


# Agilent 89441A Vector Signal Analyzer dc to 2.65 GHz

Data Sheet

Specifications describe warranted performance over the temperature range of 0° to 55°C (except where noted) and include a 30-minute warm-up from ambient conditions, automatic calibrations enabled, auto-zero on, time domain calibration off, and anti-alias filter in, unless noted otherwise. Supplemental characteristics identified as "typical" or "characteristic" provide useful information by giving non-warranted performance parameters. Typical performance is applicable from 20° to 30°C.

When enabled, automatic calibrations are periodically performed to compensate for the effects of temperature and time sensitivities. During the calibration, no signals >0 dBm should be connected to the front panel inputs.

#### **Definitions**

**Analog demodulation mode** = Measurements with AM, PM, and FM demodulation capabilities.

**Baseband** = dc to 10 MHz measurements.

**Baseband time** = Time-domain measurements selected by setting start frequency to exactly 0 Hz or choosing full span in 0 to 10 MHz measurements.

**dBc** = dB relative to input signal level.

**dBfs** = dB relative to full scale amplitude range setting. Full scale is approximately 2 dB below ADC overload.

**FS** or fs = Full scale; synonymous with amplitude range or input range.

**RBW** = Resolution bandwidth.

**RF** = 2 MHz to 2.65 GHz measurements.

**Scalar mode** = Measurements with only frequency-domain analysis available. Frequency spans up to 2648 MHz.

**SNR** = Signal to noise ratio.

**Vector mode** = Measurements with frequency- and time-domain capabilities. Frequency spans up to 10 MHz in baseband, and 7 MHz for RF analysis (8 MHz with Option AYH).

**Zoom time** = Time-domain measurements selected by setting frequency parameters using center frequency and span values.



# **Agilent 89441A Technical Data—Standard Features**

Frequency

dc to 2.650 GHz 51 to 3201 points

Center frequency signal-tracking

Instrument modes

Scalar (frequency-domain only)

Vector (amplitude and phase information in frequency and time domain and also time gating)

Analog demodulation (AM/FM/PM)

Sweep types

Continuous Manual

Single

**Triggering** 

Free run External Input channel External arm

IF channel Programmable polarity

Internal source and level

**GPIB** Pre and post delay

Trigger holdoff

**Averaging** 

Video Peak hold

Video exponential Simultaneous display of Time instantaneous and Time exponential average spectrum

Source types

CW Periodic chirp

Random noise Arbitrary (up to 8192 points)

Input

One channel

Second 10 MHz input channel (optional)

Auto-ranging (baseband only)

Overload indicators

 $50/75 \Omega$ , 1 M $\Omega$  BNC (dc to 10 MHz) 50  $\Omega$  Type-N, 75  $\Omega$  with minimum-loss pad (2 MHz to 2650 MHz)

Resolution/window shapes 1-3-10 bandwidth steps

Arbitrary RBW

Windows: Flat-top (high amplitude accuracy), Gaussian-top (high dynamic range), Hanning

(high frequency resolution), Uniform Detectors: normal, positive peak, sample

Measurement data

Time capture Spectrum

**PSD** Frequency response, Main time coherence, cross spec-Gate time trum, and cross correla-Math function tion (with second 10 MHz

Data register input channel) Auto correlation Instantaneous spectrum

**Data format** 

Log magnitude Real part Linear magnitude Imaginary part Phase (wrap Group delay or unwrap) Log/linear x-axis **Trace math** Display

1, 2, or 4 grids

1 to 4 traces displayed (single or overlay)

Auto-scaling

Color (user definable)

User trace title and information

Graticule on/off Data label blanking X-axis scaling

Instrument/Measurement state displays

External monitor

Markers

Marker search: Peak, next peak, next peak right,

next peak, left, minimum

Marker to: Center frequency, reference level, start

frequency, stop frequency

Offset markers

Couple markers between traces

Marker functions: Peak track, frequency counter, band

power (frequency, time, or demodulation

results), peak/average statistics

Memory and data-storage

Disk devices

Nonvolatile RAM disk (100 Kbyte)

Volatile RAM disk (up to 1 Mbyte)

90 mm (3.5-inch) 1.44 Mbyte flexible disk (LIF or

MS-DOS® formats)

External GPIB disk

Disk format and file delete, rename, and copy

Nonvolatile clock with time/date

Save/recall of: Trace data, instrument states, trace math functions, Instrument BASIC program,

time-capture buffers

Online help

Hard copy output

GPIB/HPGL plotters

GPIB/RS-232/parallel printers

Plot to file Time stamp

Single-plot spooling

Interfaces

GPIB (IEEE 488.1 and 488.2)

External reference in/out

External PC-style keyboard

Active probe power RS-232 (one port)

Centronics

LAN and second GPIB (optional)

Standard data format utilities

**Optional features** 

Instrument BASIC (Option 1C2)

Vector modulation analysis (Option AYA)

Digital video modulation analysis (Option AYH)

Waterfall and spectrogram (Option AYB)

Extended RAM and additional I/O (Option UFG)

Advanced LAN support (Option UG7)

Adaptive Equalization (Option AYH or AYJ)

# Agilent 89441A Technical Data—RF

RF specifications apply with the receiver mode set to "RF section (2–2650 MHz)."

#### Frequency

# Frequency tuning

Frequency range 2 MHz to 2650 MHz

Frequency span

Scalar mode 1 Hz to 2648 MHz Vector mode 1 Hz to 7 MHz (8 MHz

with Option AYH)

Center frequency tuning

resolution 0.001 Hz

Number of frequency

points/span 51 to 3201

Signal track (when enabled) keeps the largest measured signal at the center frequency.

**Frequency accuracy** (with standard high-precision frequency reference)

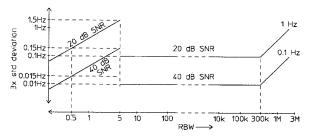
Frequency accuracy is the sum of initial accuracy, aging, and temperature drift.

Initial accuracy ±0.1 ppm

Aging ±0.015 ppm/month Temperature drift ±0.005 ppm (0° to 55°C)

#### Frequency counter

The frequency counter operates in scalar or vector mode.


#### Frequency counter accuracy:

Total accuracy is the sum of the frequency counter's basic accuracy and the instrument's frequency accuracy.

