
Dakar
F5 Carrier Board

User Guide
Document Number 500-00354

Revision 2.11

October 1998

Dakar User Guide Spectrum Signal Processing
Customer Feedback

Part Number 500-00354
Revision 2.11

Copyright © 1998 Spectrum Signal Processing Inc.
All rights reserved, including those to reproduce this document or parts thereof in any form without permission in writing from
Spectrum Signal Processing Inc.
All trademarks are registered trademarks of their respective owners.
Spectrum Signal Processing reserves the right to change any of the information contained herein without notice.

Spectrum Signal Processing Dakar User Guide
Customer Feedback

Part Number 500-00354
Revision 2.11

Customer Feedback
At Spectrum, we recognize that product documentation that is both accurate and easy to
use is important in aiding you in your new product development. We appreciate hearing
your comments on how our product’s documentation could be improved.

If you wish to comment on any Spectrum documentation then please fax or e-mail a
completed copy of this page to us.

Full Name of Document: __

Document Number: ______________________ Version Number: _________________

If you have found a technical inaccuracy please describe it here:

__

__

__

__

__

If you particularly liked or disliked an aspect of the manual then please describe it here:

__

__

__

__

__

It may be helpful for us to call you to discuss your comments. If this would be acceptable
please provide the following details:

Name: _________________________________ Telephone #: ____________________

Organization: ___

Thank you for your time,

Spectrum Signal Processing Documentation Group

Fax: (604) 421-1764
Email: documentation@spectrumsignal.com

Dakar User Guide Spectrum Signal Processing
Contacting Spectrum…

Part Number 500-00354
Revision 2.11

Contacting Spectrum…
Spectrum’s team of dedicated Applications Engineers are available to provide technical
support to you for this product. Our office hours are Monday to Friday, 8:00 AM to
5:00 PM, Pacific Standard Time.

Telephone 1-800-663-8986 or (604) 421-5422

Fax (604) 421-1764

Email support@spectrumsignal.com

Internet http://www.spectrumsignal.com

When you contact us, please have the following information on hand:

• A concise description of the problem

• The name of all Spectrum hardware components

• The name and version number of all Spectrum software components

• The minimum amount of code that demonstrates the problem

• The version number of all software packages, including compilers and operating
systems

Spectrum Signal Processing Dakar User Guide
Preface

Part Number 500-00354 i
Revision 2.11

Preface
Spectrum Signal Processing offers a complete line of DSP hardware, software and I/O
products for the DSP Systems market based on the latest DSP microprocessors, bus
interface standards, I/O standards and software development environments. By delivering
quality products, and DSP expertise tailored to specific application requirements,
Spectrum can consistently exceed the expectations of our customers. We pride ourselves
in providing unrivaled pre and post sales support from our team of application engineers.
Spectrum has excellent relationships with third party vendors which allows us to provide
our customers with a more diverse and top quality product offering.

Spectrum achieved ISO 9001 quality certification in 1994.

As Spectrum’s hardware products are static sensitive, please take
precautions when handling and make sure they are protected against
static discharge.

Dakar User Guide Spectrum Signal Processing
Preface

ii Part Number 500-00354
Revision 2.11

Spectrum Signal Processing Dakar User Guide
Table of Contents

Part Number 500-00354 iii
Revision 2.11

Table of Contents

1 Introduction ... 1

1.1. Purpose of This Manual.. 1

1.2. Reference Documents.. 1

1.3. Conventions Used in This Manual.. 1

2 Hardware Overview... 3

2.1. Features of the F5 Carrier Board.. 3

2.1.1. Scaleable Modular Architecture.. 4

2.1.2. PCI Interface... 4

2.1.3. TMS320C4x Communication Port Interfaces ... 4

2.1.4. Shared Memory Resources.. 5

2.1.5. Node A Memory Resources.. 5

2.1.6. DSP~LINK3 Interface ... 5

2.1.7. JTAG Interface Debug Support .. 5

2.2. Memory Configurations Available... 6

2.3. Bus Architecture ... 6

2.4. ’C4x Communication Port Architecture... 8

2.5. Resetting the F5 Carrier Board... 8

2.5.1. Power Up Reset.. 9

2.5.2. PCI Software Reset .. 9

2.5.3. JTAG Reset .. 10

2.6. Booting the F5 Board.. 10

3 Software Overview .. 11

3.1. Hardware and Software Requirements .. 12

3.2. F5 Host Program Structure... 13

3.2.1. F5 Windows Host Application Libraries .. 13

3.2.2. F5 Windows 95 and NT Device Drivers.. 14

3.3. F5 C4x Application Library ... 14

3.4. Data Type Definitions ... 14

3.5. Calling Conventions for Windows 95 and Windows NT.. 15

3.6. Example Programs... 15

3.7. Manuals Provided With the F5 SDK... 15

3.8. Utilities Provided With the F5 SDK... 16

Dakar User Guide Spectrum Signal Processing
Table of Contents

iv Part Number 500-00354
Revision 2.11

4 Hardware and Software Installation .. 17

4.1. Configuring the F5 Carrier Board ... 17

4.2. Module Installation.. 18

4.2.1. Installing DSP~LINK3 Modules... 19

4.2.2. Installing TIM-40 Modules... 19

4.3. Installation into PCI Slot and Cabling ... 19

4.4. Windows NT Installation Notes... 20

4.5. Windows 95 Installation Notes.. 20

4.6. Installing Multiple F5 Carrier Boards... 21

4.7. Installing the Software Development Kit (Windows NT)... 22

4.8. Installing the Software Development Kit (Windows 95).. 23

4.9. Directory Contents After Installation of the SDK... 24

4.10. Installing Toolbox.. 26

4.11. Verifying the Software Development Kit Installation... 26

4.12. Uninstalling the Software Development Kit (Windows NT)... 27

4.13. Uninstalling the Software Development Kit (Windows 95).. 27

5 JTAG Debugging Software ... 29

5.1. Using Code Composer ... 30

5.1.1. Setup for Back-plane Debugging.. 30

5.1.2. Setup for Debugging with the Mountain-510 Emulator... 32

5.1.3. Editing the Sample GEL File... 33

5.1.4. Loading and Running Files... 34

6 Development of Host Applications .. 35

6.1. Architectural Overview.. 35

6.2. Calling Host Functions.. 37

6.2.1. Obtaining Error Information .. 38

6.3. Including F5 ALIB Functionality .. 38

6.4. Defining your System’s Hardware Configuration.. 39

6.5. Changing your System’s Hardware Configuration.. 39

6.5.1. Changing an F5 Board ID... 40

6.6. Defining the DSP Code to Download ... 40

6.6.1. Load Definition File (LDF) Example.. 40

6.7. Defining your System’s Configuration for a Standalone Application....................................... 41

6.7.1. Generating a Resource Definition File (RDF)... 41

6.7.2. Resource Definition File (RDF) Example.. 42

6.8. Using Handles to Access Systems and Resources.. 43

6.9. Viewing Debug Messages (Windows 95) ... 43

Spectrum Signal Processing Dakar User Guide
Table of Contents

Part Number 500-00354 v
Revision 2.11

7 Host Software Functions ... 45

F5_AllocHostMem (Windows 95) .. 46

F5_AllocHostMem (Windows NT).. 47

F5_Control .. 48

F5_ErrorMessage... 51

F5_FreeHostMem (Windows 95)... 52

F5_FreeHostMem (Windows NT).. 53

F5_GetHandle .. 54

F5_InstCallback.. 55

F5_InterruptProc... 59

F5_Read... 60

F5_SystemClose .. 62

F5_SystemLoad.. 63

F5_SystemOpen... 65

F5_Write ... 67

8 Development of DSP Applications .. 69

8.1. Calling F5 ALIB_C4x Functions.. 69

8.2. Including F5 ALIB_C4x Functionality.. 69

8.3. Transferring Data Between DSPs Shared SRAM and the PCI Bus....................................... 70

8.4. Running F5 DSP Code via a Debugger.. 71

8.4.1. board.cfg... 72

8.4.2. init.cmd ... 73

8.4.3. Testing the Software Setup .. 74

9 DSP Software Functions ... 75

C4X_Close.. 76

C4X_Control ... 77

C4X_Open.. 79

C4X_Read .. 80

C4X_Write .. 83

10 Example Programs.. 85

10.1. Purpose of Each Program .. 85

10.2. How to Run the Example Programs ... 86

10.3. Screen Displays of the Example Programs.. 87

10.4. Verifying the Device Driver and Host Library Installation.. 90

10.5. Tips and Troubleshooting... 91

10.6. How to Rebuild the Host Library... 91

10.7. How to Rebuild the Example Programs.. 92

Dakar User Guide Spectrum Signal Processing
Table of Contents

vi Part Number 500-00354
Revision 2.11

Appendix A: Status Codes ... 95

Appendix B: Sample Linker Command File ... 99

Appendix C: System Definition File: Description and Example .. 101

Appendix D: Definitions and Acronyms.. 109

Index .. 111

Spectrum Signal Processing Dakar User Guide
Table of Contents

Part Number 500-00354 vii
Revision 2.11

List of Figures

Figure 1 F5 Block Diagram ... 6

Figure 2 F5 COMM Port Architecture ... 8

Figure 3 F5 Host Program Flow.. 13

Figure 4 F5 Connector and Jumper Locations.. 17

Figure 5 F5 Module Locations... 18

Figure 6 JTAG Debugging Configurations ... 29

Figure 7 Dakar Host Software Architecture.. 36

Figure 8 Host Program Flow ... 37

Figure 9 Order of DSP Function Calls.. 69

Figure 10 Near Memory /Far Global SRAM Transfers... 70

Figure 11 PCI/Far Global SRAM Transfers ... 71

Figure 12 Screen Display of the “busmastr” Example Program.. 87

Figure 13 Screen Display of the “dspload” Example Program... 88

Figure 14 Screen Display of the “glbsram” Example Program... 88

Figure 15 Screen Display of the “guisamp” Example Program.. 89

Figure 16 Screen Display of the “intrupts” Example Program.. 89

Figure 17 Screen Display of F5 SDK Tester.. 90

List of Tables

Table 1 Memory Device Sizes (in 32-bit words)... 6

Table 2 Reset Summary .. 8

Table 3 F5 Hardware and Software Requirements.. 12

Table 4 Calling Conventions for Windows 95 and Windows NT.. 15

Table 5 F5 Jumper Summary... 18

Table 6 Directory Contents After Installing the SDK.. 25

Table 7 F5 ALIB Host Functions .. 45

Table 8 F5 ALIB DSP Functions .. 75

Table 9 Troubleshooting - Messages Displayed by F5 SDK Tester .. 91

Table 10 Status Codes for Host Library Functions .. 95

Table 11 Status Codes for DSP Library Functions .. 97

Dakar User Guide Spectrum Signal Processing
Table of Contents

viii Part Number 500-00354
Revision 2.11

Spectrum Signal Processing F5 Carrier Board User Guide
Introduction

Part Number 500-00354 1
Revision 2.11

1 Introduction

1.1. Purpose of This Manual

This manual describes the F5 Software Development Kit (SDK) that’s used to develop
applications for the F5 Carrier Board. It describes how to install the SDK and how to use
the F5 Host and C4x DSP libraries.

A second manual, the Dakar F5 Carrier Board Technical Reference, describes the
features, architecture, and specifications of the F5 Carrier Board, and is the primary
hardware reference.

1.2. Reference Documents

This guide is meant to be used in conjunction with the following documents:

• Dakar F5 Carrier Board Technical Reference from Spectrum

• Toolbox Configuration Utilities User Guide available from Spectrum

• TMS320C4x User’s Guide available from Texas Instruments

• TMS320C4x C Source Debugger User’s Guide available from Texas Instruments

• TMS320 Floating-Point DSP Assembly Language Tools User’s Guide available from
Texas Instruments

• TMS320 Floating-Point DSP Optimizing C Compiler User’s Guide available from
Texas Instruments

1.3. Conventions Used in This Manual

This manual uses the following conventions:

• Italic font is used to designate placeholder names, such as command parameter
names, cross-references, and references to other documents. For example:

The value passed to phResc must be a valid pointer to an F5 resource.

• Bold font is used to emphasize text, filenames, and command names within
paragraphs. For example:

 Refer to the readme.txt file for the most current information.

F5 Carrier Board User Guide Spectrum Signal Processing
Introduction

2 Part Number 500-00354
Revision 2.11

• This font is used to designate program code, examples, text that appears on the
screen, and commands that you must enter in an interactive display. For example:

In the Run dialog box enter:

a:\install.exe

• <F5RootDirectory> is used to indicate the location of your F5 SDK files on your
hard drive. It specifies the directory on your hard drive from which your F5 SDK
files branch, and is most likely the directory you chose during installation.

• “0x” before a number indicates that this is hexadecimal notation (base 16). For
example:

Set the Reload Configuration Registers Bit (bit 29) in the PCI9060/9080
EEPROM control register (PCI offset 0x6C, local bus offset 0xEC) to “0”.

• An “h” after a number indicates that this is hexadecimal notation (base 16). For
example:

IRAM0: origin = 002FF800h length = 0400h /* Internal RAM

• Wherever possible, the following side-by-side shaded boxes have been used to
indicate information that is different for a Windows 95 or Windows NT
environment. If you are using a Windows NT environment, for example, you can
disregard the information in the Windows 95 column throughout the manual. For
example:

The F5 Software Development Kit (SDK) consists of the following:

Windows 95: Windows NT:

F5 Windows 95 Host
Application Library
(ALIB_W95)

F5 Windows NT Host
Application Library (ALIB_NT)

Spectrum Signal Processing F5 Carrier Board User Guide
Hardware Overview

Part Number 500-00354 3
Revision 2.11

2 Hardware Overview
The F5 Carrier Board is a TIM-40 carrier board for use within computers equipped with
a PCI bus. The full-length PCI board features one embedded Texas Instruments
TMS320C44 Digital Signal Processor (DSP) and three TIM-40 module sites. TIM-40
modules define a family of DSP modules, based on TMS320C4x processors, designed
for use in multiple DSP systems. Spectrum offers a range of single and dual processor
TIM-40 modules that can be used with the F5 Carrier Board.

2.1. Features of the F5 Carrier Board

The F5 Carrier Board offers the following features:

• Flexible architecture consisting of up to seven TMS320C4x-based processor nodes

• One embedded TMS320C44 (’C44) processor with associated memory devices to
form a virtual TIM-40 site for Node A

• Three TIM-40 sites supporting single or double width TIM-40 modules

• Up to 420 MFLOPS performance, by using three dual-processor TIM-40 modules
and the embedded ’C44 for a total of seven 50/60 MHz TMS320C4x processors

• Internal TMS320C4x communication port (COMM Port) connections between
processor nodes

• Ten external COMM Port connectors from the processor nodes

• 132 MBytes/s peak transfer rates from 32-bit PCI (Master/Slave) Bus

• One on-board DSP~LINK3 module site

• One external DSP~LINK3 connector

• Non-intrusive multi-processor debugging in real-time using JTAG interface

• External connector on end-plate which provides access to TIM-40 Application
Specific Pins for nodes B, C, and D

• Up to 512k x 32-bit 1 wait-state SRAM shared between all processor nodes

• Up to 1M x 32-bit 0 wait-state SRAM for the Node A embedded processor

• Programmable Erasable ROM (PEROM) for the Node A embedded processor which
provides TIM-40 compliant code boot-strapping and board identification

F5 Carrier Board User Guide Spectrum Signal Processing
Hardware Overview

4 Part Number 500-00354
Revision 2.11

2.1.1. Scaleable Modular Architecture

With its embedded ’C44 processor and its three module sites that are compatible with
Texas Instruments’ TIM-40 specification, the F5 Carrier Board can be configured with
one to seven 'C4x DSPs. This results in an architecture that can be scaled from 60 to 420
MFLOPS of processing power with varying memory capacity. A wide range of modules
are available from Spectrum providing the flexibility of different memory and analog I/O
combinations for each TIM-40 site. Single or double width TIM-40 modules can be
accommodated.

2.1.2. PCI Interface

Any PCI master on the PCI bus can access the following devices on the F5 Carrier Board
via the PCI slave interface:

• Test Bus Controller

• PLX PCI9060/9080 PCI interface chip registers

• Far Global SRAM (for shared memory communication)

• Interrupt registers

• Bus Control registers

The Node A embedded 'C44 can master the PCI bus through the DMA channels of the
PLX PCI9060/9080 PCI interface chip. This allows the F5 Carrier Board to access the
resources on the host computer through DMA transfers initiated by Node A.

Note: The Intel® 430FX chipset does not support DMA Bus Mastering. If your
computer is equipped with this chipset, the F5 Carrier Board cannot initiate a
DMA transfer to the PCI bus as a PCI master.

2.1.3. TMS320C4x Communication Port Interfaces

The TMS320C4x communication ports (COMM Ports) are used for inter-processor
communication both internally and externally to the F5 Carrier Board. The COMM Ports
provide bi-directional asynchronous communication between TMS320C4x processors.
They are ideal for passing large data sets between processors without loading any shared
resource, such as the Far Global SRAM. All four nodes are connected to each other
internally and there are 10 external COMM Port connections shared amongst the nodes.

 Intel is a registered trademark of Intel Corporation.

Spectrum Signal Processing F5 Carrier Board User Guide
Hardware Overview

Part Number 500-00354 5
Revision 2.11

2.1.4. Shared Memory Resources

The shared bus architecture allows the on-board DSP, the TIM-40 module sites, and the
PCI interface to access a shared bank of on-board SRAM. The F5 Carrier Board will
have either 0.5 MB or 2 MB of SRAM.

2.1.5. Node A Memory Resources

Node A memory resources consist of a local bus PEROM, local bus SRAM and global
bus SRAM in accordance to the TIM-40 specification. These resources are only
accessible from the Node A ’C4x. The PEROM device is a 32K x 8-bit device used for
TIM-40 IDROM and, optionally, for the loading of boot-code. The local and global
busses of Node A contain either both 0.5 MB or both 2 MB zero wait-state 15 ns SRAM
banks.

2.1.6. DSP~LINK3 Interface

DSP~LINK3 modules can be used with the F5 Carrier Board via the DSP~LINK3
interface. The DSP~LINK3 module site allows Spectrum DSP~LINK3 modules to be
installed right on the F5 Carrier Board while the DSP~LINK3 ribbon cable connector
allows external DSP~LINK3 modules to be connected to the F5 Carrier Board. The
interface is directly accessible to all processors nodes.

Spectrum offers a range of modules with DSP~LINK3 interfaces that can be used with
the F5 Carrier Board, including IndustryPack® modules.

The DSP~LINK3 interface is an open standard for Spectrum’s I/O interface. It defines a
32-bit wide, 40 Mbyte-per-second I/O interface with low interrupt latency. The full
DSP~LINK3 specification is available from Spectrum upon request. DSP~LINK3 is
electrically compatible the DSP~LINK2 specification and may be used with
DSP~LINK2 with the appropriate mechanical adapter available from Spectrum.

2.1.7. JTAG Interface Debug Support

An on-board JTAG Test Bus Controller (TBC) is mapped to the PCI Local Bus to
provide multiprocessor, C source, debug capability in conjunction with support software
applications. JTAG-based debugging uses the 'C4x’s dedicated debug port to minimize
the intrusiveness of the debugger on your application.

F5 Carrier Board User Guide Spectrum Signal Processing
Hardware Overview

6 Part Number 500-00354
Revision 2.11

2.2. Memory Configurations Available

The F5 Carrier Board is available in the memory configurations shown in the following
table. Each SRAM bank consists of four 8-bit SRAM memory devices.

Table 1 Memory Device Sizes (in 32-bit words)

Total SRAM
(Bytes)

Local
SRAM
Bank 1

Local
SRAM
Bank 0

Global
SRAM
Bank 1

Global
SRAM
Bank 0

Far
Global
SRAM

15 ns 15 ns 15 ns 15 ns 20 ns

1.5 Mbytes empty 128K empty 128K 128K

6 Mbytes empty 512K empty 512K 512K

10 Mbytes 512K 512K 512K 512K 512K

2.3. Bus Architecture

Several different communication buses are used on the F5 Carrier Board to connect the
embedded ’C44 processor, TIM-40 sites, memory devices, and interface circuitry as
shown in the following diagram.

