

Agilent 89440A

Vector Signal Analyzer

dc to 1.8 GHz

Data Sheet

Specifications describe warranted performance over the temperature range of 0° to 55°C (except where noted) and include a 30-minute warm-up from ambient conditions, automatic calibrations enabled, auto-zero on, time domain calibration off, and anti-alias filter in, unless noted otherwise. Supplemental characteristics, identified as “typical” or “characteristic,” provide useful information by giving non-warranted performance parameters. Typical performance is applicable from 20° to 30°C.

When enabled, automatic calibrations are periodically performed to compensate for the effects of temperature and time sensitivities. During the calibration, no signals >0 dBm should be connected to the front panel inputs.

Definitions

Analog demodulation mode = Measurements with AM, PM, and FM demodulation capabilities.

Baseband = 0 to 10 MHz measurements.

Baseband time = Time-domain measurements selected by setting start frequency to exactly 0 Hz or choosing full span in 0 to 10 MHz measurements.

dBc = dB relative to input signal level.

dBfs = dB relative to full scale amplitude range setting. Full scale is approximately 2 dB below ADC overload.

FS or fs = Full scale; synonymous with amplitude range or input range.

RBW = Resolution bandwidth.

RF = 2 MHz to 1.8 GHz measurements.

Scalar mode = Measurements with only frequency-domain analysis available. Frequency spans up to 1,798 MHz.

SNR = Signal to noise ratio.

Vector mode = Measurements with frequency- and time-domain capabilities. Frequency spans up to 10 MHz in baseband, and 7 MHz for RF analysis (8 MHz with Option AYH).

Zoom time = Time-domain measurements selected by setting frequency parameters using center frequency and span values.

Agilent Technologies

Innovating the HP Way

Standard Features

Frequency

dc to 1.8 GHz

51 to 3,201 points

Center frequency signal-tracking

Instrument modes

Scalar (frequency-domain only)

Vector (amplitude and phase information in frequency and time domain and also time gating)

Analog demodulation (AM/FM/PM)

Sweep types

Continuous

Manual

Single

Triggering

Free run

External

Input channel

External arm

IF channel

Programmable polarity and level

Internal source

Pre and post delay

Averaging

Video

Peak hold

Video exponential

Simultaneous display of instantaneous and average spectrum

Time

Time exponential

Source types

CW

Periodic chirp

Random noise

Arbitrary (up to 8,192 points)

Input

One channel

Second 10 MHz input channel (optional)

Auto-ranging (baseband only)

Overload indicators

50/75/1M Ω BNC (0 to 10 MHz)

50 Ω Type-N, 75 Ω with minimum-loss pad (2 MHz to 1,800 MHz)

Resolution/window shapes

1-3-10 bandwidth steps

Arbitrary RBW

Windows: Flat-top (high amplitude accuracy), Gaussian-top (high dynamic range), Hanning (high frequency resolution), Uniform

Detectors: normal, positive peak, sample

Measurement data

Spectrum

Time capture

PSD

Frequency response, coherence, cross spectrum, and cross correlation (with

Main time

second 10 MHz input

Gate time

channel)

Math function

Data register

Instantaneous spectrum

Auto correlation

Data format

Log magnitude

Imaginary part

Linear magnitude

Group delay

Phase (wrap or unwrap)

Log/linear x-axis

Real part

Trace math

Display

1, 2, or 4 grids

1 to 4 traces displayed (single or overlay)

Auto-scaling

Color (user definable)

User trace title and information

Graticule on/off

Data label blanking

X-axis scaling

Instrument/measurement state displays

External monitor

Markers

Marker search: Peak, next peak, next peak right, next peak left, minimum

Marker to: Center frequency, reference level, start frequency, stop frequency

Offset markers

Couple markers between traces

Marker functions: Peak track, frequency counter, band power (frequency, time, or demodulation results), peak/average statistics

Online Help

Memory and data storage

Disk devices

Nonvolatile RAM disk (100 Kbyte)

Volatile RAM disk (up to 1 Mbyte)

90 mm (3.5-inch) 1.44 Mbyte flexible disk (LIF or MS-DOS® formats)

External GPIB disk

Disk format and file delete, rename, and copy

Nonvolatile clock with time/date

Save/recall of: Trace data, instrument states, trace math functions, Instrument BASIC programs, time-capture buffers

Hard copy output

GPIB/HPGL plotters

GPIB/RS-232/parallel printers

Plot to file

Time stamp

Single-plot spooling

Interfaces

GPIB (IEEE 488.1 and 488.2)

External reference in/out

External PC-style keyboard

Active probe power

RS-232 (one port)

Centronics

LAN and second GPIB (optional)

Standard data format utilities

Optional features

Instrument BASIC (Option 1C2)

Vector modulation analysis (Option AYA)

Digital video modulation analysis (Option AYH)

Waterfall and spectrogram (Option AYB)

Extended RAM and additional I/O (Option UFG)

Advanced LAN support (Option UG7)

Adaptive Equalization (Option AYH or AYJ)

RF

RF specifications apply with the receiver mode set to "RF section (2–1,800 MHz)."

Frequency

Frequency tuning

Frequency range	2 MHz to 1,800 MHz
Frequency span	
Scalar mode	1 Hz to 1,798 MHz
Vector mode	1 Hz to 7 MHz (8 MHz with Option AYH)
Center frequency tuning resolution	0.001 Hz
Number of frequency points/span	51 to 3,201

Signal track (when enabled) keeps the largest measured signal at the center frequency.

Frequency accuracy (with standard high-precision frequency reference)

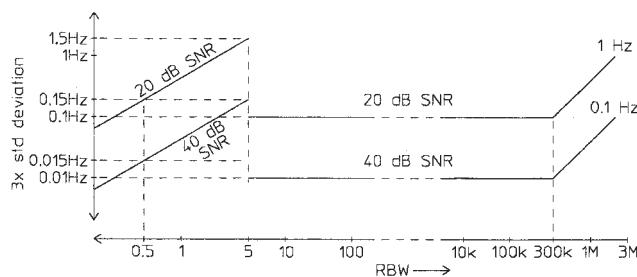
Frequency accuracy is the sum of initial accuracy, aging, and temperature drift.

