This literature was published years prior to the establishment of Agilent Technologies as a company independent from Hewlett-Packard and describes products or services now available through Agilent. It may also refer to products/services no longer supported by Agilent. We regret any inconvenience caused by obsolete information. For the latest information on Agilent's test and measurement products go to:

www.agilent.com/find/products

Or in the U.S., call Agilent Technologies at 1-800-452-4844 (8am–8pm EST)

HP 89431A 2 MHz to 2.65 GHz Downconverter

Technical Data

Specifications describe warranted performance over the temperature range of 0° to 55°C (except where noted) and include a 30-minute warm-up from ambient conditions, unless noted otherwise.

Supplemental characteristics identified as "typical" or "characteristic," provide useful information by giving non-warranted performance parameters. Typical performance is applicable from 20° to 30°C.

Definitions

dBc = dB relative to input signal level.

dBfs = dB relative to full scale amplitude range setting. Full scale corresponds to approximately - 30 dB at the mixer.

FS or fs = Full scale; synonymous with amplitude range or input range.

TOI or Third-Order Intercept = The theoretical amplitude for a device at which the third-order intermodulation products would become equal in amplitude to one of the signals.

HP 89431A Technical Data

Frequency

Frequency tuning

Frequency range 2 MHz to 2650 MHz Center frequency tuning 1.171875 MHz

resolution

Output characteristics

IF bandwidth 8 MHz Centered on 6 MHz

Note: Spectral information within the IF bandpass is "flipped" or "mirrored" relative to input signals within the tuned span.

Frequency accuracy (with standard high-precision frequency reference)

Frequency accuracy is the sum of initial accuracy, aging, and temperature drift.

Initial accuracy \pm 0.1 ppm

 $\begin{array}{ll} \mbox{Aging} & \pm \mbox{ 0.015 ppm/month} \\ \mbox{Temperature drift} & \pm \mbox{ 0.005 ppm (0° to 55°C)} \end{array}$

Stability (spectral purity) (with standard high-precision frequency reference or equivalent with ≥ 5 dBm level)

Phase noise (absolute and residual)

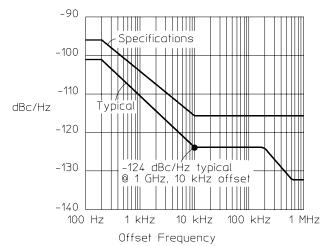
 $F_{in} \leq 200 \ MHz$

 $\begin{array}{lll} 100~Hz~offset & <-~103~dBc/Hz \\ 1~kHz~offset & <-~112~dBc/Hz \\ \geq 10~kHz~offset & <-~116~dBc/Hz \end{array}$

 $200 \text{ MHz} \le F_{in} \le 1 \text{ GHz}$

 $\begin{array}{lll} 100 \text{ Hz offset} & <-96 \text{ dBc/Hz} \\ 1 \text{ kHz offset} & <-104 \text{ dBc/Hz} \\ \geq 10 \text{ kHz offset} & <-116 \text{ dBc/Hz} \end{array}$

 $1~GHz \leq F_{in} \leq 2650~MHz$


 $\begin{array}{lll} 100 \text{ Hz offset} & <-87 \text{ dBc/Hz} \\ 1 \text{ kHz offset} & <-97 \text{ dBc/Hz} \\ \geq 10 \text{ kHz offset} & <-116 \text{ dBc/Hz} \end{array}$

LO spurious sidebands

 $Offset > 1 \ kHz \qquad \qquad <-75 \ dBc$

Offset ≤ 1 kHz

 $\begin{array}{ll} f_{in} \leq 2 \; GHz & <-\,70 \; dBc \\ f_{in} > 2 \; GHz & <-\,68 \; dBc \end{array} \label{eq:fin}$

Spectral purity at 1 GHz

Amplitude

Input range -50 dBm to + 25 dBm (5 dB steps)

Maximum safe input power

Average continuous + 25 dBm (300 mW)

power

DC voltage 25 V

Input port

Input channels 1

VSWR

Range \geq - 20 dBm 1.6:1 (12.7 dB return loss) Range \leq - 25 dBm 1.8:1 (11 dB return loss)

 $\begin{array}{ll} \text{Impedance} & \quad 50 \ \Omega \\ \text{Connector} & \quad \text{Type-N} \end{array}$