#### Conditions/Exceptions:

Signal-to-noise ratio within resolution bandwidth, 20 dB minimum

Marker within ½ resolution bandwidth of peak Unspecified for uniform window and resolution bandwidth <5 Hz



#### Frequency counter basic accuracy

**Stability (spectral purity)** (with standard high-precision frequency reference or equivalent with ≥5 dBm level)

Phase noise (absolute and residual):

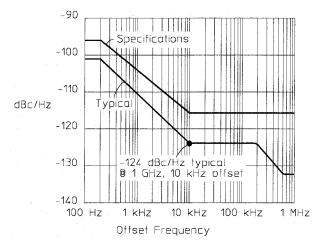
 $F_{in} \leq 200 \text{ MHz}$ 

100 Hz offset <-103 dBc/Hz 1 kHz offset <-112 dBc/Hz ≥10 kHz offset <-116 dBc/Hz

 $200~MHz \leq F_{in} \leq 1~GHz$ 

 $\begin{array}{lll} 100~\text{Hz offset} & <-96~\text{dBc/Hz} \\ 1~\text{kHz offset} & <-104~\text{dBc/Hz} \\ \geq&10~\text{kHz offset} & <-116~\text{dBc/Hz} \end{array}$ 

 $1 \text{ GHz} \leq F_{in} \leq 2650 \text{ MHz}$ 


100 Hz offset <-87 dBc/Hz 1 kHz offset <-97 dBc/Hz ≥10 kHz offset <-116 dBc/Hz

LO spurious sidebands

Offset >1 kHz <-75 dBc

Offset ≤1 kHz

 $\begin{array}{ll} f_{in} \leq \!\! 2 \; \mathrm{GHz} & <\!\! -70 \; \mathrm{dBc} \\ f_{in} \geq \!\! 2 \; \mathrm{GHz} & <\!\! -68 \; \mathrm{dBc} \end{array}$ 



Spectral purity at 1 GHz

# Agilent 89441A Technical Data—RF, continued

#### **Resolution bandwidth**

Range 312.5  $\mu$ Hz to 3 MHz in 1, 3, 10

sequence or arbitrary user-definable

bandwidth

Note: In scalar mode, the minimum resolution bandwidth is 312.5  $\mu$ Hz and the maximum resolution bandwidth is a function of span. In vector mode, the minimum resolution bandwidth is a function of span and the number of frequency points, and the maximum resolution bandwidth is a function of span only.

| Window       | Selectivity <sup>†</sup> | Passband<br>flatness | Sideband<br>level |
|--------------|--------------------------|----------------------|-------------------|
| Flat-top     | 2.45:1                   | + 0, -0.01 dB        | -95 dBc           |
| Gaussian-top | 4.0:1                    | + 0, -0.68 dB        | -125 dBc          |
| Hanning      | 9.1:1                    | + 0, –1.5 dB         | -32 dBc           |
| Uniform      | 716:1                    | + 0, –4 dB           | -13 dBc           |

 $<sup>\</sup>dagger$  Shape factor or ratio of –60 dB to –3 dB bandwidths.

# **Amplitude**

Input range -50 dBm to +25 dBm

(5 dB steps)

Maximum safe input power

Average continuous +25 dBm (300 mW)

power

DC voltage 25 V

A/D overload level

(typical)

>1.5 dB above range

#### **Input port**

Input channels 1

**VSWR** 

Range  $\geq$ - 20 dBm 1.6:1 (12.7 dB return loss) Range  $\leq$ -25 dBm 1.8:1 (11 dB return loss)

Impedance 50  $\Omega$  (75  $\Omega$  with minimum-

loss pad Option 1D7)

Connector Type-N

### Amplitude accuracy

Accuracy specifications apply with flat-top window selected. Amplitude accuracy is the sum of absolute full-scale accuracy and amplitude linearity.

Absolute full-scale accuracy (with signal level

equal to range)

 $20^{\circ} - 30^{\circ} \text{C}$   $0^{\circ} - 55^{\circ} \text{C}$ 

 $\geq$ -25 dBm range  $\pm 1$  dB  $\pm 2$  dB

(0.5 dB typical)

 $\leq$ -30 dBm range  $\pm 1.5$  dB  $\pm 3$  dB

(0.5 dB typical)

Amplitude linearity

In vector mode, relative level accuracy within a single span is the sum of vector mode frequency response and amplitude linearity.

Vector mode frequency response

±0.4 dB

(relative to the center frequency)

#### **Dynamic range**

Dynamic range indicates the amplitude range that is free of erroneous signals within the measurement bandwidth.

Harmonic distortion (with a single full scale signal at the input)

| ≥–25 dBm range | <-75 dBc |
|----------------|----------|
| ≤–30 dBm range | <-54 dBc |

Third-order intermodulation distortion (with two input tones at 6 dB below full scale and ≥10 MHz) <-75 dBc

General spurious (with input signal level equal to range and input frequency  $\leq 2650 \text{ MHz}$ )

| <-75 dBc                      |
|-------------------------------|
|                               |
|                               |
| $<-70~\mathrm{dBc^{\dagger}}$ |
|                               |

Residual responses (50  $\Omega$  input) <-80 dBfs

Input noise density (50  $\Omega$  input, vector mode or scalar mode with sample detector)<sup>‡</sup>

|                | 20°- 30°C     | $0^{\circ}$ – $55^{\circ}$ C |
|----------------|---------------|------------------------------|
| ≥–25 dBm range | <-115 dBfs/Hz | <-112 dBfs/Hz                |
| ≤–30 dBm range | <-110 dBfs/Hz | <-109 dBfs/Hz                |

Sensitivity<sup>‡</sup>

-50 dBm range <-160 dBm/Hz <-159 dBm/Hz

# Phase (vector mode)

Phase specifications apply with flat-top window selected.

Deviation from linear phase (relative to best fit line with peak signal level within 6 dB of full scale): ±5 deg

# Time (vector mode)

Time-sample resolution = 1/(k\*span(Hz)) [second]; where k = 1.28 for zoom time.

Main time length = (number of frequency points - 1)÷ span (Hz) [second]; for resolution bandwidth in arbitrary and auto-coupled mode.

Amplitude accuracy (for a sine wave in the measurement passband, time-domain calibrations on, range ≥-25 dBm)

| $20^{\circ} - 30^{\circ} \mathrm{C}$ | ±12% full scale |
|--------------------------------------|-----------------|
|                                      | (±6% typical)   |
| $0^{\circ}$ – $55^{\circ}$ C         | ±26% full scale |

Sample error rate for zoom time (typical) Error threshold:

5% full scale

10<sup>-8</sup> times/sample

Sample error rate reflects the probability of an error greater than the error threshold occurring in one time sample.

<sup>† &</sup>lt;-60 dBc for RF (2–2650 MHz)-wide (Option AYH) ‡ Add 4 dB for RF (2–2650 MHz)-wide (Option AYH)

# Agilent 89441A Technical Data—RF

# **Analog demodulation**

Demodulation specifications apply with demodulation mode selected and time-domain calibration on.

AM, PM, or FM demodulation. Auto carrier locking is available with PM or FM demodulators and the carrier value determined is a displayable marker function.