PLX PCI9060
PCI Interface

Far Global
SRAM

Global Shared Bus

PLX PCI9060 Local Bus

Interrupt and Bus
Control Registers

Ribbon Cable
DSP~LINK3

PCI Bus (32-bit)

Test Bus
Controller

Analog Module
DSP~LINK3

IN

OUT

TIM-40 Site B

Local
Bus

Near
Global

Bus

PEROM

RAM

‘C4x
DSP

RAM

TIM-40 Site C

Local
Bus

Near
Global

Bus

PEROM

RAM

‘C4x
DSP

RAM

TIM-40 Site D

Local
Bus

Near
Global

Bus

PEROM

RAM

‘C4x
DSP

RAM

Local
Bus

Near
Global

Bus

PEROM

Local SRAM

Node A
Embedded
‘C44 DSP

Near Global
SRAM

DSP~LINK3
Interface

JTAG
Controller

optional

Nodes
ABCD

Figure 1 F5 Block Diagram

Spectrum Signal Processing F5 Carrier Board User Guide
Hardware Overview

Part Number 500-00354 7
Revision 2.11

The internal busses of the F5 Carrier Board are described in the following passage.

Local Bus The Local Bus address range is specific to a single ’C4x DSP, and is
therefore not shared with other processors or nodes. It is a private memory
bus of a particular’C4x.

Near
Global Bus

The Near Global Bus refers to the Global Bus of each TIM-40 site and the
embedded ’C4x node. The SRAM located on ’C44 Global Bus is zero wait
state. The Near Global Bus SRAM of a node cannot be accessed by the
DSPs of any other nodes.

Global
Shared
Bus

The Global Shared Bus interconnects the:

• Buffered Global Buses of each TIM-40 site via the Global Connectors

• Buffered Global Buses of the embedded ’C44 node A

• DSP~LINK3 Interface

• Interface between the PLX PCI9060/9080 Local Bus and the Global
Shared Bus

32-bit buffers isolate the Global Shared Bus from the ’C4x node Global
Buses. An analog quickswitch connects the data and address lines of the
Interface between the PLX PCI9060/9080 Local Bus and the Global Shared
Bus; the interface control lines are buffered.

PLX
PCI9060/90
80 Local
Bus

The PLX PCI9060/9080 Local Bus of the PLX PCI9060/9080 chip is
connected to the

• Global Shared Bus interface buffer

• Far Global SRAM

• Interrupt Controller

• Registers for the Interrupt Controller and Bus Arbitration

• JTAG Controller

F5 Carrier Board User Guide Spectrum Signal Processing
Hardware Overview

8 Part Number 500-00354
Revision 2.11

2.4. ’C4x Communication Port Architecture

Routing of the ’C4x COMM ports to the 10 external COMM port connectors is shown in
the following diagram. Arrows indicate the default port direction after the board is
initialized.

2.5. Resetting the F5 Carrier Board

The F5 Carrier Board is reset upon system power up. Resets can also be performed from
host software on the PCI bus and from JTAG. The following table shows which F5
Carrier Board hardware is initialized by each type of reset.

Table 2 Reset Summary

F5 Carrier Board Hardware Reset Power Up PCI Software JTAG

All CPU Nodes ä ä ä

DSP~LINK3 Slave Devices ä ä

JTAG devices connected to the JTAG
Out connector /GRESET pin (J11 pin 20)

ä ä ä

PCI bus Interface Logic ä

PCI9060/9080 Local Bus Logic ä ä

Support Logic ä ä ä

Node A
Embed-

ded

21

4 5 TIM-40
Site B

5

1 34

2 0

TIM-40
Site C

2 43

5

0 1 TIM-40
Site D

3 51

2

4 0

COMM Port ConnectorsJ14J20J21J17 J16 J19 J15 J18 J23 J22

Figure 2 F5 COMM Port Architecture

Spectrum Signal Processing F5 Carrier Board User Guide
Hardware Overview

Part Number 500-00354 9
Revision 2.11

When the processor nodes are reset with any of the above methods, the ‘C4x processor
IIOF lines are tristated as per the TIM-40 specification to allow the boot mode selection
jumpers to be read by the C4X processor. To enable its IIOF signals, a ‘C4x must then
execute an IACK cycle.

2.5.1. Power Up Reset

The PCI bus RST# signal resets all F5 Carrier Board hardware when it is asserted. It is
asserted upon system power up and typically when the operating system is started.

The system must issue PCI bus configuration cycles after RST# to configure the F5
Carrier Board PCI bus interface. Usually the host BIOS or operating system will do this
automatically.

The F5 Carrier Board remains in a reset state for approximately 30 milliseconds after
power on for on board initialization. Once this is complete, the on board reset logic is
released.

2.5.2. PCI Software Reset

Any PCI master (usually the host) can reset all F5 Carrier Board hardware except the PCI
bus interface logic, using the following procedure on the PLX PCI9060/9080 PCI
interface chip.

1. Set the PCI Adapter Software Reset Bit (bit 30) in the PCI9060/9080 EEPROM
control register (PCI offset 0x6C, local bus offset 0xEC) to “1”. This places the F5
Carrier Board in the reset state.

2. Set this same bit to “0”. This releases the F5 Carrier Board from reset.

3. Set the Reload Configuration Registers Bit (bit 29) in the PCI9060/9080 EEPROM
control register (PCI offset 0x6C, local bus offset 0xEC) to “0”.

4. Set this same bit to “1”. This reloads the PCI9060/9080 configuration registers from
EEPROM. The transition from 0 to 1 causes the reload to occur.

PCI bus configuration registers in the PCI9060/9080 are not affected by this reset,
therefore PCI bus configuration cycles do not need to be issued.

After reset the PCI9060/9080 EEPROM needs to be reloaded as described above. The
PCI9060/9080 EEPROM enable jumper J25 must be installed, and the EEPROM loaded
with the correct values.

Note: The PLX PCI9060/9080 can be reset and then initialized from its
EEPROM by using the F5_Control function with the F5_CTL_RESET action
parameter. Refer to the function description in this guide and to the source code
examples for complete details.

F5 Carrier Board User Guide Spectrum Signal Processing
Hardware Overview

10 Part Number 500-00354
Revision 2.11

2.5.3. JTAG Reset

Setting the /GRESET input of the JTAG IN connector (J10 pin 20) to 0 volts resets:

• All processor nodes

• JTAG Out

• Support logic

The /GRESET signal is a TRISTATE line that is shared across all F5 Carrier Board
boards connected by a 20 pin JTAG connector. All F5 Carrier Boards that are connected
together through a JTAG chain can be simultaneously reset by asserting this line. This
ensures that all F5 Carrier Boards that are connected together via COMM PORT cables
are reset simultaneously to avoid any damage due to contention on the COMM PORT
direction settings.

To resume normal operation, the /GRESET signal must be tristated by an external driver.
Pull up resistors on the board can then place the line at 5 volts.

2.6. Booting the F5 Board

Jumper J28 is used to select the boot mode of the embedded ‘C44. When installed, the
‘C44 boots from its PEROM; when removed, the COMM port boots the ‘C44. (See
section 4.1 for the location of J28.)

If PEROM is used to boot the ‘C44, Spectrum’s “Bootloader” will automatically be
loaded from Node A's PEROM to the ‘C44 when the board is powered up or RESET.

Spectrum Signal Processing F5 Carrier Board User Guide
Software Overview

Part Number 500-00354 11
Revision 2.11

3 Software Overview
The F5 Software Development Kit (SDK) consists of the following items:

Windows 95: Windows NT:

• F5 Windows 95 Host Application
Library (ALIB_W95)

• F5 Windows 95 Device Driver

• F5 C4x Application Library
(ALIB_C4x)

• Examples

• Utilities

• Toolbox Utility

• Manuals

• F5 Windows NT Host Application
Library (ALIB_NT)

• F5 Windows NT Kernel Interface
Library and Device Driver

• F5 C4x Application Library
(ALIB_C4x)

• Examples

• Utilities

• Toolbox Utility

• Manuals

Note: A complete set of source code and make files for the Windows device
drivers and Windows host application libraries are not provided with the F5
SDK.

The Host SDK includes only certain source code files, such as ALIB_W95 and
ALIB_NT; these are provided for reference only and do not form a complete set.
You won’t be able to successfully compile and link these programs.

F5 Carrier Board User Guide Spectrum Signal Processing
Software Overview

12 Part Number 500-00354
Revision 2.11

3.1. Hardware and Software Requirements

The following table lists the F5 software installation and development requirements.

Table 3 F5 Hardware and Software Requirements

Hardware Software

• A x486 (or higher) PC computer with a
free PCI slot and at least 16MB of
RAM, 2MB of free hard drive space

• An F5 PCI Carrier Board

• Windows 95 or NT 4.0 operating
system

• Texas Instruments’ TMS320C4x DSP
C Compiler, Assembler, and Linker

• A TMS320C4x debugging system
(recommended)

 • Windows NT: Visual Basic, version
5.0 (to run the example programs).

 • A 32-bit Windows C compiler (for host
code development). We recommend
Microsoft Visual C/C++:

 Windows 95: version 5.0

Windows NT: version 5.0

Spectrum Signal Processing F5 Carrier Board User Guide
Software Overview

Part Number 500-00354 13
Revision 2.11

3.2. F5 Host Program Structure

The main difference between the Windows 95 and the Windows NT Host Program Flow
lies in the Device Driver layer; the Windows NT version of the F5 SDK has an
additional Kernel Interface Library layer, as can be seen in the following diagram.

Host
Application

F5 Windows 95
Device Driver

ALIB_W95

F5 Board

software

hardware

Host
Application

F5 Windows NT
Kernel

Device Driver

ALIB_NT

F5 Board

Windows 95 Windows NT

Kernel Interface
Library

software

hardware

Figure 3 F5 Host Program Flow

3.2.1. F5 Windows Host Application Libraries

Both the ALIB_W95 and the ALIB_NT are high level 32-bit Dynamic Link Libraries
(DLLs) that provide your host system with functions for initializing, downloading code
to, and performing I/O operations on an F5 board. Both ALIBs support multiple
processes and/or threads and can access multiple F5 boards concurrently.

ALIB_W95 runs under Windows 95, and ALIB_NT runs under Windows NT 4.0.
ALIB_NT supports Visual Basic version 5.0.

Note: The application libraries are described further in chapters 5 and 7.

F5 Carrier Board User Guide Spectrum Signal Processing
Software Overview

14 Part Number 500-00354
Revision 2.11

3.2.2. F5 Windows 95 and NT Device Drivers

Windows 95: Windows NT:

The F5 Windows 95 Device Driver
(vf5d.vxd) provides (through
ALIB_W95) the lowest level software
interface to basic control and I/O routines.
The device driver functions are actually
hidden behind the provided F5 Host
Application Library (ALIB_W95). That
is, your application calls the ALIB_W95
functions, which in turn call the “lower-
level” device driver functions, as
illustrated in Figure 3.

Note: Although you can access the
device driver functions directly, we
recommend that you use the provided
ALIB_W95 host functions to
communicate with the F5 board.

The F5 Windows NT Kernel Device
Driver (udrv.sys) provides the lowest
level software interface to basic control
and I/O routines. The device driver
functions are actually hidden behind the
provided F5 Host Application Library
(ALIB_NT). That is, your application
calls the ALIB_NT functions, which in
turn call the “lower-level” device driver
functions, as illustrated in Figure 3.

The Kernel Interface Library (kintssp.dll)
provides a standard interface for the
ALIB_NT to access the Windows NT
Kernel Device Driver.

3.3. F5 C4x Application Library

The F5 C4x Application Library (ALIB_C4x) provides your DSP application with
routines to configure and transfer data to F5 resources (Shared SRAM and PCI). You can
develop C4x DSP application code for the F5 on any platform which supports Texas
Instruments’ TMS320C4x development tools.

The ALIB_C4x is described further in chapter 8 Development of DSP Applications, and
the functions are detailed in chapter 9 DSP Software Functions.

3.4. Data Type Definitions

Data types used in F5 Host and DSP code are defined in two header files:

• f5user.h defines data types used in F5 Host code

• f5_c4x.h defines data types used in F5 DSP code

The most common data type used in both host and DSP code is UINT32. UINT32 is
defined as a 32-bit wide unsigned integer.

Spectrum Signal Processing F5 Carrier Board User Guide
Software Overview

Part Number 500-00354 15
Revision 2.11

3.5. Calling Conventions for Windows 95 and Windows NT

Windows 95: Windows NT:

uses C calling convention (-cdecl). For
example:

F5API RESULT F5_Control (…)

uses standard calling convention
(-stdcall). For example:

F5API RESULT CCC F5_Control (…)

CCC - C calling convention macro - used
for Application Library (ALIB) exported
functions

Table 4 Calling Conventions for Windows 95 and Windows NT

Note: The syntax for the functions described in chapter 7 Host Software
Functions and chapter 9 DSP Software Functions is shown using the C calling
convention. For Windows NT, use the calling convention as shown in the above
table.

3.6. Example Programs

The F5 SDK provides example programs that demonstrate how to use the various F5
application library functions. Most of the programs are provided in both C and Visual
Basic versions.

The examples can be found in the <F5RootDirectory>\examples subdirectories. See
chapter 10 for a description of the programs and details on running and rebuilding the
example programs.

Note: The Visual Basic (VB) examples are for the Windows NT environment
only. To run the Visual Basic examples, the user must have Visual Basic version
5.0 and must possess a working knowledge of VB 5.0 development environment
and programming.

3.7. Manuals Provided With the F5 SDK

The manuals provided with the F5 SDK are:

• Dakar F5 Carrier Board Technical Reference

• Dakar F5 Carrier Board User Guide (this manual)

• Toolbox Configuration Utilities User Guide

F5 Carrier Board User Guide Spectrum Signal Processing
Software Overview

16 Part Number 500-00354
Revision 2.11

3.8. Utilities Provided With the F5 SDK

Utilities are provided with the F5 SDK to allow you to do the following:

To.. Use: Filename

List all F5 boards on a host system,
including their hardware configurations.

F5 List
Inspector

f5list.exe

Test the F5 ALIB. Each function can be
tested separately. (See section 4.10 for
more details.)

F5 SDK
Tester

f5lb_t.exe

Windows 95 only: Display debug messages
from both the Windows 95 Device Driver
and the F5 Host ALIB functions in debug
mode. (See section 6.9 Viewing Debug
Messages (Windows 95) for more details.)

DBGMON dbgmon.exe

Windows NT only: Read and Write directly
to/from the board. (Use the About button
for more details.)

F5 IO Tester f5io.exe

Toolbox is used to generate System
Definition Files (SDF). See appendix C for
more information on SDF. Refer to the
“Toolbox Configuration Utilities User
Guide” for installation and usage of
toolbox.

Toolbox toolbox.exe

GNU utilities are used to rebuild DSP-
based examples.

PC GNU
Utilities

mkdepend.exe

All of the above utilities, except Toolbox and GNU, can be found in your
<F5RootDirectory>\bin directory. Utilities can be run by double-clicking on the utility’s
filename (in Explorer) or by going to the F5 SDK Program Folder in the Start > Programs
menu.

The Toolbox and GNU utilities are located on separate disks shipped with the F5 SDK
package.

Spectrum Signal Processing F5 Carrier Board User Guide
Hardware and Software Installation

Part Number 500-00354 17
Revision 2.11

4 Hardware and Software Installation
This chapter describes how to configure and install the F5 Carrier Board into a computer.
It also describes how to install the Software Development Kit (SDK) for the F5 Carrier
Board. The F5 Carrier Board host and DSP libraries, device driver, example programs,
and utilities are all part of the SDK.

Caution: Before handling the F5 Carrier Board or a module, ensure that you
and the components are properly grounded to prevent damage from electrostatic
discharge.

4.1. Configuring the F5 Carrier Board

Configure the on board jumpers to suit your application. Refer to the following figure
and table for information on the jumper settings.

1

2

J12
DSP~LINK3 Ribbon Cable

Connector
J11

JTAG OUT

JTAG IN
J10

J30
DSP~LINK3 Module

Connector

2
1
2
1

1

2

67

68

J14
INPUT
Port A4

J15
INPUT
Port B3

J16
INPUT
Port B5

J19
OUTPUT
Port B0

J17
INPUT
Port C5

J20
OUTPUT
Port C2

J21
OUTPUT
Port C0

J18
INPUT
Port D5

J22
OUTPUT
Port D2

J23
OUTPUT
Port D0

20
19

67

68 J24 - DSP~LINK3
Interrupt Mode
Jumper

J25 - PLX EEPROM
Enable Jumper

20
19

J28 - Node A ‘C44 Boot
Mode Jumper

Test Bus
Controller

Node A
TMS320C44

DSP PLX PCI9060
PCI Interface

J13
Application
Specific
Connector

J26
PCI Bus (32-bit) Card Edge Connector

TIM-40
Site B

TIM-40
Site C

TIM-40
Site D

DSP~LINK3
Module Site

Interrupt
and Bus
Control

Registers

User
LED

Figure 4 F5 Connector and Jumper Locations

F5 Carrier Board User Guide Spectrum Signal Processing
Hardware and Software Installation

18 Part Number 500-00354
Revision 2.11

Table 5 F5 Jumper Summary

Jumper Description Installed Not Installed

J24 DSP~LINK3 Interrupt
Mode

All DSP~LINK3 interrupts
to Node A IIOF0

DSP~LINK3 interrupt
IRQ0 to Node A IIOF0*

J25 PLX PCI9060/9080
EEPROM Enable

Enabled* Disabled

J28 Node A ’C44 Boot Mode Boot from PEROM* Boot from COMM Port

*Default

4.2. Module Installation

Your F5 Carrier Board may already contain DSP~LINK3 or TIM-40 modules. If it
doesn’t, or you are adding modules to it, follow these instructions to install them on the
F5 Carrier Board.

Caution: Before handling the F5 Carrier Board or module, ensure that you and
the components are properly grounded to prevent damage from electrostatic
discharge.

The following figure shows the location of the modules on the F5 Carrier Board and the
mounting hardware for the sites.

TIM-40
Site B

TIM-40
Site C

TIM-40
Site D

DSP~LINK3
Module Site

Nylon Hex Nuts (3)
on Solder Side of Board

Nylon Hex Nuts
(2 per module)

End-plate (bracket)

Figure 5 F5 Module Locations

Spectrum Signal Processing F5 Carrier Board User Guide
Hardware and Software Installation

Part Number 500-00354 19
Revision 2.11

4.2.1. Installing DSP~LINK3 Modules

To install a DSP~LINK3 module onto the F5 Carrier Board:

1. If the module that you are installing has its own end plate bracket, remove the end
plate bracket that is attached to the F5 Carrier Board.

2. Place the DSP~LINK3 module on the F5 Carrier Board. Align the three nylon
mounting posts on the DSP~LINK3 module with their corresponding holes on the F5
Carrier Board.

3. Hand tighten the three 3mm nylon hex nuts to the mounting posts on the solder side
of the F5 Carrier Board to secure the module in place.

4. Screw the end plate of the module to the F5 Carrier Board.

4.2.2. Installing TIM-40 Modules

To install a TIM-40 module onto the F5 Carrier Board:

1. Use the nylon mounting posts on the TIM-40 sites to position the TIM-40 module.

2. Press down on the module to mate the top, bottom, and global connectors.

3. Secure the module on to the F5 Carrier Board by hand-tightening the nylon hex nuts
that came with the module on to the mounting posts.

4.3. Installation into PCI Slot and Cabling

After the jumpers on the F5 Carrier Board have been configured, it can be installed in a
PC and any other connections can be made.

Caution: Use the keyed COMM Port cables from Spectrum to prevent damage
to the F5 Carrier Board when making COMM Port connections. These cables are
keyed to prevent accidental connection of outputs to outputs, or inputs to inputs.
If you use other cables, be careful to avoid connecting a default output to a
default input COMM Port.

1. Ensure that all hardware is powered off.

2. Attach the JTAG, DSP~LINK3 module, and/or DSP~LINK3 cables to the board if
you are using them.

3. Install the F5 Carrier Board into an empty PCI slot of the PC computer.

4. Attach the COMM Port and Application Specific Connector cables to the board if
you are using them.

5. Do not power on the system at this time. Go to the next section..

F5 Carrier Board User Guide Spectrum Signal Processing
Hardware and Software Installation

20 Part Number 500-00354
Revision 2.11

4.4. Windows NT Installation Notes

Note: This section is only applicable if you are installing the F5 SDK onto a
Windows NT platform.

Before installing the F5 SDK make sure the Plug and Play BIOS is disabled.

4.5. Windows 95 Installation Notes

Note: This section is only applicable if you are installing the F5 SDK onto a
Windows 95 platform. If you are not installing onto a Windows 95 platform, go
to section 4.6.

The first time you plug an F5 Carrier Board into a computer running the Windows 95
operating system, Windows 95 will prompt you to set up the new hardware. This section
describes how to correctly perform this initialization procedure. If not done properly, the
Plug and Play component of Windows 95 will not initialize the F5 Carrier Board
correctly.

Note: The initialization procedure will vary slightly depending upon which
particular build of Windows 95 you have running on your machine.

