
E9820A
Snapshot Memory

User's Guide

Part Number: E9820-90000

Printed in U.S.A.
Print Date: January 2000

© Agilent Technologies, Inc, 2000. All rights reserved.
8600 Soper Hill Road Everett, Washington 98205-1209 U.S.A.

NOTICE

The information contained in this document is subject to change
without notice.

AGILENT TECHNOLOGIES MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Agilent Technologies shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty

A copy of the specific warranty terms applicable to your Agilent Technologies
product and replacement parts can be obtained from your local Sales and Ser-
vice Office.

Restricted Rights Legend

Use, duplication, or disclosure is subject to Agilent Technologies standard com-
mercial license terms or to the following restrictions, whichever is applicable:

• For non-DoD Departments and Agencies of the U.S. Government, as set forth
in FAR 52.227-19(c)(1-2)(Jun 1987);

• For the DoD and its Agencies, as set forth in DFARS 252.227-7013 (c) (1)
(ii) (Oct 1988), or DFARS 252.221-7015(c) (May 1991), whichever is
applicable.

Agilent Technologies, Inc.
395 Page Mill Road

Palo Alto, CA 94303-0870, USA

©Copyright 2000 Agilent Technologies, Inc. All rights Reserved

This document contains proprietary information which is protected by copy-
right. All rights are reserved. No part of this document may be photocopied, re-
produced or translated to another language without the prior written consent of
Agilent Technologies, Inc. The information contained in this document is sub-
ject to change without notice.

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for this
pack is restricted to this product only. Additional copies of the programs can be
made for security and back-up purposes only. Resale of the software in its pres-
ent form or with alterations is expressly prohibited.

Table of Contents

Installation
Introduction . . 1
Static Handling Precautions 1
Hardware Installation . . 2
Logical Address . . 3

Trouble Shooting
Introduction . . 5
Diagnostics . . 6

Front-Panel Indicators . . 6
Trouble Isolation. . 6
Diagnosis . . 7
Software Development Basics 8

Changing Memory Modules
Introduction . . 9
Removing the Top Cover . . 10
Memory Configuration . . 11
Changing DIMMs . . 12
Installing the Top Cover . . 13

Module Description
Introduction . . 15
Front Panel Description . . 16
Block Diagram . . 17

Local Bus Interface . . 18
Local Bus Blocks and Frames 19

Theory of Operation . . 20
Snapshot Operation . . 21

Register-Based Programming
Introduction . . 23
Register Listing . . 24
Register Descriptions . . 25

ID Register (read) . . 25
Device Type Register (read) 25
Status Register (read) . . 26
Control Register (write) 27
Mode Register (read/write) 28
Memory Register (read) 31
Local Bus Register (read/write) 33
IRQ Status Register (read) 35
IRQ Config Register (write). 37
Mlevel 0 Register (read/write). 38
Mlevel 1 Register (read/write). 39
Transfer Register (read/write) 40

i

Table of Contents

Block Size Register (read/write) 41
Data Register (read/write) 42
Empty Register (read) . . 43
FIFO Size Register (read) 44
Output Register (write) 45
Address Register (read) 46
Fill Register (write) . . 47

Index . . 49

ii

Table of Contents

Installation

Introduction

This chapter discusses how to install the E9820A Snapshot Memory in a VXI sys-
tem, including the programming libraries.

Static Handling Precautions

Improper handling may damage or reduce the reliability of this equipment. Anyone
handling this module should follow static-sensitive guidelines.

Caution We recommend that any work that requires removing or replacing this hardware
from/in a VXI chassis be performed only at a static-protected work station.

1

E9820A Installation
Installation & Configuration Introduction

Hardware Installation

1. Turn off the power on the VXI chassis in which you wish to install this module.

Caution Inserting or removing a VXI module with the power on can damage the module or
the chassis. Before installing the E9820A, be sure to switch the chassis power
switch to Standby and/or remove the power from the chassis.

2. Make sure the chassis is ready to receive a new module. When used with the
E1432, E1430, or E1437, RFI boots must be installed around the backplane
connectors. See the VXI chassis installation documentation for more information.

Caution The E9820A may be damaged by incompatible interface circuitry in other modules
installed on either side of it. Be sure to install only ECL-compatible modules next to
the E9820A. The local bus (LBUS) specification for the E9820A Snapshot Memory
module is ECL on both the left and right sides.

3. Select a slot in the VXI chassis for the E9820A. When using it with another VXI
module such that data is passed to it on the local bus, it must be installed
immediately to the right of the module from which it receives data. Data on the
local bus flows from left to right and must be passed to the right by a VXI module;
it cannot pass through an empty slot.

4. Set the configuration switches as shown on the next page. The logical address
may be changed without removing a cover.

5. Pull the extraction levers out and place the module's card edges (top and bottom)
into the module slot guides. See the figure below.

6. Slide the module into the slot until the extraction levers engage the top and
bottom rails at the front of the chassis*. Push both levers in toward the front
panel to seat the module. The front panel should be touching or very close to the
stops at the top and bottom of the module when it is completely installed.

*Note: some older VXI chassis may not support the use of modules with levers.
With these you must push harder to insert the module.

7. Tighten the two slotted captive screws to secure the module in the chassis.

2

Installation E9820A
Hardware Installation Installation & Configuration

slotted
captive
screws

extraction
levers

VXI Chassis

HP E9830A

Logical Address

The logical address is the mechanism whereby the VXI system controller communi-
cates with other modules via the VXI bus. Each module must have a unique address
set on switches.

1. Locate the configuration switches for logical address as shown in the figure below.

2. Change the switch settings as appropriate for how the module will be used.

Note When the address switch setting is 255 (all switches OPEN), the logical address is
determined dynamically by the system resource manager during initialzation.

For information about the installed memory, see page 11.

3

E9820A Installation
Installation & Configuration Logical Address

snapshot
address = 132

When used for snapshot memory in
the E3238S the address must fall
within the servant area of the E1485.

1
0

128
64

32
16

8
4

2
1

E9820A

4

Installation E9820A
Logical Address Installation & Configuration

Trouble Shooting

Introduction

This chapter discusses how to isolate and diagnose failures.

5

E9820A Trouble Shooting
Installation & Configuration Introduction

Diagnostics

Front-Panel Indicators

The LED indicators on the front panel blink to indicate the following memory config-
uration errors:

• Input LED blinks: indicates the number of DIMMs installed does not conform to
the allowed number: either 1, 2, 4, or 8. The module will function properly but
you may not have the data capacity needed.

• Output LED blinks: indicates that the DIMMs installed are of mixed sizes.

Neither condition constitutes an unusable memory configuration.

Trouble Isolation

When power is applied, the module runs a rudimentary self test of the installed
memory and displays the results on the front panel LEDs as discussed above.

Self Test Program If problems beyond memory configuration exist, another level of testing may be per-
formed with the Self Test routine which is part of the VXIplug&play library. On
Win32 windows platforms, run the soft front panel program:

<vxipnp home dir>/age9830/age9830_32.exe

This program is the graphic user interface used to exercise and demonstrate the
functionality of the E9820A. The first tab has a Self Test button which runs the rou-
tine. The source code for the self-test function is included in the file:

<vxipnp home dir>/age9830/src/selftest.c

The self test routine performs a fairly thorough test of the installed memory and the
Input and Output FIFOs discussed in the Theory of Operation on page 20. It does
not test the entire Local Bus Interface, however.

Defective DIMMs If the problem appears to be in the memory and is repeatable, try removing half of
the DIMMs. Remember to populate the sockets in back first. Depending on what is
wrong with the part, the failure may result in a configuration error which is indi-
cated by the front-panel LEDs as described above or it may require the self test pro-
gram to exercise the memory. Whichever is appropriate is referred to as "test."

If the test passes, then replace the DIMMs in the sockets with those you removed to
see if one or more of the DIMMs are defective. In general you want to reduce the
number of DIMMs installed until you find a set that works. There may be more than
one defective DIMM. The most thorough approach is to test them one at a time in
the rear socket.

The problem may be a defective DIMM socket. If all DIMMs pass the test individu-
ally and the test fails when a particular socket is used, then the E9820A must be re-
turned for repair.

Local Bus Testing Problems with the Local Bus Interface can be tricky to diagnose. If you are develop-
ing a new application and can't get the Local Bus to transfer data correctly, please
consider your software as the source of the trouble. If you have more than one
E9820A and both respond the same, the problem is less likely to be in the hardware.
See the discussion on Software Debugging which follows.

6

Trouble Shooting E9820A
Diagnostics Installation & Configuration

Diagnosis

The following notes cover some debugging methods.

LED Analysis When power is first turned on, the three LEDs on the front panel should light up for
about one second, then they should all go dark. The "Access" LED may flash when
the resource manager configures the system.

If the "Input" or "Output" LEDs flash regularly, there is a memory configuration error
which may not be serious enough to prevent proper operation.

• The "Input" LED flashes to indicate a problem with the number of DIMMs in-
stalled; there should be either 1, 2, 4, or 8 DIMMs installed. If one of these combi-
nations is installed (in the proper sockets) and the LED continues to flash, try
installing just one DIMM in socket 1. If that works properly, then the problem is
likely to be a defective DIMM; continue the isolation process as described earlier.
If it continues to flash, the problem is serious enough to warrant returning the
E9820A for repair.

• The "Output" LED flashes to indicate that there is more than one type (size) of
DIMM installed. While this does not constitute a "failure," it is not efficient use of
memory. If the installed DIMMs are identical and the LED flashes, then either
one of the DIMMs is defective or the E9820A is recognizing it incorrectly and
should be returned for repair. Isolate the problem as described above.

If the LEDs don't work as described, then there is a serious problem and the E9820A
should be returned for service.

Self-Test Details If the LEDs are acting normally, you can use the self-test program to delve deeper.

When the E9820A powers on it checks the contents of two bytes in the serial
EEPROM on each installed DIMM. From this it determines the memory capacity
and whether the DIMM is single or double-density. This is the minimum information
needed to complete the initial configuration.

The self test program has three main stages:

1. The first stage of the self test goes beyond the minimal inquiry of the EEPROMs,
checking for things such as ECC compatibility, and is more likely to catch
problems like incompatible DIMMs. The test stops if there is a problem.