Demodulator bandwidth (determined by selected measurement span)

Maximum bandwidth 7 MHz (typical)

AM demodulation (typical performance)

Accuracy ±1%

Dynamic range 60 dB (100%) for a pure AM

signal

Cross demodulation <0.3% AM on an FM signal

with 10 kHz modulation,

200 kHz deviation

PM demodulation (typical performance)

Accuracy ±3 degrees

Dynamic range 60 dB (rad) for a pure PM

signal

Cross demodulation <1 degree PM on an AM sig-

nal with 80% modulation

FM demodulation (typical performance)

Accuracy ±1% of span

Dynamic range 60 dB (Hz) for a pure FM

signal

Cross demodulation <0.5% of span FM on an AM

signal with 80% modulation

Trigger

Trigger types

Scalar mode Free run, internal source,

GPIB, external (each measurement step requires

a separate trigger)

Vector mode Free run, IF channel,

internal source, GPIB,

external

Pre-trigger delay range (see time specifications for

sample resolution)

One channel 64 Ksamples (1 Msample

with extended time capture, Option AY9)

Two channels 32 Ksamples (0.5 Msample (requires second with extended time capture, Option AY9)

Option AY7)

Post-trigger delay range (see time specifications for

sample resolution) 2 Gsample

Trigger holdoff

When enabled, each measurement requires two trigger events. The first event starts a holdoff timer. After the specified holdoff time, a subsequent trigger event will initiate a measurement.

Holdoff resolution 2.5 µs

Holdoff range 2.5 µs to 41 s

IF trigger (characteristics only)

Used to trigger only on in-band energy, where the trigger bandwidth is determined by the measurement span (rounded to the next higher

 $10^7/2^n$  [Hz]).

Amplitude resolution <1 dB

Amplitude ranges  $\,$  +1 to -70 dBfs. Usable

range will become limited by the total integrated noise in the measurement span.

IF trigger hysterysis <4 dB

External trigger (positive and negative slope)

Level accuracy ±0.5 V Range ±5 V

Input impedance  $10 \text{ k}\Omega \text{ (typical)}$ 

External arm

Level accuracy ±0.5 V Range ±5 V

Input impedance  $10 \text{ k}\Omega \text{ (typical)}$ 

Source (requires internal RF source Option AY8)

**Source types**<sup>†</sup> CW (fixed sine), (vector mode) random noise,

periodic chirp, arbitrary

**Frequency** 

Range 2 MHz to 2650 MHz

Maximum offset from center

frequency 3.5 MHz

Amplitude (fixed sine source type)

Amplitude range -40 dBm to +13 dBm

Typical maximum amplitude +17 dBm

(overdrive is available using direct numeric entry)

Amplitude resolution 0.1 dB

Amplitude accuracy (source level ≤13 dBm)

Source amplitude accuracy is the sum of absolute accuracy at the center frequency (zero

offset frequency) and the IF flatness.

 $20^{\circ} - 30^{\circ}\mathrm{C}~0^{\circ} - 55^{\circ}\mathrm{C}$ 

Absolute accuracy at the

center frequency ±1.2 dB ±3.5 dB

IF flatness (relative to

center frequency) ±1dB ±1.5 dB

IF Flatness with

| offset frequency | ≤500 kHz ±0.3 dB

Dynamic range (source level ≤0 dBm)

Harmonic distortion <-40 dBc

Non-harmonic spurious (within measurement

bandwidth) <-40 dBc

Average noise level

(for offsets >1 MHz from the carrier and carrier frequency >100 MHz. For offsets <1 MHz, add

the LO phase noise.) <-120 dBc/Hz

Crosstalk (source-to-receiver,

source level ≤0 dBm) -80 dBfs

Source port

**VSWR** 

Level  $\leq$ -10 dBm 1.8:1 (11 dB return loss)

Impedance  $50 \Omega (75 \Omega \text{ with optional})$ 

minimum-loss pad)

Connector Type-N

See Baseband section for random noise, periodic chirp, and arbitrary source characteristics.

# **Agilent 89441A Technical Data—Baseband**

Baseband specifications apply with the receiver mode set to "IF section (0–10 MHz)" or "RF section (0–10 MHz)" unless noted otherwise. Specifications noted as "IF section only" apply with the receiver mode set to "IF section (0–10 MHz)" and the input signal connected directly to the IF section's channel 1 or channel 2 input.

# **Frequency**

# Frequency tuning (characteristic only)

Frequency range dc to 10 MHz
Frequency span 1.0 Hz to 10 MHz
Center frequency tuning resolution 0.001 Hz
Number of frequency points/span 51 to 3201

Signal track (when enabled) keeps the largest measured signal at the center frequency.

#### Frequency accuracy

Same as the RF specifications.

#### **Frequency counter**

Same as the RF specifications.

#### Stability (spectral purity)

Absolute and residual phase noise,  $F_{\rm in}$  = 10 MHz (with standard high precision frequency reference or equivalent)

 $\begin{array}{lll} 100~{\rm Hz~offset} & <-106~{\rm dBc/Hz} \\ 1~{\rm kHz~offset} & <-110~{\rm dBc/Hz} \\ \geq &10~{\rm kHz~offset} & <-120~{\rm dBc/Hz} \end{array}$ 

Phase noise decreases with decreasing input

frequency by  $20 \log_{10} \left| \frac{F_{in}}{10 \text{ MHz}} \right| dB$ .

#### **Resolution bandwidth**

Same as the RF specifications.

#### **Amplitude**

# Input range (characteristic only) (2 dB steps)

 $\begin{array}{lll} 50~\Omega~input & -30~dBm~to~+24~dBm \\ 75~\Omega~input & -31.761~dBm~to~+22.239~dB \\ 1~M\Omega~input & -30~dBm~to~+28~dBm \end{array}$ 

(referenced to  $50 \Omega$ )

Maximum safe input power

 $50 \Omega/75 \Omega$  input +27 dBm 1 M $\Omega$  input 20 V peak

#### Auto-ranging (characteristic only)

Up-only, up-down, single, off

Input port

Input channels 1 (second 10 MHz input

channel optional)

Return loss (IF section only)

 $50 \Omega$  input >25 dB  $75 \Omega$  input >20 dB

Coupling dc/ac (ac coupling

attenuation <3 dB at 3 Hz)

Input Impedance  $50/75 \Omega$ ,  $1 M\Omega \pm 2\%$ 

(IF section only) (<80 pF shunt capacitance)

Connector BNC (RF section: Type-N)

#### Amplitude accuracy

Accuracy specifications apply with flat-top window selected. Amplitude accuracy is the sum of absolute full-scale accuracy and amplitude linearity.