1. If the F5 Carrier Board is not installed in the computer, turn off the computer and
install the F5 Carrier Board. For information on how to do this, see the previous
section.

2. Turn on the power. Windows 95 should automatically launch.

3. Depending upon which build of Windows 95 your computer is running, one of two
dialog boxes will appear:

• New Hardware Found dialog box (for build 4.00.950a)

• Install Device Driver Wizard dialog box (for build 4.00.950b)

4. Perform the steps corresponding to the dialog box that is displayed on your system.

Spectrum Signal Processing F5 Carrier Board User Guide
Hardware and Software Installation

Part Number 500-00354 21
Revision 2.11

If the New Hardware Found dialog box appears… If the Install Device Driver Wizard dialog box appears…

Windows 95 Build 4.00.950a Windows 95 Build 4.00.950b

1. Click Do not install a device driver…

2. Click OK.

1. Ensure that drive A: and the CD-ROM drive are
empty.

2. Click Next.

3. Windows 95 will search drive A: and the CD-
ROM drive for a driver file. When Windows 95 is
finished you will be prompted for Other
Locations.

4. Click Finish.

Windows 95 is now configured for the F5 Carrier Board to work on the PCI bus and will
not ask you to install drivers again for the F5 Carrier Board on this computer.

Note: You can also determine the build of Windows 95 that you have as
follows. From the Explorer window in Windows 95, right-mouse click on the My
Computer icon. Select Properties. Select the General tab. The System list will
indicate the Windows 95 build version.

4.6. Installing Multiple F5 Carrier Boards

If multiple F5 Carrier Boards are installed on one PCI bus, then each board must have a
unique identification (ID). This ID is stored in the PEROM of Node A of each F5 Carrier
Board. By default, all F5 boards are shipped with an ID of 0x1.

Refer to section 6.5 Changing your System’s Hardware Configuration for information on
setting the F5 Carrier Board ID value.

F5 Carrier Board User Guide Spectrum Signal Processing
Hardware and Software Installation

22 Part Number 500-00354
Revision 2.11

4.7. Installing the Software Development Kit (Windows NT)

Note: If you already have a version of the F5 Software Development Kit (SDK)
installed on your system, ensure that you first uninstall it. See section 4.12
Uninstalling the Software Development Kit (Windows NT) for instructions on
uninstalling the SDK.

When installing the SDK, you must install both the Host SDK and the DSP SDK We
recommend you install the Host SDK first, then the DSP SDK. The steps are identical
for each installation.

To install the Software Development Kit (SDK) for the F5 Carrier Board onto a
Windows NT platform, follow these steps:

1. Ensure that you have administrative privileges.

2. Insert the installation disk into the 3.5 inch floppy disk drive of your development
PC.

To install the Host SDK, use: To install the DSP SDK, use:
“DAKAR WinNT Host SDK” disk “DAKAR WinNT C4x DSP SDK”

disk

3. From the Start menu, select Run, and, in the Run dialog box, type:

 a:\setup.exe

 where a:\ is the floppy disk drive containing the installation disk.

4. Select OK and wait for the computer to display instructions on the screen. The
InstallShield Wizard will guide you through the setup process. Follow the
instructions.

Note: We recommend you accept the default installation directory.

5. When the screen titled

 “Dakar (F5) Host Software Development Kit Setup Comp lete”
or

 “Dakar (F5) DSP Software Development Kit Setup Complete”

 appears, select Yes, I want to restart my computer now.

6. Click Finish. The computer will reboot.

7. Repeat steps 2 to 6, until you have installed first the Host SDK and second the C4x
DSP SDK.

8. Insert the PC GNU Utilities floppy into the 3.5” floppy drive. Repeat steps 2 to 4 to
install the PC GNU Utilities. Once complete remove the floppy from the disk drive.

Spectrum Signal Processing F5 Carrier Board User Guide
Hardware and Software Installation

Part Number 500-00354 23
Revision 2.11

During the installation process, the F5 SDK files are copied into the specified directory
on your hard drive (the default directory is C:\F5SDK). In addition:

• The F5 Host Application Library file (F5alib.dll) and the F5 Windows NT Kernel
Interface Library file (kintssp.dll) are copied to your c:\windows directory.

• The F5 Windows NT Kernel Device Driver file (udrv.sys) is copied to your
c:\windows\system32\drivers directory (this is where Windows NT looks for this
file).

• The installation program makes the appropriate changes in the Windows NT
Registry so that udrv.sys can be loaded automatically when Windows NT reboots.
After a successful installation, Windows NT is configured for the F5 board to work
on the PCI bus.

• The following Environment Variable is automatically set in the Windows NT
Registry:

SET SSP_PATH=<F5RootDirectory>\BIN;<F5RootDirectory>\EXAMPLES\DSPLOAD

4.8. Installing the Software Development Kit (Windows 95)

Note: If you already have a version of the F5 Software Development Kit (SDK)
installed on your system, ensure that you first uninstall it. See section 4.13
Uninstalling the Software Development Kit for instructions on uninstalling the
SDK.

To install the Software Development Kit (SDK) for the F5 Carrier Board onto a
Windows 95 platform, follow these steps:

1. Insert the “Dakar Win95 SDK” installation disk into the 3.5 inch floppy disk drive of
your development PC.

2. From the Start menu, select Run, and, in the Run dialog box, type:

 a:\setup.exe

 where a:\ is the floppy disk drive containing the installation disk.

3. Select OK and wait for the computer to display instructions on the screen. The
InstallShield Wizard will guide you through the setup process. Follow the
instructions.

Note: We recommend you accept the default installation directory.

4. When the “Setup Complete” screen appears, select
 Yes, I want to restart my computer now.

5. Click Finish and remove the installation disk from the floppy drive. The computer
will reboot.

F5 Carrier Board User Guide Spectrum Signal Processing
Hardware and Software Installation

24 Part Number 500-00354
Revision 2.11

6. Insert the PC GNU Utilities floppy into the 3.5” floppy drive. Repeat steps 2 and 3 to
install the PC GNU Utilities. Once complete remove the floppy from the disk drive.

During the installation process, the F5 SDK files are copied into the specified directory
on your hard drive (the default directory is C:\F5SDK). In addition:

• The F5 Host Application Library file (f5alib.dll) is copied to your c:\windows
directory.

• The F5 Windows 95 Device Driver file (vf5d.vxd) is copied to your
c:\windows\system directory (this is where Windows looks for this file).

• The following DOS command is automatically inserted into your autoexec.bat file:

 SET SSP_PATH=<F5RootDirectory>\EXAMPLES\DSPLOAD

4.9. Directory Contents After Installation of the SDK

After you’ve installed the Software Development Kit for the F5 Carrier Board, the
destination root directory that you specified during installation will contain the
directories listed in the following table. Refer to any installed readme.txt files for the
most current information on the F5 Carrier Board SDK.

Spectrum Signal Processing F5 Carrier Board User Guide
Hardware and Software Installation

Part Number 500-00354 25
Revision 2.11

Table 6 Directory Contents After Installing the SDK

Windows NT - Contents Windows 95 - Contents

Directory Description Directory Description

<F5 Root> <F5 Root>

0bin Executable files for the DSP
and Host (supplied by
Spectrum)

0bin Executable files for the
DSP and Host (supplied
by Spectrum)

0dev 0alib Some folders under alib\host
are empty until code is built,
See section 10.6 for details

0shared

0include Contains header files

0dsp 0host

0bin Output files - DSP binary
files after you compile and
link your DSP programs

0bin

0debug

0release

Contains f5alib.dll

0include DSP Include files 0build Contains make file
f5alib.mak

0lib DSP application library file 0include Host include files

0src DSP source code

dev\dsp\src contains different
subdirectories for different
modules

0src F5Alib source code

0lib Contains cofflib.lib,
sdflib.lib

0debug

0release

Contains f5alib.lib

0drv F5 Windows NT Kernel
Device Driver

0driver F5 Windows 95 Device
Driver

0examples Source code example
programs.

Each example is in a
subdirectory of examples. For
example, dspload program is
in \examples\dspload
subdirectory.

0examples Source code example
programs.

Each example is in a
subdirectory of examples.
For example, dspload
program is in
\examples\dspload
subdirectory.

0include DSP and Host Include files.
SDF files.

0include DSP and Host Include
files. SDF files.

0lib DSP and Host application
library files (supplied by
Spectrum)

0lib DSP and Host application
library files (supplied by
Spectrum)

0src Host source code for the
application library.

See note at the beginning of
chapter 3.

F5 Carrier Board User Guide Spectrum Signal Processing
Hardware and Software Installation

26 Part Number 500-00354
Revision 2.11

4.10. Installing Toolbox

Refer to the Toolbox Configuration Utilities User Guide for complete information on
installing Toolbox.

4.11. Verifying the Software Development Kit Installation

There are a number of programs that can be run to ensure that the F5 SDK is functioning
properly. If you are just becoming familiar with the F5 SDK, we recommend to run the
dspload example program.

Make sure your system configuration corresponds to the SDF used by the examples. All
examples use the F5.sdf System Definition File (SDF) that’s in
<F5RootDirectory>\include. This SDF defines the following default system
configuration:

• a single board system

• board ID = 0x1

• one embedded processor, no TIM modules

To run the dspload example program:

1. Go to the command prompt.

2. Change the directory to <F5RootDirectory>\examples\dspload

 where <F5RootDirectory> is the location of the F5 SDK files on your hard drive. It
specifies the directory on your hard drive from which your F5 SDK files branch, and
is most likely the directory you chose during installation.

3. Type dspload

 Your screen should resemble the following:

c:\f5sdk\Examples\Dspload\dspload

Opening system. . . [OK]
Resetting DSPs. . . [OK]
Loading DSP code . . . [OK]

on-board LED should now be blinking.

Closing system. . . [OK]

c:\f5sdk\Examples\Dspload>

If the test is successful, the on-board LED will be blinking.

Spectrum Signal Processing F5 Carrier Board User Guide
Hardware and Software Installation

Part Number 500-00354 27
Revision 2.11

For information on other example programs, see chapter 10 Example Programs.

If you wish to do more detailed testing, see section 10.4 Verifying the Device Driver and
Host Library Installation.

For troubleshooting information, see section 10.5 Tips and Troubleshooting.

4.12. Uninstalling the Software Development Kit (Windows NT)

To uninstall the F5 SDK:

1. Click the Start button, then point to Settings.

2. Click Control Panel.

3. Double-click Add/Remove Programs.

4. With the Install/Uninstall tab selected, a list of programs will be displayed.

5. Click Dakar (F5) DSP Software Development Kit, then click Add/Remove.

6. Click Dakar (F5) Host Software Development Kit, then click Add/Remove.

Note that if you use the “Un-install F5 SDK” option (Start > Programs > F5 SDK
Program Folder), only the Host SDK will be uninstalled.

If the SDK has been successfully uninstalled, all components of the F5 SDK (except the
files udrv.sys and kintssp.dll) will be removed from your computer. If you are using
other Spectrum products on your computer system, do not remove these files. If you are
not using other Spectrum products, you may manually delete these two files.

4.13. Uninstalling the Software Development Kit (Windows 95)

To uninstall the F5 SDK:

1. Click Start, then point to Programs.

2. Point to F5 SDK, then click F5 Uninstall.

Another way to uninstall the F5 SDK is through the Windows Control Panel (see your
Windows documentation for more information).

The Uninstall program does not delete changes made by the installation program to
autoexec.bat: PATH and SET SSP_PATH. You will have to manually delete these
changes.

F5 Carrier Board User Guide Spectrum Signal Processing
Hardware and Software Installation

28 Part Number 500-00354
Revision 2.11

Spectrum Signal Processing F5 Carrier Board User Guide
JTAG Debugging Software

Part Number 500-00354 29
Revision 2.11

5 JTAG Debugging Software
The F5 Carrier Board supports JTAG emulation using the on-board Test Bus Controller
(TBC), otherwise known as back-plane debugging, or using an external emulation board
from White Mountain (the Mountain-510 Universal Emulator). The debugging
application supported for both back-plane and external emulation is GO DSP’s Code
Composer™.

The following diagram illustrates the two types of debugging that can be performed.

Note: If a JTAG IN connection with a clock signal is present, the Test Bus
Controller (TBC) will be automatically disconnected.

Refer to the JTAG Debugging section of the F5 Carrier Board Technical Reference
manual for further information about JTAG debugging and setting up a JTAG chain for
multiple board debugging.

Figure 6 JTAG Debugging Configurations

F5 Carrier Board User Guide Spectrum Signal Processing
JTAG Debugging Software

30 Part Number 500-00354
Revision 2.11

5.1. Using Code Composer

This section describes how to set up Code Composer for use with the F5 Carrier Board
and how to load and run files using Code Composer. For further details, refer to the Code
Composer User’s Guide from GO DSP.

5.1.1. Setup for Back-plane Debugging

Follow this procedure to set up Code Composer for back-plane debugging.

1. Ensure that you’ve installed the Dakar Win NT Host SDK (Dakar Win 95 Host SDK,
for Windows 95) and the C4x DSP SDK.

2. Install Code Composer.

3. Insert the Spectrum Code Composer C4x MSTR disk into the 3.5 inch floppy disk
drive of your PC. This disk contains a sample GEL file and the DLLs that are
required by Code Composer to access Dakar devices. Read the readme file
provided on this disk for the most current information about the disk.

4. Copy the ssf5_4xnt.dll (ssf5_win95.dll for Windows 95)and the
f5_cpu_a.gel files that are on the Spectrum Code Composer C4x MSTR disk to
the <CodeComposerRoot> directory, where <CodeComposerRoot> is the
base directory containing your Code Composer files.

5. Ensure that the f5_cpu_a.gel file properly reflects the memory maps of your
system’s processor. See Section 5.1.3 for information about editing GEL files and
the Code Composer User’s Guide for more information about GEL files.

6. Run the Code Composer Setup program by choosing
StartÈProgramsÈCode ComposerÈSetup Code Composer.

7. Within the General Setup tab, click on Add Driver and from the list of files, select
the ssf5_4xntnt.dll (SSF5_4xwin95.dll for Windows 95) file in
the <CodeComposerRoot> directory.

8. Enter the Board ID of the Dakar board in the I/O Port text box. For a single board
system, enter 0x1 as the I/O Port address.

 For systems with more than one Dakar board, enter the Board ID of the first F5
Carrier Board that is in the JTAG scan chain. You should only have one instance of
Code Composer running for all boards in your system.

Note: Refer to Section 6.5 Changing your System’s Hardware Configuration
for information on setting the F5 Carrier Board ID value.

9. Click on the MultiProcessor tab and enter a processor name for each DSP in your
Dakar system.

Spectrum Signal Processing F5 Carrier Board User Guide
JTAG Debugging Software

Part Number 500-00354 31
Revision 2.11

 For example, type cpu_a and click Insert.

10. Click on OK. Setup creates a board.cfg file that lists the names and types of
processors in the JTAG scan path and also creates a board.dat file which is a
binary file containing JTAG scan path information.

F5 Carrier Board User Guide Spectrum Signal Processing
JTAG Debugging Software

32 Part Number 500-00354
Revision 2.11

5.1.2. Setup for Debugging with the Mountain-510
Emulator

Follow this procedure to set up for debugging with the Mountain-510 emulator:

1. Ensure that you’ve installed the Dakar Win NT Host SDK (Dakar Win 95 Host SDK
for Windows 95) and the C4x DSP SDK.

2. Install Code Composer.

3. Insert the Spectrum Code Composer C4x MSTR disk into the 3.5 inch floppy disk
drive of your PC.

4. Copy the f5_cpu_a.gel file that’s on the Spectrum Code Composer C4x MSTR
disk to the <CodeComposerRoot> directory, where <CodeComposerRoot> is
the base directory containing your Code Composer files.

5. Install the following:

• The Mountain-510 emulator board

• The White Mountain DSP Code Composer Support Disk

 See White Mountain DSP’s documentation for installation instructions.

6. Run the Code Composer Setup program by choosing
StartÈProgramsÈCode ComposerÈSetup Code Composer.

7. Within the General Setup tab, click on Add Driver and from the list of files, select
the wm510c4x32.dll file that’s in the <CodeComposerRoot> directory.

8. Enter the base address of the Mountain-510 emulator in the I/O Port text box. Refer
to the documentation provided by White Mountain DSP for the correct address
(normally, the default address is 0x240).

9. Click on the MultiProcessor tab and enter a processor name for each DSP in your
Dakar system.

 For example, type cpu_a and click Insert.

10. Click on OK. Setup creates a board.cfg file that lists the names and types of
processors in the JTAG scan path and also creates a board.dat file which is a
binary file containing JTAG scan path information.

Spectrum Signal Processing F5 Carrier Board User Guide
JTAG Debugging Software

Part Number 500-00354 33
Revision 2.11

5.1.3. Editing the Sample GEL File

A GEL file is used to define memory mapped resources for the C4x processor. These
registers have to be correctly set in the GEL file in order for your program to load and
for the C4x to access its memory correctly. Refer to the F5 Carrier Board Technical
Reference manual for information on memory resources.

Note: The GEL file will have to be modified if a TIM-40 module is added to
the board.

Use a text editor to edit Spectrum’s sample GEL file (f5_cpu_a.gel)file. Note that
you can also edit GEL files from within Code Composer (see the Code Composer User’s
Guide for more details). Refer to the Code Composer User’s Guide for further
information about GEL files.

F5 Carrier Board User Guide Spectrum Signal Processing
JTAG Debugging Software

34 Part Number 500-00354
Revision 2.11

5.1.4. Loading and Running Files

This section describes how to load and run files, such as DSP code, on the Dakar board
using GO DSP’s Code Composer.

1. If you are loading and running files via the back-plane of the Dakar board, ensure
that there is no external cable connected to the front-panel JTAG IN of the Dakar
board.

Note: You cannot use the Dakar’s TBC (back-plane debugging) at the same
time that you are using an external emulator. In addition, the F5 Carrier Board
must be powered off before switching between back-plane and external
emulation, and before attaching or removing an external emulator.

2. If you are using the Mountain-510 emulator, power down your system and connect
the emulator board to the JTAG IN connector of the Dakar board. Follow the
installation instructions provided by White Mountain DSP.

3. Ensure that the f5_cpu_a.gel file found in the <CodeComposerRoot>
directory properly reflects the memory map of the Dakar processor. See Section
5.1.3 for more information about editing GEL files.

4. Ensure that the board.cfg file, created during Code Composer Setup, properly
reflects the JTAG scan path of your system. These files can be found in the Code
Composer root directory.

5. Start Code Composer by selecting
StartÈProgramsÈCode ComposerÈC4x Code Composer.

6. In the Processor Window, select FileÈLoad GEL and from the list of files, select
the f5_cpu_a.gel file from the Code Composer root directory.

7. Load the DSP application file by selecting FileÈLoad Program and from the list of
files, select the file that you want to load.

 For example, to load blink.out, select the blink.out file from the <F5
Carrier BoardRoot>\examples\dspload directory.

8. To run the DSP application file, select DebugÈRun Free from the Code Composer
Main Menu.

 If you loaded blink.out, the front panel LEDs should flash on and off.

9. Quit the debugger.

Spectrum Signal Processing F5 Carrier Board User Guide
Development of Host Applications

Part Number 500-00354 35
Revision 2.11

6 Development of Host Applications
The F5 ALIB_W95 and ALIB_NT provide the functions that you need to initialize,
download code to, control, and perform I/O operations on an F5 board. This chapter
discusses some of the functions that are used to perform these tasks and some important
concepts that you should understand before using the Application Library (ALIB)
functions.

6.1. Architectural Overview

The architecture of HOST_ALIB is grounded in the concept of resource management
and manipulation. Figure 7 is a graphical representation of the architecture of
HOST_ALIB, and illustrates how your application code may integrate easily with the
library.

The essential elements of the architecture to take note of are:

• the representation of the hardware components in a System Definition File

• generation of the SDF with Spectrum’s Toolbox utility

• specification of downloadable DSP code in a Load Definition File

• common sharing of prototypes and definitions (.h files) between
ALIB_HOST and your application code

In any application there are four unique components:

• your application code

• a system handle and a collection of resource handles which your code
acquires and uses for communication with the hardware

• the HOST_ALIB functions which translate your requests into specific
actions on the hardware

• the system configuration and resources which HOST_ALIB manages on
your behalf

Note that Toolbox is not a part of your application. It is a tool to be used when you
initially install, or make a hardware modification to your Dakar system. The prototype
and definition files are only required to build your application. The run-time system
consists of your application, the Load and System Definition Files, and the Dakar
hardware.