2. The next stage of the self test is a quick check of memory. It writes a data
pattern to the first megabyte of memory and then to the first 512 bytes of each
subsequent megabyte. This memory is then checked for correct values. Any
failure of this test is probably a hard failure. The address printed for each failure
is the byte address which can be used to find the associated socket location.

For example, if 256 MB DIMMs are installed, each DIMM has 0x10000000 bytes of
memory. For an error reported at address 0x23451234, the calculation is:

0x23451234 ÷ 0x10000000 = 2; 2 + 1 = socket 3

3. The third stage uses a loop mode to exercise almost all the memory space. The
loop runs from the Main Memory, through the Output FIFO, then the loopback
puts the data into the Input FIFO, then back into Main Memory. There are five
different patterns, each of which is cycled through the loop for all memory
locations, so for a 2 GB configuration, 10 GB of data are written, read, and
checked. But each byte is written and read many times before it is checked so a
failure indicates a problem but doesn't offer much information as to where.

None of this testing has validated the functionality of the Local Bus Interface.

7

E9820A Trouble Shooting
Installation & Configuration Diagnostics

Software Development Basics

This discussion provides hints to help solve programming road blocks.

If you are developing a new application using the E9820A and something isn't work-
ing correctly, first make sure the module is functional by performing the exercises
discussed in the first part of this chapter. If the self-test passes but your program is-
n't working, you may modify the program to isolate the problem.

About the Local Bus Sometimes local bus data doesn't want to move. Several things may be examined to
see what's going on. This discussion assumes that you are familiar with the circular
FIFO concept used for the Main Memory as discussed in the Theory of Operation.

• Check the Fill and Empty pointers. These are inferred by the FIFO Size and Empty
registers. When local bus data is not reaching the E9820A, the FIFO size will be
zero and the Empty pointer will also be zero. If the Empty pointer is non-zero, it
is more likely that data has been read in and back out already.

• Also examine the FINE (FIFO input not empty) and FONE (FIFO output not empty)
flags in the Memory register. If the FINE flag is set then there is data in the Input
FIFO that won't flow into Main Memory until it accumulates 512 bytes. Unfortu-
nately, there is no way to read how much is there.

Input Basics The requirements for data input to the Local Bus are as follows:

• The LBUS mode must allow input, like consume or transform (page 33).
• You must set (1) all three reset bits in the Local Bus register (page 34).
• The In Lbus bit must be set in the Mode register (page 30).
• The Out Lbus bit should not be set when the In Lbus bit it set.
• Memory must not be full.
• The module positioned immediately to the left of the E9820A must supply data.

Output Basics The requirements for data output to the Local Bus are as follows:

• The LBUS mode must allow output, like generate or transform (page 33).
• You must set (1) all three reset bits in the Local Bus register (page 34).
• The Out Lbus bit must be set in the Mode register (page 29).
• The In Lbus bit should not be set when the Out Lbus bit it set.
• The setting in the Mlevel 0 register may inhibit output if it is not 0 (page 38).

Corrupted Data If data is getting corrupted on the local bus, the most likely problem is with the reset
sequence. For example, if you reset the local bus interface while the module imme-
diately right of the E9820A is accepting data, the data may (or may not) contain a
spurious byte. If this byte isn't cleared out it will cause subsequent data to be
shifted by one byte, which usually causes major problems with the data. Note that
at the end of a block, the receiving interface will insert garbage data to move the end
of the block to a four-byte boundary. So data after that point will be shifted by four
bytes. If this is the problem, it may be intermittent and may occur with one module
but not another. This doesn't necessarily mean the module is defective.

There are two general methods that can be used to ensure the local bus resets oper-
ate properly. One or the other of these procedures should always be used whenever
any module in the local bus chain is reset.

• Reset the local bus interface of all modules in the local bus chain in any order and
then place all modules into operation in any order.

• From left to right, place the local bus interface of each module into reset and then
restore it to normal operation. This method requires that no data is allowed to
flow until all modules are reset and restored to operation.

8

Trouble Shooting E9820A
Diagnostics Installation & Configuration

Changing Memory Modules

Introduction

The E9820A Snapshot Memory module has 8 DIMM (dual, in-line memory module)
sockets. The memory capacity ranges from 64 MB to 4 GB.

Memory configuration has the following constraints:

• The DIMM sizes supported are 64 MB, 128 MB, 256 MB, and 512 MB. As of this
printing, the 512 MB DIMMs are not available. These are PC-100 unbuffered ECC
DIMMs.

• The number of DIMMs installed may be 1, 2, 4, or 8.
• When the number of DIMMs installed is less than 8, fill the back first; all empty

sockets must be at the front of the module. See Memory Configuration on
page 11.

• The types of DIMMs supported are listed in the table below. You can install a
mixed combination of DIMM types but the size of the smallest DIMM determines
how much is used in all sockets.

Note If you install four 128 MB and four 256 MB DIMMs, the useful capacity would be
1 GB because only half of the 256 MB DIMM would be used. Also, the Output LED
would blink to indicate this "error" condition.

9

E9820A Changing Memory Modules
Installation & Configuration Introduction

front

back

Removing the Top Cover

Caution Before removing or installing the E9820A, be sure to switch the chassis power
switch to Standby and/or remove the power from the chassis. Inserting or removing
a VXI module with the power on can damage the module or the chassis.

We recommend that any work that requires removing or replacing this hardware be
performed only at a static-protected work station. All work done on the unit with
the cover removed should be performed at a static-protected work station.

The top cover is on the right-hand side of the module as you view the front panel.

1. Using a T-10 torx driver, remove the seven cover screws.

2. Remove the cover by lifting the back and then pulling it away from the front as
shown below.

10

Changing Memory Modules E9820A
Removing the Top Cover Installation & Configuration

E9
83

0A

1 2
E9

83
0A

Memory Configuration

This discussion covers the supported DIMM (dual, in-line memory module) types,
how many to install, and where to install them.

Changing DIMMs is discussed on the next page.

Number of DIMMs
Installed

The number of DIMM installed may be 1, 2, 4, or 8. When less than 8 are installed,
they must be in the sockets nearest the backplane. See figure above.

The number of DIMMs and socket locations are as follows:

• 1: in socket 1
• 2: in sockets 1 and 2
• 4: in sockets 1 through 4
• 8: in all sockets

DIMM Types You may install a mix of types (i.e. type 1 and type 2) but avoid mixing capacities
because it is inefficient. For example, when 4 type-2 DIMMs and 4 type-3 DIMMs
are installed, only half of the memory of the type-3 DIMMs is used. See also page 6.

The following table lists the supported memory types.

Type DIMM size DIMM org. SDRAM org Max. Capacity Part Number
0 64 MB 8M × 72 1 × 8M × 8 512 MB

1 128 MB 16M × 72 2 × 8M × 8 1 GB 1818-7901

2 128 MB 16M × 72 1 × 16M × 8 1 GB 1818-7901

3 256 MB 32M × 72 2 × 16M × 8 2 GB 1818-7881

4 256 MB 32M × 72 1 × 32M × 8 2 GB 1818-7881*

5 512 MB 64M × 72 2 × 32M × 8 4 GB NA*

*not available as of the print date of this document

11

E9820A Changing Memory Modules
Installation & Configuration Memory Configuration

DIMM
socket 1

backplane
connectors

DIMM
socket 8

front
panel

Changing DIMMs

Caution Be sure to perform this work at a static-protected workstation to avoid damaging the
DIMM parts.

Removal To remove a DIMM from a socket, pull the retainer levers out as shown below.

Installation To install a DIMM in a socket:

1. Position the memory strip so the two slots in the edge connector line up with the
corresponding keys in the socket.

2. Apply uniform pressure along the top of the card, pushing it into the socket until
the retainer levers snap closed on the card.

12

Changing Memory Modules E9820A
Changing DIMMs Installation & Configuration

pull retainer
levers apart

key
slots

push along
top edge

Installing the Top Cover

1. Position the top cover as shown below and slide it toward the front panel so that
each of the two sets of interlocking fingers go under the opposing panel.

2. Lower the back of the cover toward the rear of the module but don't force it. You
may need to press the sides of the top cover in so the tangs don't hang up on the
bottom cover hooks. See drawing.

3. Using a T-10 torx driver, install the seven top cover screws.

13

E9820A Changing Memory Modules
Installation & Configuration Installing the Top Cover

1

interlock
fingers

tangs

hooks

2

E9
83

0A

14

Changing Memory Modules E9820A
Installing the Top Cover Installation & Configuration

Module Description

This chapter discusses the design and operation of the E9820A.

Introduction

The E9820A Snapshot Memory module provides up to 4 GB of snapshot memory for
data on the Local Bus. The maximum local bus data transfer rate is 53 MB/s. Data
cannot be transferred in and out simultaneously on this module.

Note As of this print date, 512 MB DIMMs are not available so the maximum capacity is
limited to 2 GB with 256 MB DIMMs.

15

E9820A Module Description
Installation & Configuration Introduction

Front Panel Description

The front panel contains only LED indicators defined as follows:

16

Module Description E9820A
Front Panel Description Installation & Configuration

SNAPSHOT
MEMORY

Access

Input

Output

Local Bus

E9820A

LED lights when the E9820A
is accessed via the VXIbus

LED lights when data flows
on the Local BusinLED lights when data flows

on the Local Busout

Block Diagram

The following figure illustrates the E9820A block diagram.

The E9820A consists of an input local bus interface, which feeds a 4 KB input FIFO
(first-in, first-out shift register). This feeds the main memory, which is managed as
a FIFO. The main memory feeds a 4 KB output FIFO, which feeds the output local
bus interface.

The E9820A is controlled via the VXI Interface1 which may also be used to read or
write data in the main memory. The Local Bus Interface provides a high-perfor-
mance data path.

Data Flow Typically, data originates in a module like an ADC to the left of the E9820A and the
data flows in the Local Bus Interface and into Main Memory.

To perform data snapshot (capture), a specified amount of data is accumulated and
then (typically) the input stops. This data may then be read out of main memory ei-
ther on the Local Bus or on the VXI Interface. It is possible to keep the input going
and read it out the VXI Interface but if the input data rate is greater than the VXI In-
terface data rate, the main memory will eventually fill.

Memory access (read/write) via the VXI Interface has the following restrictions:

• to read memory, the local bus output must be inactive (see page 29)
• to write memory, the local bus input must be inactive (see page 30)

Data Rates The maximum Local Bus data rate is 53 MB/s. The E9820A cannot perform both in-
put and output simultaneously, however.

