Dynamic mode

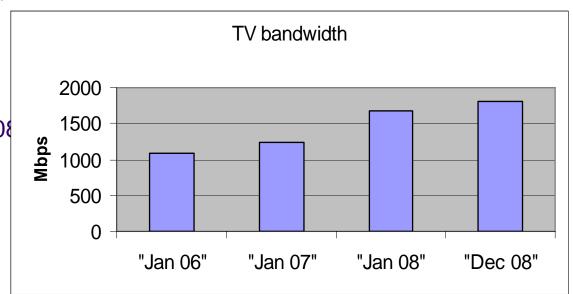
- Leaf PE dynamically added/removed, based upon multicast receiver activity
- One tree per channel that cover leaf PEs with receivers
- → Mcast Traffic Dynamically routed in P2MP LSP
- Relies on BGP extensions for NGEN Multicast VPN
 - See <u>draft-ietf-l3vpn-2547bis-mcast</u> and <u>draft-ietf-l3vpn-2547bis-mcast-bgp</u>
- Well suited when Leaf PEs do not aggregate a lot of receivers

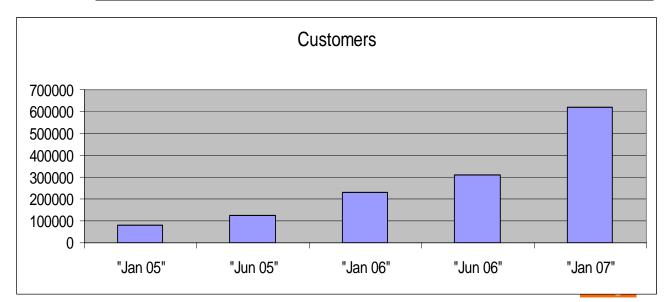

P2MP TE-LSP Utilization: Dynamic mode

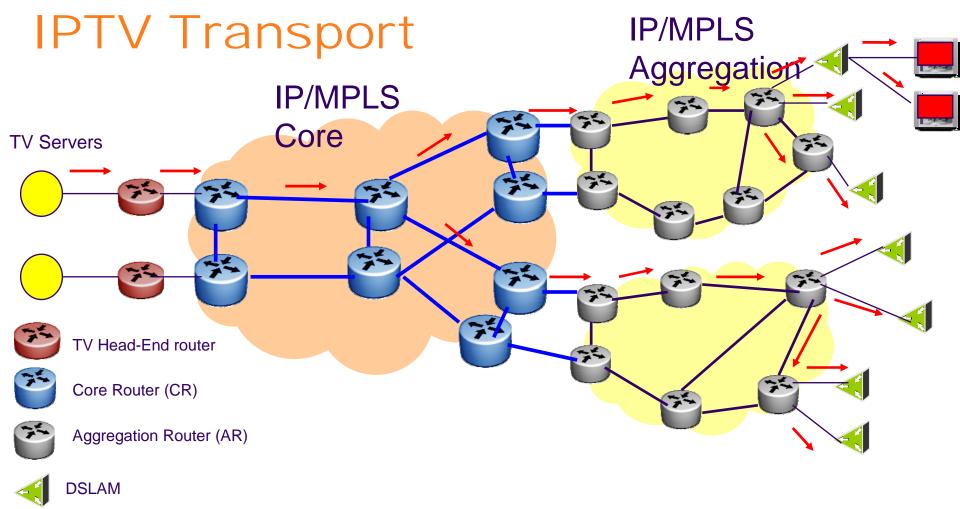
- Leaf PE dynamically added/removed, based upon multicast receiver activity
- One tree per channel that cover leaf PEs with receivers
- Mcast Traffic Dynamically routed in P2MP LSP
- Relies on BGP extensions for NGEN Multicast VPN
 - ▶ See <u>draft-ietf-l3vpn-2547bis-mcast</u> and <u>draft-ietf-l3vpn-2547bis-mcast-bgp</u>
- Well suited when Leaf PEs do not aggregate a lot of receivers

P2MP TE-LSP Utilization: Dynamic mode

- Leaf PE dynamically added/removed, based upon multicast receive activity
- One tree per channel that cover leaf PEs with receivers
- Mcast Traffic Dynamically routed in P2MP LSP
- Relies on BGP extensions for NGEN Multicast VPN
 - ▶ See <u>draft-ietf-l3vpn-2547bis-mcast</u> and <u>draft-ietf-l3vpn-2547bis-mcast-bgp</u>
- Well suited when Leaf PEs do not aggregate a lot of receivers.