F5 Carrier Board User Guide Spectrum Signal Processing
Development of Host Applications

36 Part Number 500-00354
Revision 2.11

f5user.h
sstype.h

P r o t o t y p e a n d
D e f i n i t i o n f i l e s

A
p
p
lic

a
ti
o
n
 C

o
d
e

Dakar System

Board2

NodeA:Proc0

PlxReg

GlobalRam

Boardx

NodeA:Proc0

PlxReg

GlobalRam

Board1

NodeA:Proc0

PlxReg

GlobalRam

S
ys

te
m

 H
an

dl
e

R
es

ou
rc

e
H

an
dl

es

System
Definition File

(SDF)

Load
Definition File

(LDF)
Toolbox

DSP
program 1

DSP
program x

F5_SystemOpen

F5_Control

F5_SystemLoad

F5_ErrorMessage

F5_AllocHostMem

F5_FreeHostMem

F5_InstallCallback

F5_Read

F5_Write

F5_SystemClose

F5_GetHandle

Figure 7 Dakar Host Software Architecture

Spectrum Signal Processing F5 Carrier Board User Guide
Development of Host Applications

Part Number 500-00354 37
Revision 2.11

6.2. Calling Host Functions

HOST_ALIB requires that you follow a simple rule for successful applications:

always acquire a resource before you call functions that use that resource.

Resources are managed and manipulated using handles. HOST_ALIB uses two types of
handles; a system handle, and a resource handle. An application will always acquire one
system handle. The number of resource handles acquired by an application depends on
the function of the application.

Applications must call certain functions in a strict order, as shown in Figure 8. This
ensures that resources are available when needed by calls to other functions.

F5_SystemOpen to
initialize the Dakar

System

F5_Control
to reset the Dakar

System

F5_SystemLoad
 to download DSP
code to the Dakar

F5_SystemClose to
close the Dakar

System

The first function called in your host code must be
F5_SystemOpen. F5_SystemOpen initializes and
opens your Dakar system. This function returns a
system handle.

To download DSP code to the Dakar board, first call
F5_Control to reset the board, followed by
F5_SystemLoad to download the code. These
functions require a system handle.

Finally, your host code must call F5_SystemClose
to close the system.

Within the main body of your code you acquire
handles to resources, and use them to perform the
application specific functions. You can also use
F5_Control and F5_SystemLoad repeatedly within
the application to reset and reload the Dakar board.

Figure 8 Host Program Flow

Important!

F5 Carrier Board User Guide Spectrum Signal Processing
Development of Host Applications

38 Part Number 500-00354
Revision 2.11

6.2.1. Obtaining Error Information

All ALIB_HOST functions can return an error value (that is, a non-zero result). If you
wish to display a corresponding message for the error value, you can call the function
F5_ErrorMessage. The F5_ErrorMessage function takes an error value as an
argument, and returns a text description of the error. Error code values and their
descriptions are listed in Appendix A.

6.3. Including F5 ALIB Functionality

In order to use the F5 Application Library (ALIB) functions, make sure you:

1. Include the f5user.h file in your code. This file contains all the required F5 function
prototypes and defines and can be found in the <F5RootDirectory>\include
directory.

2. Link your code with the f5alib.lib file that’s found in your <F5RootDirectory>\lib
directory. This will link your code with the F5 ALIB functions stored in the
f5alib.dll file.

 The f5alib.dll file must be in your c:\windows or current directory. The installation
program automatically installs this file into your c:\windows directory.

3. Set the Environment Variable SSP_PATH to include the location of the following
files:

• The sspboot.out file. This file is loaded into each processor in the loading path,
except the boot processor (embedded processor).

• Load Definition Files (LDFs) containing the loading path for the DSP code (see
section 6.6 for more information on LDFs).

• DSP application code files to load onto the system’s processors.

Your application first looks for these files in the current directory and, if they are not
found, they are then searched for in the path specified by SSP_PATH. For example,
if the environment variable is set as:

SSP_PATH=C:\F5\BIN;D:\F5USER

your application first checks the current directory for the files, and if the files are not
found, your application then checks the C:\F5\BIN directory, and then the
D:\F5USER directory.

SSP_PATH should include <F5RootDirectory>\bin and
<F5RootDirectory>\examples\dspload

Note: To temporarily set the SSP_PATH Environment Variable, you must set it
in the same Command Prompt session that your console program is running.

Spectrum Signal Processing F5 Carrier Board User Guide
Development of Host Applications

Part Number 500-00354 39
Revision 2.11

Windows 95: Windows NT:

SSP_PATH can be set via the
AUTOEXEC.BAT file.

SSP_PATH can be set or changed via
the Control Panel, System applet,
Environment tab, User Variables list
box.

6.4. Defining your System’s Hardware Configuration

A System Definition File (SDF) is used by the F5_SystemOpen function to define your
system’s hardware configuration and to compute the loading path for all processors in
the system. The SDF describes the hardware configurations of all the F5 boards in a
system, such as memory types and sizes, TIM modules, COMM Port connections,
interrupt levels and vectors, board base addresses, boot processors, and other parameters.

Note: There should be one SDF for each of your F5 systems. Multiple F5
boards can be treated as different systems only if there are no COMM port
connections between them.

Sample SDF files have been included with the F5 SDK and can be found in your
<F5RootDirectory>\include directory:

• f5.sdf and f5_1.sdf define a single board system with one embedded processor only.

• f5_2.sdf defines a single board system with one embedded processor and one TIM
module.

• f5_3.sdf defines a single board system with one embedded processor and two TIM
modules.

• f5_4.sdf defines a single board system with one embedded processor and three TIM
modules.

Note: The SDF will have to be edited every time you add an F5 board, TIM
module or memory to your system. (See section 6.5 Changing your System’s
Hardware Configuration for more details.)

For a detailed description and example of a System Definition File, see Appendix C:
System Definition File: Description and Example.

6.5. Changing your System’s Hardware Configuration

Each time you add an F5 board, TIM module or memory to your system, you must edit
the System Definition File (SDF) used in your application to reflect your new hardware
configuration. For example, if you add an F5 board to your system, the board will have to
be defined in the SDF with its unique board ID (base address).

F5 Carrier Board User Guide Spectrum Signal Processing
Development of Host Applications

40 Part Number 500-00354
Revision 2.11

Note: You can generate a new SDF using Spectrum’s Toolbox Utility. When
generating a new SDF, Toolbox also creates a corresponding LDF. Be sure to
use this new LDF file in the place of your old LDF.

A board’s ID is contained in PEROM of its embedded C44. By default, all boards are
shipped with a board ID of 0x1.

6.5.1. Changing an F5 Board ID

Note: If your system contains more than one F5 board, you must ensure that
each board has a unique board ID.

To change a board’s ID, for example to 0x2:

1. Remove all other F5 boards from your system.

2. Remove jumper J28 on the F5 Board to be programmed.

3. Using your debug monitor, load the boot kernel file, xxxx_a2.out, that’s provided in
your <F5RootDirectory>\bin directory onto the embedded node of the target board.
xxxx, in the filename xxxx_a2.out, corresponds to the board’s type; either M1S1 or
M2S2 (see section 2.2).

 Note that xxxx_a3.out corresponds to board ID 0x3, and so on.

4. Run the xxxx_a2.out file and quit the debug session.

Note: The new board ID is effective only after the board has been reset. See
section 2.5 Resetting the F5 Carrier Board.

6.6. Defining the DSP Code to Download

A Load Definition File (LDF) is used by the F5_SystemLoad function to determine
which DSP applications to load to which F5 processors. The LDF is a text-based file
containing the paths and filenames of the DSP executable files to load. Sample LDF files
can be found in the <F5RootDirectory>\examples subdirectories. Use a text editor to
edit one of these file.

6.6.1. Load Definition File (LDF) Example

[Files]
Board1:SiteA:Proc0 = intrupts.out ; // Embedded TIM A
Board1:SiteB:Proc0 = intrupts.out ; // TIM B
Board1:SiteC:Proc0 = intrupts.out ; // TIM C
//Board1:SiteD:Proc0 = loop.out ; // TIM D

[end]

Spectrum Signal Processing F5 Carrier Board User Guide
Development of Host Applications

Part Number 500-00354 41
Revision 2.11

6.7. Defining your System’s Configuration for a Standalone Application

A Resource Definition File (RDF) is used in a standalone application to define your
system’s configuration. An RDF is generated from a System Definition File (SDF),
described in section 6.4, and consists of the following:

• Resource Table – an array of system resources

• Processor File List – an array of DSP applications to load to F5 processors

Note: There should be one RDF for each F5 system.

To use the RDF in a standalone application:

• Include the RDF, which is in “C” code format, in your host code.

• Pass the name of the Resource Table to F5_SystemOpen. The Resource Table is
used by F5_SystemOpen to define your system’s hardware configuration.

• Pass the name of the Processor File List to F5_SystemLoad when loading DSP
code. The File List identifies which DSP applications to load to which processors.

See the following section for instructions on generating an RDF.

Note: Refer to Toolbox Configuration Utilities User Guide for Generating SDF
and RDF files.

6.7.1. Generating a Resource Definition File (RDF)

Sample RDFs are provided with the F5 SDK and can be found in your
<F5RootDirectory>\include directory. Using a text editor, you can edit one of these files
to properly reflect your system’s configuration, or you can generate an RDF using the
Toolbox Utility.

To generate an RDF using Toolbox:

run c:\spectrum\toolbox\toolbox.exe (Win32)

Generally the sequence of operations is as follows:

1) Select Define a system of boards from the Main Menu

2) Choose a System name

3) Enter from menus the hardware in your System

4) Generate a System Definition File (SDF)

5) Generate a Resource Definition File (RDF), if required

6) Exit

F5 Carrier Board User Guide Spectrum Signal Processing
Development of Host Applications

42 Part Number 500-00354
Revision 2.11

The files generated by ToolBox (SDF, LDF, RDF, etc.) are placed in the directory:

c:\spectrum\toolbox\system\ (Win32)

To use these files with the Host application libraries, copy the required files to the
directory where you are developing your host code.

For some host ALIBs which use SDF files, the ssp_path environment variable can be set
to search the system directory (as well as the toolbox directory) to automatically find the
generated SDF/LDF files. By setting the ssp_path environment variable it is not
necessary to move the files after they have been generated.

6.7.2. Resource Definition File (RDF) Example

/*===
 Spectrum Signal Processing Inc.

 RESOURCE FILE: E:\F5-10\DEV\HOST\BIN\f5.rdf
 SOURCE SDF FILE: E:\F5-10\DEV\HOST\BIN\f5.sdf
 PURPOSE: Resource File to be used by user application.

 COMMENTS: This file was from the user SDF file.

 TIMESTAMP: Fri Jul 18 15:56:03

 ===*/

#ifndef SS_RESRCE_H
#define SS_RESRCE_H

#ifdef __cplusplus
extern C {
#endif

F5_RESOURCE F5_System[] =
{
 { /* BEGIN RESOURCE: */
 0x40, /* RescSize */
 "Board1:SiteA:Proc0", /* Full Resource Name */
 "", /* UserCode */
 {255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, /* Boot Path */
 "Board1:SiteA:Proc0", /* Root Resource Name */
 0x20, /* TypeID */
 0x0, /* hNextResc */
 0x123, /*Board ID*/
 0x0, /*Board Ref*/
 0x0, /*Mem Offset*/
 0x0, /*Mem Length*/
 0x3d840000, /*GMCR*/
 0x3d840000 /*LMCR*/
 }, /* END OF RESOURCE */

…
 { /* BEGIN RESOURCE: */
 0x0, /* RescSize */
 "", /* Full Resource Name */
 "", /* UserCode */
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, /* Boot Path */
 "", /* Root Resource Name */
 0x0, /* TypeID */
 0x0, /* hNextResc */
 0x0, /*Board ID*/
 0x0, /*Board Ref*/
 0x0, /*Mem Offset*/
 0x0, /*Mem Length*/
 0x0, /*GMCR*/
 0x0 /*LMCR*/
 }/* END OF RESOURCE */

Spectrum Signal Processing F5 Carrier Board User Guide
Development of Host Applications

Part Number 500-00354 43
Revision 2.11

}; /*== End Resource Table ==*/

S_PROC_FILE_LIST F5_SystemFiles[] =
{ /* BEGIN FILES: */
 {"Board1:SiteA:Proc0",""},
 {"Board1:SiteB:Proc0",""},
 {"",""} /* End of List Indicator */

}; /* END FILES */

#ifdef __cplusplus
}
#endif

#endif /* SS_RESRCE_H */

/* End of file f5.h */

6.8. Using Handles to Access Systems and Resources

Handles are used in F5 ALIB functions to identify particular systems or system
resources. All of the information needed to perform operations on an F5 system or
resource is stored in its handle. Once a handle has been obtained for an object, it can be
used as a unique identifier for that object in subsequent ALIB function calls. These
handles remove you from the low-level details of an F5 system and simplify access to the
system and its resources. Two types of handles are used in ALIB:

• System Handles – used to uniquely identify particular F5 systems. You can obtain a
system handle by calling F5_SystemOpen. This system handle can then be used in
subsequent calls to F5_GetHandle, F5_InstCallback, F5_SystemClose, and
F5_SystemLoad.

• Resource Handles – uniquely identify hardware resources on an F5 system that can
be written to and read from by your PC. You can obtain a handle to a resource by
calling F5_GetHandle. This resource handle can then be used in subsequent calls to
F5_Control, F5_InterruptProc, F5_Read, and F5_Write.

Windows NT: Resource handles can also uniquely identify a block of host memory
allocated by the F5_AllocHostMem function. This resource handle can then be
used in subsequent calls to F5_Read and F5_Write functions.

6.9. Viewing Debug Messages (Windows 95)

Note: This section applies only to the Windows 95 platform.

The installation program adds entries to the registry which setup the operation mode of
both the F5 Windows 95 Device Driver and the ALIB_W95. Under the key:

HKEY_LOCAL_MACHINE

SOFTWARE

SSP F5

are the values:

F5 Carrier Board User Guide Spectrum Signal Processing
Development of Host Applications

44 Part Number 500-00354
Revision 2.11

DrvMode “Debug” or “Release” (default)

LibMode “Debug” or “Release” (default)

Kernellocation “<F5RootDirectory>\bin”

When either DrvMode or LibMode is set to “Debug”, debugging messages will be sent to
a debugging window such as the supplied DBGMON utility. Open DBGMON in order
to view the messages sent. You can open DBGMON by double-clicking on the
dbgmon.exe file that’s in <F5RootDirectory>\bin.

The above values can be changed by running the Windows utility “regedit” from the Run
command under the Start Menu.

Caution: Be very careful when editing the Registry.

Spectrum Signal Processing F5 Carrier Board User Guide
Host Software Functions

Part Number 500-00354 45
Revision 2.11

7 Host Software Functions
This chapter describes the host ALIB C language functions. The functions are listed in
alphabetical order and are summarized in the following table.

Table 7 F5 ALIB Host Functions

Function Name Description

F5_AllocHostMem Allocates a contiguous block of memory on the host.

F5_Control Performs a control operation (for example, RESET) on an
F5 system, board, or resource.

F5_ErrorMessage Returns a text description for an error code.

F5_FreeHostMem Frees a previously allocated contiguous block of memory
on the host.

F5_GetHandle Returns a handle to an available resource on an F5
system.

F5_InstCallback Installs or removes an Interrupt Callback function for a
specified system.

F5_InterruptProc Interrupts a processor on an F5 board.

F5_Read Reads from an F5 memory resource.

F5_SystemClose De-allocates all resources currently allocated to an F5
board and closes the board.

F5_SystemLoad Loads DSP code to all processors in a system.

F5_SystemOpen Initializes and opens an F5 system.

F5_Write Writes to an F5 memory resource.

F5 Carrier Board User Guide Spectrum Signal Processing
Host Software Functions

46 Part Number 500-00354
Revision 2.11

F5_AllocHostMem (Windows 95)

Allocates a contiguous block of memory on the host.

F5user.h

F5API RESULT F5_AllocHostMem (UINT32 dwSize,
 UINT32* pdwLinAddr,
 UINT32* pdwPhysAddr);

dwSize The size (in bytes) of the memory block to allocate.

PdwLinAddr The Linear (virtual) address to the allocated memory block.

PdwPhysAddr The Physical address of the allocated memory block. This address
should be directly accessible by the DSP code.

F5_RES_OK The function completed successfully.

F5_RES_OS_NOT_ENOUGH_MEM Your PC does not have sufficient memory to
allocate the required space.

F5_RES_DRV_CANT_ALLOC_MEM Not enough memory to allocate for the request.

F5_RES_DRV_NO_CONTIG_MEM Not enough contiguous memory to allocate
memory for the request.

F5_RES_DRV_CANT_LOC_MEM The Driver cannot lock the memory requested.

This function can be used to allocate a block of PCI memory on the host that can be
accessed by the C4X_Read and C4X_Write ALIB_C4x functions (see the busmastr
example). PCI Physical address must be referenced in bytes and not in 32 bit words.

..

static UINT32 hostArraySize = 0x0;
static UINT32 arrayLinAddr = 0x0;
static UINT32 arrayPhysAddr = 0x0;
..

/*--*/
int main(int argc, char *argv[])
{
..

hostArraySize = strtoul(choice, NULL, 16);

 printf("\nAllocating host memory... ");
 result = F5_AllocHostMem(hostArraySize*4, &arrayLinAddr,
 &arrayPhysAddr);
..

}

Function

Include File

Syntax

Parameters

Returned Values

Remarks

Example Code

Spectrum Signal Processing F5 Carrier Board User Guide
Host Software Functions

Part Number 500-00354 47
Revision 2.11

F5_AllocHostMem (Windows NT)

Allocates a contiguous block of memory on the host.

F5user.h

F5API RESULT F5_AllocHostMem (UINT32 dwSize,
 HF5_RESOURCE *phMemResc,
 UINT32* pdwPhysAddr);

dwSize The size (in bytes) of the memory block to allocate.

phMemResc The allocated host memory resource handle.

pdwPhysAddr The physical address of the allocated memory block. This address
should be directly accessible by the DSP code.

F5_RES_OK The function completed successfully.

F5_RES_OS_NOT_ENOUGH_MEM Your PC does not have sufficient memory to
allocate the required space.

F5_RES_DRV_CANT_ALLOC_MEM Not enough memory to allocate for the request.

F5_RES_DRV_NO_CONTIG_MEM Not enough contiguous memory to allocate
memory for the request.

F5_RES_DRV_CANT_LOC_MEM The Driver cannot lock the memory requested.

This function can be used to allocate a block of PCI memory on the host that can be
accessed by the C4X_Read and C4X_Write ALIB_C4x functions (see the busmastr
example). PCI Physical address must be referenced in bytes and not in 32 bit words.

..

static UINT32 hostArraySize = 0x0;
static UINT32 arrayLinAddr = 0x0;
static UINT32 arrayPhysAddr = 0x0;
..

/*--*/
int main(int argc, char *argv[])
{
HF5_RESOURCE hMemResc;
..

hostArraySize = strtoul(choice, NULL, 16);

 printf("\nAllocating host memory... ");
 result = F5_AllocHostMem(hostArraySize*4, &hMemResc, &ArrayPhysAddr);
..
}

Function

Include File

Syntax

Parameters

Returned Values

Remarks

Example Code

F5 Carrier Board User Guide Spectrum Signal Processing
Host Software Functions

48 Part Number 500-00354
Revision 2.11

F5_Control

Performs a control operation on an F5 system, board, or resource.

F5user.h

F5API RESULT F5_Control(HF5_RESOURCE hResc,
 UINT32 Action,
 UINT32 Flags,
 void* pvValue);

hResc Handle to the F5 resource (returned from F5_GetHandle) to control.

Action Action to be performed, specify either:

F5_CTL_RESET = to reset the specified resource.

F5_CTL_INTPROC = to cause the INT_NODE to interrupt a
processor.

F5_CTL_GETBRD = to get a board’s configuration data. The data is
returned to the location specified by pvValue.

F5_CTL_RESET = This action resets the specified resource:

If hResc specifies a: then the following is reset:

System all boards in the System

Resource only the parent board

Board only the specified board

F5_CTL_INTPROC = This action causes the INT_NODE to interrupt a
processor:

If hResc specifies a: then the INT_NODE:

Board interrupts the processor on Node x of the
specified board. Use the Flags parameter
(see below) to specify which node the
processor resides on.

Resource (of Processor type) interrupts that processor.

F5_CTL_GETBRD = This action gets a board’s configuration data. The
data is returned to the location specified by pvValue.

If hResc specifies a: then this action retrieves configuration
data for:

System the Board identified by the BoardID in
the Flags parameter.

Resource the Parent Board.