Initial accuracy	± 0.1 ppm
Aging	± 0.015 ppm/month
Temperature drift	± 0.005 ppm (0° to 55°C)

Frequency counter

The frequency counter operates in scalar or vector mode.

Frequency counter accuracy

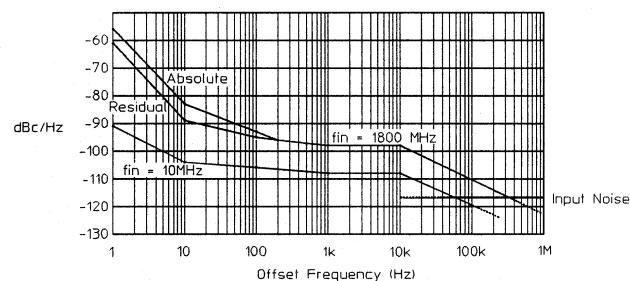

Total accuracy is the sum of the frequency counter's basic accuracy and the instrument's frequency accuracy.

Conditions/Exceptions:

Signal-to-noise ratio within resolution bandwidth, 20 dB minimum

Marker within 1/2 resolution bandwidth of peak

Unspecified for uniform window and resolution bandwidth <5 Hz



Frequency counter basic accuracy

Stability (spectral purity) (with standard high-precision frequency reference or equivalent with ≥ 5 dBm level)

Phase noise (absolute and residual)

$F_{in} \leq 120$ MHz	
100 Hz offset	<–100 dBc/Hz
1 kHz offset	<–102 dBc/Hz
10 kHz offset	<–102 dBc/Hz
100 kHz offset	<–110 dBc/Hz
120 MHz $\leq F_{in} \leq 500$ MHz	
100 Hz offset	<–98 dBc/Hz
1 kHz offset	<–100 dBc/Hz
10 kHz offset	<–100 dBc/Hz
100 kHz offset	<–110 dBc/Hz
500 MHz $\leq F_{in} \leq 1,800$ MHz	
100 Hz offset	<–89 dBc/Hz
1 kHz offset	<–92 dBc/Hz
10 kHz offset	<–93 dBc/Hz
100 kHz offset	<–105 dBc/Hz
LO spurious sidebands	<–75 dBc

Typical spectral purity

Resolution bandwidth

Range	312.5 μ Hz to 3 MHz in 1, 3, 10 sequence or arbitrary user-definable bandwidth
-------	--

Note: In scalar mode, the minimum resolution bandwidth is 312.5 μ Hz and the maximum resolution bandwidth is a function of span. In vector mode, the minimum resolution bandwidth is a function of span and the number of frequency points, and the maximum resolution bandwidth is a function of span only.

Window	Selectivity [†]	Passband flatness	Sideband level
Flat-top	2.45:1	+0, –0.01 dB	–95 dBc
Gaussian-top	4.0:1	+0, –0.68 dB	–125 dBc
Hanning	9.1:1	+0, –1.5 dB	–32 dBc
Uniform	716:1	+0, –4 dB	–13 dBc

[†] Shape factor or ratio of –60 dB to –3 dB bandwidths

RF

Amplitude

Input range -30 dBm to $+25 \text{ dBm}$
(5 dB steps)

Maximum safe input power

Average continuous power $+25 \text{ dBm}$ (300 mW)

DC voltage 25 V

A/D overload level (typical) $>1.0 \text{ dB}$ above range

Input port

Input channels 1

 VSWR

 Range $\geq -25 \text{ dBm}$ $1.5:1$ (14 dB return loss)

 Range $\leq -30 \text{ dBm}$ $1.8:1$ (11 dB return loss)

Impedance 50Ω (75 Ω with minimum-loss pad Option 1D7)

Connector Type-N

Amplitude accuracy

Accuracy specifications apply with flat-top window selected.

Amplitude accuracy is the sum of absolute full-scale accuracy and amplitude linearity.

Absolute full-scale accuracy (with signal level equal to range)

$20^\circ \text{ to } 30^\circ \text{C}$ $\pm 1 \text{ dB}$ (0.5 dB typical)
 $0^\circ \text{ to } 55^\circ \text{C}$ $\pm 1.8 \text{ dB}$

Amplitude linearity

$0 \text{ to } -30 \text{ dBfs}$ $<0.10 \text{ dB}$
 $-30 \text{ to } -50 \text{ dBfs}$ $<0.15 \text{ dB}$
 $-50 \text{ to } -70 \text{ dBfs}$ $<0.20 \text{ dB}$

In vector mode, relative level accuracy within a single span is the sum of vector mode frequency response and amplitude linearity.

Vector mode frequency response (relative to the center frequency)

$\pm 0.4 \text{ dB}$

Dynamic range

Dynamic range indicates the amplitude range that is free of erroneous signals within the measurement bandwidth.

Harmonic distortion $<-70 \text{ dBc}$

(with a single full scale signal at the input)

Third-order intermodulation distortion (with two input tones at 6 dB below full scale) $<-70 \text{ dBc}$

General spurious (with input signal level equal to range and input frequency $\leq 1,800 \text{ MHz}$) $<-70 \text{ dBc}^t$

Residual responses $<-80 \text{ dBfs}$
(50Ω input)

Input noise density (50 Ω input, vector mode or scalar mode with sample detector)^t

$20^\circ \text{ to } 30^\circ \text{C}$ $<-115 \text{ dBfs/Hz}$
 $0^\circ \text{ to } 55^\circ \text{C}$ $<-112 \text{ dBfs/Hz}$

Sensitivity (-30 dBm range)^t

$20^\circ \text{ to } 30^\circ \text{C}$ $<-145 \text{ dBm/Hz}$
 $0^\circ \text{ to } 55^\circ \text{C}$ $<-142 \text{ dBm/Hz}$

Phase (vector mode)

Phase specifications apply with flat-top window selected.