Case Study: Orange TV services


Orange IPTV Service Growth (French Market)


- → Total Bandwidth
 - ▶ 1.8G Traffic at the end 2008
 - 470 LD channels (3Mbps)
 - 30 HD channels (12Mbps)

→ Customers

> 1 million in Q2 2007

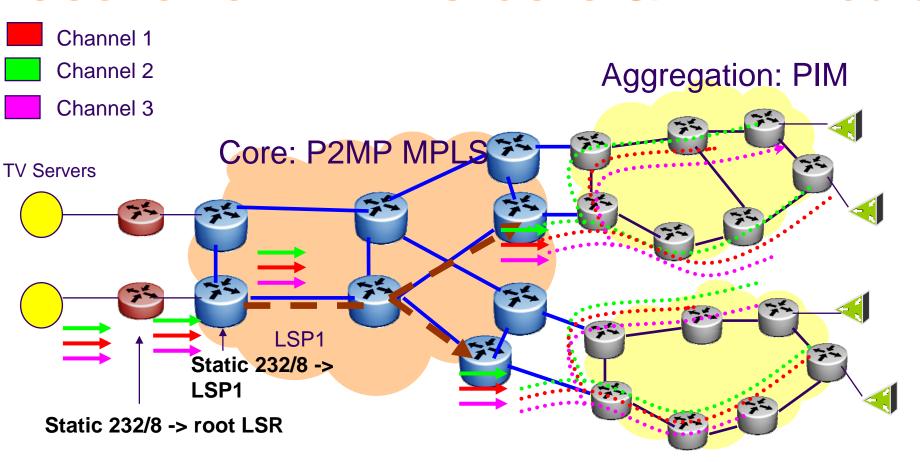
- → IPTV transport used to rely on ATM P2MP PVC
- → Now Orange is migrating TV to IP/MPLS Core & Agg networks
 - Drivers = Convergence; Need for higher bandwidth; need for dynamicity

Requirements for Carrier Class TV Broadcast Service Provider Side

- → Resources optimization: Need for minimum cost trees
 - Required only in well meshed topology
- Dynamicity and Admission Control
 - Dynamicity and Admission control allow significant bandwidth savings and CAPEX reduction
 - A channel is transported only if there is a receiver
 - A requested channel is transported only if there are resources
 - -Finer dimensioning
 - Useful in the Aggregation: Examples: Less than 80% channels requested in primary rings, less than 50% in secondary rings and on DSLAM links
 - Useless in the Core (near 100% channel requested)
- → OAM: Need for fast fault detection/isolation, tree tracing, etc.

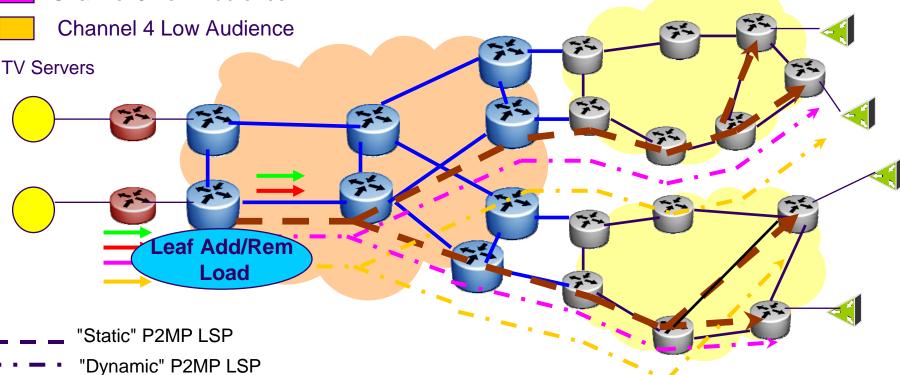
Requirements for Carrier Class TV Broadcast Customer Side