The VXI Interface data rate depends on many things. One test with a FireWire
slot-0 interface yielded 8 MB/s (using viMoveIn32 with source increment = 0.).

17

E9820A Module Description
Installation & Configuration Block Diagram

Local Bus Interface
data out to

right module
data in from
left module

Main Memory FIFO
64 MB to 4 GB

VXI Interface

VXIbus

Input FIFO
(4 KB)

Output FIFO
(4 KB)

1 See the chapter on Register Programming, page 23.

Local Bus Interface

The local bus is used to move data in and out at a high rate. Data comes in from the
module just left of the E9820A and goes out to the module on its right. Data trans-
fers on the Local Bus (both in and out) depend on the other modules to handshake
the data for the transfer to function.

The local bus interface has the following modes of operation:

• Pipe: data from the left (input) is passed immediately to the right (output) and
no data is moved into memory from the local bus.

In this mode the snapshot function cannot be used.

This mode has no effect on reading or writing memory via the VXIbus, so data in
memory may be read while the local bus is in pipe mode.

• Consume: data from the left is read into memory; nothing is passed to the right.

This mode may be used to capture snapshot data. To read out the snapshot data
you could either use the VXIbus or change the local bus mode to generate to pass
it out to the right.

• Eavesdrop: data from the left is passed immediately to the right and is also read
into memory.

This mode may be used to capture snapshot data. To read out the snapshot data
you could either use the VXIbus or change the local bus mode to generate to pass
it out to the right.

• Generate: no data is transferred into the local bus interface from the left; data in
memory may be passed to the output.

This mode may be used to pass whatever data is in memory to the right.

• Transform: data from the left is "modified" and passed out the right. This is the
combination of the consume and generate modes.

This is the preferred mode to use for the snapshot function of the E9820A. Data
cannot be transferred in and out at the same time, however.

Note To change the local bus mode requires resetting the local bus interface. Doing so
will very likely cause a loss of data if it occurs during a transfer. It is best to pick a
mode that supports all the data activity you anticipate using and control the flow
with the programmable mechanisms provided.

18

Module Description E9820A
Block Diagram Installation & Configuration

Local Bus Interface

Main Memory FIFO

Input FIFO Output FIFO

data

Pipe Mode

Local Bus Interface

Main Memory FIFO

Input FIFO Output FIFO

data

Eavesdrop Mode

Local Bus Interface

Main Memory FIFO

Input FIFO Output FIFO

data

Transform Mode
(consume + generate)

Local Bus Blocks and Frames

The Local Bus has, associated with it, information which may be used to synchronize
the data between the generating module and other modules. These are called the
frame marker and the end-of-block (EOB) marker.

The marker "bits" are extra lines on the VXI backplane connectors. The device that
generates the data sets these at whatever byte spacing is appropriate. Since the
VXIbus has no marker mechanism, the E9820A supports using markers with several
bits in the Mode Register (page 28) but the block size must be a multiple of 4 bytes2.

When data flows in and out on the Local Bus this information is passed along "invisi-
bly." When the I/O is a mix of Local Bus and VXIbus, the VXI access can read and
write this "extra" information as necessary to maintain the functionality should an
application require it (e.g., for synchronization).

Note Do not confuse the term "block size" used here with data output associated with the
Transfer register. The minimum "amount" of data transferred is 512 bytes because of
the way the output FIFO buffer handles data.

19

E9820A Module Description
Installation & Configuration Block Diagram

2 The VXIplug&play library supports block sizes that are multiples of 8 bytes when using
the VXI interface.

Theory of Operation

The Main Memory FIFO (first-in, first-out) buffer is implemented using circular
memory addressing. A 2 GB example is shown in the following figure.

Input Input data is placed in memory at the location identified by the Fill Pointer. Local
Bus data comes through the Local Bus Input FIFO and is added to the main memory
in 512-byte blocks. VXIbus data is added via the Data register. After each write, the
Fill Pointer is incremented to indicate the next write location and the cycle repeats.

Output Data is read out from the address identified by the Empty Pointer
3. The data may

be read out with either the Transfer register (via Local Bus, see page 40) or the Data
register (via VXIbus, see page 42). Either method causes the Empty Pointer to move
as data is read. Local Bus data moves into the Output FIFO and passes to the Local
Bus interface in 512-byte blocks as shown in the block diagram above.

The 512-byte resolution is part of the FIFO buffering in the Local Bus path. The VXI
Interface does not have this limitation.

Maximum Capacity When memory is "full," the amount of data stored is actually 512 bytes less than the
capacity of the installed memory. Since the Fill Pointer indexes the next location in
which data may be written, writing data to the last available block would cause the
Fill Pointer to advance to the same address indexed by the Empty Pointer, which
normally indicates that memory is empty. Writing the last available block isn't al-
lowed with Local Bus input. See the following caution.

When data is input from the Local Bus and the In Cont bit is "0" (page 30), the trans-
fer stops when the Main Memory is "full". Besides what is in Main Memory, data
may also be in the Input and Output FIFO buffers and Local Bus Interface registers.

Caution Transfers through the VXI interface are not controlled to avoid memory overwrites.
If you completely fill the Main Memory, the FIFO Size register (page 44) will read
empty. Further writes will replace existing data.

20

Module Description E9820A
Theory of Operation Installation & Configuration

0

0.5 G

1.0 G

1.5 G

Empty
Pointer

Fill
Pointer

data indata out
FIFO Size

address
space

Local Bus Interface data outdata in

Main Memory FIFO
64 MB to 4 GB

VXI Interface

VXIbus

Input FIFO
(4 KB)

Output FIFO
(4 KB)

3 This address may be read from the Empty register (page 43) and defined with the Output
register (page 45).

The E9820A provides the ability to capture data with the snapshot feature.

The examples in the following discussions use register programming information dis-
cussed in the next section. This may also be accomplished with the same general
approach using the VXIplug&play library available on the installation disk.

Snapshot Operation

The E9820A can capture Local Bus data in 512-byte increments. The snapshot data
can then be transferred out of the module on either the Local Bus or the VXIbus.

Example Configuration and intended usage:

• Data input stops before output begins (simplest case)
• Data is read out on the VXIbus

Initial settings:

• In Lbus = 1 (see page 30)
• In Cont = 0 (see page 30)
• LBUS mode = 0x2 (consume mode; see page 33)

You can use the Mlevel 1 register (page 39) to define a specific snapshot size; use the
MDO bit (page 35) to create an interrupt that indicates when it occurs.

When the snapshot is complete, stop further input by changing the In Lbus bit to 0.

To read data out over the VXIbus from any given location in memory, use the Output
register (page 45) to define the address to start reading and the Data register
(page 42) to read the data.

Variations You can read data out while data input occurs but special considerations apply. See
the following note.

To keep the snapshot running continuously (beyond the "full" condition), change
the initial setting of the In Cont bit to 1. See the following note.

You can use as many as two E9820A snapshot modules to capture very large snap-
shots. See the example program ..\age9830\examples\age9820_multi.c .

To read data out the Local Bus, change the startup LBUS mode to 0x5 (transform).
Then you can control the output by any of the following methods:

• Controlling the Local Bus input of the next module downstream
• Using the Out Lbus bit (page 29)
• Use the Transfer register (page 40)
• If no data is flowing into the module, the Mlevel 0 register (page 38) may be used

to halt the output transfer. For example, if x is written to the Output register and
n is written to the Mlevel 0 register, then x n− bytes of data will be output to the
Local Bus (where x and n are multiples of 512).

Notes The Empty Pointer moves when you write to the Output register or read data out.
When the Empty Pointer moves toward the Fill Pointer, memory is "freed" such that
new data may be written to Main Memory; e.g., over data just read out. This also af-
fects the DMF status such that, if memory was full before the read, it's not full after-
ward and the In Cont setting won't stop more data input. To read "randomly" and
preserve data in Main Memory for future retrieval, stop data input before redefining
the Empty Pointer.

It is best to pick a Local Bus mode that will work for all phases of the activities.
Changing the Local Bus mode requires resetting the Local Bus Interface which de-
letes any data in the Interface. See the discussion on LBUS reset on page 34.

21

E9820A Module Description
Installation & Configuration Theory of Operation

22

Module Description E9820A
Theory of Operation Installation & Configuration

Register-Based Programming

Introduction

This section describes how the E9820A module may be operated with register-based
programming.

The E9820A registers are accessed via the VXI Interface. The addresses of the reg-
isters are given as an offset from the base address determined by the logical address
setting which is set by switches as discussed on page 3.

The E9820A is also supported by a VXIplug&play library which is documented with
an online help file. Check the installation disk or the web at:

www.agilent.com/find/inst_drivers

23

E9820A Register-Based Programming
Installation & Configuration Introduction

Register Listing

The following table lists the registers in A16 space.

Offset is the location of the register relative to the module's base address in bytes.

The E9820A is an A16-only device; there are no A24 or A32 address spaces on this
module. All multi-word registers must be read and written from high-order to
low-order (in order of increasing address) to function properly.

Offset Read Register Write Register Description Page
0x00 ID Identify device class, address space, manufacturer. 25
0x02 Device Type Identify model number. 25
0x04 Status Control Identify rev. & status/ specify state, reset device. 26/27
0x06
0x08 Mode Mode Read/define data transfer configuration. 28
0x0A Memory Memory (DIMM: number & type) & buffer status. 31
0x0C Local Bus Local Bus Read/define Local Bus configuration, incl. reset. 33
0x0E IRQ Status IRQ Config Read/define interrupt conditions. 35/37
0x10 Mlevel 0 [31:16] Mlevel 0 [31:16] Read/define the FIFO size that triggers the minimum-

data-available interrupt (MDA).
38

0x12 Mlevel 0 [15:0] Mlevel 0 [15:0]
0x14 Mlevel 1 [31:16] Mlevel 1 [31:16] Read/define the FIFO size that triggers the

maximum-data-overflow interrupt (MDO).
39

0x16 Mlevel 1 [15:0] Mlevel 1 [15:0]
0x18 Transfer [31:16] Transfer [31:16] Read/define the amount of data to transfer out on

the Local Bus.
40

0x1A Transfer [15:0] Transfer [15:0]
0x1C Block Size [31:16] Block Size [31:16] Read/define block size for Local Bus frames &

end-of-block markers
41

0x1E Block Size [15:0] Block Size [15:0]
0x20 Data [*] Data [*]

Read/write data in memory via VXI interface 42
0x22
0x24 Empty [31:16]

Read address of pointer from which data is read 43
0x26 Empty [15:0]
0x28 FIFO Size [31:16] Output [31:16] FIFO Size: Read amount of data in memory

Output: define empty pointer address
44
450x2A FIFO Size [15:0] Output [15:0]

0x2C Address [31:16] Fill [31:16] Address: read last value entered for Output or Fill
Fill: define address of fill pointer

46
470x2E Address [15:0] Fill [15:0]

*The number of bits transferred may be 16 or 32.