Function

Include File

Syntax

Parameters

Spectrum Signal Processing F5 Carrier Board User Guide
Host Software Functions

Part Number 500-00354 49
Revision 2.11

Flags • If Action = F5_CTL_GETBRD and hResc specifies a system,
then Flags must specify the Board ID for which to retrieve
configuration data. You can obtain the Board ID from the SDF file
(Base Address of Board).

• If Action = F5_CTL_INTPROC and hResc specifies a board, then
Flags must specify the Node ID (see the following table) on which
the processor to interrupt resides.

pvValue Storage location for board configuration data. This parameter must be
specified as HF5_BOARD type and must be cast to void.

Flag Description

F5_FLAG_IP_NODEA Interrupt the processor on Node A

F5_FLAG_IP_NODEB Interrupt the processor on Node B

F5_FLAG_IP_NODEC Interrupt the processor on Node C

F5_FLAG_IP_NODED Interrupt the processor on Node D

F5_RES_OK The function completed successfully.

F5_RES_LIB_LIBRARY_NOT_OPEN DLL not initialized. A call to
F5_SystemOpen should be made to
initialize the library.

F5_RES_SYS_CORRUPT An invalid system handle was specified.

F5_RES_RES_INVALID_RESC_TYPE An invalid resource type was specified.

Any driver errors (F5_RES_DEV_*) can also be returned. See Appendix A: Status Codes
for a list of possible return codes.

Resetting a board will reset all processors on the board and any processors on boards that
are connected via a JTAG chain.

You must reset an F5 board before you can load DSP code onto it.

Returned Values

Remarks

F5 Carrier Board User Guide Spectrum Signal Processing
Host Software Functions

50 Part Number 500-00354
Revision 2.11

int main(int argc, char *argv[])
{
..
static HF5_SYSTEM hSystem = NULL;
..

result = F5_SystemOpen(&hSystem, sdf, F5_FLAG_SO_SDFFILE);
..

result = F5_Control((HF5_RESOURCE)hSystem, F5_CTL_RESET, NULL);
..

}

int main(int argc, char *argv[])
{
..

HF5_RESOURCE hBoard,hProc;
..

result = F5_GetHandle(hSys, “Board1:SiteA:Proc1”, hProc);

result = F5_Control(hProc, F5_CTL_INTPROC, 0, (void *)0);
..

}

void main(void)
{
F5_BOARD Board, *hBrd = &Board;
HF5_SYSTEM hSys;
..

result = F5_SystemOpen(&hSys, sdf, 0);
..

result = F5_Control((HF5_RESOURCE) hSys, F5_CTL_GETBRD, 0x123,
 (void*)hBrd);
..

}

Example Code

Spectrum Signal Processing F5 Carrier Board User Guide
Host Software Functions

Part Number 500-00354 51
Revision 2.11

F5_ErrorMessage

Gets a text description for a given error code.

F5user.h

F5API STRING F5_ErrorMessage(RESULT dwError);

dwError Return code for which to get a text description.

See Appendix A: Status Codes for a list of strings returned.

The memory location used to store the string returned by this function is shared between
all threads accessing the system. Therefore, you must copy the string returned from
F5_ErrorMessage immediately into a local buffer. This can be done by using the
following command:

char szBuffer[128];

..

strcpy (szBuffer, F5_ErrorMessage(…));

where szBuffer is a locally declared buffer of characters.

Note that it is NOT sufficient to merely copy the char pointer returned by
F5_ErrorMessage to a locally defined char pointer. The complete string must be copied
using strcpy .

int main(void)
{
..

result = F5_GetHandle(hSystem, "Board1:PlxLocalRegs", &hPlxLocRegs);
 if (F5_RES_OK != result)
 {
 printf("[FAILED] (%s)\n", F5_ErrorMessage(result));
 handle_error();
 return(-1);
 }
..

}

Function

Include File

Syntax

Parameters

Returned Values

Remarks

Example Code

F5 Carrier Board User Guide Spectrum Signal Processing
Host Software Functions

52 Part Number 500-00354
Revision 2.11

F5_FreeHostMem (Windows 95)

Frees a contiguous block of memory previously allocated with F5_AllocHostMem.

F5user.h

F5API RESULT F5_FreeHostMem (UINT32 dwSize,
 UINT32 dwLinAddr,
 UINT32 dwPhysAddr);

dwSize The size (in bytes) of the memory block to free.

dwLinAddr The Linear address of the memory block to free.

dwPhysAddr The Physical address of the allocated memory block to free.

F5_RES_OK The function completed successfully.

Only a memory block that was previously allocated by the F5_AllocHostMem function
can be freed by F5_FreeHostMem.

..

static UINT32 hostArraySize = 0x0;
static UINT32 arrayLinAddr = 0x0;
static UINT32 arrayPhysAddr = 0x0;
..

/*--*/
int main(int argc, char *argv[])
{
..

hostArraySize = strtoul(choice, NULL, 16);

 printf("\nAllocating host memory... ");
 result = F5_AllocHostMem(hostArraySize*4, &arrayLinAddr,
&arrayPhysAddr);
..

result = F5_FreeHostMem(hostArraySize*4, arrayLinAddr, arrayPhysAddr);
..

}

Function

Include File

Syntax

Parameters

Returned Values

Remarks

Example Code

Spectrum Signal Processing F5 Carrier Board User Guide
Host Software Functions

Part Number 500-00354 53
Revision 2.11

F5_FreeHostMem (Windows NT)

Frees a contiguous block of memory previously allocated with F5_AllocHostMem.

F5user.h

F5API RESULT F5_FreeHostMem (UINT32 dwSize,
 HF5_RESOURCE hMemResc,
 UINT32 dwPhysAddr);

dwSize The size (in bytes) of the memory block to free.

hMemResc The host memory resource describing the memory block to free.

dwPhysAddr The Physical address of the allocated memory block to free.

F5_RES_OK The function completed successfully.

Only a memory block that was previously allocated by the F5_AllocHostMem function
can be freed by F5_FreeHostMem.

..

static UINT32 hostArraySize = 0x0;
static UINT32 arrayLinAddr = 0x0;
static UINT32 arrayPhysAddr = 0x0;
..

/*--*/
int main(int argc, char *argv[])
{
HF5_RESOURCE hAllocMem;
..

hostArraySize = strtoul(choice, NULL, 16);

 printf("\nAllocating host memory... ");
 result = F5_AllocHostMem(hostArraySize*4, &hAllocMem, &arrayPhysAddr);
..

result = F5_FreeHostMem(hostArraySize*4, hAllocMem, arrayPhysAddr);
..

}

Function

Include File

Syntax

Parameters

Returned Values

Remarks

Example Code

F5 Carrier Board User Guide Spectrum Signal Processing
Host Software Functions

54 Part Number 500-00354
Revision 2.11

F5_GetHandle

Gets a handle to an available F5 board resource.

F5user.h

F5API RESULT F5_GetHandle(HF5_SYSTEM hSystem,
 STRING lpFullRescName,
 HF5_RESOURCE* phResc);

hSystem Handle to the F5 system (returned from F5_SystemOpen)

lpFullRescName Character string identifying the resource to get a handle for. The
resource can be either an F5 board, or a resource on an F5
board. See Remarks.

phResc Pointer to F5 resource handle storage location.

F5_RES_OK The command completed successfully.

F5_RES_WRONG_PARAMS An invalid parameter was specified.

F5_RES_SYS_CORRUPT The system handle is invalid.

F5_RES_RES_NOT_FOUND The name of the resource was not found.

The string passed to lpFullRescName must contain the Full Resource Name of the
resource. The Full Resource Name can be obtained from either the System Definition
File (SDF) or Resource Definition File (RDF) file. For example, the Full Resource Name
of Processor 0 on board 1 is: “Board1:SiteA:Proc0”. (See sections 6.4 and 6.7 for more
information about SDF and RDF files.)

The handle returned by this function contains all the necessary information to identify
the resource and should be used to access the resource in subsequent ALIB_W95
function calls.

int main(int argc, char *argv[])
{

 HF5_SYSTEM hSystem = NULL;
 HF5_RESOURCE hSharedSRAM;
..

result = F5_SystemOpen(&hSystem, sdf, F5_FLAG_SO_SDFFILE);
..

result = F5_GetHandle(hSystem, "Board1:SharedRam", &hSharedSRAM);
..

}

Function

Include File

Syntax

 Parameters

Returned Value

Remarks

Example Code

Spectrum Signal Processing F5 Carrier Board User Guide
Host Software Functions

Part Number 500-00354 55
Revision 2.11

F5_InstCallback

Installs or cancels an Interrupt Callback Function for the F5 System specified.

F5user.h

F5API RESULT F5_InstCallback(HF5_SYSTEM hSystem,
 IRQFUNC pFuncCB);

hSystem Handle to the F5 system (returned from F5_SystemOpen)

pFuncCB A pointer to the callback function to be installed. Specify
“NULL” if you’re canceling a callback function. See Remarks for
a declaration of FuncCB.

F5_RES_OK The function completed successfully.

F5_RES_SYS_CORRUPT An invalid system handle was specified.

F5_RES_LIB_NOT_OPEN The DLL has not been initialized. A call to
F5_SystemOpen should be made.

F5_RES_DEV_TAKEN The specified board is already being used by another
process (thread).

F5_InstCallback is used to specify which function (the “callback function”) will
automatically execute whenever an interrupt is generated by any board on the system
(specified by hSystem).

Only a thread which previously installed a Callback function can change it later for the
same hSystem. However, any thread can cancel a Callback function for a given
hSystem.

Make sure you cancel an installed callback before your program ends.

Windows 95: Only a single callback function can be installed on a system at any time. If
another callback is already installed, it will be removed if possible (possible if both
callbacks are installed by the same thread) and the new callback will be installed. If this
is not possible, the old callback will remain and an error will be returned.

Windows NT: Only a single callback function can be installed on a system at any time.
However, you can have open at the same time two or more systems which use the same
System Definition File (SDF). Each of these systems can install its callback function.
Each of the callback functions will be called when an interrupt on the physical board
happens. Before installing a callback function in a system, your code must uninstall any
previously installed (in that system) callback function.

Function

Include File

Syntax

Parameters

Returned Values

Remarks

F5 Carrier Board User Guide Spectrum Signal Processing
Host Software Functions

56 Part Number 500-00354
Revision 2.11

Whenever the particular board belonging to the F5 system asserts an interrupt request,
the callback function automatically executes. The callback function must be declared as
follows:

Windows 95: void <function_name>(DWORD dwBoardID, DWORD dwIntReason,
DWORD dwIntData)

Windows NT: void __stdcall <function_name>(DWORD dwBoardID, DWORD
dwIntReason, DWORD dwIntData)

where the parameters can have the following values:

Parameter Value / Description

dwBoardID ID of the board which generated the interrupt.

dwIntReason 1 - the reason for the interrupt is “Local to PCI doorbell”.

2 - the interrupt was generated by processor A, B, C or D.

dwIntData If dwIntReason = 1, then the content of the doorbell.

If dwIntReason = 2, then the coded value which states which node
generated the interrupt:

1 Node A

2 Node B

4 Node C

8 Node D

Any driver errors (F5_RES_DEV_*) can also be returned. See Appendix A: Status Codes
for a list of possible return codes.

Spectrum Signal Processing F5 Carrier Board User Guide
Host Software Functions

Part Number 500-00354 57
Revision 2.11

/*--*/
void BoardIRQ(DWORD boardID, DWORD intReason, DWORD intData)
{
 int i;

 /* local to PCI doorbell
 */
 if (1 == intReason)
 {
 printf(" local to PCI doorbell (board 0x%x) received\n", boardID);
 int_received++;
 }

 /* node to PCI interrupts
 */
 if (2 == intReason)
 {
 for (i = 0; i < 4; i++)
 {
 if (intData & (1 << i))
 {
 printf(" node %c (board 0x%x) -> host received\n",
 (’A’ + i), boardID);
 int_received++;
 }
 }
 }
}

/*--*/
int main(int argc, char *argv[])
{
..

HF5_SYSTEM hSystem = NULL;
..

result = F5_SystemOpen(&hSystem, sdf, F5_FLAG_SO_SDFFILE);
..

result = F5_InstCallback(hSystem, BoardIRQ);
..

result = F5_InstCallback(hSystem, NULL);
..

}

Example Code
for Windows 95:

F5 Carrier Board User Guide Spectrum Signal Processing
Host Software Functions

58 Part Number 500-00354
Revision 2.11

/*--*/
void __stdcall BoardIRQ(DWORD boardID, DWORD intReason, DWORD intData)
{
 int i;

 /* local to PCI doorbell
 */
 if (1 == intReason)
 {
 printf(" local to PCI doorbell (board 0x%x) received\n", boardID);
 int_received++;
 }

 /* node to PCI interrupts
 */
 if (2 == intReason)
 {
 for (i = 0; i < 4; i++)
 {
 if (intData & (1 << i))
 {
 printf(" node %c (board 0x%x) -> host received\n",
 (’A’ + i), boardID);
 int_received++;
 }
 }
 }
}

/*--*/
int main(int argc, char *argv[])
{
..

HF5_SYSTEM hSystem = NULL;
..

result = F5_SystemOpen(&hSystem, sdf, F5_FLAG_SO_SDFFILE);
..

result = F5_InstCallback(hSystem, BoardIRQ);
..

result = F5_InstCallback(hSystem, NULL);
..

}

Example Code
for Windows NT:

Spectrum Signal Processing F5 Carrier Board User Guide
Host Software Functions

Part Number 500-00354 59
Revision 2.11

F5_InterruptProc

Interrupts a Processor on an F5 board.

F5user.h

F5API RESULT F5_InterruptProc(HF5_RESOURCE hResc,
 UINT32 Flags);

hResc Handle to the F5 resource (returned from F5_GetHandle) to
interrupt. See Remarks.

Flags The node on which the processor to interrupt resides (see table
below). Use only when hResc specifies a Board.

Flag Description

F5_FLAG_IP_NODEA Interrupt the processor on Node A

F5_FLAG_IP_NODEB Interrupt the processor on Node B

F5_FLAG_IP_NODEC Interrupt the processor on Node C

F5_FLAG_IP_NODED Interrupt the processor on Node D

F5_RES_OK The function completed successfully.

If hResc specifies a: then:

Board the processor on Node x of the specified board will be
interrupted.

Processor type resource that processor will be interrupted and the Flags parameter
will be ignored.

You can also use the F5_Control function to interrupt a processor on the F5 board.

..

RESULT F5_InterruptProc(hBoard, F5_FLAG_IP_NODEA);
..

Function

Include File

Syntax

Parameters

Returned Values

Remarks

Example Code

F5 Carrier Board User Guide Spectrum Signal Processing
Host Software Functions

60 Part Number 500-00354
Revision 2.11

F5_Read

Reads a specified number of 32-bit words from a specified memory resource.

F5user.h

F5API RESULT F5_Read(HF5_RESOURCE hResc,
 UINT32* pdwDest,
 UINT32* pdwSrc,
 UINT32 dwLength,
 UINT32 dwFlags);

hResc Handle to the F5 resource (returned from F5_GetHandle) to read data
from.

Windows NT: This can also be a handle to a block of host memory
allocated by F5_AllocHostMem.

pdwDest Pointer to buffer in which to store the read data.

pdwSrc Offset from the base of the resource to be read.

dwLength Number of 32-bit words to read.

dwFlags Windows 95:
Specify 0 (zero).

Windows NT:
Specify one of the following:

• 0 = read from an F5 board’s resource (via the
device driver)

• F5_FLAG_RW_DIRECT = read directly from
the User Virtual Address

• F5_FLAG_RW_HOST_MEM = read from an
allocated host memory block

F5_RES_OK The function completed successfully.

F5_RES_WRONG_PARAM An invalid parameter was specified.

F5_RES_RES_INVALID_RESC_TYPE An invalid resource type was specified.

None

Function

Include File

Syntax

Parameters

Returned Values

Remarks

Spectrum Signal Processing F5 Carrier Board User Guide
Host Software Functions

Part Number 500-00354 61
Revision 2.11

/*---*/
int main(int argc, char *argv[])
 {
..

HF5_RESOURCE hMailbox;
UINT32 sharedArrayOffset;
UINT32 mboxOffset = MAILBOX0_OFFSET;

..

result = F5_Read(hMailbox, &sharedArrayOffset, (UINT32*)mboxOffset, 1,
0);
..

}

Example Code

F5 Carrier Board User Guide Spectrum Signal Processing
Host Software Functions

62 Part Number 500-00354
Revision 2.11

F5_SystemClose

De-allocates all resources currently allocated to the specified F5 system.

F5user.h

F5API RESULT F5_SystemClose(HF5_SYSTEM hSystem);

phSystem Pointer to handle of the F5 System (returned from F5_SystemOpen) to
 close.

F5_RES_OK The function completed successfully.

F5_RES_SYS_CORRUPT An invalid system handle was specified.

F5_RES_LIB_LIBRARY_NOT_OPEN The ALIB has not been initialized. A call to
F5_SystemOpen should be made to initialize
the library.

Any driver errors (F5_RES_DEV_*) can also be returned. See Appendix A: Status Codes
for a list of possible error codes.

int main(int argc, char *argv[])
{
..

HF5_SYSTEM hSystem = NULL;
..

result = F5_SystemOpen(&hSystem, sdf, F5_FLAG_SO_SDFFILE);
..

result = F5_SystemClose(hSystem);
..

}

Function

Include File

Syntax

Parameters

Returned Values

Remarks

Example Code

Spectrum Signal Processing F5 Carrier Board User Guide
Host Software Functions

Part Number 500-00354 63
Revision 2.11

F5_SystemLoad

Loads an application into the DSP of a specified F5 system and runs the code.

F5user.h

F5API RESULT F5_SystemLoad(HF5_SYSTEM hSystem,
 STRING lpLoadFile,
 UINT32 Flags);

hSystem Handle to the F5 system (returned from F5_SystemOpen) to load
the application to.

lpLoadFile Character string identifying the DSP code to load (the code must be
in COFF format). Specify either:

• a Load Definition File (LDF) name. For example “f5_1.ldf”.
An LDF must be specified if an SDF was used to open the
system. (See section 6.6 for more information about LDFs.); or

• a Processor File List name taken from a Resource Definition
File (RDF). This must be specified if a Resource Table name
was used to open the system. See Remarks.

Flags NO_FLAGS (this parameter is reserved for future functionality)

F5_RES_OK The command completed successfully.

F5_RES_WRONG_PARAMS An invalid hSystem or phResource value
was specified.

F5_RES_LIB_LIBRARY_NOT_OPEN DLL has not been initialized.

F5_RES_SYS_CORRUPT A bad system handle was specified.

F5_RES_SYS_NO_RESET The board or system was not reset.

The application will only be loaded if the F5 board is in RESET mode. Use F5_Control
to reset the F5 board.

All DSP processors in the specified system will be loaded with the DSP application
code.

A Processor File List name (used for lpLoadFile) is obtained from the Processor File
List section of an RDF. This is the last section of an RDF and is identified as follows:

S_PROC_FILE_LIST ProcessorFileListName[]=

See section 6.7.2 for an example of an RDF.

Function

Include File

Syntax

 Parameters

Returned Values

Remarks

F5 Carrier Board User Guide Spectrum Signal Processing
Host Software Functions

64 Part Number 500-00354
Revision 2.11

Note: Do not change the order of the processor names in the File List.

This order is calculated automatically by Resource Composer when the RDF is
generated. The order of the processors in the File List indicates the order in which
processors are to be loaded, and depends on the hardware connections between the
processors (as defined in the SDF).

int main(int argc, char *argv[])
{
..

 HF5_SYSTEM hSystem = NULL;
 char sdf[] = "..\\..\\include\\f5.sdf";
 char ldf[] = "intrupts.ldf";

..

result = F5_SystemOpen(&hSystem, sdf, F5_FLAG_SO_SDFFILE);
..

result = F5_Control((HF5_RESOURCE)hSystem, F5_CTL_RESET, 0, NULL);
..

result = F5_SystemLoad(hSystem, ldf, 0);
..

}

int main(int argc, char *argv[])
{
..

 HF5_SYSTEM hSystem = NULL;

..

result = F5_SystemOpen(&hSystem, (STRING)F5_System, F5_FLAG_SO_RESCLIST);
..

result = F5_Control((HF5_RESOURCE)hSystem, F5_CTL_RESET, 0, NULL);
..

result = F5_SystemLoad(hSystem, (STRING)F5_SystemFiles, 0);
..

}

Example Code

Spectrum Signal Processing F5 Carrier Board User Guide
Host Software Functions

Part Number 500-00354 65
Revision 2.11

F5_SystemOpen

Initializes an F5 system.