- → Resiliency: Need to minimize the impact on images upon link or node failure:
 - Short term target: sub-1s
 - Mid term target: Sub-100ms
- → QoS: Need for high QoS guarantees (packet loss, jitter)
- → P2MP MPLS-TE fits in well with all these requirements


Deployment scenarii for TV Broadcasting

- Three P2MP MPLS based scenarios under study
 - Scenario 1: P2MP MPLS in the Core and PIM in the Agg
 - Scenario 2: Contiguous P2MP MPLS in Core + Agg
 - Scenario 3: Non contiguous P2MP MPLS in Core + Agg

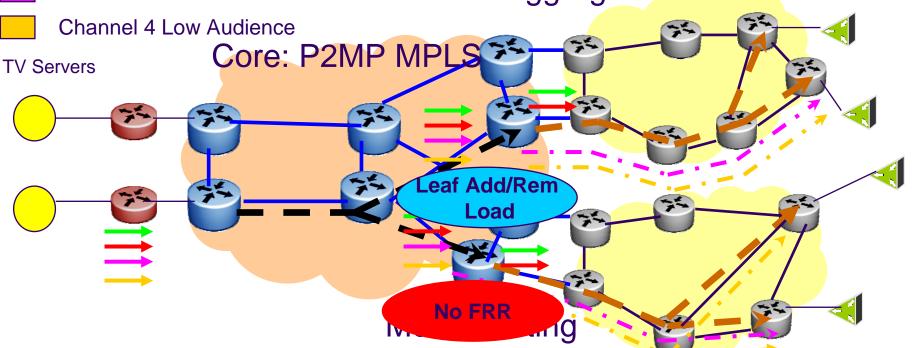
Scenario 1: MPLS Core & PIM Metro


- → One "static" P2MP LSP that carries all channels from the Root down to all Aggregation PoPs: Static Broadcasting in the core
- → IP Multicast (PIM) in the Aggregation, for dynamicity
- Keep stability and simplicity in the core

Scenario 2: MPLS Core + Metro

- Channel 1 High Audience
- Channel 2 High Audience
- Channel 3 Low Audience

Core + Agg: Contiguous P2MP MPLS


- → A set of "static" and "dynamic" P2MP LSPs from Root Router down to Agg Routers
 - ▶ High audience channels: A single static LSP that broadcasts all channels to all agg routers
 - ▶ Low audience channels: One dynamic P2MP LSP per channel to agg routers with receivers
- → Potential Scalability Issue: All leaf add/remove load on the Root LSR

Scenario 3: MPLS Core + MPLS Metro

- Channel 1 High Audience
- Channel 2 High Audience
- Channel 3 Low Audience

Aggregation: P2MP MPLS

Access: IGMP

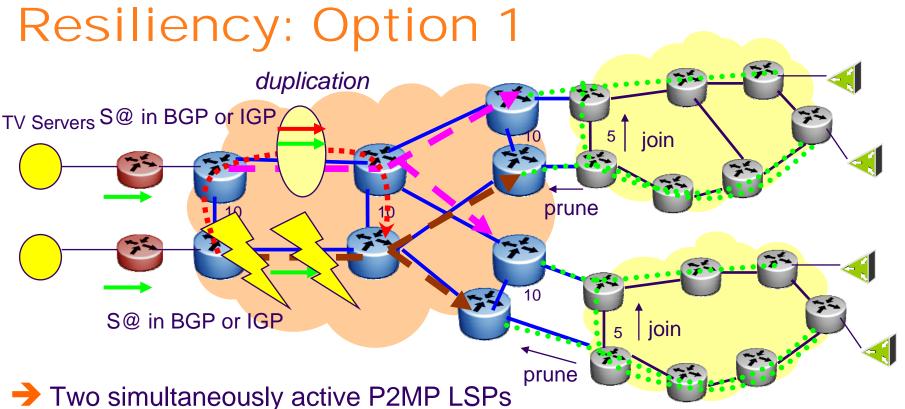
- → Core: One "static" P2MP LSP that carries all traffic down to all Border Routers
- Metro: "Static" P2MP LSP for high audience, "dynamic" P2MP LSPs for low audience
- → IP Multicast routing (static, or MVPN) between core and aggregation
- Scales better than S2: Leaf add/remove load is distributed on Border routers
- → But no fast protection against failure of Border Routers