Deviation from linear phase $\pm 5 \text{ deg}$

(relative to best fit line with peak signal level within 6 dB of full scale)

Time (vector mode)

Time-sample resolution = $1/(k \cdot \text{span(Hz)})$ [second]; where $k = 1.28$ for zoom time.

Main time length = (number of frequency points – 1) \div span (Hz) [second]; for resolution bandwidth in arbitrary and auto-coupled mode.

Amplitude accuracy (for a sine wave in the measurement passband, time-domain calibrations on)

$20^\circ \text{ to } 30^\circ \text{C}$ $\pm 12\%$ full scale
 $(\pm 6\% \text{ typical})$

$0^\circ \text{ to } 55^\circ \text{C}$ $\pm 23\%$ full scale

Sample error rate for zoom time (typical)

 Error threshold: 10^{-8} times/sample
 5% full scale

Sample error rate reflects the probability of an error greater than the error threshold occurring in one time sample.

^t $<-60 \text{ dBc}$ with RF (2–1,800 MHz)-wide selected (Option AYH).

^t Add 2 dB with RF (2–1,800 MHz)-wide selected (Option AYH).

Analog demodulation

Demodulation specifications apply with demodulation mode selected and time-domain calibration on.

AM, PM, or FM demodulation. Auto carrier locking is available with PM or FM demodulators and the carrier value determined is a displayable marker function.

Demodulator bandwidth (determined by selected measurement span)

Maximum bandwidth 7 MHz (typical)

AM demodulation (typical performance)

Accuracy $\pm 1\%$

Dynamic range 60 dB (100%) for a pure AM signal

Cross demodulation $<0.3\%$ AM on an FM signal with 10 kHz modulation, 200 kHz deviation

PM demodulation (typical performance)

Accuracy ± 3 degrees

Dynamic range 60 dB (rad) for a pure PM signal

Cross demodulation <1 degree PM on an AM signal with 80% modulation

FM demodulation (typical performance)

Accuracy $\pm 1\%$ of span

Dynamic range 60 dB (Hz) for a pure FM signal

Cross demodulation $<0.5\%$ of span FM on an AM signal with 80% modulation

Trigger

Trigger types

Scalar mode

Free run, internal source, GPIB, external (each measurement step requires a separate trigger)

Vector mode

Free run, IF channel, internal source, GPIB, external

Pre-trigger delay range (see time specifications for sample resolution)

One channel

64 Ksamples (1 Msample with extended time capture, Option AY9)

Two channels (requires second 10 MHz input, Option AY7)

32 Ksamples (0.5 Msample with extended time capture, Option AY9)

Post-trigger delay range

(see time specifications for sample resolution)

IF trigger (characteristics only)

Used to trigger only on in-band energy, where the trigger bandwidth is determined by the measurement span (rounded to the next higher $10^7/2^n$ [Hz]).

External trigger (positive and negative slope)

Level accuracy ± 0.5 V

Range ± 5 V

Input impedance $10\text{ k}\Omega$ (typical)

External arm

Level accuracy ± 0.5 V

Range ± 5 V

Input impedance $10\text{ k}\Omega$ (typical)

RF

Source (requires internal RF source Option AY8)

Source types[†]

(vector mode) CW (fixed sine), random noise, periodic chirp, arbitrary

Frequency

Range 2 MHz to 1,800 MHz

Maximum offset from center frequency 3.5 MHz

Amplitude (fixed sine source type)

Amplitude range -27 dBm to $+13 \text{ dBm}$

Amplitude resolution 0.1 dB

Amplitude accuracy

Source amplitude accuracy is the sum of absolute accuracy at 6 MHz, RF frequency response, and the IF flatness.

Absolute accuracy at 6 MHz (with 6 MHz center frequency and no source offset frequency) $\pm 2 \text{ dB}$

RF frequency response (6 MHz to 1,800 MHz, at center frequency, relative to 6 MHz) $\pm 2 \text{ dB}$

IF flatness (relative to center frequency) $\pm 2 \text{ dB}$

IF flatness (with offset frequency) $\leq 500 \text{ kHz}$

Dynamic range (source level $\leq 0 \text{ dBm}$)

Harmonic distortion $< -25 \text{ dBc}$

Non-harmonic spurious (within measurement bandwidth) $< -30 \text{ dBc}$

Average noise level (for offsets $> 100 \text{ kHz}$ from the carrier. For offsets $< 100 \text{ MHz}$, add the LO phase noise.) $< -100 \text{ dBc/Hz}$

External AM input (characteristic only)

Input level

+1 Vdc	100% output amplitude
0 Vdc	50% output amplitude
-1 Vdc	0% output amplitude

Input impedance

$> 1 \text{ M}\Omega$

Bandwidth

$> 1 \text{ MHz}$

Maximum input voltage

$\pm 5 \text{ V}$

Source port

VSWR

Level $\leq -10 \text{ dBm}$ 1.5:1 (14 dB return loss)

Impedance

50Ω (75Ω with optional minimum-loss pad)

Connector

Type-N

Baseband

Baseband specifications apply with the receiver mode set to "IF section (0–10 MHz)" or "RF section (0–10 MHz)" unless noted otherwise. Specifications noted as "IF section only" apply with the receiver mode set to "IF section (0–10 MHz)" and the input signal connected directly to the IF section's channel 1 or channel 2.

Frequency

Frequency tuning (characteristic only)

Frequency range dc to 10 MHz

Frequency span 1.0 Hz to 10 MHz

Center frequency tuning resolution 0.001 Hz

Number of frequency points/span 51 to 3,201

Signal track (when enabled) keeps the largest measured signal at the center frequency.

Frequency accuracy

Same as the RF specifications.

Frequency counter

Same as the RF specifications.