Absolute full-scale

accuracy (IF section only, with signal

level equal to range) ±0.5 dB

Amplitude linearity

0 to -30 dBfs <0.10 dB -30 to -50 dBfs <0.15 dB -50 to -70 dBfs <0.20 dB

Residual dc (50  $\Omega$ ) <-25 dBfs

#### **Dynamic range**


Dynamic range indicates the amplitude range that is free of erroneous signals within the measurement bandwidth.

Harmonic distortion (with a single full scale signal at the input)

2nd <-75 dBc (-80 dBc typical) 3rd, 4th, 5th <-75 dBc (-85 dBc typical)

Intermodulation distortion (with two input tones at 6 dB below full scale)

Second-order <-75 dBc (-80 dBc typical) Third-order <-75 dBc (-85 dBc typical)



#### Typical harmonic and intermodulation distortion

Residual (spurious) responses (IF section only) (50  $\Omega$  input and front panel connections to RF section disconnected)

Frequencies <1 MHz  $\,$  <-75 dBfs or <-100 dBm  $\,$ 

whichever is greater

Frequencies ≥1 MHz <-80 dBfs

Alias responses (for a single out-of-band

tone at full scale) <-80 dBfs

Input noise density (50  $\Omega$  input, vector mode or scalar mode with sample detector)

 $\begin{array}{ll} 1~\mathrm{kHz~to~40~kHz} & <-101~\mathrm{dBfs/Hz} \\ 40~\mathrm{kHz~to~10~MHz} & <-114~\mathrm{dBfs/Hz} \end{array}$ 

(-118 dBfs/Hz typical)

Sensitivity (-30 dBm range,  $50 \Omega$  input, vector mode or scalar mode with sample detector)

 $\begin{array}{lll} 1~\text{kHz to }40~\text{kHz} & <-131~\text{dBm/Hz} \\ 40~\text{kHz to }10~\text{MHz} & <-144~\text{dBm/Hz} \end{array}$ 

(-148 dBm/Hz typical)

Crosstalk

(source-to-input or channel-to-channel,

 $50 \Omega$  terminations) <-85 dBfs

# Phase (vector mode)

Phase specifications apply with flat-top window selected.

Deviation from linear phase (relative to best fit line with peak signal level within 6 dB of full scale):  $\pm 5$  deg

#### Time (vector mode)

Time-sample resolution = 1/(k\*span(Hz)) [second]; where k = 1.28 for zoom time, 2.56 for baseband time measurements.

Main time length = (number of frequency points – 1) ÷ span (Hz) [second]; for resolution bandwidth in arbitrary and auto-coupled mode.

Amplitude accuracy (IF section only) (for a sinewave in the measurement passband, timedomain calibrations on) ±5% full scale

Sample error rate for zoom time (typical) Error threshold: 10<sup>-8</sup> times/sample 5% full scale

Sample error rate reflects the probability of an error greater than the error threshold occurring in one time sample.

Analog channel-to-channel time skew (IF section only) (time-domain calibrations on,both channels on the same range) <1 ns

### **Analog demodulation**

Same as RF analog demodulation specifications except as noted below.

Demodulator bandwidth (determined by selected measurement span)

Maximum bandwidth 10 MHz (typical)

# Agilent 89441A Technical Data—Baseband, continued

#### Two-channel

The second 10 MHz input channel (Option AY7) provides additional measurements, including frequency response, coherence, cross spectrum, and cross correlation. These measurements are made by comparing a signal on channel two to a signal on channel one or to a demodulated signal on the RF input.

Channel match ±0.25 dB, ±2.0 deg

(IF section only, at the center of the frequency bins, dc coupled, 16 rms averages, frequency response, full scale inputs, both inputs on the same range. Exclude the first 5 bins of the dc response.)

# **Trigger**

Same as RF trigger specifications with the following additional specifications.

Input channel trigger (positive and negative slope)

Level accuracy ±10% full scale Range ±110% full scale

Resolution Full scale/116 (typical)

# Source (with output filter on)

Source types

Scalar mode CW (fixed sine), arbitrary
Vector mode CW, random noise, periodic chirp,

arbitrary

Random noise source % of energy in-band >70%

(Span =  $10 \text{ MHz}/2^{\text{N}}$ , N = 1 to 24)

Periodic chirp source % of energy in-band >85%

### **Frequency**

 $\begin{array}{ll} \text{Frequency range} & \text{dc to 10 MHz} \\ \text{Frequency resolution} & 25 \, \mu\text{Hz} \end{array}$ 

#### **Amplitude**

Source level

CW and  $-110 \text{ dBm to } +23.979 \text{ dBm } (50 \Omega),$ 

random noise 5.0 Vpk maximum

Periodic chirp  $-110 \text{ dBm to} + 19.542 \text{ dBm } (50 \Omega),$ 

and arbitrary 3.0 Vpk maximum

DC offset ±3.42 V maximum (resolution and

range of programmable dc offset is dependent on source amplitude)

Amplitude accuracy (50  $\Omega$ , fixed sine)

(IF section only)

Harmonic and other spurious products (fixed sine,

0 V dc offset)

dc to 10 kHz <-55 dBc 10 kHz to 5 MHz <-40 dBc 5 MHz to 10 MHz <-33 dBc

#### Source port

Return loss (IF section only) >20 dB Source impedance 50/75  $\Omega$ 

#### **Arbitrary source characteristics**

The arbitrary source repetitively outputs data stored in a data register. The data register may contain a single time record or, with Option AYB, a trace buffer. The time length of the register depends on the time-sample resolution for the span entered when the data register was saved or created. See time specifications for time-sample resolution details.

Arbitrary source length

8192 real points.

Trace buffer Up to 16,384 real or (Requires Option AYB) complex points. Some

configurations allow up to 32,768 real or complex points (see the *Operator's* 

Guide for details)

# **Agilent 89441A Technical Data—General**

Safety and environmental

Safety standards CSA Certified for

Electronic Test and Measurement

Equipment per CSA C22.2, No. 231

This product is designed

for compliance to UL1244 and IEC348, 1978

Acoustics LpA <55 dB typical at

25°C ambient

(Temperature controlled

fan to reduce noise

output)

Temperature

Operating 0° to 55°C Internal disk operations 4° to 40°C Storage (no disk in drive) –20° to 65°C

Humidity, non-condensing

Operating 10% to 90% at 40°C Internal disk operations 20% to 80% at 30°C Storage (no disk in drive) 10% to 90% at 40°C

Altitude

Operating (above 4600 m (15,000 ft)

2285 m [7,500 ft], derate operating temperature by -3.6 °C/1000 m [-1.1 °C/1000 ft])

Storage 4600 m (15,000 ft)

Calibration interval 1 year

Warm-up time 30 minutes

Power requirements

115 VAC operation

 $\begin{array}{ll} \text{IF section} & 90-140 \, \text{Vrms}, 47-440 \, \text{Hz} \\ \text{RF section} & 90-140 \, \text{Vrms}, 47-63 \, \text{Hz} \\ 230 \, \text{VAC operation} & 198-264 \, \text{Vrms}, 47-63 \, \text{Hz} \\ \end{array}$ 

Maximum power dissipation

IF section 750 VA RF section 275 VA

IEC 801-3 (Radiated Immunity) Performance degradation may occur at Severity Level 2.