Analysis

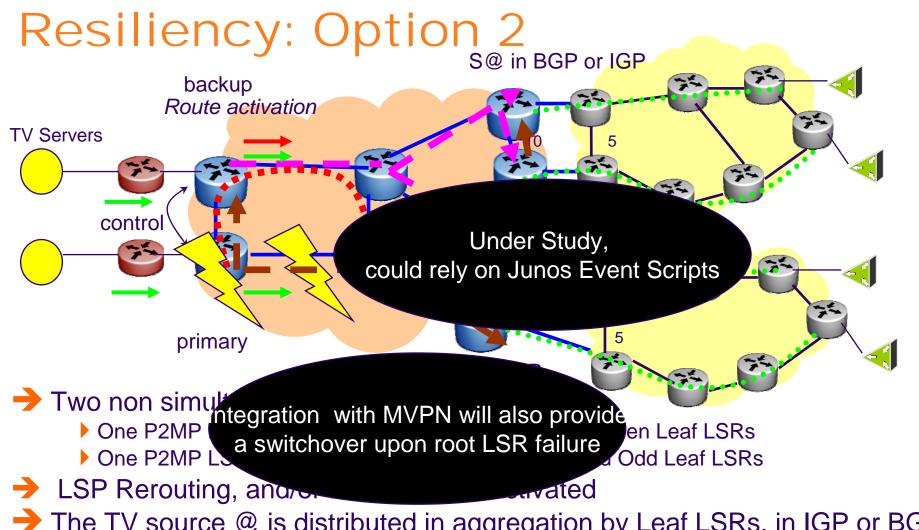
	Dynamic Leaf addition/remova	Admission Control	Tree optimizatio n	Fast Reroute
IP Multicast (PIM)	OK	NOK (only local AC)	NOK	NOK
P2MP MPLS-TE	OK with NGEN MVPN but not supported today	OK with NGEN MVPN but not supported today	OK	OK

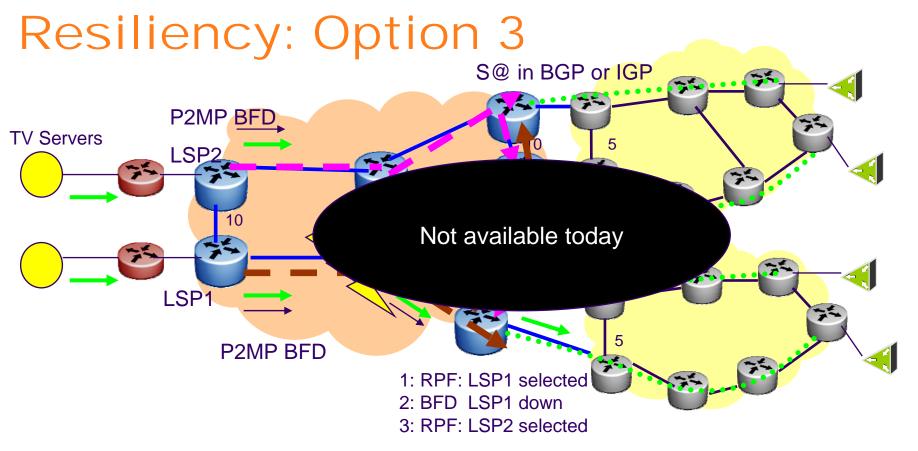
- P2MP MPLS-TE: Advance TE features. Current Lack of dynamicity that restricts its usage to the core only
- → IP Multicast PIM: No advanced TE, but dynamicity
- → Relevant design at short term = Scenario 1
 - ▶ Combine P2MP MPLS-TE in the core and IP Multicast in the aggreagtion
- → When "dynamic" P2MP LSPs available migrate to scenario 2 or 3
 - Driver between scenarios 2 and 3 will rely upon scalability considerations