IF output level accuracy

When tuned to a single full scale input signal, the output signal will be:

 $\begin{array}{ll} \mbox{Nominal level} & -13 \mbox{ dBm} \\ \mbox{Frequency} & \mbox{6 MHz} \end{array}$

Amplitude accuracy is the sum of:

Conversion gain $\pm 2 \text{ dB}$

accuracy (at – 20 dBm input range and 6 MHz

input)

Input range attenuation accuracy

 $Range \ge -25 \text{ dBm} \qquad \pm 2.5 \text{ dB}$ $Range \le -30 \text{ dBm} \qquad \pm 4 \text{ dB}$ RF flatness (relative to 6 MHz)

$$\begin{split} Range \geq &-25 \text{ dBm} \\ Range \leq &-30 \text{ dBm} \\ \end{array} \\ &+2 \text{ dB}, -3.5 \text{ dB} \\ &+3.5 \text{ dB}, -5 \text{ dB} \end{split}$$

IF flatness (over $\pm 1.5 \text{ dB}$

±4 MHz span, relative to center frequency)

The spectrum of the output signal will be "flipped" or "mirrored" about the 6 MHz center of the IF passband relative to the spectrum of the input signal. Therefore an input signal 10 kHz below the input tuned frequency will appear 10 kHz above 6 MHz at the output.

Dynamic range

Dynamic range indicates the amplitude range that is free of erroneous signals within the measurement bandwidth.

Harmonic distortion (with a single full scale signal at the input)

 \geq 25 dBm range < 75 dBc \leq 30 dBm range < 54 dBc Third-order intermodulation < 78 dBc

distortion (with two input tones at 6 dB below full scale and > 10 MHz)

Third-order intercept (TOI) ≥ 33 dB above (with two input tones at 6 dB range below full scale and ≥ 10 MHz)

General spurious (with input signal level equal to range and input frequency ≤ 2650 MHz)

For spans \leq 1.5 MHz and for < - 75 dBc offset frequencies \leq 1.5 MHz from input signal

For all spans and offsets <-70 dBcResidual responses (50 Ω input) <-80 dBfs

Input noise density (50 Ω input, vector mode or scalar mode with sample detector)

 $\begin{array}{lll} & 20^{\circ} - 30^{\circ}C & 0^{\circ} - 55^{\circ}C \\ \geq & 25 \text{ dBm range} & <-115 \text{ dBfs/Hz} & <-112 \text{ dBfs/Hz} \\ \leq & 30 \text{ dBm range} & <-110 \text{ dBfs/Hz} & <-109 \text{ dBfs/Hz} \end{array}$

Sensitivity

-50 dBm range <- 160 dBm/Hz <- 159 dBm/Hz

Safety and environmental

Safety standards CSA Certified for

Electronic Test and Measurement Equipment per CSA C22.2, No. 231

This product is designed

for compliance to UL1244 and IEC348, 1978

Acoustics LpA < 55 dB typical at

25°C ambient

Temperature

Operating 0° to 55° C Storage -20° to 65° C

Humidity, non-condensing

Operating 10% to 90% at 40°C Storage 10% to 90% at 40°C

Altitude

Operating (above 4600 m (15,000 ft)

2285 m (7,500 ft), derate operating temperature by -3.6° C/1000 m (-1.1° C/1000 ft))

Storage 4600 m (15,000 ft)

Calibration interval 1 year Warm-up time 30 minutes

Power requirements

115 VAC operation 90 - 140 Vrms, 47 - 63 Hz 230 VAC operation 198 - 264 Vrms, 47 - 63 Hz

Maximum power 275 VA

dissipation

IEC 801-3 (Radiated Immunity) Performance degradation may occur at Severity Level 2.

Physical

Weight 25 kg (55 lb)

Dimensions

Height 173 mm (6.8 in)
Width 419 mm (16.5 in)
Depth 495 mm (19.5 in)

Interfaces (characteristics only)

External reference in/out

External Locks to a 1, 2, 5, or 10 MHz

reference input $(\pm 10 \text{ ppm})$ with a level

> 0 dBm (use ≥ 5 dBm for optimum phase noise

performance).

External Outputs 10 MHz at > 0 dBm

reference output (+6 dBm typical) into a 50 Ω

load.

Serial communication port

EIA 574 9-pin, RS-232 I/O port (to

controller), nominally

9600 baud.