F5user.h

F5API RESULT F5_SystemOpen(HF5_SYSTEM *hSystem,
 STRING lpCfgFile,
 UINT32 Flags);

hSystem Pointer to F5 system handle storage location

lpCfgFile Initialization information for F5 system. This can be either:

• a System Definition File (SDF) name, including the path. For
example “f5_1.sdf” (see section 6.4 for more information about
SDFs), or

• a Resource Table name obtained from an Resource Definition
File (RDF), for standalone applications only. See Remarks.

See Flags below.

Flags Indicates whether the string specified in lpCfgFile is an SDF
filename or a Resource Table name from an RDF (see the
following table).

Flag Value Description

F5_FLAG_SO_SDFFILE 0x01 lpCfgFile specifies the filename and path
of an SDF.

F5_FLAG_SO_RESCLIST 0x02 lpCfgFile specifies a Resource Table
name.

F5_RES_OK The function completed successfully.

F5_RES_TOO_MANY_SYSTEMS There are too many systems open. The
maximum number of boards that can be open at
one time is 20.

F5_RES_WRONG_PARAMS An invalid parameter was specified.

F5_RES_OS_NOT_ENOUGH_MEM There is not enough memory to execute this
function.

Any driver errors (F5_RES_DEV_*) can also be returned. See Appendix A: Status Codes
for a list of possible error codes.

The handle returned by this function is used to identify the F5 system in future calls to
F5_Control, F5_GetHandle, and F5_SystemLoad.

Function

Include File

Syntax

Parameters

Returned Value

Remarks

F5 Carrier Board User Guide Spectrum Signal Processing
Host Software Functions

66 Part Number 500-00354
Revision 2.11

A Resource Table name can be obtained from the Resource Table section of an RDF.
This is the first section of an RDF and is identified as follows:

F5_RESOURCE ResourceTableName[] =

See section 6.7.2 for an example of an RDF.

int main(int argc, char *argv[])
{
..

 HF5_SYSTEM hSystem = NULL;
 char sdf[] = "..\\..\\include\\f5.sdf";
 char ldf[] = "intrupts.ldf";

..

result = F5_SystemOpen(&hSystem, sdf, F5_FLAG_SO_SDFFILE);
..

}

int main(int argc, char *argv[])
{
..

 HF5_SYSTEM hSystem = NULL;

..

result = F5_SystemOpen(&hSystem, (STRING)F5_System, F5_FLAG_SO_RESCLIST);
..

}

Example Code

Spectrum Signal Processing F5 Carrier Board User Guide
Host Software Functions

Part Number 500-00354 67
Revision 2.11

 F5_Write

Writes a specified number of 32-bit words to the specified memory resource.

F5user.h

F5API RESULT F5_Write(HF5_RESOURCE hResc,
 UINT32* pdwDest,
 UINT32* pdwSrc,
 UINT32 dwLength,
 UINT32 dwFlags);

hResc Handle to the F5 resource (returned from F5_GetHandle) to write
data to.

Windows NT: This can also be a handle to a block of host memory
allocated by F5_AllocHostMem.

pdwDest Offset from the base of the resource to write to.

pdwSrc Pointer to the buffer in which to get the data to be transmitted

dwLength Number of 32-bit words to transmit

dwFlags Windows 95:
Specify 0 (zero).

Windows NT:
Specify one of the following:

• 0 = write to an F5 board’s resource (via
the device driver)

• F5_FLAG_RW_DIRECT = write directly
to the User Virtual Address

• F5_FLAG_RW_HOST_MEM = write to an
allocated host memory block

F5_RES_OK The function completed successfully.

F5_RES_WRONG_PARAM An invalid parameter was specified.

F5_RES_RES_INVAL_RESC_TYPE An invalid resource type was specified.

None

Function

Include File

Syntax

Parameters

Returned Values

Remarks

F5 Carrier Board User Guide Spectrum Signal Processing
Host Software Functions

68 Part Number 500-00354
Revision 2.11

/*---*/
int main(int argc, char *argv[])
 {
..

HF5_RESOURCE hSharedSRAM;
UINT32 sharedArrayOffset;
UINT32 locArray[SHARED_ARRAY_SIZE];
..
result = F5_Write(hSharedSRAM, (UINT32*)sharedArrayOffset, locArray,
 SHARED_ARRAY_SIZE, 0);

..
}

Example Code

Spectrum Signal Processing F5 Carrier Board User Guide
Development of DSP Applications

Part Number 500-00354 69
Revision 2.11

8 Development of DSP Applications
Spectrum provides a high level application library (ALIB_C4x) to help you develop DSP
code for the F5 board. ALIB_C4x provides your DSP applications with functions to
configure and transfer data to F5 resources. This chapter describes some of these
functions and discusses important C4x development requirements when using the F5
ALIB_C4x.

8.1. Calling F5 ALIB_C4x Functions

The first function called in your DSP code must be C4X_Open to initialize the C4x
library. The last function called in your host code must be C4X_Close to close the C4x
library.

C4X_Open

C4X_Close

to initialize the F5 C4x Library

to close the F5 C4x Library

Figure 9 Order of DSP Function Calls

8.2. Including F5 ALIB_C4x Functionality

In order for your application to use the F5 ALIB_C4x functions, you must:

• Include the f5_c4x.h file in your DSP code. This file contains all the required F5
function prototypes and defines and can be found in the <F5RootDirectory>\include
directory.

• Link your code with the f5_c4x.lib library file. A sample linker command file,
c4xlink.cmd, has been provided in the <F5RootDirectory>\include directory and is
presented in Appendix B: Sample Linker Command File. Refer to the Dakar F5
Carrier Board Technical Reference manual for detailed memory maps of the C4x
resources.

Note: Certain memory locations are reserved by the F5 library for code
download (see the c4xlink.cmd file in Appendix B: Sample Linker Command
File for more details).

F5 Carrier Board User Guide Spectrum Signal Processing
Development of DSP Applications

70 Part Number 500-00354
Revision 2.11

The F5 C4x application library has been compiled with the following options:

• Small memory model

• Stack-based model

• Optimization level 2

8.3. Transferring Data Between DSPs Shared SRAM and the PCI Bus

The C4X_Read and C4X_Write ALIB_C4x functions allow you to perform optimized
data transfers between C4x resources. The two types of transfers that can be performed
are:

• Any node’s near memory to/from Far Global (shared) SRAM; and

• PCI to/from Far Global SRAM, initiated by node A via PCI9060/9080’s DMA.

The transfers are shown in the following two figures.

 Figure 10 Near Memory /Far Global SRAM Transfers

Spectrum Signal Processing F5 Carrier Board User Guide
Development of DSP Applications

Part Number 500-00354 71
Revision 2.11

Figure 11 PCI/Far Global SRAM Transfers

Note: The Intel 430FX chipset does not support DMA Bus Mastering. If your
computer is equipped with this chipset, the F5 Carrier Board cannot initiate a
DMA transfer to the PCI bus as a PCI master.

8.4. Running F5 DSP Code via a Debugger

This section describes the software setup required when using Texas Instruments’
standard TMS320C4x debug monitor. If you’re using a third party debug monitor, refer
to that product’s documentation.

Note: Texas Instruments’ TMS320C4x debug monitor is optional and can be
ordered through Spectrum.

For details on the JTAG hardware interface and connecting to JTAG, refer to the Dakar
F5 Carrier Board Technical Reference manual.

There are two files required for TI debugging: board.cfg and init.cmd.

F5 Carrier Board User Guide Spectrum Signal Processing
Development of DSP Applications

72 Part Number 500-00354
Revision 2.11

8.4.1. board.cfg

The board.cfg is a configuration file that tells your debugging software which
processors are in your system’s JTAG scan chain and their order in the chain. A sample
board.cfg (shown below) is provided by Spectrum when you order Texas Instruments’
TMS320C4x debug monitor. This sample board.cfg file defines a single F5 board with
its embedded node A and a single populated TIM-40 site. Unpopulated sites are
commented out using a semicolon “;”. Edit this file, uncommenting the TIM-40 sites that
are populated in your system.

;"CPU_D" TI320C4x ; TIM-40 site D

;"CPU_C" TI320C4x ; TIM-40 site C

 "CPU_B" TI320C4x ; TIM-40 site B

 "CPU_A" TI320C4x ; Embedded node A

Note: Processors listed in the board.cfg file are listed in reverse order than
they actually occur in the JTAG chain. The last board listed in the board.cfg file
should be the first board in the JTAG chain.

You must generate a board.dat file each time you edit board.cfg in order for your
changes to take effect. To generate the board.dat file, run composer.exe.

Spectrum Signal Processing F5 Carrier Board User Guide
Development of DSP Applications

Part Number 500-00354 73
Revision 2.11

8.4.2. init.cmd

The init.cmd file describes all memory mapped C4x resources. The following init.cmd
file is provided by Spectrum when you order Texas Instruments’ TMS320C4x debug
monitor and describes the embedded C44 resources.

Edit this file to properly reflect the resources for each node in your system (refer to the
F5 Carrier Board Technical Reference manual for information on the board’s memory
resources).

mr
ma 0x00000000,0x800, rom ; 2K EPROM LOCAL, STRB0
ma 0x002ff800,0x400, ram ; INTERNAL BLK 0
ma 0x002ffc00,0x400, ram ; INTERNAL BLK 1
;
ma 0x00300000,0x40000, ram ; LOCAL SRAM 128K
ma 0x80000000,0x40000, ram ; NEAR GLOBAL SRAM 128K
ma 0xc0300000,0x80000, ram ; FAR GLOBAL SRAM 512K
ma 0xc0230000,0xD, ram ; IRQ Registers
;
ma 0x40000000,0x8000, ram ; Local PEROM 256K
ma 0x70000000,0x8000, ram ; PEROM ID
;
ma 0xC0000000,0x10000, ram ; DSP~LINK3 A
ma 0xC0010000,0x10000, ram ; DSP~LINK3 B
ma 0xC0020000,0x10000, ram ; DSP~LINK3 C
ma 0xC0030000,0x10000, ram ; DSP~LINK3 D
ma 0xC0040000,0x10000, ram ; DSP~LINK3 reset registers

; Embedded C44 only
;
ma 0xc0200000,0x5, ram ; ARB Registers
ma 0xc0220000,0x4C, ram ; PCI9060/9080 Registers

; C4x specific
;
ma 0x00100000,1, ram ; global port control
ma 0x00100004,1, ram ; local port control
ma 0x00100020,9, ram ; Timer 0
ma 0x00100030,9, ram ; Timer 1
ma 0x00100040,3, ram ; comm port 0
ma 0x00100050,3, ram ; comm port 1
ma 0x00100060,3, ram ; comm port 2
ma 0x00100070,3, ram ; comm port 3
ma 0x00100080,3, ram ; comm port 4
ma 0x00100090,3, ram ; comm port 5
ma 0x001000A0,9, ram ; DMA 0
ma 0x001000B0,9, ram ; DMA 1
ma 0x001000C0,9, ram ; DMA 2
ma 0x001000D0,9, ram ; DMA 3
ma 0x001000E0,9, ram ; DMA 4
ma 0x001000F0,9, ram ; DMA 5
dasm pc

e *0x100000=0x3D840000 ; GMCR
e *0x100004=0x3D840000 ; LMCR

; user specific
;
alias exit, "runf;quit"

F5 Carrier Board User Guide Spectrum Signal Processing
Development of DSP Applications

74 Part Number 500-00354
Revision 2.11

alias q, "quit"
alias n, "next"
alias s, "step"
alias gmcr, "? *0x100000"
alias lmcr, "? *0x100004"

Note: When loading your application via JTAG, the Global Memory Control
Register (GMCR) and Local Memory Control Register (LMCR) have to be set in
the init.cmd file in order for your program to load and for the processors to
access their memory correctly. You’ll need a separate init.cmd file for each type
of TIM module. Refer to the documentation provided with your TIM modules
for the correct GMCR and LMCR values.

Refer to the TMS320C4x C Source Debugger User’s Guide for further details on using
TI’s TMS320C4x debug monitor.

Note: If you are using an external Test Bus Controller (TBC) via the JTAG IN
connector, you cannot use the F5’s TBC at the same time. The F5 board must be
reset when switching between on-board and off-board TBCs for the change to
take effect.

8.4.3. Testing the Software Setup

You can test the software setup of your debug monitor by running the blink.out
executable file that’s found in your <F5RootDirectory>\examples\dspload directory.
Load and run this file via your debugger. The on-board LED should blink if the code is
running on the embedded C44.

Spectrum Signal Processing F5 Carrier Board User Guide
DSP Software Functions

Part Number 500-00354 75
Revision 2.11

9 DSP Software Functions
This chapter describes the high-level ALIB_C4x “C” language functions provided with
the F5. The functions are listed in alphabetical order and are summarized in the
following table.

Table 8 F5 ALIB DSP Functions

Function Name Description

C4X_Close Closes the F5 C4x Application Library (ALIB_C4x).

C4X_Control Performs a control operation on an F5 resource.

C4X_Open Initializes and opens the F5 C4x Application Library (ALIB_C4x).

C4X_Read Reads data from an F5 resource.

C4X_Write Writes data to an F5 resource.

F5 Carrier Board User Guide Spectrum Signal Processing
DSP Software Functions

76 Part Number 500-00354
Revision 2.11

C4X_Close

Closes the F5 C4x application library.

f5_c4x.h

RESULT C4X_Close(void);

None

NO_ERROR The function completed successfully.

None

RESULT result;
..
result = C4X_Close();
..

Function

Include File

Syntax

Parameters

Returned Values

Remarks

Example Code

Spectrum Signal Processing F5 Carrier Board User Guide
DSP Software Functions

Part Number 500-00354 77
Revision 2.11

C4X_Control

Performs a control operation on an F5 resource.

f5_c4x.h

RESULT C4X_Control(RESOURCE Resource,
 UINT32 Operation,
 UINT32 Flags,
 void *Value);

Resource The F5 resource on which to perform the control operation,
either:

• C4X_NODE;

• SHARED_SRAM;

• PCI, INTERRUPTS; or

• F5_REGISTERS.

Operation The control operation to perform. The types of operations that
can be performed depend on the Resource specified (see the table
on the following page).

Flags The Operation specific flag (see the table on the following page).

*Value Pointer to memory location for returned results.

NO_ERROR The function completed successfully.

ILLEGAL_RESOURCE The resource specified is unknown.

ILLEGAL_OPERATION Unknown resource/operation combination or the operation
cannot be performed for the current node.

ILLEGAL_FLAGS The value specified is invalid.

RESULT result;
NODE_ID node_id;
..
result = C4X_Open(SHARED_SRAM_512K);
..
result = C4X_Control(C4X_NODE, GET_NODE_ID, 0, &node_id);
..

Function

Include File

Syntax

Parameters

Returned Values

Example Code

F5 Carrier Board User Guide Spectrum Signal Processing
DSP Software Functions

78 Part Number 500-00354
Revision 2.11

Resource Operations Description Flag Value

C4X_NODE GET_NODE_ID Return the calling Node’s ID. N/A Set to node ID

SET_NODE_CONFIG De-asserts the /CONFIG line. N/A N/A

SET_DMA_CHANNEL Set the C4x DMA channel for C4x
Read/Write transfers.

Channel: 0 to 5 N/A

GET_DMA_CHANNEL Return the current C4x DMA
channel for C4x Read/Write DMA
transfers.

N/A Set to C4x DMA
channel

PCI GET_MAILBOX Get the value of the PCI9060/9080
mailbox.

Mailbox: 0 to 7 Set to value of
mailbox

SET_MAILBOX Set the value of the PCI mailbox. Mailbox: 0 to 7 Value to be written
to mailbox

SET_DOORBELL Set the value of PCI Local to PCI
doorbell.

Value to be
written to doorbell

N/A

SET_DMA_CHANNEL Set the PCI9060/9080 DMA
channel for C4x Read/Write
transfers.

Channel: 0 or 1 N/A

GET_DMA_CHANNEL Return the current PCI9060/9080
DMA channel for C4x Read/Write
DMA transfers.

N/A Set to
PCI9060/9080
DMA channel

INTERRUPTS GET_INT_SOURCES Get all current interrupt sources for
the given IIOF pin.

IIOF pin: 0 to 3 ORed interrupt
sources.

CLEAR_INT Clear a specified interrupt. Interrupt to clear N/A

ASSERT_INT Assert a specified interrupt. Interrupt to assert N/A

ENABLE_PCI9060/9080I
NT

Enable/disable a specified
PCI9060/9080 interrupt.

Interrrupt 0 disable

1 enable

F5_REGISTERS GET_LATENCY_TIMER Get the current value of F5 latency
count.

N/A Set to current
latency

SET_LATENCY_TIMER Set the value of F5 latency count. Latency: from 0
to 31

N/A

LED_SET Set the on-board LED on or off. 0 off

1 on

N/A

LED_TOGGLE Toggle the state of the on-board
LED.

N/A N/A

Spectrum Signal Processing F5 Carrier Board User Guide
DSP Software Functions

Part Number 500-00354 79
Revision 2.11

C4X_Open

Initializes the F5 C4x Application Library.

f5_c4x.h

RESULT C4X_Open(UINT32 Flags);

Flags F5 hardware configuration (see table below).

Flag Description

NO_GLOBAL_BUS The calling node has no Global Bus access. If this flag is
specified, it must be ORed with NODE_ID in order to
specify the calling node.

NODE_ID NODE_ID identifies the calling node when there is no
Global Bus access. NODE_ID can be either: NODE_A,
NODE_B, NODE_C, or NODE_D.

NODE_ID should be ORed with the NO_GLOBAL_BUS
flag. For example: NO_GLOBAL_BUS | NODE_A

SHARED_SRAM_128K F5 memory size is 128K x 32-bit shared SRAM

SHARED_SRAM_512K F5 memory size is 512K x 32-bit shared SRAM

NO_CONFIG_ASSERT Prevents this function from asserting /CONFIG

NO_ERROR The function completed successfully.

ILLEGAL_FLAGS The flag specified is unknown to the current node.

This function must be called prior to calling any other C4x Application Library function.

The embedded C44 has access to the C4x global bus:

RESULT result;
..
result = C4X_Open(SHARED_SRAM_512K);
..

For a C4x on a TIM-40 module without global bus connector:

RESULT result;
..
result = C4X_Open(SHARED_SRAM_512K | NO_GLOBAL_BUS | NODE_B);
..

Function

Include File

Syntax

Parameters

Returned Values

Remarks

Example Code

F5 Carrier Board User Guide Spectrum Signal Processing
DSP Software Functions

80 Part Number 500-00354
Revision 2.11

C4X_Read

Reads a 32-bit data block from a specified F5 resource.

f5_c4x.h

RESULT C4X_Read(RESOURCE Resource,
 UINT32 *Dest,
 UINT32 *Src,
 UINT32 Length,
 UINT32 Flags);

Resource The F5 resource from which to read data, either:

• SHARED_SRAM, or

• PCI (use only if node A is the calling processor)

*Dest The destination start address to place the data read. The
destination depends on the resource specified:

Resource Destination

SHARED_SRAM Near Local or Near Global SRAM

PCI Far Global SRAM

*Src The source start address of the data to read. The source depends
on the resource specified:

Resource Source

SHARED_SRAM Far Global SRAM

PCI PCI physical address (see Remarks).

Length Length of the block of data to transfer, in 32-bit words.

Flags Transfer mode (see table below).

Flag Description

DMA_ENABLE Use DMA to perform the data transfer. This flag must be
specified if performing a PCI to Shared SRAM transfer.

DMA_SYNC Perform a synchronous DMA transfer; the function will only
return once the DMA transfer is complete. This flag should be
ORed with the DMA_ENABLE flag.

For example: DMA_ENABLE | DMA_SYNC

STATIC_DST Keep the destination address static.

STATIC_SRC Keep the source address static.

Function

Include File

Syntax

Parameters

Spectrum Signal Processing F5 Carrier Board User Guide
DSP Software Functions

Part Number 500-00354 81
Revision 2.11

NO_ERROR The function completed successfully.

ILLEGAL_RESOURCE The resource specified is unknown to the current node.

ILLEGAL_OPERATION A PCI to Shared SRAM transfer was specified, but DMA
was not enabled. Ensure that DMA_ENABLE is specified for
this type of transfer.

ILLEGAL_ADDRESS Destination address/block-length is out of bounds.

If you specify the DMA_ENABLE flag, a DMA transfer will be performed using the
currently selected DMA channel. Use C4X_Control to set the DMA channel. In addition,
if you select SHARED_SRAM as the resource, a C4X_NODE DMA transfer will be
performed, and if you select PCI as the resource, a PCI9060/9080 DMA transfer will be
performed. If the DMA_ENABLE flag is not specified, an optimized block transfer will
be performed.

If the Resource is PCI, and you are reading from the host, you can get the PCI physical
address by calling F5_AllocHostMem. (See the busmastr example for an illustration of
PCI bus mastering from the embedded node A via the PCI9060/9080’s DMA.)