**Physical** 

Weight IF section 25 kg (55 lb)

RF section 25 kg (55 lb)

Dimensions

 $\begin{array}{ccc} \text{IF section} & \text{Height} & 230 \text{ mm } (9.1 \text{ in}) \\ \text{Width} & 426 \text{ mm } (16.7 \text{ in}) \\ \text{Depth} & 530 \text{ mm } (20.9 \text{ in}) \end{array}$ 

RF section Height 173 mm (6.8 in)

Width 419 mm (16.5 in) Depth 495 mm (19.5 in)

Real time bandwidth (characteristics only)

Real-time bandwidth is the maximum frequency span that can be continually analyzed without missing any time segment of the input signal.

Frequency spans of  $10^7/2^n$  Hz, arbitrary autocoupled resolution bandwidth, markers off, one display trace with calculations off on other traces, and maximum frequency points equal to number of frequency points.

**Averaging off** 

Single-channel vector mode 78.125 kHz, (log magnitude spectrum 48 updates/second measurement data, 1601

frequency points, channel 2 off,

averaging off)

Two-channel vector mode 39.0625 kHz, (requires second 10 MHz input 48 updates/second

channel, Option AY7) (Log magnitude frequency response measurement data, 801

frequency points, averaging off)

# Agilent 89441A Technical Data—General, continued

#### **Averaging**

Single-channel vector mode averaging (log magnitude spectrum measurement data, 1601 frequency points, channel 2 off)

Fast average 78.125 kHz Displayed 78.125 kHz,

48 updates/second

Two-channel vector mode averaging (requires second 10 MHz input channel, Option AY7) (Log magnitude frequency response measurement data, 801 frequency points)

Fast average 39.0625 kHz Displayed 39.0625 kHz,

48 updates/second

#### **Demodulation**

Single-channel analog demodulation mode (log magnitude spectrum measurement data, 1601 frequency points, time cal off, channel 2 off, averaging off)

AM demodulation 19.53125 kHz FM or PM demodulation 9.765625 kHz

# Measurement speed

Display update speed (vector mode with full span, one or two channels, 401 frequency points, no averaging, markers off, single trace with calculations off on other traces, log magnitude spectrum, frequency spans of  $10^7/2^n$  Hz): 60/second

# **Averaging (characteristics only)**

Number of averages 1 to 99,999 Overlap averaging 0% to 99.99%

Average types

Scalar mode rms (video), rms (video)

exponential, peak hold

Vector mode rms (video), rms (video)

exponential, time, time exponential, peak hold

Fast averaging allows averaging a user-defined number of measurements without updating the displayed result. This provides faster averaging results for most measurements.

# Gating (characteristics only)

Time-selective, frequency-domain analysis can be performed on any input or analog demodulated time-domain data. When gating is enabled, markers appear on the time data; gate length and delay can be set directly. Independent gate delays can be set for each input channel. See time specifications for main time length and time resolution details.

#### **Gate length**

Maximum: Main time length

Minimum: Approximately window shape  $\div$  (0.3  $\times$  span Hz)) [seconds]; where window shape (ws) and minimum gate length for a 10 MHz zoom time span are (for 10 MHz baseband time spans subtract 39.0625 ns):

| Window       | ws    | Minimum gate length |
|--------------|-------|---------------------|
| Flat-top     | 3.819 | 1.328125 μs         |
| Gaussian-top | 2.215 | 781.25 ns           |
| Hanning      | 1.5   | 546.875 ns          |
| Uniform      | 1.0   | 390.625 ns          |
|              |       |                     |

# Time-capture (characteristics only)

Direct capture of input waveforms can be accomplished with spans of 10 MHz/2<sup>n</sup> Hz. See time specifications for time-sample resolution details.

Time capture memory: 64 Ksample; 1 Msample (Option AY9)

Benchmarks: For a one-channel, zoom time measurement (for baseband time, halve the time), 64 Ksample captures from 5.12 ms in a 10 MHz span to over 11.9 hours in a 1.19 Hz span. The optional 1 Msample captures from 81.92 ms in a 10 MHz span to over 190 hours in a 1.19 Hz span. Memory is shared if two channels are enabled, therefore length of capture is half as long.

# **Band power marker (characteristics only)**

Markers can be placed on any time, frequency, or demodulated trace for direct computation of band power, rms square root (of power), C/N, and  $C/N_0$ , within the selected portion of the data.

# **Peak/Average Statistics**

Peak and peak-to-average statistics can be enabled on main time, gate time, IQ measured time (AYA), IQ reference time (AYA), and math functions involving these trace types. Average power and peak statistics are computed using all samples in the active trace. Each successive trace adds additional samples to the calculations.

Displayed Results average power

peak power

peak/average ratio number of samples

Peak Percent 90% – 99.99%. Setting can

be changed at any time during or after the measurement.

Signal characteristics

Peak power range +13 dB relative to average

power of the first time

record

Average power

range

±3 dB relative to average power of the first time

record.

# Display (characteristic only)

Trace formats One to four traces on one, two,

or four grids or a quad display

Other displays On-line help text, view state

Display points/trace 401

User-definable trace titles and information:

X-axis scaling Allows expanded views

of portions of the trace

information

Display blanking Graticule on/off

ng Data or full display

Center ±5 mm referenced to bezel

opening

Dimensions

 $\begin{array}{ll} \mbox{Height} & 105 \pm 5 \mbox{ mm} \\ \mbox{Width} & 147 \pm 5 \mbox{ mm} \end{array}$ 

Diagonal 180.6 mm (7.1 in)

#### **Status indicators**

Overload, half range, external trigger, source on/off, trigger, pause, active trace, remote, talk, listen, SRQ.

#### **External PC-style keyboard interface**

Compatible with PC-style 101-key keyboard, such as the HP C1405B with HP C1405-60015 adapter.

# Agilent 89441A Technical Data—General, continued

# Interfaces (characteristics only)

Active probe power +15 Vdc, -13 Vdc; 150 mA

maximum, compatible with

Agilent active probes

Sync out Active low TTL level signal

synchronous with source output of periodic chirps and arbitrary blocks up to 8192

samples.