Stability (spectral purity)

Absolute and residual phase noise, $F_{in} = 10$ MHz (with standard high precision frequency reference or equivalent)

100 Hz offset	<-106 dBc/Hz
1 kHz offset	<-110 dBc/Hz
≥10 kHz offset	<-120 dBc/Hz

Phase noise decreases with decreasing input frequency by $20 \log_{20} \left| \frac{F_{in}}{10 \text{ MHz}} \right| \text{ dB}$.

Resolution bandwidth

Same as the RF specifications.

Amplitude

Input range (characteristic only)(2 dB steps)

50 Ω input	-30 dBm to +24 dBm
75 Ω input	-31.761 dBm to +22.239 dB
1 MΩ input (referenced to 50 Ω)	-30 dBm to +28 dBm

Maximum safe input power

50 Ω /75 Ω input	+27 dBm
1 MΩ input	20 V peak

Auto-ranging (characteristic only)

Up-only, up-down, single, off

Input port

Input channels 1 (second 10 MHz input channel optional)

Return loss (IF section only)

50 Ω input	>25 dB
75 Ω input	>20 dB

Coupling dc/ac (ac coupling attenuation <3 dB at 3 Hz)

Input Impedance 50/75 Ω, 1 MΩ ± 2%
(IF section only) (<80 pF shunt capacitance)

Connector BNC (RF section: Type-N)

Amplitude accuracy

Accuracy specifications apply with flat-top window selected.

Amplitude accuracy is the sum of absolute full-scale accuracy and amplitude linearity.

Absolute full-scale accuracy ±0.5 dB
(IF section only, with signal level equal to range)

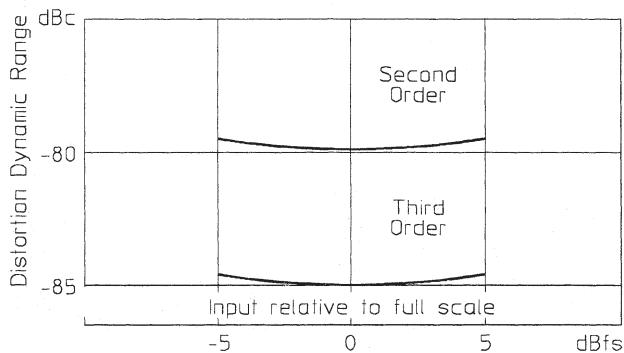
Amplitude linearity

0 to -30 dBfs	<0.10 dB
-30 to -50 dBfs	<0.15 dB
-50 to -70 dBfs	<0.20 dB

Residual dc (50 Ω) <-25 dBfs

Baseband

Dynamic range


Dynamic range indicates the amplitude range that is free of erroneous signals within the measurement bandwidth.

Harmonic distortion (with a single full scale signal at the input)

2nd	<-75 dBc (-80 dBc typical)
3rd, 4th, 5th	<-75 dBc (-85 dBc typical)

Intermodulation distortion (with two input tones at 6 dB below full scale)

Second-order	<-75 dBc (-80 dBc typical)
Third-order	<-75 dBc (-85 dBc typical)

Typical harmonic and intermodulation distortion

Residual (spurious) responses (IF section only) (50 Ω input and front panel connections to RF section disconnected)

Frequencies <1 MHz	<-75 dBfs or <-100 dBm whichever is greater
--------------------	--

Frequencies \geq 1 MHz	<-80 dBfs
--------------------------	-----------

Alias responses
(for a single out-of-band tone at full scale)

Input noise density (50 Ω input, vector mode or scalar mode with sample detector)

1 kHz to 40 kHz	<-101 dBfs/Hz
40 kHz to 10 MHz	<-114 dBfs/Hz (-118 dBfs/Hz typical)

Sensitivity (-30 dBm range, 50 Ω input, vector mode or scalar mode with sample detector)

1 kHz to 40 kHz	<-131 dBm/Hz
40 kHz to 10 MHz	<-144 dBm/Hz (-148 dBm/Hz typical)

Crosstalk (source-to-input or channel-to-channel, 50 Ω terminations) <-85 dBfs

Phase (vector mode)

Phase specifications apply with flat-top window selected.

Deviation from linear phase ± 5 deg
(relative to best fit line
with peak signal level
within 6 dB of full scale)

Time (vector mode)

Time-sample resolution = $1/(k^* \text{span(Hz)})$ [second];
where $k = 1.28$ for zoom time, 2.56 for baseband time
measurements.

Main time length = (number of frequency points - 1)
+ span (Hz) [second]; for resolution bandwidth in arbitrary
and auto-coupled mode.

Amplitude accuracy $\pm 5\%$ full scale
(IF section only) (for a sine
wave in the measurement
passband, time-domain
calibrations on)

Sample error rate for zoom time (typical)

Error threshold: 10^{-8} times/sample
5% full scale

Sample error rate reflects the probability of an error
greater than the error threshold occurring in one
time sample.

Analog channel-to-channel <1 ns
time skew (IF section only)
(time-domain calibrations on,
both channels on the same
range)

Analog demodulation

Same as RF analog demodulation specifications except
as noted below.

Demodulator bandwidth (determined by selected measure-
ment span)

Maximum bandwidth 10 MHz (typical)

Two-channel

The second 10 MHz input channel (Option AY7) provides additional measurements, including frequency response, coherence, cross spectrum, and cross correlation. These measurements are made by comparing a signal on channel two to a signal on channel one or to a demodulated signal on the RF input.

Channel match ± 0.25 dB, ± 2.0 deg

(IF section only, at the center of the frequency bins, dc coupled, 16 rms averages, frequency response, full scale inputs, both inputs on the same range. Exclude the first 5 bins of the dc response.)

Trigger

Same as RF trigger specifications with the following additional specifications.