24

Register-Based Programming E9820A
Register Listing Installation & Configuration

Register Descriptions

All registers are accessed on the VXIbus.

ID Register (read)

This register defines the basic methods used to access and control the VXI module.

Offset 0x00

Bits: 15..14 13..12 11..0
Contents: Device Class Address Space Manufacturer ID
Value: 0x3 0x3 0xFFF

Device Class: A value of 0x3 indicates the module is register-based.

Address Space: A value of 0x3 indicates the module is A16 only.

Manufacturer ID: 0xFFF indicates the module is made by Agilent Technologies.

Device Type Register (read)

This register defines the module's model code.

Offset 0x02

Bits: 15..0
Contents: Model Code
Value: 0x02B1

Model Code: A value of 0x02B1 identifies the module as an E9820A.

25

E9820A Register-Based Programming
Installation & Configuration Register Descriptions

Status Register (read)

This register indicates the general status of the E9820A as described below.

Offset 0x04

Bits: 15 14 13..9 8..4 3 2 1 0

Contents: A24/A32
Active Modid* Rsv Revision Ready Passed Sysfail

Inhibit Reset

Value: 0 MODID 0 REV RDY PASS SFINH RST

A24/A32 Active: This bit reflects the state of the Control register's A24/A32 enable
bit. It is used only for A16/A24 and A16/A32 devices. Since the E9820A is an
A16-only device, this bit should always be 0.

Modid*: This bit reflects the inverted state of the MODID pin on the VXIbus
backplane connector. It is used during system initialization to identify the slot in
which the module is installed.

Rsv: Reserved for future use.

Revision: Module hardware revision, 0-31. This document describes revision 2.

Ready: This bit indicates to the system controller that the module is ready to begin
normal operation. This bit is cleared during reset and power-up conditions while the
module performs reset functions. The Ready bit is set when the reset functions are
successfully completed which typically takes less than 2 ms.

Passed: This bit indicates the success or failure of the module's self test. It always
reads the same as the Ready bit.

Sysfail Inhibit: Indicates the state of the Sysfail Inhibit bit of the Control register.
See page 27.

Reset: This bit indicates the state of the Reset bit of the Control register.

26

Register-Based Programming E9820A
Register Descriptions Installation & Configuration

Control Register (write)

This register is used to inhibit the Sysfail line and reset the module.

Offset: 0x04

Bits: 15 14..2 1 0
Contents: A24/A32 active Rsv Sysfail Inhibit Reset

A24/A32 Active: This bit is used only for A16/A24 and A16/A32 devices. Even though
it is ignored by the E9820A, it should always be written as "0".

Sysfail Inhibit: A "1" in this field disables the module from driving the SYSFAIL* line.

Reset: A "1" in this field forces the module into a soft reset state. This resets all reg-
isters on the E9820A to their power-on state. After releasing the reset by clearing
this bit, it takes the E9820A about 2 milliseconds to return to operating condition.
The user should verify that the E9820A is ready for operation by checking the Ready
bit in the Status register.

27

E9820A Register-Based Programming
Installation & Configuration Register Descriptions

Mode Register (read/write)

This register is used to control the transfer of data between the main memory and
the local bus. See page 17.

Offset: 0x08

Bits: 15 14 13 12 11 10 9 8
Contents: F1 B1 F0 B0 Out Xfer Out Reblock Rsv Out Lbus
Initial Value: 0 0 0 0 0 0 0 0
Bits: 7 6 5 4 3 2 1 0
Contents: Rsv In Cont Rsv In Lbus Loopback Sdat Sclk Reset
Initial Value: 0 0 0 0 0 0 0 0

Frame & Block Markers See the discussion of Local Bus frames and block on page 19.

In the following discussion, the read and write perspective is that of the VXIbus via
the Data register. The figure below illustrates either of two scenarios:

• The data has come in on the Local Bus Input, was put in main memory, and will
be read out on the VXI Interface.

• The data is being written into main memory via the VXIbus such that it can be
moved out the local Bus Output with the proper frame and EOB markers.

To read markers:
1. Read the data block from the Data register
2. Then read these bits in the Mode register.

To write the markers:
1. With F1, B1, F0, B0 all clear (0), write all but the last 8 bytes of a block of data.
2. Write the marker bits in the Mode register as appropriate (for a frame or EOB).
3. Write the last 8 bytes of data into the Data register.
4. Clear F1, B1, F0, B0 (0) in preparation for the next block.

F1 (write): Writing a 1 to this bit causes a frame marker to be saved in main memory
with the next write to the Data register such that when byte 4 is sent out the local
bus output, its frame marker is set.

F1 (read): After reading the 8-byte word shown in the figure above, the value read
from this bit is the frame marker that accompanied byte 4 when it was read in the lo-
cal bus input.

B1 (write): Writing a 1 to this bit causes a block marker to be saved in main memory
with the next write to the Data register such that when byte 4 is sent out the local
bus output, its block marker is set.

B1 (read): After reading the 8-byte word shown in the figure above, the value read
from this bit is the block marker that accompanied byte 4 when it was read in the lo-
cal bus input.

F0 (write): Writing a 1 to this bit causes a frame marker to be saved in main memory
with the next write to the Data register such that when byte 8 is sent out the local
bus output, its frame marker is set.

28

Register-Based Programming E9820A
Register Descriptions Installation & Configuration

Local Bus Data:
F0, B0

time
byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

F1, B1Frame & EOB info:

F0 (read): After reading the 8-byte word shown in the figure above, the value read
from this bit is the frame marker that accompanied byte 8 when it was read in the lo-
cal bus input.

B0 (write): Writing a 1 to this bit causes a block marker to be saved in main memory
with the next write to the Data register such that when byte 8 is sent out the local
bus output, its block marker is set.

B0 (read): After reading the 8-byte word shown in the figure above, the value read
from this bit is the block marker that accompanied byte 8 when it was read in the lo-
cal bus input.

For block lengths that are a multiple of 8 bytes, F1 and B1 should always be 0.

Local Bus Settings Out Xfer: This bit is used to control how data is moved out the Local Bus.

• Set this bit to "0" for delay operation; data is moved to the Output FIFO when:
– Out Lbus is set "1" and
– Fill_Pointer − Empty_Pointer > Mlevel 0

• Set this bit to "1" for snapshot operation; data is moved to the Output FIFO when
Out Lbus is set "1" and data flow is stopped when the amount defined in the Trans-
fer register (page 40) has been passed.

It is best to control data flow with the Out Lbus bit as as shown in the step-by-step
procedure given on page 40.

Out Reblock: This bit controls whether existing frame and block markers are used.

• When this bit is set to "0":
– The frame and block markers that come in the Local Bus Input go out the Local

Bus Output unchanged.
– The frame and block markers for data entered into memory via VXI Interface

go out as defined by the F1, F0, B1, B0 bits in the Mode Register.
• When this bit is set to "1", the Local Bus Output is reblocked according to the

Block Size register such that the EOB and frame markers are both set at the end
of each block of data. See page 41.

Out Lbus: This bit controls the data flow from the Main Memory to the Output FIFO.

• When set to "0", no data is transferred to the Output FIFO.
• When set to "1", data is transferred from Main Memory to the Output FIFO.

Data flow between the Output FIFO and the Local Bus Interface is controlled with
the Local Bus register as discussed on page 33.

To read data from Main Memory through the VXIbus, it is best to turn off the feed to
the Local Bus Output FIFO.

Caution Data is lost when the Output FIFO Reset bit in the Local Bus register is clear while the
Out Lbus bit is set. In this condition, data flows from Main Memory to the Output
FIFO and is immediately lost. See also, Local Bus register on page 33.

29

E9820A Register-Based Programming
Installation & Configuration Register Descriptions

Local Bus Interface

Main Memory FIFO

Input FIFO Output FIFO

data data

Out LbusIn Lbus

In Cont: This bit controls whether local bus data input stops when memory is full
(when clear, 0), or runs continuously, overwriting the oldest data (when set, 1).

• When this bit is "0", data stops being written into Main Memory when the Fill
Pointer is the same as the Empty Pointer (minus 512 bytes).

• When this bit is set "1", the memory-full condition is ignored and data from the In-
put FIFO is written to memory overwriting the oldest data. See page 20.

Rsv: Reserved for future use.

In Lbus: This bit controls the data flow between the Input FIFO and Main Memory.
See the figure on the previous page.

• When this bit is "0", no data is written into Main Memory.
• When set to "1", data is transferred from the Input FIFO to Main Memory.

Data flow from the Local Bus Interface to the Input FIFO is controlled with the Local
Bus register as discussed on page 33. When the In Lbus bit is "0" as much as 4 KB of
data may flow from the Local Bus Interface to the Input FIFO before it is full.

To write data into Main Memory from the VXIbus, it is best to turn off the feed from
the Local Bus Input FIFO.

When the LBUS mode is Pipe, no data is routed to the Input FIFO and this bit has no
effect. See page 33.

Note Stopping data flow may halt the flow of data to downstream modules. For example,
if the LBUS mode is eavesdrop, and data through the Input FIFO is stopped, none will
flow out the Local Bus output, either.

In the E9820A, data cannot flow from the Input FIFO to the Main Memory and from
Main Memory to the Output FIFO at the same time. When both Out Lbus and In Lbus
are set "1", only output occurs.

Loopback: This bit may be used for testing purposes. When set "1", data in the Out-
put FIFO is transferred to the Input FIFO. When the Loopback, Out Lbus, and In
Lbus bits are all set and the amount of data in Main Memory exceeds the Mlevel 0
setting, data is read from memory and then written back into memory at a very high
rate. This can be used to exercise all of memory and much of the data path. It does
not exercise the Local Bus Interface. See page 17.