External reference in/out IF section

External Locks to a 1, 2, 5, or 10 MHz

reference input  $(\pm 10 \text{ ppm})$  with a level

>0 dBm

External Output the same frequency reference output as the external reference

input at level of >0 dBm into

a 50  $\Omega$  load.

External reference in/out RF section

External Locks to a 1, 2, 5, or 10 MHz

reference input (±10 ppm) with a level >0 dBm (use ≥5 dBm for optimum

phase noise performance).

External Outputs 10 MHz at >0 dBm reference output (+6 dBm typical) into a 50  $\Omega$ 

load.

**GPIB** 

Implementation of IEEE Std 488.1 and 488.2 SH1, AH1, T6, TE0, 1A, LE0, SR1, RL1, PP0,

DC1, DT1, Cl, C2, C3, C12, E2

Benchmark characteristics (typical transfer rate of 401 frequency-point traces)

401 frequency-point traces) Scalar 25 traces/

Scalar 25 traces/second Vector 20 traces/second

RS-232 Serial port (9-pin) for

connection to printer

Centronics Parallel port for connection

to a printer

External monitor output

Format Analog plug-compatible with

25.5 kHz multi-sync monitors

 $\begin{array}{ll} \text{Impedance} & 75 \ \Omega \\ \text{Level} & 0 \ \text{to} \ 0.7 \ \text{V} \\ \text{Display rate} & 60 \ \text{Hz} \end{array}$ 

Horizontal

refresh rate 25.5 kHz Horizontal lines 400

Option UFG includes the following interfaces:

Second GPIB Implementation of IEEE

Std 488.1 and 488.2

LAN ThinLAN BNC

**Peripherals** 

Plot/print

Direct plotting and black-and-white printing to parallel (Centronics), serial (RS-232), and GPIB graphics printers and plotters. Printers supported include the HP LaserJet, HP PaintJet, HP ThinkJet, HP DeskJet, and HP QuietJet. Single-plot spooling allows instrument operation while printing or plotting a single display.

# Memory and data storage

Disk devices

Nonvolatile RAM disk 100 Kbyte

Volatile RAM disk 1

1 Mbyte that can be partitioned between measurement, Instrument BASIC program space and RAM. Volatile RAM also supports memory of waterfalls and spectrograms with Option AYB.

Internal 90 mm (3.5-inch) flexible disk (LIF or

MS-DOS® formats) External disk

1.44 Mbyte GPIB interface

Disk format and file delete, rename and copy

Nonvolatile clock with time/date

Save/recall can be used to store trace data, instrument states, trace math functions, Instrument BASIC programs, and time-capture buffers.

Benchmarks (typical disk space requirements for different file types)

Trace data (401 points) 6.2 Kbyte
Instrument state 12.3 Kbyte
Trace math 2 Kbyte
Time-capture buffers 271 Kbyte

(32 Ksamples)

Optional extended RAM Option UFG includes

4 MB additional RAM for expanding the volatile RAM capabilities listed earlier.

#### **Trace math**

Operands measurement data, data register,

constant, other trace math functions, jw

Operations +, -, \*, /, cross correlation, conjugate,

magnitude, phase, real, imaginary, square root, FFT, inverse FFF, natural

logarithm, exponential

Trace math can be used to manipulate data on each measurement. Uses include user-units correction and normalization.

#### **Marker functions**

Peak signal track, frequency counter, band power, peak/average statistics.

#### Standard data format utilities

Included on two 90 mm (3.5-inch) 1.44 Mbyte flexible disks and two 130 mm (5.25-inch) 1.2 Mbyte floppy disks. The utilities run in MS-DOS® 2.1 or greater on an IBM PC (AT or higher) or compatible. The utilities include conversions to standard data format (SDF), PC displays of data and instrument state information, and utilities for conversion to PC-MATLAB, MATRIX $_{\rm x}$ , data set 58, and ACSII formats.

# **Agilent 89441A Technical Data—Options**

# Vector Modulation Analysis—Option AYA Supported modulation formats

The vector modulation analysis option supports both single modulated carriers and separate baseband I-Q signals. The optional second 10 MHz input channel is required for baseband I and Q analysis.

Carrier types Continuous and pulsed/burst

(such as TDMA)

Modulation formats 2 level FSK (including GFSK)

4 level FSK

MSK (including GMSK) QAM implementations of: BPSK QPSK OQPSK, DQPSK, π/4DQPSK 8PSK, 16QAM,

32QAM

Default parameter settings<sup>†</sup>

NADC, PDC (JDC), GSM, PHS,  $\,$ 

DECT, CDPD, TETRA,

CDMA Base, CDMA Mobile

#### **Filtering**

All filters are computed to 20 symbols in length.

Filter types Raised cosine

Square-root raised cosine

IS-95 compatible

Gaussian None Rectangular Low pass

User-selectable Alpha/BT continuously filter parameters adjustable from 0.05 to 10

User-defined filters User-defined impulse response,

fixed 20 points/symbol

Maximum 20 symbols in length

or 401 points

## Frequency and symbol rate

 $\begin{array}{lll} chl + j^*ch2 & \leq \!\! 20 \ MHz^{\dagger} \\ 0 - 10 \ MHz & \leq \!\! 10 \ MHz \\ 2 - 2650 \ MHz & \leq \!\! 7 \ MHz \end{array}$ 

2 – 2650 MHz - wide ≤8 MHz (Option AYH only) External ≤8 MHz (89411A only) Symbol Rate

Symbol Rate is limited only by the information bandwidth

 $Symbol\ Rate = \frac{Bits/Second}{Bits/Symbol}$ 

Where bits/symbol is determined by the modulation type. Example: For the raised-cosine filter

 $Max\ Symbol\ Rate\ \le\ \frac{Information\ Bandwidth}{1+\alpha}$ 

#### Measurement results (formats other than FSK)

Display update rate:

Conditions: NADC preset, 50 kHz span, result length 150 symbols, 1 point/symbol. IQ envelope triggering and data synchronization off.

Update rate >2 per second (characteristic

only)

I-Q measured Time, spectrum (Filtered, carrier locked, symbol locked)

I-Q reference Time, spectrum (Ideal, computed from detected symbols)

I-Q error vs. time Magnitude, phase

(I-Q measured vs. reference)

Error vector Time, spectrum (Vector error of computed vs. reference)

Symbol table + Error vector magnitude is error summary computed at symbol times only

#### Measurement results (FSK)

FSK measured Time, spectrum
FSK reference Time, spectrum
Carrier error Magnitude
FSK error Time, spectrum

#### **Display formats**

The following trace formats are available for measured data and computed ideal reference data, with complete marker and scaling capabilities and automatic grid line adjustment to ideal symbol or constellation states.

Polar diagrams

Constellation: Samples displayed only at

symbol times

Vector: Display of trajectory between symbol

times with 1 to 20 points/symbol

<sup>†</sup> NADC and CDMA preset settings require Option UFG.