Input channel trigger (positive and negative slope)

Level accuracy	$\pm 10\%$ full scale
Range	$\pm 110\%$ full scale
Resolution	Full scale/116 (typical)

Source (with output filter on)

Source types

Scalar mode	CW (fixed sine), arbitrary
Vector mode	CW, random noise, periodic chirp, arbitrary
Random noise source	>70%
% of energy in-band (Span = 10 MHz/2 ^N , N = 1 to 24)	
Periodic chirp source	>85%
% of energy in-band	

Frequency

Frequency range	dc to 10 MHz
Frequency resolution	25 μ Hz

Amplitude

Source level

CW and random noise	-110 dBm to +23.979 dBm (50 Ω), 5.0 Vpk maximum
---------------------	--

Periodic chirp and arbitrary	-110 dBm to +19.542 dBm (50 Ω), 3.0 Vpk maximum
------------------------------	--

DC offset	± 3.42 V maximum (resolution and range of programmable dc offset is dependent on source amplitude)
-----------	---

Amplitude accuracy (50 Ω , fixed sine)

(IF section only)

-46 dBm to +24 dBm	± 1.0 dB
-56 dBm to -46 dBm	± 2.0 dB

Harmonic and other spurious products (fixed sine, 0 V dc offset)

dc to 10 kHz	<-55 dBc
10 kHz to 5 MHz	<-40 dBc
5 MHz to 10 MHz	<-33 dBc

Source port

Return loss (IF section only) >20 dB

Source impedance 50/75 Ω

Arbitrary source characteristics

The arbitrary source repetitively outputs data stored in a data register. The data register may contain a single time record or, with Option AYB, a trace buffer. The time length of the register depends on the time-sample resolution for the span entered when the data register was saved or created. See time specifications for time-sample resolution details.

Arbitrary source length

Single time record	Up to 4,096 complex or 8,192 real points.
--------------------	---

Trace buffer (requires Option AYB)	Up to 16,384 real or complex points. Some configurations allow up to 32,768 real or complex points (see the <i>Operator's Guide</i> for details).
---------------------------------------	---

General

Safety and environmental

Safety standards	CSA Certified for Electronic Test and Measurement Equipment per CSA C22.2, No. 231
This product is designed for compliance to	UL1244 and IEC348, 1978
Acoustics	LpA <55 dB typical at 25°C ambient (Temperature controlled fan to reduce noise output)
Temperature	
Operating	0° to 55°C
Internal disk operations	4° to 40°C
Storage (no disk in drive)	-20° to 65°C
Humidity, non-condensing	
Operating	10% to 90% at 40°C
Internal disk operations	20% to 80% at 30°C
Storage (no disk in drive)	10% to 90% at 40°C
Altitude	
Operating (above 2285 m [7,500 ft], moderate operating temperature by -3.6°C/1000 m [-1.1°C/1000 ft])	4600 m (15,000 ft)
Storage	4600 m (15,000 ft)
Calibration interval	1 year
Warm-up time	30 minutes
Power requirements	
115 VAC operation	
IF section	90 to 140 Vrms, 47 to 440 Hz
RF section	90 to 140 Vrms, 47 to 63 Hz
230 VAC operation	198 to 264 Vrms, 47 to 63 Hz
Maximum power dissipation	
IF section	750 VA
RF section	275 VA

IEC 801-3 (Radiated Immunity) Performance degradation may occur at Severity Level 2.

Physical

Weight	
IF section	25 kg (55 lb)
RF section	25 kg (55 lb)
Dimensions	
IF section	
Height	230 mm (9.1 in)
Width	426 mm (16.7 in)
Depth	530 mm (20.9 in)
RF section	
Height	173 mm (6.8 in)
Width	419 mm (16.5 in)
Depth	495 mm (19.5 in)

Real time bandwidth (characteristics only)

Real-time bandwidth is the maximum frequency span that can be continually analyzed without missing any time segment of the input signal.

Frequency spans of $10^7/2^n$ Hz, arbitrary auto-coupled resolution bandwidth, markers off, one display trace with calculations off on other traces, and maximum frequency points equal to number of frequency points.

Averaging off

Single-channel vector mode	78.125 kHz, (log magnitude spectrum measurement data, 1,601 frequency points, channel 2 off, averaging off)
Two-channel vector mode	39.0625 kHz, (requires second 10 MHz input channel, Option AY7) (Log magnitude frequency response measurement data, 801 frequency points, averaging off)

Averaging

Single-channel vector mode averaging (log magnitude spectrum measurement data, 1,601 frequency points, channel 2 off)

Fast average	78.125 kHz
Displayed	78.125 kHz, 48 updates/second

Two-channel vector mode averaging (requires second 10 MHz input channel, Option AY7) (Log magnitude frequency response measurement data, 801 frequency points)

Fast average	39.0625 kHz
Displayed	39.0625 kHz, 48 updates/second

Demodulation

Single-channel analog demodulation mode (log magnitude spectrum measurement data, 1,601 frequency points, time cal off, channel 2 off, averaging off)

AM demodulation	19.53125 kHz
FM or PM demodulation	9.765625 kHz

Measurement speed

Display update speed (vector mode with full span, one or two channels, 401 frequency points, no averaging, markers off, single trace with calculations off on other traces, log magnitude spectrum, frequency spans of $10^7/2^n$ Hz): 60/second

Averaging (characteristics only)

Number of averages	1 to 99,999
Overlap averaging	0% to 99.99%
Average types	
Scalar mode	rms (video), rms (video) exponential, peak hold
Vector mode	rms (video), rms (video) exponential, time, time exponential, peak hold

Fast averaging allows averaging a user-defined number of measurements without updating the displayed result. This provides faster averaging results for most measurements.

Gating (characteristics only)

Time-selective, frequency-domain analysis can be performed on any input or analog demodulated time-domain data. When gating is enabled, markers appear on the time data; gate length and delay can be set directly. Independent gate delays can be set for each input channel. See time specifications for main time length and time resolution details.