Sdat: This bit is used to communicate with the serial identification ROMs on the in-
stalled DIMMs. See the file selftest.c for an example of how this is used.

Sclk: This bit is used to communicate with the serial identification ROMs on the in-
stalled DIMMs. See the file selftest.c for an example of how this is used.

Note selftest.c is part of the VXI Plug&Play library source code on the install disk.
You can also find the latest drivers for instruments at the following URL:

www.agilent.com/find/inst_drivers

Reset: This bit is used in conjunction with the FIFO/LBUS reset bit to prepare the
module for a new measurement. See page 33.

When set "1", the Fill and Empty pointer are cleared. This effectively clears the data
in the main memory. It must be set "0" before any useful operation can occur.

Setting this bit does not change the data in main memory; it can still be retrieved by
manipulating the other registers.

30

Register-Based Programming E9820A
Register Descriptions Installation & Configuration

Memory Register (read)

This register contains status information for the memory components, including the
4 KB input and output FIFOs as well as main memory configuration.

Offset: 0x0A

Bits: 15 14 13 12 11..10 9..8 7..0
Contents: Config Err Rsv FONE FINE Memory # Memory Size Rows
Initial Value: 0 0 0 0 MEMNUM MEMCAP MEMROWS

Config Err: This bit is set (1) when the E9820A senses an error in the memory config-
uration. One or more front-panel LEDs will flash when this condition exists. This
bit is clear (0) when there is no error.

A memory configuration error is one of the following:

• an occupied socket is not being used (e.g., 3, 5, 6, or 7 DIMMs are installed)
• the installed DIMMs are of more than one size/capacity
• one of the DIMMs is a type not supported; see page 11.

This condition indicates that the installed hardware should be checked for proper
configuration. You may not have as much capacity as you expect but it does not
necessarily mean the module won't function.

Rsv: Reserved for future use.

FONE: This bit is set (1) when the 4 KB FIFO output buffer is not empty. It may
contain from 4 bytes to 4 KB of data. When this bit is clear (0) the FIFO is empty.
Be aware that, when the receiving local bus device is not accepting data, one or
more bytes may still be in the local bus interface chip.

This information is significant only when accessing data via the local bus. See figure
below.

FINE: This bit is set when the 4 KB FIFO input buffer is not empty. It may contain
from 4 bytes to 4 KB of data. When this bit is clear (0) the FIFO is empty.

Note A transfer from the Input FIFO to the Main Memory FIFO cannot occur until the In-
put FIFO contains at least 512 bytes of data. See figure below.

31

E9820A Register-Based Programming
Installation & Configuration Register Descriptions

Local Bus Interface
data out to

right module
data in from
left module

Main Memory FIFO
64 MB to 4 GB

VXI Interface

VXIbus

Input FIFO
(4 KB)

Output FIFO
(4 KB)

Memory #: These 2 bits indicate the number of DIMMs installed as shown in the fol-
lowing table. Note that only 1, 2, 4, or 8, DIMMs are supported and they must be in-
stalled in the sockets such that all empty sockets are at the front of the module.

When these conditions are not met the Config Err bit is set, an LED on the front
panel flashes, and the module will function with 1, 2, or 4 modules if the necessary
sockets are occupied.

These DIMMs are non-buffered ECC SDRAM, either PC66 or PC100.

MEMNUM Number of DIMMs
0 1
1 2
2 4
3 8

Memory Size: These 2 bits indicate the size of the individual DIMMs installed as
shown in the following table. All DIMMs installed should be of the same size.

When more than one size is installed, the Config Err bit is set, an LED on the front
panel flashes, and the module will function as if all DIMMs are the size of the small-
est installed DIMM.

MEMCAP DIMM size
0 64 MB
1 128 MB
2 256 MB
3 512 MB

Rows: These bits indicate the memory density of each occupied socket.

• Double-sided DIMMs (low-density SDRAM) are indicated with a bit value of 1.
• Single-sided DIMMs (high-density SDRAM) are indicated with bit values of 0.

This information is set automatically at power-on or when the E9820A is reset.

Row bit numbers 0 1 2 3 4 5 6 7
Socket numbers 1 2 3 4 5 6 7 8

Socket numbering is shown in the figure on page 11.

32

Register-Based Programming E9820A
Register Descriptions Installation & Configuration

Local Bus Register (read/write)

This register is used to monitor and control the operation of the Local Bus Interface
shown in the block diagram on page 17.

Offset 0x0C

Bits: 15..8 7..4 3 2 1 0
Contents: Rsv LBUS mode Rsv Output FIFO reset* Input FIFO reset* LBUS reset*
Initial Value: 0 0x1 0 0 0 0

LBUS mode: Defines how the Local Bus Interface moves data within or through the
module. To make use of many of the modes requires a good understanding of the
Local Bus Interface and the EOB and Frame markers. For most situations, the pipe
P(0), eavesdrop E(3), or transform T(5) mode should be used (see table below).

• The pipe mode transfers data through the Local Bus Interface without loading
anything into memory.

• The eavesdrop mode moves data in the Local Bus Input and out both the Local
Bus Output as well as into the Input FIFO. This mode may be used for snapshot.

• The transform mode moves data in the Local Bus Input, through the FIFOs, and
out the Local Bus Output. This mode may be used for snapshot or delay.

The LBUS mode value is latched when the LBUS reset* bit is set (1). To change the lo-
cal bus mode the local bus must be reset by clearing the LBUS reset* bit. See note.

All possible modes are listed in the following table.

Mode Description Mode Description

P(0x0) Pipe PC(0x6) Pipe then Consume

P(0x1) Pipe PE(0x7) Pipe then Eavesdrop

C(0x2) Consume (input) PG(0x8) Pipe then Generate

E(0x3) Eavesdrop CP(0xC) Consume then Pipe

G(0x4) Generate (output) EP(0xD) Eavesdrop then Pipe

T(0x5) Transform GP(0xE) Generate then Pipe

Notes There is no difference between P(0) and P(1) for the E9820A.

It is best to pick a Local Bus mode that will work for all phases of the activities.
Changing the Local Bus mode requires resetting the Local Bus Interface which de-
letes any data in the Interface. See the following discussion of the LBUS reset* bit.

33

E9820A Register-Based Programming
Installation & Configuration Register Descriptions

Local Bus Interface

Main Memory FIFO

Input FIFO Output FIFO

data

Pipe Mode

Local Bus Interface

Main Memory FIFO

Input FIFO Output FIFO

data

Eavesdrop Mode

Local Bus Interface

Main Memory FIFO

Input FIFO Output FIFO

data

Transform Mode
(consume + generate)

Rsv: Reserved for future use.

Output FIFO reset: This bit is used to reset the Output FIFO shown in the previous fig-
ure. A "0" resets the FIFO, clearing the data in it and resetting the FIFO pointers. It
must be set back to "1" for normal operation. Normally the FIFO reset bits are tog-
gled at the same time as the LBUS reset bit.

Input FIFO reset: This bit is used to reset the Input FIFO shown in the previous figure.
A "0" resets the FIFO, clearing the data in it and resetting the FIFO pointers. It
must be set back to "1" for normal operation. Normally the FIFO reset bits are tog-
gled at the same time as the LBUS reset bit.

LBUS reset: This bit is used to reset the Local Bus Interface. A "0" resets the inter-
face and a "1" returns it to normal operation. This returns the interface to a known
state and is required to change the Local Bus mode.

Example: To start with or change to the transform mode, write the Local Bus register with the
following two values:

0x0050 Picks transform mode (5) and resets the FIFOs & LBUS
0x0057 "Un-resets" the FIFOs & LBUS with transform mode selected

To end all activity, issue the reset state and stop. The mode selected at the same
time doesn't matter unless you want to start again later in another mode. In that
case, you should issue another reset command including the desired mode and then
un-reset it with the same mode value included, as shown in the example above.

34

Register-Based Programming E9820A
Register Descriptions Installation & Configuration

IRQ Status Register (read)

This register provides information about four conditions of the E9820A.

1. memory full
2. transfer complete
3. memory level 0 flag "up"
4. memory level 1 flag "up"

This register can be read at any time.

The E9820A response during an interrupt acknowledge cycle includes bits 15..8 of
the IRQ Status register returned as data, and bits 7..0 which are the logical address of
the interrupting device.

Offset 0x0E

Bits: 15 14 13 12 11 10 9 8
Contents: DMFE TCZE MDOE MDAE DMFL TCZL MDOL MDAL
Initial Value: 0 0 0 0 0 0 0 0
Bits: 7 6 5 4 3 2..0
Contents: DMF TCZ MDO MDA IEN PRIO
Initial Value: 0 0 0 0 0 0

Interrupt Flags Four flag indicators DMF, TCZ, MDO, and MDA track memory conditions as described.
Each has a latched version which is provided during an interrupt acknowledge cycle
to indicate which module pulled the interrupt and why. The flag bits can't be used
as interrupt information because, by the time the interrupt is serviced, the condition
causing it may have gone away and the flag would no longer be set.

DMF: Data Memory Full indicates that Main Memory is full. Whether input stops to
avoid overwriting data is controlled by the In Cont bit in the Mode register (page 30).

The amount of data in the E9820A is a combination of the Input FIFO capacity and
the Main Memory capacity. The Input FIFO may hold as much as 4 KB but it may
also be empty; the DMF bit flags the "full" condition of Main Memory, only. The ca-
pacity of Main Memory is 512 bytes less than what is installed. See page 20.

This flag can generate an interrupt with the priority given in the PRIOrity field. The
interrupt occurs when the DMFL bit is "1," the DMFE bit is "1," and the IEN bit is "1".

TCZ: Transfer Count Zero. This bit indicates that the amount of data requested in
the Transfer register (page 40) has been output to the Output FIFO. As much as
4 KB of data may still be in the FIFO, however.

This flag can generate an interrupt with the priority given in the IRQ priority bit. The
interrupt occurs when the TCZL bit is "1," the TCZE bit is "1," and the IEN bit is "1".

MDO: Maximum Data Overflow indicates that the amount of data equal to or
greater than the value in the Mlevel 1 register is currently in Main Memory. This
value may be used to indicate that the amount of delay has increased to a level that
needs attention. See page 39.