Two-channel measurements such as chl + j\*ch2 require Option AY7 second 10 MHz input channel.

I or Q vs time

Eye diagrams: Adjustable from 0.1 to 10 symbols Trellis diagrams: Adjustable from 0.1 to 10 symbols

Continuous error vector magnitude vs. time Continuous I or Q vs. time

Error summary (formats other than FSK)

Measured rms and peak values of the following:

Error vector magnitude

Magnitude error

Phase error

Frequency error (carrier offset frequency)

I-Q offset

Amplitude droop (formats other than QAM)

SNR (QAM formats)

Error summary (FSK)

Measured rms and peak values of the following:

FSK error

Magnitude error

Carrier offset frequency

Deviation

Detected bits (symbol table)

Binary bits are displayed and grouped by symbols. Multiple pages can be scrolled for viewing large data blocks. Symbol marker (current symbol shown as inverse video) is coupled to measurement trace displays to identify states with corresponding bits. For formats other than FSK and MSK, bits are user-definable for absolute states or differential transitions. Note: Synchronization words are required to resolve carrier phase ambiguity on non-differential modulation formats.

#### Accuracy (formats other than FSK and IS-95 CDMA)

Conditions: Specifications apply from 20° to 30°C, for a full-scale signal fully contained in the selected measurement span, random data sequence, instrument receiver mode of IF 0–10 MHz or RF 2–2650 MHz, range  $\geq$ –25 dBm, start frequency  $\geq$ 15% of span, alpha/BT  $\geq$ 0.3†, and symbol rate  $\geq$ 1 kHz. For symbol rates less than 1 kHz, accuracy may be limited by phase noise.

Residual errors (result length = 150 symbols, averages = 10)

Error vector magnitude

Freq span <100 kHz 0.3% rms Freq span  $\le 1 \text{ MHz}$  0.5% rms Freq span >1 MHz 1.0% rms

Magnitude error

Freq span  $\leq 100$  kHz 0.3% rms Freq span  $\leq 1$  MHz 0.5% rms Freq span >1 MHz 1.0% rms

Phase error (for modulation formats with equal symbol amplitudes)

Freq span  $\leq$ 100 kHz 0.17° rms Freq span  $\leq$ 1 MHz 0.34° rms Freq span >1 MHz 0.57° rms

Frequency error Symbol rate/500,000 (Added to frequency accuracy if applicable)

Origin/I-Q Offset -60 dB

#### Accuracy (2 FSK and 4 FSK)

Residual errors, typical:

4 FSK or 2 FSK, symbol rate = 3.2 kHz, deviation = 4.8 kHz, instrument receiver mode of IF 0–10 MHz or RF 2–2650 MHz, 50 kHz span, full-scale signal, range  $\geq$ –25 dBm, result length = 150, averages = 10, tenth-order Bessel filtering with 3 dB bandwidth = 3.9 kHz. $^{\ddagger}$ 

FSK error 0.5% rms Magnitude error 0.3% rms

Deviation  $\pm 0.3\%$  rms (14 Hz)

Carrier frequency offset (Added to frequency

accuracy if applicable) ±0.3% of deviation

DECT preset (2 FSK symbol rate = 1.152 MHz, BT = 0.5) 288 kHz deviation, instrument receiver mode of IF 0–10 MHz or RF 2–2650 MHz, 4 MHz span, full-scale signal, result length = 150, averages = 10.

FSK error 1.5% rms Magnitude error 1.0% rms

Deviation ±1.0% rms (2.88 kHz)

Carrier frequency offset

(Added to frequency

accuracy if applicable) ±0.5% of deviation

<sup>†</sup>  $0.3 \le alpha \le 0.7$  for Offset QPSK

Note: For error analysis, a Gaussian reference filter with BT = 1.22 is used to approximate the tenth-order Bessel filter.

# Agilent 89441A Technical Data—Options, continued

### Accuracy (IS-95 CDMA)

CDMA Base or CDMA Mobile preset, instrument mode of IF (0 – 10 MHz) or RF (2 – 2650 MHz), 2.6 MHz span, full scale signal, result length = 200, averages = 10.

#### **Residual Errors**

Error vector magnitude 1% rms Magnitude error 1% rms Phase error 0.57° rms Frequency error 10 Hz

(Added to frequency accuracy if applicable)

Origin I/Q offset -60 dB

### **Signal Acquisition**

Note: Signal acquisition does not require an external carrier or symbol clock

# Data block length

Adjustable up to 1024 samples (4096 samples with extended RAM Option UFG).

Examples (with Option UFG):

4096 symbols at 1 point/symbol

409 samples at 10 points/symbol

Symbol clock Internally generated

Carrier lock Internally locked

# Triggering

Single/continuous

External

Internal source

Pulse search (searches data block for beginning of TDMA burst, and performs analysis over selected burst length)

#### Data synchronization

User-selected synchronization words Arbitrary bit patterns up to 30 symbols long, at any position in a continuous or TDMA burst and measurement result. Up to 6 words can be defined.

#### **Arbitrary waveform source**

RAM-based arbitrary waveforms

Waveform registers Maximum 6

Waveform length 4096 Complex points each

(16,384 with Option AYB)

Residual accuracy, typical

Examples

 $\pi/4$ DQPSK, 24.3 EVM  $\leq$ 0.7% rms

ksymbols/second,

 $\alpha = 0.35$ 

GMSK, 270.833 EVM ≤1.0% rms

ksymbols/second,

BT = 0.30

# **Digital Video Modulation Analysis—Option AYH**

(requires Option AYA)

This option extends the capabilities of the vector modulation analysis Option AYA by adding modulation formats used for digital video transmission. Except where noted, all of the standard capabilities of Option AYA are provided for the new modulation formats.

#### **Supported modulation formats**

Additional modulation 8 and 16VSB

formats 16, 32, 64 and 256QAM

16, 32, and 64QAM (differentially encoded per DVB standard)

# Frequency span

The (2-2650 MHz)-wide receiver mode increases the maximum allowable vector frequency span to 8 MHz. Specifications for this mode are in the RF specification section.

#### Maximum symbol rate

Option AYH analyzes vector modulated signals up to a maximum symbol rate determined by the information bandwidth of the receiver mode and the excess bandwidth factor  $(\alpha)$  of the input signal, according to:

$$Max\ Symbol\ Rate \le \frac{Information\ Bandwidth}{1+\alpha}$$

(Note: the maximum symbol rate is doubled for VSB signals.)

| Receiver mode       | Information bandwidth            |
|---------------------|----------------------------------|
| chl + j*ch2         | $\leq 20~\mathrm{MHz^{\dagger}}$ |
| 0 – 10 MHz          | ≤10 MHz                          |
| 2 – 2650 MHz normal | ≤7 MHz                           |
| 2 - 2650  MHz wide  | ≤8 MHz                           |
| External            | ≤10 MHz <sup>†</sup>             |

Example: For a 64QAM signal ( $\alpha$  = 0.15), the maximum symbol rate for the (2–2650 MHz)-wide receiver is 8 MHz/(1.15) = 6.96 Msymbols/second.