Recovery scenarios



Resiliency


- → Redundant TV Head-Ends: Traffic Transmitted twice with same source address, to two distinct core Routers
- → Redundant Core: Odd and Even networks
- → Several Approaches for P2MP LSP redundancy
 - Option 1: Two Trees serving distinct leaf PEs and simultaneously active
 - Option 2: Two Trees serving all leaf PEs and not simultaneously active
 - Option 3: Two Trees serving all leaves and simultaneously active
- → A lot of options not covered here



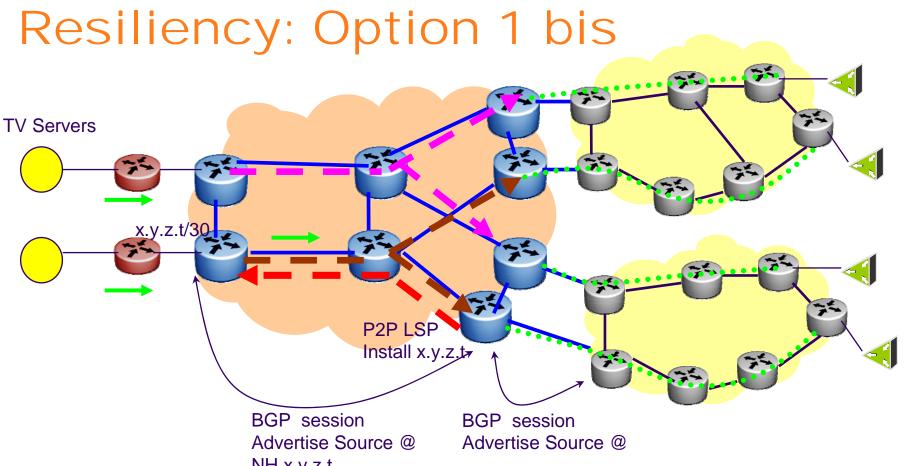
- One P2MP LSP in the Odd network serving Odd Leaf LSRs
- One P2MP LSP in the even network serving Even Leaf LSRs
- The same TV source @ is distributed by the two head-end Routers in IGP. or BGP
- PIM rerouting triggered within the aggregation upon any failure in the core and at the edge (Head-End Router, Root LSR and Leaf LSR)
 - OK if odd-even transition cost lower in agg than in core (require metric tuning)
- Fast Reroute can be activated but lead to twice the traffic on some links.

- The TV source @ is distributed in aggregation by Leaf LSRs, in IGP or BGP
- > PIM rerouting triggered only upon Leaf LSR failure and Aggregation failure
- Control of LSP Activity: When the Backup Root LSR detects that the source is no longer reachable via the Primary Root LSR, it activates the backup Tree

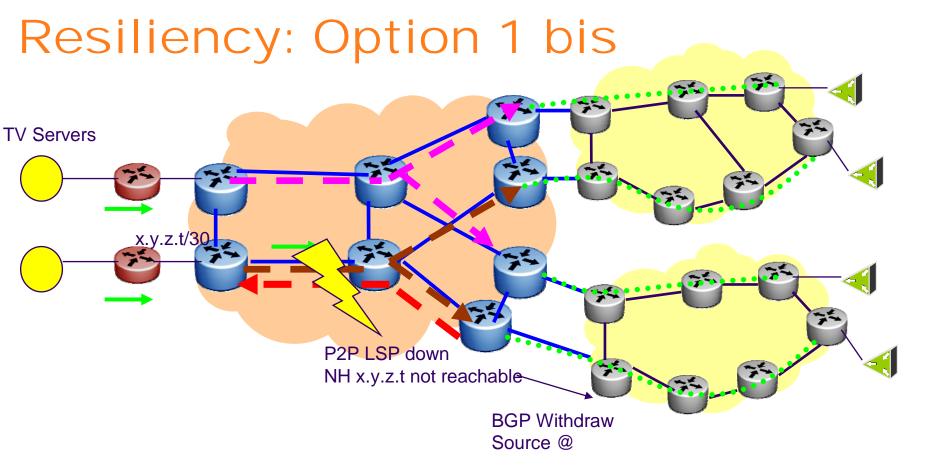
- → Two simultaneously active P2MP LSPs
 - One P2MP LSP in the Odd network serving Odd and Even Leaf LSRs
 - One P2MP LSP in the Even network serving Even and Odd Leaf LSRs
- → A Leaf LSR receives the traffic twice (on the two LSPs)
 - RPF check on LSP interfaces to select reception on a single LSP (PHP deactivation)
 - ▶ P2MP BFD running in the two P2MP LSPs
 - ▶ LSP failure detected thanks to P2MP BFD => RPF updated to the other LSP