This flag can generate an interrupt with the priority given in the IRQ priority bit. The
interrupt occurs when the MDOL bit is "1," the MDOE bit is "1," and the IEN bit is "1".

MDA: Minimum Data Available indicates that the amount of data equal to or greater
than the value in the Mlevel 0 register is currently in Main Memory. See page 38.

This flag can generate an interrupt with the priority given in the IRQ priority bit. The
interrupt occurs when the MDAL bit is "1," the MDAE bit is "1," and the IEN bit is "1".

35

E9820A Register-Based Programming
Installation & Configuration Register Descriptions

PRIO: IRQ priority: This field reflects the IRQ priority set in the IRQ Config register.
See page 37.

Latched Bits DMFL, TCZL, MDOL, MDAL: These bits are the latched version of the similarly-named
interrupt flag bits. These bits transition high when their counterpart does so and
they remain set until they are explicitly cleared. See the discussion on clearing in-
terrupt flags on page 37.

Whether any of these bits cause an interrupt is determined by the settings in the
IRQ Config register.

36

Register-Based Programming E9820A
Register Descriptions Installation & Configuration

IRQ Config Register (write)

This register is used to define which interrupt conditions are allowed to generate an
interrupt.

Offset 0x0E

Bits: 15 14 13 12 11 10 9 8
Contents: DMFE TCZE MDOE MDAE DMFC TCZC MDOC MDAC
Initial Value: 0 0 0 0 0 0 0 0
Bits: 7..4 3 2..0
Contents: Rsv IEN PRIO
Initial Value: 0 0 0

DMFE: Data Memory Full Enable. This bit turns on/off the DMF interrupt.
TCZE: Transfer Count Zero Enable. This bit turns on/off the TCZ interrupt.
MDOE: Max. Data Overflow Enable. This bit turns on/off the MDO interrupt.
MDAE: Min. Data Available Enable. This bit turns on/off the MDA interrupt.

• Setting the bit to "0" disables the interrupt.
• Setting the bit to "1" enables the interrupt.

Note To enable interrupts for a module you must also enable its IEN bit.

DMFC: Data Memory Full Clear. Clears the DMFL bit in the IRQ Status register.
TCZC: Transfer Count Zero Clear. Clears the TCZL bit in the IRQ Status register.
MDOC: Max. Data Overflow Clear. Clears the MDOL bit in the IRQ Status register.
MDAC: Min. Data Available Clear. Clears the MDAL bit in the IRQ Status register.

When an interrupt is serviced, use the appropriate clear bit to reset the latched bit
that caused the interrupt. For example, an interrupt service routine (ISR) for the
MDA interrupt should write a "1" to the MDAC bit to clear the MDAL flag.

Be sure to clear the flags before you re-enable IEN. See the IEN discussion below.

Note If the corresponding interrupt flag is set, the latched version of it will not clear when
the clear bit is set. For example:

1. MDA "happens" (and interrupts are enabled for it so an interrupt occurs)
2. MDAL gets set to indicate what caused the interrupt
3. service routine "handles" it and sets MDAC while MDA is set (still or again),
4. So MDAL stays set.

IEN: Interrupt Enable. This bit sets the interrupt status for the module as a whole.
When an interrupt occurs, this bit is set to "0" to indicate, internally, whether an in-
terrupt has occurred that has not yet been serviced (no further interrupts are issued
until the current one is serviced), so the service routine should re-enable it.

PRIO: IRQ priority: This field sets the VXIbus interrupt priority level (1 of 7) for all
interrupts on the module and is used by the slot-0 module to arbitrate system
interrupts. Setting this field to "0" effectively disables all interrupts.

37

E9820A Register-Based Programming
Installation & Configuration Register Descriptions

Mlevel 0 Register (read/write)

This register's main purpose supports the delay feature found in the E9830A, but it
has some functionality for the E9820A. In general it controls local bus output based
on the amount of data in memory such that no local bus output occurs until the
value specified by the value in this register is accumulated in memory.

Offset 0x10 Offset 0x12

Bits: 15..0 Bits: 15..9 8..0
Contents: Mlevel 0[31:16] Contents: Mlevel 0[15:9] Mlevel 0[8:0]
Initial Value: 0 Initial Value: 0 always 0

Local Bus output must first be enabled by setting the Out Lbus bit of the Mode register
is to "1", (see page 29). When the amount of data in Main Memory exceeds the set-
ting in the Mlevel 0 register by 512 bytes, a block of 512 bytes is transferred from
Main Memory to the Output FIFO. If the Local Bus Interface mode is one that
performs output (transform or generate) and the next module to the right of the
E9820A is taking data, data will flow out of the E9820A such that the amount of data
in the main memory corresponds to the setting in the Mlevel 0 register.

Notes Since Main Memory's maximum capacity is full −512 and FIFO Size must exceed
Mlevel 0 by 512 bytes to trigger output, the maximum usable value for this register is
full −1024, where full is the amount of memory installed on the board.

Setting this register to full is the same as setting it to 0; doing so means output is
not constrained by this register. Setting it to full −512 creates a condition in which
the FIFO size can never exceed it and no output is allowed. See the discussion of
maximum capacity on page 20.

Since the contents of this register is a 32-bit number and the E9820A is a D16 de-
vice, two register accesses are required to read or write it. Always access
multi-word registers in order of increasing address (most-significant bits first).

The "resolution" of the addressing is 512 bytes. When reading this register bits 8..0
will always be "0". When writing this register, the values in bits 8..0 are ignored and
always treated as "0".

38

Register-Based Programming E9820A
Register Descriptions Installation & Configuration

0

0.5 G

1.0 G

1.5 G

Empty
pointer

Fill
pointer

data indata out
FIFO Size

address
space

When = , the MDA bit
(minimum data available) is set in the
IRQ Status register.

When = , the MDO bit
(maximum data overflow) is set in the
IRQ Status register. In some applications,
this may indicate that output can't keep
up with the data input rate.

FIFO Size Mlevel 0

FIFO Size Mlevel 1

When > , data is allowed
to move to the Output FIFO.

FIFO Size Mlevel 0

Mlevel 1 Register (read/write)

This register is another memory-level (accumulation indicator) flag like Mlevel 0
which may be used to warn of a pending data overflow.

Offset 0x14 Offset 0x16

Bits: 15..0 Bits: 15..9 8..0
Contents: Mlevel 1[31:16] Contents: Mlevel 1[15:9] Mlevel 1[8:0]
Initial Value: 0 Initial Value: 0 0x200

This register is a capacity value that is compared to the FIFO Size. When the FIFO Size
reaches this value, the MDO flag is set in the interrupt register. See page 35.

Since the contents of this register is a 32-bit number and the E9820A is a D16 de-
vice, two register accesses are required to read or write it. Always access
multi-word registers in order of increasing address (most-significant bits first).

The "resolution" of the addressing is 512 bytes. When reading this register, bits 8..0
will always be "0". When writing this register, the values in bits 8..0 are ignored and
always treated as "0".

39

E9820A Register-Based Programming
Installation & Configuration Register Descriptions

Transfer Register (read/write)

This register is used to specify the amount of data to move from memory to the Lo-
cal Bus output, starting at the location indexed by the Empty register. It has noth-
ing to do with the VXIbus. See Data register (page 42) for VXIbus data I/O.

Offset 0x18 Offset 0x1A

Bits: 15..0 Bits: 15..9 8..0
Contents: Transfer[31:16] Contents: Transfer[15:9] Transfer[8:0]
Initial Value: 0 Initial Value: 0x400

When the Out Xfer bit in the Mode register (page 29) is set "1" and the Out Lbus bit is
enabled, data flows out the Local Bus and stops when the number of bytes set in the
Transfer register have been passed. This assumes that the active LBUS mode allows
output on the Local Bus. See page 33.

Since the contents of this register is a 32-bit number and the E9820A is a D16 de-
vice, two register accesses are required to read or write it. Always access
multi-word registers in order of increasing address (most-significant bits first).

The E9820A handles the data as 64-bit words and transfers data in 64-word blocks
(512 bytes), so the "resolution" of the addressing is 512 bytes, which corresponds to
the least significant 9 bits of the address. When reading this register bits 8..0 will al-
ways be "0". When writing this register, the values in bits 8..0 are ignored and al-
ways treated as "0".

To transfer data from Main Memory:

1. Specify how much to transfer in the Transfer register.
2. If you want to start reading at an index other than the Empty pointer, specify

where to start with the Output register. This is a value prior to the newest data in
memory (before the Fill pointer). See page 45.

3. Set the Out Xfer bit. See page 29. This clears the TCZ bit (transfer count zero).
4. Set the Out Lbus bit. See page 29. This causes the data transfer to occur.
5. Monitor the TCZ bit (either polling or with an interrupt). It becomes set when the

transfer is complete. When this occurs, clear the Out Lbus bit in the Mode register.
6. Clear the Out Xfer bit.
7. To transfer another batch of data of the same size, return to step 3.

To transfer a batch of data with a different size, return to step 1.

Caution Avoid setting the Out Lbus bit when the Out Xfer bit is clear. This scenario is used for
delay and, if the FIFO Size is larger than the value in Mlevel 0, causes data to flow out
the Local Bus. Setting the Mlevel 0 register to 0xFFFFFE00 avoids this and would al-
low you to transfer data without having to clear and reset the Out Lbus bit as de-
scribed in the above instructions.

Note The E9820A cannot transfer data from the Input FIFO to Main Memory at the same
time as data is transferred from Main Memory to the Output FIFO; when both In Lbus
and Out Lbus are set "1", only output occurs. So you can't capture new snapshot data
while transferring data out the Local Bus. You can move data out the VXIbus while
capturing new data. See the Data register on page 42.

40

Register-Based Programming E9820A
Register Descriptions Installation & Configuration

Block Size Register (read/write)

This register is used to specify the size of the Local Bus blocks and frames as de-
scribed in the discussion on page 19.

Offset 0x1C Offset 0x1A

Bits: 15..8 7..0 Bits: 15..3 2..0
Contents: Reserved Block Size[23:16] Contents: Block Size[15:3] Block Size[2:0]
Initial Value: 0 0 Initial Value: 0x400

When the Out Reblock bit (page 29) is set, this register specifies the amount of data in
a Local Bus frame or block (the amount of data between frame and EOB markers).

The Block Size register should be set to the number of bytes to be output per block
and the value must be a multiple of eight. At the end of each block, both the EOB
and frame bits will be set.