The Intel 430FX chipset does not support DMA Bus Mastering. If your computer is
equipped with this chipset, the F5 Carrier Board cannot initiate a DMA transfer to the
PCI bus as a PCI master.

Far Global SRAM to Internal RAM transfer:

RESULT result;
..
result = C4X_Read(SHARED_SRAM, (UINT32 *)0x2ff800,
 (UINT32 *)0xC0301000, 0x10, NO_FLAGS);
..

Far Global SRAM to COMM port 0:

RESULT result;
..
result = C4X_Read(SHARED_SRAM, (UINT32 *)0x100042,
 (UINT32 *)0xC0301000, 0x10, STATIC_DST);
..

Returned Values

Remarks

Example Code

F5 Carrier Board User Guide Spectrum Signal Processing
DSP Software Functions

82 Part Number 500-00354
Revision 2.11

PCIbus to Far Global SRAM (node A only):

RESULT result;
..
result = C4X_Read(PCI, (UINT32 *)0xC0301000, pci_addr, 0x10,
 DMA_ENABLE | DMA_SYNC);
..

Spectrum Signal Processing F5 Carrier Board User Guide
DSP Software Functions

Part Number 500-00354 83
Revision 2.11

C4X_Write

Writes a 32-bit data block to a specified resource.

f5_c4x.h

RESULT C4X_Write(RESOURCE Resource,
 UINT32 *Dest,
 UINT32 *Src,
 UINT32 Length,
 UINT32 Flags);

Resource The F5 resource to write data to, either:

• SHARED_SRAM, or

• PCI (use only if node A is the calling processor)

*Dest The destination start address to place the data read. The
destination depends on the resource specified:

Resource Destination

SHARED_SRAM Far Global SRAM

PCI PCI physical address (see Remarks)

*Src The source start address of the data to transfer. The source
depends on the resource specified:

Resource Source

SHARED_SRAM Near Local or Near Global SRAM

PCI Far Global SRAM

Length length of block, in 32-bit words

Flags Transfer flag (see table below).

Flag Description

DMA_ENABLE Use DMA to perform the data transfer. This flag must be
specified if performing a Shared SRAM to PCI transfer.

DMA_SYNC Wait for DMA to complete.

STATIC_DST Keep the destination address static.

STATIC_SRC Keep the source address static.

Function

Include File

Syntax

Parameters

F5 Carrier Board User Guide Spectrum Signal Processing
DSP Software Functions

84 Part Number 500-00354
Revision 2.11

NO_ERROR The function completed successfully.

ILLEGAL_RESOURCE The resource specified is unknown to the current node.

ILLEGAL_OPERATION A Shared SRAM to PCI transfer was specified, but DMA
was not enabled. Ensure that DMA_ENABLE is specified
for this type of transfer.

ILLEGAL_ADDRESS Destination address/block-length out of bounds.

If you specify the DMA_ENABLE flag, a DMA transfer will be performed using the
currently selected DMA channel. Use C4X_Control to set the DMA channel. In
addition, if you select SHARED_SRAM as the resource, a C4X_NODE DMA transfer will
be performed, and if you select PCI as the resource, a PCI9060/9080DMA transfer will
be performed. If the DMA_ENABLE flag is not specified, an optimized block transfer will
be performed.

If the Resource is PCI, and you are writing to the host, you can get the PCI physical
address by calling F5_AllocHostMem. (See the busmastr example for an illustration of
PCI bus mastering from the embedded node A via the PCI9060/9080’s DMA.)

Direct PCIbus mastering is not supported.

The Intel 430Fx chipset does not support DMA Bus Mastering. If your computer is
equipped with this chipset, the F5 Carrier Board cannot initiate a DMA transfer to the
PCI bus as a PCI master.

Internal RAM to Far Global SRAM transfer:

RESULT result;
..
result = C4X_Write(SHARED_SRAM, (UINT32 *)0xC0301000,
 (UINT32 *)0x2ff800, 0x10, NO_FLAGS);
..

COMM port 0 to Far Global SRAM:

RESULT result;
..
result = C4X_Write(SHARED_SRAM, (UINT32 *)0xC0301000,
 (UINT32 *)0x100041, 0x10, STATIC_SRC);
..

Far Global SRAM to PCIbus (node A only):

RESULT result;
..
result = C4X_Write(PCI, pci_addr, (UINT32 *)0xC0301000, 0x10,
 DMA_ENABLE | DMA_SYNC);
..

Returned Values

Remarks

Example Code

Spectrum Signal Processing F5 Carrier Board User Guide
Example Programs

Part Number 500-00354 85
Revision 2.11

10 Example Programs
The examples provided with the F5 SDK demonstrate the functionality of the board and
provide you with a framework for building your own software application. These
examples can be found in your <F5RootDirectory>\examples subdirectories. This
chapter discusses the purpose of each program, and how to run and rebuild the example
programs.

10.1. Purpose of Each Program

All of the following programs (except guisamp) are provided in both C and Visual Basic
versions.

• busmastr illustrates how to master the PCI bus from the embedded C4x node
using the PCI9060/9080’s DMA.

• dspload illustrates how to download C4x code from the Host to the F5.

Note that you can load and run blink.out, a DSP program which
flashes the on-board LED, directly from a debugger.

• glbsram illustrates how to use Far Global (Shared) SRAM to share data
between C4x nodes and the Host PC.

• guisamp illustrates how to make a simple GUI program in C to download
C4x code from the Host to the F5.

This is a GUI version of the dspload example program (see above).

• interrupts illustrates the following interrupts:

• Host to C4x Node interrupts
• C4x Node to Host interrupts
• Nodes B, C, D to Node A interrupts
• PCI doorbell interrupts

F5 Carrier Board User Guide Spectrum Signal Processing
Example Programs

86 Part Number 500-00354
Revision 2.11

10.2. How to Run the Example Programs

Note: The Visual Basic (VB) examples are for the Windows NT environment
only. To run the Visual Basic examples, the user must have Visual Basic version
5.0 or higher and must possess a working knowledge of VB 5.0 development
environment and programming.

To run the examples:

1. Make sure your system configuration corresponds to the SDF used by the examples.

 All examples use the F5.sdf System Definition File (SDF) that’s in
<F5RootDirectory>\include. This SDF defines the following default system
configuration:

• a single board system

• board ID = 0x1

• one embedded processor, no TIM modules

Note: To run the entire interrupts example, an F5 board with one embedded
processor and 3 TIM modules are required.

2. If your system does not have the above default configuration, locate the SDF that
corresponds to your system’s configuration. All SDFs can be found in the
<F5RootDirectory>\include directory. You may have to create a new SDF, using
Toolbox, or edit one of the SDF using a text editor (see section 6.4 Defining your
System’s Hardware Configuration).

3. Replace the F5.sdf file with the SDF that properly reflects your system’s
configuration. You can do this using the DOS Copy command. For example, the
following command copies the contents of the F5_x.sdf file into the F5.sdf file:

 Copy F5_x.sdf F5.sdf

4. If the system configuration is different from the default you will have to create a new
LDF. If you generated a new SDF using Toolbox, the proper LDF file will already be
created. Copy this LDF file to the example program’s folder and edit it so that the
program’s name is in place of the highlighted sections below.

[Files]
Board1:NodeA:Proc0 = ________.out ; // Embedded TIM A
Board1:NodeB:Proc0 = ________.out ; // TIM B
Board1:NodeC:Proc0 = ________.out ; // TIM C
Board1:NodeD:Proc0 = ________.out ; // TIM D

[end]

5. For C programs: From a command prompt, go to the subdirectory containing the

example you want to run and type the example name, then press Enter. For example,

Spectrum Signal Processing F5 Carrier Board User Guide
Example Programs

Part Number 500-00354 87
Revision 2.11

to run the dspload example, go to the <F5RootDirectory>\examples\dspload
directory and at the command prompt enter:

 dspload

 To see what text should be displayed on the screen, consult the next section (section

10.3).

 No errors should occur if your system is correctly set up.

6. (Windows NT only) For Visual Basic programs:

a) Start Visual Basic.

b) Go to the subdirectory containing the example you want to run.

c) Open and run the corresponding Project file (has extension .VBP).

d) Click “Start” .

No errors should occur if your system is correctly set up.

The screen displays for the Visual Basic examples are shown on the following pages.

10.3. Screen Displays of the Example Programs.

All of the following are displays when running the Visual Basic example programs.
When running the C example programs, the same text is displayed, except the text is not
in a window. The exception to this is guisamp, which is a C program for Windows NT
and, as shown in Figure 15, displays text in a window.

Figure 12 Screen Display of the “busmastr” Example Program

F5 Carrier Board User Guide Spectrum Signal Processing
Example Programs

88 Part Number 500-00354
Revision 2.11

Figure 13 Screen Display of the “dspload” Example Program

Figure 14 Screen Display of the “glbsram” Example Program

Spectrum Signal Processing F5 Carrier Board User Guide
Example Programs

Part Number 500-00354 89
Revision 2.11

Figure 15 Screen Display of the “guisamp” Example Program

Figure 16 Screen Display of the “intrupts” Example Program

F5 Carrier Board User Guide Spectrum Signal Processing
Example Programs

90 Part Number 500-00354
Revision 2.11

10.4. Verifying the Device Driver and Host Library Installation

To test the device driver and the host Application Library (ALIB):

1. From the Start menu, select Programs, then F5 SDK, then F5 SDK Tester.

2. To see the options available, after the program (F5LB_T) starts running, type ? at
the > prompt.

If your hardware, device driver, and host ALIB have been correctly installed, the
F5LB_T program console (shown below for Windows NT; Windows 95 would be
similar) , will appear on your screen.

You can test individual ALIB functions by entering the letter that corresponds to the
function at the command prompt. Note that the commands are case-sensitive. For
example, to load a DSP application onto an F5 board:

1. Enter “O” to initialize and open the system. Specify ..\INCLUDE\F5.SDF as the
System Definition File (SDF). This file is found in <F5RootDirectory>\include. See
section 6.4 Defining your System’s Hardware Configuration for more information on
SDFs.

2. Enter “T” to reset the system.

3. Enter “L” to load the DSP code. Specify dspload.ldf as the Load Definition File
(LDF). This file is found in <F5RootDirectory>\examples\dspload. See section 6.6
Defining the DSP Code to Download for more information on LDFs.

4. Check that the code’s expected results have actually taken place. For example, for
dspload, check that the on-board LED is blinking.

Figure 17 Screen Display of F5 SDK Tester

Spectrum Signal Processing F5 Carrier Board User Guide
Example Programs

Part Number 500-00354 91
Revision 2.11

5. Enter “C” to close the system.

6. Enter “Q” to exit the program.

10.5. Tips and Troubleshooting

• Pressing <Ctrl><C> will close the example program you are running in F5 SDK
Tester.

• If you encounter problems, ensure that SSP_PATH is properly set (see section 6.3).
To check SSP_PATH, go to the command prompt and type set

• If you get a message displayed by F5 SDK Tester, check the following table.

Table 9 Troubleshooting - Messages Displayed by F5 SDK Tester

Message
displayed in
F5 SDK
Tester

How to interpret

PASSED The function was successful.

FAIL. Error
code: ….

The function was unsuccessful.

To see a text message describing the error code, at the > prompt of
the F5 SDK Tester, type E followed by a space and the error code
number. For example, if the message “FAIL. Error code: 0x0040301”
was displayed, type E 40301

ILSEQ Functions were not called in a “logical” sequence.

Functions must be called in a “logical” sequence. For example, you
cannot perform an operation on a system until the system has been
initialized with the F5_SystemOpen function. See section 6.2 Calling
Host Functions for more information on the order of host function calls.

10.6. How to Rebuild the Host Library

The F5 host ALIB builds the following targets:

1) f5alib.dll

2) f5alib.lib

f5alib.dll requires two static libraries cofflib and sdflib.

Note: The supplied “make” files are shipped in MS VC (Microsoft Visual C)
5.0 - compatible format. MS VC version 4.2 cannot process Make files from
version 5.0.

F5 Carrier Board User Guide Spectrum Signal Processing
Example Programs

92 Part Number 500-00354
Revision 2.11

To rebuild the F5ALIB host library:

1. Set up your environment for compiling. For example, for MSVC version 5.0, run the
following batch file:

 <MSDEVRootDirectory>\bin\vcvars32.bat

2. Go to the directory <F5RootDirectory>\Alib\Host\Build that contains
the make file f5alib.mak. F5alib.mak builds both f5alib.dll and
f5alib.lib.

3. Enter the following commands:

 • For Release version:

nmake /f f5alib.mak CFG=”f5alib - Win32 Release” clean
nmake /f f5alib.mak CFG=”f5alib - Win32 Release”

 The targets can be found in the following directories:

f5alib.dll - <F5RootDirectory>\Alib\Host\Bin\Release
f5alib.lib - <F5RootDirectory>\Alib\Host\Lib\Release

 • For Debug version:

nmake /f f5alib.mak CFG=”f5alib - Win32 Debug” clean
nmake /f f5alib.mak CFG=”f5alib - Win32 Debug”

 The targets can be found in the following directories:

f5alib.dll - <F5RootDirectory>\Alib\Host\Bin\Debug
f5alib.lib - <F5RootDirectory>\Alib\Host\Lib\Debug

4. Copy these target files into the following directories:

f5alib.dll - <F5RootDirectory>\Bin and C:\Windows
f5alib.lib - <F5RootDirectory>\Lib

5. Now the new library can be used to rebuild the example programs.

10.7. How to Rebuild the Example Programs

When you are building your own application and are encountering compiler/linker errors
you may want to try rebuilding the example programs. Rebuilding the example programs
can tell you if your compiler/linker is compatible or not.

If the example programs compile without any trouble, there is likely some problem with
your application code. If the example programs do not compile, you may have
incompatible versions of compiler and linker.

Note: The supplied “make” files are shipped in MS VC (Microsoft Visual C)
5.0 - compatible format. MS VC version 4.2 cannot process Make files from
version 5.0.

Spectrum Signal Processing F5 Carrier Board User Guide
Example Programs

Part Number 500-00354 93
Revision 2.11

To rebuild the F5 host-based example programs:

1. Set up your environment for compiling. For example, for MS VC version 5.0, run the
following batch file:

 <MSDEVRootDirectory>\bin\vcvars32.bat

2. Go to the subdirectory containing the example that you want to rebuild, and enter the
following command:

 nmake -f examplename.mak

 where examplename corresponds to the example that you’re rebuilding. For example,

to rebuild the dspload example, go the dspload examples subdirectory, and enter the
following:

 nmake -f dspload.mak

To rebuild the DSP-based example programs the mkdepend.exe GNU utility is used and
installed from the PC GNU utilities disk.

1. Set the following environment variable:

 SET C_DIR = <TIToolsDirectory>

 where TIToolsDirectory is the name of the directory containing Texas Instruments

development tools (compiler, linker, etc..).

2. Make sure that TI’s compiler and linker files are included in your path.

3. Go to the example subdirectory containing the example that you want to rebuild, and
enter the following commands:

 nmake -f makefile.c4x depend
 nmake -f makefile.c4x clean
 nmake -f makefile.c4x

F5 Carrier Board User Guide Spectrum Signal Processing
Example Programs

94 Part Number 500-00354
Revision 2.11

Spectrum Signal Processing F5 Carrier Board User Guide
Appendix A: Status Codes

Part Number 500-00354 95
Revision 2.11

Appendix A: Status Codes
This appendix lists the possible F5 host and DSP application library status codes.

Table 10 Status Codes for Host Library Functions

Status Code Description

F5_RES_WRONG_PARAMS An invalid parameter has been passed to an F5
host ALIB function.

F5_RES_TOO_MANY_SYSTEMS Too many systems are open. A maximum of 20
systems can be open at one time.

F5_RES_BOOT_LOADER_NFOUND The sspboot.out file was not found. It should be in
your current directory.

F5_RES_LIB_DRIVER_NOT_OPEN The Driver has not been opened.

F5_RES_LIB_DRIVER_NOT_FOUND The Driver was not found. The vf5d.vxd file should
be in your windows\system directory.

F5_RES_LIB_DRIVER_WRONG_VER The driver version is incompatible with F5 ALIB.

F5_RES_LIB_LIBRARY_NOT_OPEN The ALIB has not been initialized. A call to
F5_SystemOpen should be made to initialize the
library.

F5_RES_SDF_CORRUPT SDF syntax error.

F5_RES_SDF_NOT_FOUND The SDF file was not found.

F5_RES_SDFSYS_CORRUPT The system specified in the SDF file is invalid.

F5_RES_SDF_CODE_NFOUND User code file specified in the SDF was not found.

F5_RES_LDF_CORRUPT LDF syntax error.

F5_RES_LDF_NOT_FOUND The LDF file was not found.

F5_RES_LDF_RW_ERR An error occurred trying to read to/write from an
LDF.

F5_RES_LDF_RESC_NFOUND A resource specified in an LDF was not found.

F5_RES_LDF_CODE_NFOUND User code file specified in the LDF was not found.

F5_RES_OS_NOT_ENOUGH_MEM Your PC does not have sufficient memory to
allocate the required space.

F5_RES_OS_WRONG_VER The version of the operating system is not
supported.

F5_RES_OS_CANT_OPEN_SEMA The O/S cannot create a vital multi-tasking object.

F5_RES_DRV_CALL_FAILURE The Driver cannot perform the requested
operation.

F5_RES_DRV_BRD_NOT_FOUND The specified board was not found.

F5_RES_DRV_WRONG_PARAMS An invalid parameter was passed to the driver.

F5 Carrier Board User Guide Spectrum Signal Processing
Appendix A: Status Codes

96 Part Number 500-00354
Revision 2.11

Status Code Description

F5_RES_DRV_CANT_ALLOC_MEM Not enough memory to allocate memory for the
request.

F5_RES_DRV_NO_CONTIG_MEM Not enough contiguous memory to allocate
memory for the request.

F5_RES_DRV_CANT_LOC_MEM The Driver cannot lock the memory requested.

F5_RES_DEV_TAKEN The specified board is already being used by
another process.

F5_RES_DEV_NOT_PRESENT The specified board cannot be found..

F5_RES_DEV_TIMEOUT The O/S elapsed waiting for the DSP to complete
an operation.

F5_RES_RES_CORRUPT The resource is invalid.

F5_RES_RES_NOT_FOUND The name of the resource was not found.

F5_RES_RES_RLST_CORRUPT The Resource Table (from the RDF file) is invalid.

F5_RES_RES_INVAL_RESC_TYPE An invalid resource type was specified.

F5_RES_RES_BOARD_NOT_FOUND The resource cannot find the specified board.

F5_RES_RES_CODE_NFOUND The User Code File List (from an RDF file)
references a file which does not exist.

F5_RES_SYS_CORRUPT An invalid system handle was specified.

F5_RES_SYS_NOT_FOUND The system handle is invalid.

F5_RES_SYS_RUNNING The system handle was not found.

F5_RES_SYS_NO_KERNEL There is no kernel present on Node A of the
specified system.

F5_RES_SYS_NO_RESET The board or system was not reset before
attempting to load user code.

Spectrum Signal Processing F5 Carrier Board User Guide
Appendix A: Status Codes

Part Number 500-00354 97
Revision 2.11

Table 11 Status Codes for DSP Library Functions

Status Code Description

NO_ERROR The function completed successfully.

ILLEGAL_FLAGS The flag specified is invalid.

ILLEGAL_RESOURCE The resource specified is invalid or unknown to
the current node.

ILLEGAL_OPERATION An unknown Resource/Operation or
Resource/Flag combination was specified or the
operation cannot be performed for the current
node.

ILLEGAL_ADDRESS Destination address/block-length is out of bounds.