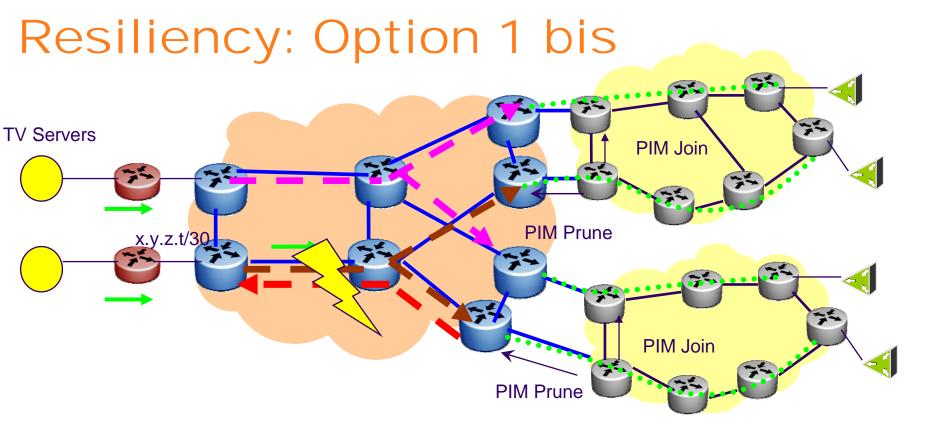
Resilency: Analysis

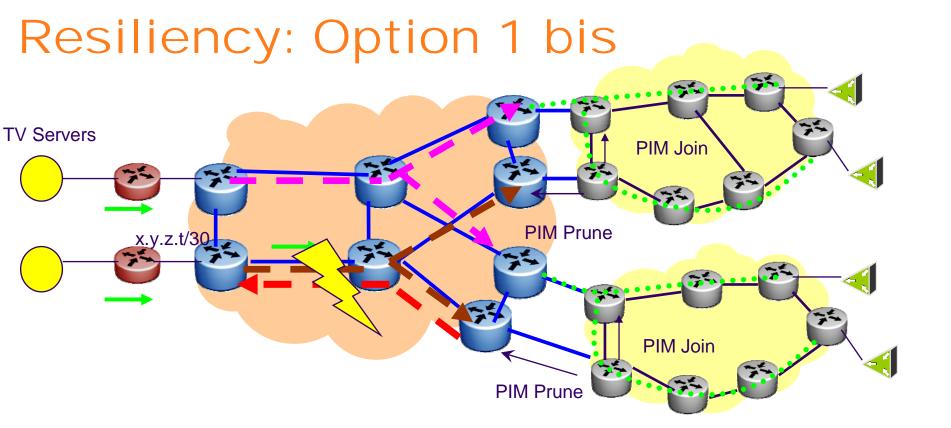
	Fast Recovery	Optimality	Required features	
Option 1	_	+ (no		
	Orange Short term option			
		(FRR) (Twice the traffic)		
Option 2	+ + (core) - (Root) (FRR in the core, Root Switchover)	Traffic only on odd in nominal case	Root Switchover control feature	
Option 3	Depends on the BFD interval and RPF update	Traffic on odd and even in nominal case	P2MP BFD and LSP based RPF	



Ongoing deployment in FT Group


- One deployment soon in one domestic network, for DSL TV
 Full Juniper core network
- → P2MP MPLS-TE in the core and PIM in the aggregation
- → Recovery Option 1, but with some specificities: Option 1bis
- Successful lab testing and field trial, with always sub-second convergence