The maximum block size is 0x00fffffC (16,777,212) bytes.

The reset value of this register is 0x400 or 1024 bytes.

Since the contents of this register is a 24-bit number and the E9820A is a D16 de-
vice, two register accesses are required to read or write it. Always access
multi-word registers in order of increasing address (most-significant bits first).

The "resolution" of the setting is 8 bytes. When reading this register bits 2..0 will al-
ways be "0". When writing this register, the values in bits 2..0 are ignored and al-
ways treated as "0".

Note This register does not control the amount of data transferred. It controls the EOB
and FRAME bits in the Local Bus data stream.

41

E9820A Register-Based Programming
Installation & Configuration Register Descriptions

Data Register (read/write)

This register is used to read and write Main Memory through the VXI Interface.

Offset 0x20 (16-bit access)

Bits: 15..0
Contents: Data[15:0]

Offset 0x20 (32-bit access)

Bits: 31..0
Contents: Data[31:0]

The Data register allows either 32-bit or 16-bit access. It is the only register that al-
lows 32-bit data access.

The Data register acts like a FIFO in that you read from it or write to it repeatedly to
access sequential data.

Example Reading captured data. When capture is complete, the Empty Pointer indexes the
first data read in (oldest) and the Fill Pointer indexes the last data (most recent).

• To read all of this data, simply begin reading from the Data register and stop when
the Empty Pointer is equal to the Fill Pointer.

• To read data starting at a point between the pointers, use the Output register to in-
dicate where to start reading relative to the Fill Pointer. This moves the Empty
Pointer to the desired start point. See page 45.

Mixing Transfer Methods If you want to alternate between using the VXI Interface and using the Local Bus,
there are special considerations to observe. Unlike the VXI Interface which can read
or write data two bytes or four bytes at a time, the Local Bus moves data in 512-byte
blocks. The issues to consider depend on the transfer direction and transition:

• Read, transition from VXI to Local Bus: If the Empty Pointer is not on a 512-byte
increment when the Local Bus transfer begins, the data will read out in the wrong
order. To avoid this, use one of the following methods before changing to Local
Bus transfers:

– Make sure the VXI reads a multiple of 512-bytes worth of data.
– Set the Empty Pointer index with the Output register.

• Write, transition from VXI to Local Bus: If the Fill Pointer is not on a 512-byte in-
crement when the Local Bus transfer begins, the data will be written into memory
in the wrong order. To avoid this, use one of the following methods before chang-
ing to Local Bus transfers:

– Make sure the VXI writes a multiple of 512-bytes worth of data.
– Set the Fill Pointer index with the Fill register.

• Read, transition from Local Bus to VXI: Since data is buffered in the Output
FIFO, be sure that the module consuming data reads it all out before switching to
VXI. To stop data flow to the Local Bus Output, use the Out Lbus bit; see page 29.

• Write, transition from Local Bus to VXI: Since data is transferred in 512-byte
blocks between the Local Bus FIFOs and Main Memory, any amount of data less
than this is left in the Input FIFO until it accumulates a size of 512 bytes. So be
sure to write a multiple of 512 bytes over the Local Bus before stopping the trans-
fer and switching to VXI writing, or some data will be left in the Input FIFO.

42

Register-Based Programming E9820A
Register Descriptions Installation & Configuration

Empty Register (read)

This register indicates the index of the Empty Pointer, the address in Main Memory
from which data is being read, for either Local Bus or VXI access. See page 20.

Offset 0x24 Offset 0x26

Bits: 15..0 Bits: 15..9 8..0
Contents: Empty[31:16] Contents: Empty[15:9] Empty[8:0]
Initial Value: 0 Initial Value: 0 always 0

Unlike other address registers, the upper bits of the Empty register are not masked
based on the amount of memory installed on the module. Thus, the value read from
this register does not roll until a full 4 GB (232) of data has been output. Also, the
value indicates the amount of data read since the Main Memory was last reset1.

Notes Writing to the Output register redefines the contents of the Empty register to be a
fixed offset from the Fill Pointer.

There is no guarantee as to what values the unused upper bits of the Empty register
will be after a write to the Output register.

Since the contents of this register is a 32-bit number and the E9820A is a D16 de-
vice, two register accesses are required to read it. Always access multi-word regis-
ters in order of increasing address (most-significant bits first).

The "resolution" of the addressing is 512 bytes. When reading this register bits 8..0
will always be "0".

43

E9820A Register-Based Programming
Installation & Configuration Register Descriptions

1 Main Memory may be reset with the Control Register's Reset bit. See page 30.

FIFO Size Register (read)

This register reflects how much data is currently in main memory. See page 20.

Offset 0x28 Offset 0x2A

Bits: 15..0 Bits: 15..9 8..0
Contents: FIFO Size[31:16] Contents: FIFO Size[15:9] FIFO Size[8:0]
Initial Value: 0 Initial Value: 0 always 0

Since bits 8 through 0 are always 0, the resolution of this register value is 512 bytes.

FIFO Size is the difference between the Fill Pointer and the Empty Pointer. Since the
Output register changes the address of the Empty Pointer, it also changes the FIFO
size. This does not change the data currently in main memory, but further input
may overwrite existing data in memory.

See the discussion on Maximum Capacity on page 20.

Note Besides the data in main memory, there may be data in the Local Bus FIFO buffers
and in the local bus interface. See the discussion on page 17.

Since the contents of this register is a 32-bit number and the E9820A is a D16 de-
vice, two register accesses are required to read it. Always access multi-word regis-
ters in order of increasing address (most-significant bits first).

The "resolution" of the addressing is 512 bytes. When reading this register bits 8..0
will always be "0".

44

Register-Based Programming E9820A
Register Descriptions Installation & Configuration

Output Register (write)

This register is used to define the address of the Empty Pointer relative to the Fill
Pointer to provide flexible read access to data in main memory. See page 20.

Offset 0x28 Offset 0x2A

Bits: 15..0 Bits: 15..9 8..0
Contents: Output[31:16] Contents: Output[15:9] Output[8:0]
Initial Value: 0 Initial Value: 0 always 0

As shown in the figure below, the value written to the Output register changes the ad-
dress of the Empty Pointer as:

Empty_Pointer = Fill_Pointer - Output_Register

This also changes the FIFO Size; e.g., setting the Output register to 0 effectively emp-
ties or "clears" memory2. Subsequent reads from memory start at this address and
the act of reading out data also moves the Empty Pointer toward the Fill Pointer.

Since the contents of this register is a 32-bit number and the E9820A is a D16 de-
vice, two register accesses are required to write it. Always access multi-word regis-
ters in order of increasing address (most-significant bits first).

The "resolution" of the addressing is 512 bytes. When writing this register, the val-
ues in bits 8..0 are ignored and always treated as "0".

Caution Do not write to the Output register while moving data out on the Local Bus. To as-
sure that it is safe to write to the Output register, first clear the Out Lbus bit in the
Mode register and wait at least 2 µs. See page 29.

45

E9820A Register-Based Programming
Installation & Configuration Register Descriptions

0.5 G

1.0 G

1.5 G

Empty
pointer

Fill
pointer

data indata out
FIFO Size

example
address
space

Output
value

2 This doesn't mean that any data is deleted from memory; just that the pointers are
positioned such that new data can overwrite any/all of it.

Address Register (read)

This register reflects the last value written to either the Output or Fill register.

Offset 0x2C Offset 0x2E

Bits: 15..0 Bits: 15..9 8..0
Contents: Address[31:16] Contents: Address[15:9] Address[8:0]
Initial Value: 0 Initial Value: 0 always 0

Since the contents of this register is a 32-bit number and the E9820A is a D16 de-
vice, two register accesses are required to read it. Always access multi-word regis-
ters in order of increasing address (most-significant bits first).

The "resolution" of the addressing is 512 bytes. When reading this register bits 8..0
will always be "0".

46

Register-Based Programming E9820A
Register Descriptions Installation & Configuration

Fill Register (write)

This register sets the address of the Main Memory Fill Pointer. See page 20.

Offset 0x2C Offset 0x2E

Bits: 15..0 Bits: 15..9 8..0
Contents: Fill[31:16] Contents: Fill[15:9] Fill[8:0]
Initial Value: 0 Initial Value: 0 always 0

The Fill register is mainly used for diagnostic purposes.

Since the contents of this register is a 32-bit number and the E9820A is a D16 de-
vice, two register accesses are required to write it. Always access multi-word regis-
ters in order of increasing address (most-significant bits first).

The "resolution" of the addressing is 512 bytes. When writing this register, the val-
ues in bits 8..0 are ignored and always treated as "0".

Caution Do not write to the Fill register while moving data in on the Local Bus. To assure
that it is safe to write to the Fill register, first clear the In Lbus bit in the Mode register
and wait at least 2 µs. See page 30.