Gate length

Maximum: Main time length

Minimum: Approximately $\text{window shape} \div (0.3 \times \text{span [Hz]})$ (seconds); where window shape (ws) and minimum gate length for a 10 MHz zoom time span are (for 10 MHz baseband time spans subtract 39.0625 ns):

Window	ws	Minimum gate length
Flat-top	3.819	1.328125 μ s
Gaussian-top	2.215	781.25 ns
Hanning	1.5	546.875 ns
Uniform	1.0	390.625 ns

General

Time-capture (characteristics only)

Direct capture of input waveforms can be accomplished with spans of 10 MHz/2ⁿ Hz. See time specifications for time-sample resolution details.

Time capture memory: 64 Ksample; 1 Msample (Option AY9)

Benchmarks: For a one-channel, zoom time measurement (for baseband time, halve the time), 64 Ksample captures from 5.12 ms in a 10 MHz span to over 11.9 hours in a 1.19 Hz span. The optional 1 Msample captures from 81.92 ms in a 10 MHz span to over 190 hours in a 1.19 Hz span. Memory is shared if two channels are enabled, therefore length of capture is half as long.

Band power marker (characteristics only)

Markers can be placed on any time, frequency, or demodulated trace for direct computation of band power, rms square root (of power), C/N, and C/N₀, within the selected portion of the data.

Peak/average statistics

Peak and peak-to-average statistics can be enabled on main time, gate time, IQ measured time (AYA), IQ reference time (AYA), and math functions involving these trace types. Average power and peak statistics are computed using all samples in the active trace. Each successive trace adds additional samples to the calculations.

Displayed Results

average power
peak power
peak/average ratio
number of samples

Peak Percent

90% to 99.99%. Setting can be changed at any time during or after the measurement.

Signal characteristics

Peak power range

+13 dB relative to average power of the first time record

Average power range

±3 dB relative to average power of the first time record

Display (characteristics only)

Trace formats One to four traces on one, two, or four grids or a quad display

Other displays

On-line help text, view state

Number of colors

User-definable palette

Display points/trace

401

User-definable trace titles and information

X-axis scaling

Allows expanded views of portions of the trace information

Display blanking

Data or full display

Graticule on/off

Center

±5 mm referenced to bezel opening

Dimensions

Height 105 ±5 mm

Width 147 ±5 mm

Diagonal 180.6 mm (7.1 in)

Status indicators

Overload, half range, external trigger, source on/off, trigger, pause, active trace, remote, talk, listen, SRQ.

External PC-style keyboard interface

Compatible with PC-style 101-key keyboard, such as the HP C1405B with HP C1405-60015 adapter.

Interfaces (characteristics only)

Active probe power	+15 Vdc, -13 Vdc; 150 mA maximum, compatible with Agilent active probes
Sync out	Active low TTL level signal synchronous with source output of periodic chirps and arbitrary blocks up to 8,192 samples.
External reference in/out IF section	
External reference input	Locks to a 1, 2, 5, or 10 MHz (± 10 ppm) with a level >0 dBm
External reference output	Output the same frequency as the external reference input a level of >0 dBm into a $50\ \Omega$ load.
External reference in/out RF section	
External reference input	Locks to a 1, 2, 5, or 10 MHz (± 10 ppm) with a level >0 dBm (use ≥ 5 dBm for optimum phase noise performance)
External reference output	Outputs 10 MHz at >0 dBm ($+6$ dBm typical) into a $50\ \Omega$ load.

GPIB

Implementation of IEEE Std 488.1 and 488.2
SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT1, C1, C2, C3, C12, E2

Benchmark characteristics (typical transfer rate of 401 frequency-point traces)

Scalar	25 traces/second
Vector	20 traces/second
RS-232	Serial port (9-pin) for connection to printer
Centronics	Parallel port for connection to a printer

External monitor output

Format	Analog plug-compatible with 25.5 kHz multi-sync monitors
Impedance	$75\ \Omega$
Level	0 to 0.7 V
Display rate	60 Hz
Horizontal refresh rate	25.5 kHz
Horizontal lines	400

Optional interfaces

Option UFG includes the following interfaces

Second GPIB	Implementation of IEEE Std 488.1 and 488.2
LAN	ThinLAN BNC

Peripherals

Plot/print

Direct plotting and black-and-white printing to parallel (Centronics), serial (RS-232), and GPIB graphics printers and plotters. Printers supported include the HP LaserJet, HP PaintJet, HP ThinkJet, HP DeskJet, and HP QuietJet. Single-plot spooling allows instrument operation while printing or plotting a single display.

General

Memory and data storage

Disk devices

Nonvolatile RAM disk	100 Kbyte
Volatile RAM disk	1 Mbyte that can be partitioned between measurement, Instrument BASIC program space and RAM. Volatile RAM also supports memory of waterfalls and spectrograms with Option AYB.
Internal 90 mm (3.5-inch) flexible disk (LIF or MS-DOS® formats)	1.44 Mbyte
External disk	GPIB interface
Disk format and file delete, rename, and copy	
Nonvolatile clock with time/date	
Save/recall	can be used to store trace data, instrument states, trace math functions, Instrument BASIC programs, and time-capture buffers.
Benchmarks	(typical disk space requirements for different file types)
Trace data (401 points)	6.2 Kbyte
Instrument state	12.3 Kbyte
Trace math	2 Kbyte
Time-capture buffers (32 Ksamples)	271 Kbyte
Optional extended RAM	Option UFG includes 4 Mbyte additional RAM for expanding the volatile RAM capabilities listed earlier.

Trace math

Operands

measurement data, data register, constant, other trace math functions, jw

Operations

+, -, *, /, cross correlation, conjugate, magnitude, phase, real, imaginary, square root, FFT, inverse FFT, natural logarithm, exponential

Trace math can be used to manipulate data on each measurement. Uses include user-units correction and normalization.

Marker functions

Peak signal track, frequency counter, band power, peak/average statistics.

Standard data format utilities

Included on two 90 mm (3.5-inch) 1.44 Mbyte flexible disks and two 130 mm (5.25-inch) 1.2 Mbyte floppy disks. The utilities run in MS-DOS® 2.1 or greater on an IBM PC (AT or higher) or compatible. The utilities include conversions to standard data format (SDF), PC displays of data and instrument state information, and utilities for conversion to PC-MATLAB, MATRIX_X, data set 58, and ACSII formats.