F5 Carrier Board User Guide Spectrum Signal Processing
Appendix A: Status Codes

98 Part Number 500-00354
Revision 2.11

Spectrum Signal Processing F5 Carrier Board User Guide
Appendix B: Sample Linker Command File

Part Number 500-00354 99
Revision 2.11

Appendix B: Sample Linker Command File

C4xlink.cmd

-cr
-l f5_c4x.lib /* F5 C4x application library */
-l rts40.lib /* TI run-time support libraray */

/* Specify standard memory configuration */
MEMORY
{
 IRAM0: origin = 002FF800h length = 0400h /* Internal RAM 0, 1K */
 IRAM1: origin = 002FFC00h length = 03F0h /* Internal RAM 1, */
 NLRAM: origin = 00300000h length = 20000h /* Near Local SRAM, 128K */
 PEROM: origin = 40000000h length = 8000h /* PEROM, 32K */
 NGRAM: origin = 80000000h length = 20000h /* Near Global SRAM, 128K*/
 FGRAM: origin = 0C0300900h length = 7F700h /* Far Global SRAM, 512K */
}

/* Specify output sections */
SECTIONS
{
 .text : { } > NLRAM
 .data : { } > NLRAM
 .bss : { } > NLRAM
 .const : { } > NLRAM
 .cinit : { } > NLRAM
 .stack : { } > NLRAM
 .vector : { } > IRAM1
 .user1 : { } > FGRAM
}

F5 Carrier Board User Guide Spectrum Signal Processing
Appendix B: Sample Linker Command File

100 Part Number 500-00354
Revision 2.11

Spectrum Signal Processing F5 Carrier Board User Guide
Appendix C: System Definition File: Description and Example

Part Number 500-00354 101
Revision 2.11

Appendix C: System Definition File:
Description and Example

System Definition File (SDF) Description

An SDF is a text file that defines your system’s hardware components. The SDF is
broken up into sections identifying the F5 system, F5 boards, TIM modules, board
resources (such as common RAM), processors, and boot processors.

A section is identifiable by a name enclosed in square brackets, for example
[TestSystem]. Each section can contain several attributes describing the section. For
example, TIM modules and F5 board sections contain Component and
COMMConnection attributes identifying processors and COMM port connections.
Section names cannot contain spaces and are case sensitive.

Sections should be defined in the SDF in the following order:

1. Processor sections

2. Resource (PLX Register, Common RAM, Arbiter Register, IRQ Register) sections

3. TIM module sections

4. Board sections

5. System section

6. Boot Processor section

Note: A section can be referenced in other sections. However, the section must
be defined prior to being referenced by other sections.

Reserved Section Names:

• BootProc

• End

The type of each section, except for the reserved sections, is identified by the Type
attribute. Type can be one of the following:

• Processor

• TIM

• Resource

• Board

• System

Sections and
Attributes

Types and
Models

F5 Carrier Board User Guide Spectrum Signal Processing
Appendix C: System Definition File: Description and Example

102 Part Number 500-00354
Revision 2.11

The Model attribute is used to provide additional information about the section. The
Model attribute does not affect the SDF and can be anything you want.

The BaseAddress attribute of a board definition section identifies the Board ID.

Note: Each board in your system must have a unique Board ID.

The Components attribute identifies the components belonging to a specific TIM
module, Board, or System definition section.

Syntax:

Components = { (<identifier>, <# COMM ports>, <defining section name>),
 (<identifier>, <# COMM ports>, <defining section name>)
 }

The following is an example of a Components attribute declaration of a TIM module:

Components = { (Proc0, 4, PROCA_4x)
 }

You can identify a component by the component’s Section name. However, the
component must have been previously defined in the SDF. In the above example, the
component’s processor is defined by its section name, PROCA_4x.

The COMM port connections for TIM modules, F5 boards, and F5 systems are identified
by the COMMConnections attribute. There can only be one entry for each bi-directional
COMM port connection. COMMConnections are not required for systems with only one
board and no TIM modules.

Syntax:

COMMConnections = {(<source identifier>, <COMM #>, <dest identifier>, <COMM #>),
 (<source identifier>, <COMM #>, <dest identifier>, <COMM #>)
 }

The following is an example of a COMMConnections attribute of a TIM module:

COMMConnections = { // Src, ID, Dst, ID
 (Proc0, 1, TIM, 1), // Off Cluster connection
 (Proc0, 2, TIM, 2), // Off Cluster connection
 (Proc0, 4, TIM, 4), // Off Cluster connection
 (Proc0, 5, TIM, 5), // Off Cluster connection

 }

Note: The COMMConnections of System definitions specify the front panel
COMM port connections in your system.

BaseAddress

Components

COMMConnections

Spectrum Signal Processing F5 Carrier Board User Guide
Appendix C: System Definition File: Description and Example

Part Number 500-00354 103
Revision 2.11

The <source identifier> and <dest identifier> can be that section’s “Type”. For example,
in a TIM definition section, the keyword “TIM” can be used as a source or destination
identifier in the COMMConnections attribute. Likewise, in a board definition section,
the keyword “Board” can be used. Such assignments connect the Link ports of the
components to a logical connector on the actual TIM or board. These associations are
then used to connect the logical TIM Link ports to the logical “Site” Link ports in the
Board Definition.

Processor definition sections define the types of processors in your system. The
following is an example of a processor definition section:

[PROCA_4x] // Processor for Site_A
 Type = Processor;
 Model = C4x;
 BootPort = ALL; // Can boot from any Com port
 Speed = 40;
 LMCR = 0x3D840000;
 GMCR = 0x3D840000;
 MemOffset = 0x0; // Proc_ID for Site_A

The BootPort attribute is used to identify which COMM ports the processor is capable
of booting from. Two keywords (ALL and NONE) and any number in the specified
range for the processor are valid. “ALL” indicates to the SDF parser that any COMM
port is suitable for loading. “NONE” indicates that the processor is not to be loaded, but
exists in the F5 System Structure. A number indicates to the SDF software that loading is
to be done using the specified COMM port only. If a processor is not reachable for
loading by COMM port, the SDF software will produce an error.

TIM sections define TIM modules. A module’s processors are defined in the
Components attribute, and its COMM port connections are defined in the
COMMConnections attribute.

The following is an example of a TIM module definition section.

[F5_SITE_A]
 Type = TIM;
 Model = F5Site;
 Components = {
 (Proc0, 4, PROCA_4x)
 }
 COMMConnections = { // Src, ID, Dst, ID
 (Proc0, 1, TIM, 1), // Off Cluster connection
 (Proc0, 2, TIM, 2), // Off Cluster connection
 (Proc0, 4, TIM, 4), // Off Cluster connection
 (Proc0, 5, TIM, 5) // Off Cluster connection
 }

Boards are comprised of resources, COMM connections (for boards with multiple TIM
sites), and attributes. The BaseAddress attribute is a string defining an I/O resource
descriptor.

Processor
Definitions

TIM module
Definitions

Board
Definitions

F5 Carrier Board User Guide Spectrum Signal Processing
Appendix C: System Definition File: Description and Example

104 Part Number 500-00354
Revision 2.11

The following is an example of a Board definition section.

[F5_BOARD]
Type = Board;
Model = F5;
BaseAddress = 0x123; // F5 Board’s own ID!!!
Components =

{
// LocalName, #Conn., GlobalName
(SiteA, 4, F5_SITE_A),
(SiteB, 4, F5_SITE_B),
(PlxLocalRegs, 0, PLX_REGS), // Mailboxes + Doorbells
(SharedRam, 0, COMMON_RAM), // Global Shared RAM
(ArbRegs, 0, ARB_REGS), // Arbitration Regs
(IrqRegs, 0, IRQ_REGS) // F5 IRQ Regs
}

COMMConnections =
{
(SiteA, 5, SiteB, 2) // Proc_A
}

Resource definition sections define your board resources: PLX registers, Common RAM,
arbiter registers, and IRQ registers.

The following is an example of a Resource definition section.

[PLX_REGS]
 Type = Resource;
 Model = PLX_REG;
 TypeID = 0x100;
 MemBase = 0x0; // Inherited from board base address
 MemOffset = 0x40; // Bytes
 MemLength = 0x30; // Bytes

The System section defines your F5 system. An F5 System is composed of boards and
their COMM port connections (for systems with multiple boards only). There should be
only one System section defined in your SDF.

The following is an example of a System definition section.

[TestSystem]
 Type = System;
 Model = F5_System;

Components =
{
(Board1, 8, F5_BOARD)
}

// no COM connections for single board

Note: The COMMConnections portion of a System definition section specifies
the front panel COMM port connections.

The BootProc section defines the boot processors which are responsible for loading
software onto the other processors in the system, and are accessible from the host
directly. At least one boot processor must be present in the BootProc definition.

Resource
Definitions

System
Definition

BootProc

Spectrum Signal Processing F5 Carrier Board User Guide
Appendix C: System Definition File: Description and Example

Part Number 500-00354 105
Revision 2.11

Syntax:

<Board Name>:<Cluster Name>:<Boot Processor Name> = <dummy number>;

Note that any number up to eight hexadecimal digits can be specified for <dummy
number>. This parameter is present for syntax consistency purposes only. The
following is an example of a BootProc section:

[BootProc]
 Board1:SiteA:Proc0 = 100;

F5 Carrier Board User Guide Spectrum Signal Processing
Appendix C: System Definition File: Description and Example

106 Part Number 500-00354
Revision 2.11

System Definition File (SDF) Example

The following is a sample SDF for an F5 system with one board that has one embedded
processor and one TIM module installed. This and other sample SDFs can be found in
your <F5RootDirectory>include directory.

[PROCA_4x] // Processor for Site_A
 Type = Processor;
 Model = C4x;
 BootPort = ALL; // Can boot from any Com port
 Speed = 40;
 LMCR = 0x3D840000;
 GMCR = 0x3D840000;
 MemOffset = 0x0; // Proc_ID for Site_A

[PROCB_4x] // Processor for Site_B
 Type = Processor;
 Prototype = PROCA_4x;
 MemOffset = 0x1; // Proc_ID for Site_B

[PLX_REGS]
 Type = Resource;
 Model = PLX_REG;
 TypeID = 0x100;
 MemBase = 0x0; // Inherited from board base address
 MemOffset = 0x40; // Bytes
 MemLength = 0x30; // Bytes

[COMMON_RAM]
 Type = Resource;
 Model = SRAM;
 TypeID = 0x101;
 MemBase = 0x0; // Inherited from board base address
 MemOffset = 0x0;
 MemLength = 0x200000; // bytes for 512K SRAM; (0x80000 for 128K SRAM)

[ARB_REGS]
 Type = Resource;
 Model = SRAM;
 TypeID = 0x102;
 MemBase = 0x0; // Inherited from board base address
 MemOffset = 0x0;
 MemLength = 0x20;

[IRQ_REGS]
 Type = Resource;
 Model = SRAM;
 TypeID = 0x104;
 MemBase = 0x0; // Inherited from board base address
 MemOffset = 0x0;
 MemLength = 0x20;

[F5_SITE_A]
 Type = TIM;
 Model = F5Site;
 Components = {
 (Proc0, 4, PROCA_4x)
 }
 COMMConnections = { // Src, ID, Dst, ID
 (Proc0, 1, TIM, 1), // Off Cluster connection
 (Proc0, 2, TIM, 2), // Off Cluster connection
 (Proc0, 4, TIM, 4), // Off Cluster connection
 (Proc0, 5, TIM, 5) // Off Cluster connection
 }

[F5_SITE_B]
 Type = TIM;
 Model = F5Site;
 Components = {
 (Proc0, 4, PROCB_4x)
 }
 COMMConnections = { // Src, ID, Dst, ID
 (Proc0, 1, TIM, 1), // Off Cluster connection
 (Proc0, 2, TIM, 2), // Off Cluster connection
 (Proc0, 4, TIM, 4), // Off Cluster connection

Spectrum Signal Processing F5 Carrier Board User Guide
Appendix C: System Definition File: Description and Example

Part Number 500-00354 107
Revision 2.11

 (Proc0, 5, TIM, 5) // Off Cluster connection
 }

[F5_BOARD]
Type = Board;
Model = F5;
BaseAddress = 0x1; // F5 Board’s own ID!!!
Components =

{
// LocalName, #Conn., GlobalName
(SiteA, 4, F5_SITE_A),
(SiteB, 4, F5_SITE_B),
(PlxLocalRegs, 0, PLX_REGS), // Mailboxes + Doorbells
(SharedRam, 0, COMMON_RAM), // Global Shared RAM
(ArbRegs, 0, ARB_REGS), // Arbitration Regs
(IrqRegs, 0, IRQ_REGS) // F5 IRQ Regs
}

COMMConnections =
{
(SiteA, 5, SiteB, 2) // Proc_A
}

[TestSystem]
 Type = System;
 Model = F5_System;

Components =
{
(Board1, 8, F5_BOARD)
}

// no COM connections for single board

[BootProc]
 Board1:SiteA:Proc0 = 100; // Any number up to eight hexadecimal digits can be entered.
[end]

F5 Carrier Board User Guide Spectrum Signal Processing
Appendix C: System Definition File: Description and Example

108 Part Number 500-00354
Revision 2.11

Spectrum Signal Processing F5 Carrier Board User Guide
Appendix D: Definitions and Acronyms

Part Number 500-00354 109
Revision 2.11

Appendix D: Definitions and Acronyms

ALIB Application Library

ANSI American National Standards Institute – the United States
government body responsible for approving US standards in many
areas, including computers and communications. ANSI is a member of
ISO (International Organization for Standardization).

API Application Programming Interface.

C4x TMS320C40 or C44 Texas Instruments Digital Signal Processor.

COFF Common Object File Format – a binary file format generated by
linkers which contains code, loading information, and debugging
information. Refer to the TMS320 Floating-Point DSP Assembly
Language Tools User’s Guide for more information.

COMM Port 8-bit parallel communication port on TMS320C40 or TMS320C44
DSPs. Used for communication between processors at up to 20
megabytes per second (50 MHz).

DLL Dynamic Link Library – a library which is linked to application
programs at runtime rather than as the final phase of compilation. This
means that the same block of library code can be shared between
several tasks rather than each task containing separate copies of the
routines it uses.

DMA Direct Memory Access – an electronic device allowing automatic data
transfer between the Host’s memory and outer memory without
invoking the processor.

DSP Digital Signal Processing or Digital Signal Processing chip

GMCR Global Memory Control Register

I/O Input/Output

F5 Carrier Board User Guide Spectrum Signal Processing
Appendix D: Definitions and Acronyms

110 Part Number 500-00354
Revision 2.11

IRQ Interrupt Request – the name of an input found on many processors
which causes the processor to suspend normal instruction execution
temporarily and to start executing an interrupt handler routine. Such an
input may be either:

• "level sensitive" - the interrupt condition will persist as long as the
input is active; or

• "edge triggered" - an interrupt is signalled by a low-to-high or
high-to-low transition on the input.

Some processors have several interrupt request inputs allowing
different priority interrupts.

ISR Interrupt Service Routine.

JTAG Joint Test Action Group - a serial boundary-scan interface used to
control on-chip emulation functions of DSPs.

LMCR Local Memory Control Register

O/S Operating System

PCI Peripheral Component Interconnect – an electrical interface
standard for interconnecting system components. For desktop PC cards
it also defines the physical standard.

PEROM Programmable Erasable Read-Only Memory. Can be erased and
reprogrammed in-circuit.

PnP Plug and Play Architecture – a specification for automatic computer
hardware configuration which prevents conflicts between devices,
allows hot docking and enables enumeration of devices on the system.

SDK Software Development Kit

TBC Test Bus Controller

Spectrum Signal Processing F5 Carrier Board User Guide
Index

Part Number 500-00354 111
Revision 2.11

Index

A
Application. See also Software

DSP. See DSP: software functions
Host functions. See Host
how to develop, 69
how to load into a DSP. See F5_SystemLoad

B
Board

booting, 10
definition in SDF, 103
how to configure, 17
ID, 40

default value, 21
how to change, 40
in a multi-board system, 40

installing. See Installing
resetting, 8

consequences, 49
board.cfg, 72
board.dat, 72
Bus

architecture, 6
Global Shared, 7
Local, 7
Near Global, 7
PCI

transferring data to/from DSPs Shared
SRAM, 70

PLX PCI9060 Local, 7

C
C4X_Close, 76
C4X_Control, 77
C4X_Open, 79
C4X_Read, 80
C4X_Write, 83
Callback function. See F5_InstCallback
Calling conventions, 15
Communication port

architecture, 8
interfaces, 4

Configuration files
board.cfg, 72
board.dat, 72
init.cmd, 73

D
Data type definitions, 14
DBGMON. See Utilities: DBGMON
DE62, 38
Debug. See also JTAG

files required, 71
running DSP code via a debugger, 71
viewing messages (Windows 95), 43

DMA transfers
reads, 80
writes, 83

DSP
downloading code to, 40
DSP~LINK3 interface, 5
installing DSP~LINK3 modules. See

Installing
software functions, 75

closing the application library. See
C4x_Close

how to initialize the application library. See
C4x_Open

order of calls, 69

E
Error codes. See Status codes
Example programs

how to run, 86
purpose of each program, 85
screen displays, 87

F
F5 ALIB. See Functions: F5 ALIB
F5 IO Tester. See Utilities: F5 IO Tester. See

Utilities: F5 IO Tester
F5 List Inspector. See Utilities: F5 List

Inspector
F5 SDK Tester. See Utilities: F5 SDK Tester
F5_AllocHostMem

Windows 95, 46
Windows NT, 47

f5_c4x.h, 14
f5_c4x.h, 69
f5_c4x.lib, 69
F5_Control, 48
F5_ErrorMessage, 51
F5_FreeHostMem

Windows 95, 52
Windows NT, 53

F5_GetHandle, 54

F5 Carrier Board User Guide Spectrum Signal Processing
Index

112 Part Number 500-00354
Revision 2.11

F5_InstCallback, 55
F5_InterruptProc, 59
F5_Read, 60
F5_SystemClose, 62
F5_SystemLoad, 63
F5_SystemOpen, 65
F5_Write, 67
f5alib.lib, 38
F5LB_T. See Utilities: F5LB_T
f5user.h, 14, 38
Functions

F5 ALIB
DSP Functions

brief description, 75
order of calls, 69

functionality, how to include, 69
Host functions

brief description, 45
how to include functionality, 38

H
Handles

obtain to a resource. See F5_GetHandle
resource, 43
system, 43
using to access systems and resources, 43

Hardware
configuration

changing your system’s, 39
configuring the board, 17
defining for a standalone application, 41
defining your system’s, 39

installing. See Installing
overview, 3
PCI Bus

transferring data to/from DSPs Shared
SRAM, 70

requirements, 12
Header files, 14

f5_c4x.h, 14, 69
f5user.h, 14, 38

Host
application libraries, 13

verifying the installation, 90
developing applications, 35
device drivers, 14

verifying the installation, 90
program structure, 13
software functions, 45

I
init.cmd, 73
Installing

board into PCI slot and cabling, 19
DSP~LINK3 modules, 19
modules, 18
multiple boards, 21
Software Development Kit

Windows 95, 23
Windows NT, 22

software under Windows 95, 20
TIM-40 modules, 19
verifying the device driver and host library

installation, 90
Interrupt

a processor, 59
a processor. See also F5_Control
function to execute when interrupt is received,

55

J
JTAG

debug support, 5
loading your application via, 74
reset, 10

Jumper settings, 17

L
LDF. See Load Definition File (LDF)
Libraries, 13. See also Software: C4x

application library
Library files

f5_c4x.lib, 69
f5alib.lib, 38

Linker Command File
example, 99

Load Definition File (LDF)
description, 40
example, 40, 86

M
Memory

allocate on the host. See F5_AllocHostMem
configurations available, 6
free up on the host. See F5_FreeHostMem
resources

node A, 5
shared, 5

transferring data, 70

P
PCI

interface, 4
software reset, 9

PEROM, 3

R
RDF. See Resource Definition File
Reset

a resource. See F5_Control
Resource Composer. See Utilities: Resource

Composer

Spectrum Signal Processing F5 Carrier Board User Guide
Index

Part Number 500-00354 113
Revision 2.11

Resource Definition File (RDF), 41
example, 42
how to generate, 41
order of the processor names, significance of,

64
Resources

configuring. See Configuration files
definition in SDF, 104
handles, 43
how to access, 43

S
SDF. See System Definition File
SDK. See Software Development Kit
Software

C4x application library, 14
developing DSP applications, 69
DSP functions. See DSP: software functions
host, 45
installation

verifying
Device Driver and Host Library, 90

installing under Windows 95, 20
overview, 11
requirements, 12
testing

setup, 74
Software Development Kit

contents, 11
hard drive directory contents after installing

SDK, 24
installing

verifying the installation, 26
Windows 95, 23
Windows NT, 22

uninstalling
Windows 95, 27
Windows NT, 27

utilities provided with, 16
Status codes

DSP Library Functions, 97
Host Library Functions, 95

System
definition in SDF, 104
handles, 43
how to access, 43
how to close. See F5_SystemClose
how to initialize. See F5_SystemOpen

System Definition File (SDF)
detailed description, 101
example, 106
overview, 39
sample files, description of, 39
sections

order of, 101

T
Transferring data

between DSPs Shared SRAM and the PCI
Bus, 70

Troubleshooting, 91
software setup, testing the, 74

U
Utilities

DBGMON, 16
F5 IO Tester, 16
F5 List Inspector, 16
F5 SDK Tester, 90
F5LB_T, 16
provided with the SDK, 16
Resource Composer

how to generate an RDF, 41

V
Visual Basic

example programs, 86