47

E9820A Register-Based Programming
Installation & Configuration Register Descriptions

48

Register-Based Programming E9820A
Register Descriptions Installation & Configuration

Index

A

A24/A32 status, 26
address

dynamic allocation, 3
logical, 3 - 4
register, 46
space, 25

B

block
diagram, 17 - 19
end of, 19
markers, 19
size, 19
size register, 41

C

circular memory addressing, 20
configuration

error bit, 31
installation, 1 - 4

consume, local bus mode, 18
control register, 27
cover

installation, 13 - 14
removal, 10

D

data
available, 35
block size, 19
blocks, 19
capacity, 20
corrupted, 8
flow, 17

data (continued)
in memory, 44
input control, 30
loss, 29
max capacity, 20
output control, 29
overflow, 35
rates, 17
register, 42
transfer, 29

delay
Out Xfer bit, 29
see Mlevel 0 register, 38

device type register, 25
diagnostics, 6 - 8
DIMM

changing, 12
number installed, 11
part numbers, 11
testing, 6
types, 11

DMF bit, 35
dynamic addressing, 3

E

eavesdrop, local bus mode, 18
ECL-compatibility, 2
empty

address, 45
FIFO buffers, 31
indicator, 20
not, 31
pointer, 20
pointer address, 45
register, 43
sockets, 9

enable
continuous writing, 30
data transfer, 29
local bus input, 30
local bus output, 29

49

Index

EOB (end of block) markers, 19,28
error

configuration, 31
indicators, 6

F

FIFO
input, 17
main memory, 20 - 22
output, 17
reset, 34
size register, 44

fill register, 47
frame

local bus, 19
markers, 19,28

front panel
description, 16
diagnostics, 6

full, definition of, 20

G

generate, local bus mode, 18

H

handling precautions, 1
hardware

installation, 2
version, 26

I

ID register, 25
indicators (LEDs), 6
inhibit

data overwrite, 30
data transfer, 29
local bus input, 30
local bus output, 29
sysfail line, 27

input
continuous, 30
control, 30
local bus, 17
local bus methods, 8
theory of operation, 20

installing
memory, 12
the VXI module, 1 - 4
top cover, 13 - 14

interrupt
disable, 37
flags, 35
mask, 37
priority, 36 - 37

IRQ
config register, 37
status register, 35

L

LED indicators, 6 - 7,16
local bus

basic methods, 8
data rate, 17
end of block (EOB), 19
frames, 19
input control, 30
interface, 17
output control, 29
reblocking, 29
register, 33
reset, 34
testing, 6
theory of operation, 18
transfers, 29,40

logical address
dynamic allocation, 3
switches, 3 - 4

loopback, 30

M

main memory
block diagram, 17
data in, 44
FIFO model, 20 - 22
FIFO size, 44

markers, frame & block, 19,28
mask, interrupt, 37
maximum

block size, 41
data overflow, 35
data rate (local bus), 15
memory capacity, 15,20

MDA bit, 35
MDO bit, 35

50

Index

memory
block diagram, 17
clearing, see Reset, 30
configuration, 11
data in, 44
empty, 20
full, see DMF, 35
installing, 12
level, 38
level flag, 39
modules, number of, 21
overwrite, 20
part numbers, 11
register, 31
removing, 12

minimum
block size, 19
data available, 35
transfer size, 19

Mlevel 0 register, 38
Mlevel 1 register, 39
mode register, 28
model code, 25
MODID* status, 26
module description, 15 - 22

N

not empty, 31
number of

DIMMs installed, 11
snapshot modules, 21

O

Out Reblock bit, 29
Out Xfer bit, 29
output

control, 29
FIFO, 17
local bus, 17,29
local bus methods, 8
reblock, 29
register, 45
theory of operation, 20

P

part number, DIMM, 11
passed bit, 26
pipe, local bus mode, 18
priority, interrupt, 36
program development, 8
programming, 23

R

read address, 45
ready bit, 26
reblocking output, 29
registers

address, 46
block size, 41
control, 27
data, 42
device type, 25
empty, 43
FIFO size, 44
fill, 47
ID, 25
IRQ config, 37
IRQ status, 35
local bus, 33
memory, 31
Mlevel 0, 38
Mlevel 1, 39
mode, 28
status, 26

removing
DIMM modules, 12
top cover, 10

reset
bit, 26
block size value, 41
control register, 27
input FIFO, 34
local bus, 34
methods, 8
mode, 30
output FIFO, 34
procedures, 8
status register, 26

revision code, 26
RFI boots, 2

51

Index

S

self test, 7
slot identification, 26
snapshot

operation, 21
Out Xfer bit, 29

static handling, 1
status register, 26
system fail inhibit bit, 26 - 27

T

TCZ bit, 35
theory of operation, 15 - 22
transfer

count, see TCZ, 35
register, 40

transform, local bus mode, 18
trouble shooting, 5 - 8

V

VXI interface
data rate, 17
limitations, 17,20
memory access, 42

VXIbus
reading data from memory, 29
snapshot access, 18
writing data to memory, 30

52

Index

	Table of Contents
	Installation
	Introduction 1
	Static Handling Precautions 1
	Hardware Installation 2
	Logical Address 3

	Trouble Shooting
	Introduction 5
	Diagnostics 6
	Front-Panel Indicators 6
	Trouble Isolation 6
	Diagnosis 7
	Software Development Basics 8

	Changing Memory Modules
	Introduction 9
	Removing the Top Cover 10
	Memory Configuration 11
	Changing DIMMs 12
	Installing the Top Cover 13

	Module Description
	Introduction 15
	Front Panel Description 16
	Block Diagram 17
	Local Bus Interface 18
	Local Bus Blocks and Frames 19

	Theory of Operation 20
	Snapshot Operation 21

	Register-Based Programming
	Introduction 23
	Register Listing 24
	Register Descriptions 25
	ID Register (read) 25
	Device Type Register (read) 25
	Status Register (read) 26
	Control Register (write) 27
	Mode Register (read/write) 28
	Memory Register (read) 31
	Local Bus Register (read/write) 33
	IRQ Status Register (read) 35
	IRQ Config Register (write) 37
	Mlevel 0 Register (read/write) 38
	Mlevel 1 Register (read/write) 39
	Transfer Register (read/write) 40
	Block Size Register (read/write) 41
	Data Register (read/write) 42
	Empty Register (read) 43
	FIFO Size Register (read) 44
	Output Register (write) 45
	Address Register (read) 46
	Fill Register (write) 47
	Index 49

	Index
	A
	A24/A32 status, 26
	address
	dynamic allocation, 3
	logical, 3 - 4
	register, 46
	space, 25

	B
	block
	diagram, 17 - 19
	end of, 19
	markers, 19
	size, 19
	size register, 41

	C
	circular memory addressing, 20
	configuration
	error bit, 31
	installation, 1 - 4

	consume, local bus mode, 18
	control register, 27
	cover
	installation, 13 - 14
	removal, 10

	D
	data
	available, 35
	block size, 19
	blocks, 19
	capacity, 20
	corrupted, 8
	flow, 17
	data (continued)
	input control, 30
	loss, 29
	max capacity, 20
	output control, 29
	overflow, 35
	rates, 17
	register, 42
	transfer, 29

	delay
	Out Xfer bit, 29
	see Mlevel 0 register, 38

	device type register, 25
	diagnostics, 6 - 8
	DIMM
	changing, 12
	number installed, 11
	part numbers, 11
	testing, 6
	types, 11

	DMF bit, 35
	dynamic addressing, 3

	E
	eavesdrop, local bus mode, 18
	ECL-compatibility, 2
	empty
	address, 45
	FIFO buffers, 31
	indicator, 20
	not, 31
	pointer, 20
	pointer address, 45
	register, 43
	sockets, 9

	enable
	continuous writing, 30
	data transfer, 29
	local bus input, 30
	local bus output, 29

	EOB (end of block) markers, 19,28
	error
	configuration, 31
	indicators, 6

	F
	FIFO
	input, 17
	main memory, 20 - 22
	output, 17
	reset, 34
	size register, 44

	fill register, 47
	frame
	local bus, 19
	markers, 19,28

	front panel
	description, 16
	diagnostics, 6

	full, definition of, 20

	G
	generate, local bus mode, 18

	H
	handling precautions, 1
	hardware
	installation, 2
	version, 26

	I
	ID register, 25
	indicators (LEDs), 6
	inhibit
	data overwrite, 30
	data transfer, 29
	local bus input, 30
	local bus output, 29
	sysfail line, 27

	input
	continuous, 30
	control, 30
	local bus, 17
	local bus methods, 8
	theory of operation, 20

	installing
	memory, 12
	the VXI module, 1 - 4
	top cover, 13 - 14

	interrupt
	disable, 37
	flags, 35
	mask, 37
	priority, 36 - 37

	IRQ
	config register, 37
	status register, 35

	L
	LED indicators, 6 - 7,16
	local bus
	basic methods, 8
	data rate, 17
	end of block (EOB), 19
	frames, 19
	input control, 30
	interface, 17
	output control, 29
	reblocking, 29
	register, 33
	reset, 34
	testing, 6
	theory of operation, 18
	transfers, 29,40

	logical address
	dynamic allocation, 3
	switches, 3 - 4

	loopback, 30

	M
	main memory
	block diagram, 17
	data in, 44
	FIFO model, 20 - 22
	FIFO size, 44

	markers, frame & block, 19,28
	mask, interrupt, 37
	maximum
	block size, 41
	data overflow, 35
	data rate (local bus), 15
	memory capacity, 15,20

	MDA bit, 35
	MDO bit, 35
	memory
	block diagram, 17
	clearing, see Reset, 30
	configuration, 11
	data in, 44
	empty, 20
	full, see DMF, 35
	installing, 12
	level, 38
	level flag, 39
	modules, number of, 21
	overwrite, 20
	part numbers, 11
	register, 31
	removing, 12

	minimum
	block size, 19
	data available, 35
	transfer size, 19

	Mlevel 0 register, 38
	Mlevel 1 register, 39
	mode register, 28
	model code, 25
	MODID* status, 26
	module description, 15 - 22

	N
	not empty, 31
	number of
	DIMMs installed, 11
	snapshot modules, 21

	O
	Out Reblock bit, 29
	Out Xfer bit, 29
	output
	control, 29
	FIFO, 17
	local bus, 17,29
	local bus methods, 8
	reblock, 29
	register, 45
	theory of operation, 20

	P
	part number, DIMM, 11
	passed bit, 26
	pipe, local bus mode, 18
	priority, interrupt, 36
	program development, 8
	programming, 23

	R
	read address, 45
	ready bit, 26
	reblocking output, 29
	registers
	address, 46
	block size, 41
	control, 27
	data, 42
	device type, 25
	empty, 43
	FIFO size, 44
	fill, 47
	ID, 25
	IRQ config, 37
	IRQ status, 35
	local bus, 33
	memory, 31
	Mlevel 0, 38
	Mlevel 1, 39
	mode, 28
	status, 26

	removing
	DIMM modules, 12
	top cover, 10

	reset
	bit, 26
	block size value, 41
	control register, 27
	input FIFO, 34
	local bus, 34
	methods, 8
	mode, 30
	output FIFO, 34
	procedures, 8
	status register, 26

	revision code, 26
	RFI boots, 2

	S
	self test, 7
	slot identification, 26
	snapshot
	operation, 21
	Out Xfer bit, 29

	static handling, 1
	status register, 26
	system fail inhibit bit, 26 - 27

	T
	TCZ bit, 35
	theory of operation, 15 - 22
	transfer
	count, see TCZ, 35
	register, 40

	transform, local bus mode, 18
	trouble shooting, 5 - 8

	V
	VXI interface
	data rate, 17
	limitations, 17,20
	memory access, 42

	VXIbus
	reading data from memory, 29
	snapshot access, 18
	writing data to memory, 30