Options

Vector modulation analysis—Option AYA

Supported modulation formats

The vector modulation analysis option supports both single modulated carriers and separate baseband I-Q signals. The optional second 10 MHz input channel is required for baseband I and Q analysis.

Carrier types	Continuous and pulsed/burst (such as TDMA)
Modulation formats	2 level FSK (including GFSK) 4 level FSK MSK (including GMSK) QAM implementations of: BPSK, QPSK, OQPSK, DQPSK, $\pi/4$ DQPSK, 8PSK, 16QAM, 32QAM
Default parameter settings [†]	NADC, PDC (JDC), GSM, PHS, DECT, CDPD, TETRA, CDMA Base, CDMA Mobile

Filtering

All filters are computed to 20 symbols in length

Filter types	Raised cosine Square-root raised cosine IS-95 compatible Gaussian None Rectangular Low pass
User-selectable filter parameters	Alpha/BT continuously adjustable from 0.05 to 10
User-defined filters	User-defined impulse response, fixed 20 points/symbol Maximum 20 symbols in length or 401 points

Frequency and symbol rate

Receiver mode	Information bandwidth
ch1 + j*ch2	≤ 20 MHz [‡]
0 to 10 MHz	≤ 10 MHz
2 to 1,800 MHz	≤ 7 MHz
2 to 1,800 MHz - wide	≤ 8 MHz (Option AYH only)
External	≤ 8 MHz (89411A only)

Symbol Rate

Symbol Rate is limited only by the information bandwidth.

$$\text{Symbol Rate} = \frac{\text{Bits/Second}}{\text{Bits/Symbol}}$$

Where bits/symbol is determined by the modulation type. Example: For the raised-cosine filter

$$\text{Max Symbol Rate} \leq \frac{\text{Information Bandwidth}}{1 + \alpha}$$

Measurement results (formats other than FSK)

Display update rate

Conditions: NADC preset, 50 kHz span, result length 150 symbols, 1 point/symbol. IQ envelope triggering and data synchronization off.

Update rate	>2 per second (characteristic only)
I-Q measured	Time, spectrum (Filtered, carrier locked, symbol locked)
I-Q reference	Time, spectrum (Ideal, computed from detected symbols)
I-Q error vs. time	Magnitude, phase (I-Q measured vs. reference)
Error vector	Time, spectrum (Vector error of computed vs. reference)
Symbol table + error summary	Error vector magnitude is computed at symbol times only

Measurement results (FSK)

FSK measured	Time, spectrum
FSK reference	Time, spectrum
Carrier error	Magnitude
FSK error	Time, spectrum

[†] NADC and CDMA preset settings require Option UFG.

[‡] Two-channel measurements such as ch1 + j*ch2 require Option AY7, second 10 MHz input channel.

Accuracy (IS-95 CDMA)

CDMA Base or CDMA Mobile preset, instrument mode of IF (0–10 MHz) or RF (2–1,800 MHz), 2.6 MHz span, full scale signal, result length = 200, averages = 10.

Residual Errors

Error vector magnitude	1% rms
Magnitude error	1% rms
Phase error	0.57° rms
Frequency error	10 Hz
(Added to frequency accuracy if applicable)	
Origin I/Q offset	–60 dB

Signal acquisition

Note: Signal acquisition does not require an external carrier or symbol clock

Data block length

Adjustable up to 1,024 samples (4,096 samples with extended RAM Option UFG)

Examples (with Option UFG):

- 4,096 symbols at 1 point/symbol
- 409 samples at 10 points/symbol

Symbol clock Internally generated

Carrier lock Internally locked

Triggering

Single/continuous

External

Internal source

Pulse search (searches data block for beginning of TDMA burst, and performs analysis over selected burst length)

Data synchronization

User-selected synchronization words

Arbitrary bit patterns up to 30 symbols long, at any position in a continuous or TDMA burst and measurement result. Up to 6 words can be defined.

Arbitrary waveform source

RAM-based arbitrary waveforms

Waveform registers	Maximum 6
Waveform length	4,096 Complex points each (16,384 with Option AYB)

Residual accuracy, typical

Examples:

$\pi/4$ DQPSK, EVM \leq 0.7% rms
24.3 ksymbols/second,
 $\alpha = 0.35$

GMSK, 270.833 EVM \leq 1.0% rms
ksymbols/second,
BT = 0.30

Digital video modulation analysis—Option AYH

(requires Option AYA)

This option extends the capabilities of the vector modulation analysis Option AYA by adding modulation formats used for digital video transmission. Except where noted, all of the standard capabilities of Option AYA are provided for the new modulation formats.

Supported modulation formats

Additional modulation formats	8 and 16 VSB 16, 32, 64, and 256 QAM 16, 32, and 64 QAM (differentially encoded per DVB standard)
-------------------------------	--

Frequency span

The receiver mode (2–1,800 MHz-wide) increases the maximum allowable vector frequency span to 8 MHz. Specifications for this mode are in the RF specification section.

Options

Maximum symbol rate

Option AYH analyzes vector modulated signals up to a maximum symbol rate determined by the information bandwidth of the receiver mode and the excess bandwidth factor (α) of the input signal, according to:

$$\text{Max Symbol Rate} \leq \frac{\text{Information Bandwidth}}{1 + \alpha}$$

(Note: the maximum symbol rate is doubled for VSB signals.)

Receiver mode	Information bandwidth
ch1 +j*ch2	$\leq 20 \text{ MHz}^{\dagger}$
0 to 10 MHz	$\leq 10 \text{ MHz}$
2 to 1,800 MHz – normal	$\leq 7 \text{ MHz}$
2 to 1,800 MHz – wide	$\leq 8 \text{ MHz}$
External	$\leq 10 \text{ MHz}^{\dagger}$

Example: For a 64 QAM signal ($\alpha = 0.15$), the maximum symbol rate in 2–1,800 MHz-wide mode is $8 \text{ MHz}/(1.15) = 6.96 \text{ Msymbols/second}$.