### Measurement results and display formats

Identical to Option AYA measurement results and display formats except for the following changes to the error summary display:

VSB pilot level is shown, in dB relative to nominal.

For VSB formats, SNR is calculated from the real part of the error vector only.

For DVB formats, EVM is calculated without removing IQ offset.

#### **Accuracy**

Residual errors (typical):

8VSB or 16VSB, symbol rate = 10.762 MHz,  $\alpha$  = 0.115, instrument receiver mode of IF 0–10 MHz or RF 2–2650 MHz, 7 MHz span, full-scale signal, range  $\geq$ -25 dBm, result length = 800, averages = 10.

Residual EVM  $\leq 1.5\%$  (SNR  $\geq 36$  dB)

16, 32, 64 or 256 QAM, symbol rate = 6.9 MHz,  $\alpha$  = 0.15, instrument receiver mode of IF 0–10 MHz or RF 2–2650 MHz-wide, 8 MHz span, full-scale signal, range  $\geq$ –25 dBrn, result length = 800, averages = 10.

Residual EVM ≤1.0% (SNR ≥40 dB)

#### Filtering

All Option AYA filter types are supported except user-defined filters for VSB analysis. Filters are calculated to 40 symbols in length.

#### **Triggering and Synchronization**

All Option AYA signal acquisition features are supported except pulse and sync word search for VSB analysis.

# Adaptive Equalization—Option AYH or Option AYJ (AYJ adds adaptive equalization to Option AYA)

This option equalizes the digitally modulated signal to remove effects of linear distortion (such as unflatness and group delay) in a modulation quality measurement.

Equalizer performance is a function of the filter design (e.g., length, convergence, taps/symbol) and the quality of the signal being equalized.

#### **Equalizer**

Decision-directed, LMS, feed-forward equalization with adjustable convergence rate.

Filter length 3–99 symbols, adjustable Filter taps 1, 2, 4, 5, 10, or 20 taps/symbol

#### Measurement results

Equalizer impulse response Channel frequency response

#### **Supported modulation formats**

MSK, BPSK, QPSK, OQPSK, DQPSK,  $\pi/4$ DQPSK, 8 PSK, 16 QAM, 32 QAM, 64 QAM, 256 QAM, 8 VSB, 16 VSB

<sup>†</sup> Downconverter dependent.

# Agilent 89441A Technical Data—Options, continued

# Waterfall and Spectrogram—Option AYB

Waterfall

Types Vertical and skewed,

Azimuth adjustable 0 to ±45 Normal and hidden line With or without baseline.

Adjustable Trace height Buffer depth

Elevation Threshold

Spectrogram

Types Color, normal, and reversed

Monochrome, normal, and

reversed

User color maps (2 total)

Adjustable Number of colors parameters Enhancement

(color-amplitude weighting)

Threshold

#### Trace select

When a waterfall or spectrogram measurement is paused or completed, any trace in the trace buffer can be selected by trace number or by z-axis value. The marker values and marker functions apply to the selected trace.

#### Z-axis value

The z-axis value is the time the trace data was acquired relative to the start of the measurement. The z-axis value of the selected trace is displayed as part of the marker readout.

Display update rate: 30 to 60/second, typical

System memory (characteristic only)

Note: In standard configuration, the analyzer has approximately 1 to 2 Mbytes of free memory for these displays. Option UFG adds 4 Mbytes of free memory.

Memory required (characteristic only)

Displays occupy memory at the rate of 175 traces/Mbyte (for traces of 401 frequency points). A full screen of 307 traces will require 2.25 Mbytes of free memory.

With Option UFG, the analyzer will typically accommodate more than 1000 traces in memory.

# 4 Mbytes Extended RAM and Additional I/O—Option UFG

#### **Extended RAM**

Extended memory type: 4 Mbytes dynamic RAM Available memory with Option UFG installed: Approximately 6 Mbytes, user-allocatable to measurement memory, RAM disk, and IBASIC program space.

#### LAN I/O

LAN support: Ethernet (IEEE 802.3) TCP/IP IAN interface: ThinLAN (BNC connector) or AUI Recommended MAU: Agilent 28685B (10base-T) or 28683A (FDDI)

Program interface: Send and receive GPIB programming codes, status bytes, and measurement results in ASCII and/or binary format.

#### GPIB I/O

Secondary GPIB port: Per IEEE Std 488.1 and 488.2 Functions: Controller-only; accessible from IBASIC program or front panel commands.

Note: Option UFG is strongly reconunended for use with Option AYA Vector Modulation Analysis and Option AYB Waterfall and Spectrogram.

# Advanced LAN Support—Option UG7 Remote X11 display (characteristic only)

Update rate: >20 per second, depending on workstation performance and LAN activity.

X11 R4 compatible

X-terminals, UNIX workstations, PC with X-server software

Display: 640 ¥ 480 pixel minimum resolution required; 1024 ¥ 768 recommended.

# FTP data (characteristic only)

Traces A, B, C, D
Data registers D1-D6
Time capture buffer
Disk files (RAM, NVRAM, floppy disk)
Analyzer display plot/print
Note: Option UG7 requires Option UFG.

MS-DOS is a U.S. registered trademark of Microsoft Corporation. Matlab is a product of The Math Works. Matrix $_{\mathbf{x}}$  is a product of Integrated Systems Inc.

#### Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

#### Our Promise

"Our Promise" means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

#### Your Advantage

"Your Advantage" means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test and measurement needs.

#### **Online Assistance**

www.agilent.com/find/assist

#### Phone or Fax

United States: (tel) 1 800 452 4844

#### Canada:

(tel) 1 877 894 4414 (fax) (905) 206 4120

#### Europe:

(tel) (31 20) 547 2323 (fax) (31 20) 547 2390

#### Japan

(tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Latin America: (tel) (305) 269 7500 (fax) (305) 269 7599

#### Australia:

(tel) 1 800 629 485 (fax) (61 3) 9210 5947

New Zealand: (tel) 0 800 738 378 (fax) (64 4) 495 8950

#### Asia Pacific:

(tel) (852) 3197 7777 (fax) (852) 2506 9284

Product specifications and descriptions in this document subject to change without notice.

Copyright © 1994-1996, 2000 Agilent Technologies Printed in U.S.A. 10/00 5965-5425E