- Not always possible to play with metrics so that a failure in the core triggers rerouting in the backhaul
- Solution = a static P2P LSP from a Leaf PE to the Root PE, that follows the tree path in the reverse direction
- iBGP session root PE Leaf PE with a next-hop reachable via the P2P LSP only
- Failure => the P2P LSP is down => BGP next hop no longer reacheable => Source withdrawn => PIM convergence

- Not always possible to play with metrics so that a failure in the core triggers rerouting in the backhaul
- Solution = a static P2P LSP from a Leaf PE to the Root PE, that follows the tree path in the reverse direction
- → iBGP session root PE Leaf PE with a next-hop reachable via the P2P LSP only
- Failure => the P2P LSP is down => BGP next hop no longer reacheable => Source withdrawn => PIM convergence

- Not always possible to play with metrics so that a failure in the core triggers rerouting in the backhaul
- Solution = a static P2P LSP from a Leaf PE to the Root PE, that follows the tree path in the reverse direction
- → iBGP session root PE Leaf PE with a next-hop reachable via the P2P LSP only
- Failure => the P2P LSP is down => BGP next hop no longer reacheable => Source withdrawn => PIM convergence

- Not always possible to play with metrics so that a failure in the core triggers rerouting in the backhaul
- Solution = a static P2P LSP from a Leaf PE to the Root PE, that follows the tree path in the reverse direction
- → iBGP session root PE Leaf PE with a next-hop reachable via the P2P LSP only
- → Failure => the P2P LSP is down => BGP next hop no longer reacheable => Source withdrawn => PIM convergence

Ongoing studies

- → Fast Recovery upon source failures
 - Various options under study including measurement based
 - Measure multicast traffic load and trigger routing events
 - Could rely on Junos Event Scripts
- → Fast Reroute with P2MP Bypass Tunnels
 - Allows for link and node protection with significant bandwidth savings
- Combination of Fast Reroute and MPEG Error Correction (FEC)
 - ▶ MPEG COP#3 FEC allows correction upon missing N successive frames
 - Combined with FRR this could allow completely avoiding the impact of packet loss upon failure
 - This requires FRR perf allowing less than N loss upon failure
 - E.g with a 300pps flow and N=10 we need FRR < 30ms => Achievable

Closing Remarks

- → IPTV services rapidly growing
- → P2MP MPLS-TE well suited to IPTV
- Dynamicity not yet supported => restrict the usage today to the core only
- → Integration with NGEN Multicast VPN will bring useful features
 - Dynamic leaf addition/removal, Admission Control, Root resiliency...
 - ▶ Allows extending the scope of P2MP MPLS-TE to aggregation networks
- To be deployed in one Orange Group network soon
 - Juniper P2MP MPLS in the core & IP Multicast PIM in the metro
 - Successful lab testing and field trial

References

- → Yasukawa, S. et al. "Signaling Requirements for P2MP TE-LSPs", <RFC 4461>, April 2006
- → Aggarwal, R., Papadimitriou, D., Yasukawa, S.,. "Extensions to RSVP-TE for Point-to-Multipoint TE LSPs" <RFC 4875>, May 2007
- Swallow, G., Nadeau, T., Aggarwal, R., "Connectivity Verification for Multicast Label Switched Paths", <draft-ietf-mpls-mcast-cv>
- Rosen, E., Aggarwal, R., et al. "Multicast in MPLS/BGP IP VPNs" <draft-ietf-13vpn-2547bis-mcast>
- R. Aggarwal, E. Rosen, T. Morin, Y. Rekhter, C. Codeboniya, "BGP Encodings and Procedures for Multicast in MPLS/BGP IP VPNs" <draft-ietf-l3vpn-2547bis-mcast-bgp>
- → Le Roux, J.L., Aggarwal, R, et al. "P2MP MPLS-TE Fast Reroute with P2MP Bypass Tunnels", <draft-ietf-mpls-p2mp-te-bypass>

THANKS!