Measurement results and display formats

Identical to Option AYA measurement results and display formats except for the following changes to the error summary display:

VSB pilot level is shown, in dB relative to nominal.

For VSB formats, SNR is calculated from the real part of the error vector only.

For DVB formats, EVM is calculated without removing IQ offset.

Accuracy

Residual errors (typical)

8VSB or 16VSB, symbol rate = 10.762 MHz, $\alpha = 0.115$, instrument receiver mode of IF 0–10 MHz or RF 2–1,800 MHz, 7 MHz span, full-scale signal, result length = 800, averages = 10.

Residual EVM $\leq 1.5\% \text{ (SNR} \geq 36 \text{ dB)}$

16, 32, 64, or 256 QAM, symbol rate = 6.9 MHz, $\alpha = 0.15$, instrument receiver mode of IF 0–10 MHz or RF 2–1,800 MHz-wide, 8 MHz span, full-scale signal, result length = 800, averages = 10.

Residual EVM $\leq 1.0\% \text{ (SNR} \geq 40 \text{ dB)}$

Filtering

All Option AYA filter types are supported except user-defined filters for VSB analysis. Filters are calculated to 40 symbols in length.

Triggering and synchronization

All Option AYA signal acquisition features are supported except pulse and sync word search for VSB analysis.

Adaptive equalization—Option AYH or Option AYJ

(AYJ adds adaptive equalization to Option AYA)

This option equalizes the digitally modulated signal to remove effects of linear distortion (such as unflatness and group delay) in a modulation quality measurement.

Equalizer performance is a function of the filter design (e.g., length, convergence, taps/symbol) and the quality of the signal being equalized.

Equalizer

Decision-directed, LMS, feed-forward equalization with adjustable convergence rate.

Filter length	3 to 99 symbols, adjustable
Filter taps	1, 2, 4, 5, 10, or 20 taps/symbol

Measurement results

Equalizer impulse response

Channel frequency response

Supported modulation formats

MSK, BPSK, QPSK, OQPSK, DQPSK, $\pi/4$ DQPSK, 8 PSK, 16 QAM, 32 QAM, 64 QAM, 256 QAM, 8 VSB, 16 VSB

[†] Downconverter dependent

Waterfall and spectrogram—Option AYB

Waterfall

Types	Vertical and skewed— Azimuth adjustable 0 to ± 45 Normal and hidden line With or without baseline.
Adjustable parameters	Trace height Buffer depth Elevation Threshold
Spectrogram	
Types	Color, normal, and reversed Monochrome, normal, and reversed User color maps (2 total)

Adjustable parameters

Trace select

When a waterfall or spectrogram measurement is paused or completed, any trace in the trace buffer can be selected by trace number or by z-axis value. The marker values and marker functions apply to the selected trace.

Z-axis value

The z-axis value is the time the trace data was acquired relative to the start of the measurement. The z-axis value of the selected trace is displayed as part of the marker readout.

Display update rate 30 to 60/second, typical

System memory (characteristic only)

Note: In standard configuration, the analyzer has approximately 1 to 2 Mbytes of free memory for these displays. Option UFG adds 4 Mbytes of free memory.

Memory required (characteristic only)

Displays occupy memory at the rate of 175 traces/Mbyte (for traces of 401 frequency points). A full screen of 307 traces will require 2.25 Mbytes of free memory. With Option UFG, the analyzer will typically accommodate more than 1,000 traces in memory.

4 Mbytes extended RAM and additional I/O—Option UFG

Extended RAM

Extended memory type: 4 Mbytes dynamic RAM

Available memory with Option UFG installed: Approximately 6 Mbytes, user-allocatable to measurement memory, RAM disk, and IBASIC program space.

LAN I/O

LAN support: Ethernet (IEEE 802.3) TCP/IP

LAN interface: ThinLAN (BNC connector) or AUI

Recommended MAU: Agilent 28685B (10base-T) or 28683A (FDDI)

Program interface: Send and receive GPIB programming codes, status bytes, and measurement results in ASCII and/or binary format.

GPIB I/O

Secondary GPIB port: Per IEEE Std 488.1 and 488.2

Functions: Controller-only; accessible from IBASIC program or front panel commands.

Note: Option UFG is strongly recommended for use with Option AYA Vector Modulation Analysis and Option AYB Waterfall and Spectrogram.

Advanced LAN support—Option UG7

Remote X11 display (characteristic only)

Update rate: >20 per second, depending on workstation performance and LAN activity.

X11 R4 compatible

X-terminals, UNIX workstations, PC with X-server software

Display: 640 x 480 pixel minimum resolution required; 1024 x 768 recommended.

FTP data (characteristic only)

Traces A, B, C, D

Data registers D1-D6

Time capture buffer

Disk files (RAM, NVRAM, floppy disk)

Analyzer display plot/print

Note: Option UG7 requires Option UFG.

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

"Our Promise" means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

"Your Advantage" means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test and measurement needs.

Online Assistance

www.agilent.com/find/assist

Phone or Fax

United States:

(tel) 1 800 452 4844

Canada:

(tel) 1 877 894 4414

(fax) (905) 206 4120

Europe:

(tel) (31 20) 547 2323

(fax) (31 20) 547 2390

Japan:

(tel) (81) 426 56 7832

(fax) (81) 426 56 7840

Latin America:

(tel) (305) 269 7500

(fax) (305) 269 7599

Australia:

(tel) 1 800 629 485

(fax) (61 3) 9210 5947

New Zealand:

(tel) 0 800 738 378

(fax) (64 4) 495 8950

Asia Pacific:

(tel) (852) 3197 7777

(fax) (852) 2506 9284

Product specifications and descriptions in this document subject to change without notice.

Copyright © 1992, 2000 Agilent Technologies

Printed in U.S.A. 11/00

5965-5426E

Agilent Technologies

Innovating the HP Way