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Chapter 1

Introduction

The analysis of electrical signals
is a fundamental problem for
many engineers and scientists.
Even if the immediate problem
is not electrical, the basic param-
eters of interest are often changed
into electrical signals by means of
transducers. Common transducers
include accelerometers and load
cells in mechanical work, EEG
electrodes and blood pressure
probes in biology and medicine,
and pH and conductivity probes in
chemistry. The rewards for trans-
forming physical parameters to
electrical signals are great, as
many instruments are available
for the analysis of electrical sig-
nals in the time, frequency and
modal domains. The powerful
measurement and analysis capa-
bilities of these instruments can
lead to rapid understanding of the
system under study.

This note is a primer for those
who are unfamiliar with the
advantages of analysis in the
frequency and modal domains
and with the class of analyzers
we call Dynamic Signal Analyzers.
In Chapter 2 we develop the con-
cepts of the time, frequency and
modal domains and show why
these different ways of looking
at a problem often lend their own
unique insights. We then intro-
duce classes of instrumentation
available for analysis in these
domains.

Because of the tutorial nature of
this note, we will not attempt to
show detailed solutions for the
multitude of measurement prob-
lems which can be solved by
Dynamic Signal Analysis. Instead,
we will concentrate on the fea-
tures of Dynamic Signal Analysis,
how these features are used in a
wide range of applications and
the benefits to be gained from
using Dynamic Signal Analysis.

Those who desire more details
on specific applications should
look to Appendix B. It contains
abstracts of Hewlett-Packard
Application Notes on a wide
range of related subjects. These
can be obtained free of charge
from your local HP field engineer
or representative.

In Chapter 3 we develop the
properties of one of these classes
of analyzers, Dynamic Signal
Analyzers. These instruments are
particularly appropriate for the
analysis of signals in the range
of a few millihertz to about a
hundred kilohertz.

Chapter 4 shows the benefits of
Dynamic Signal Analysis in a wide
range of measurement situations.
The powerful analysis tools of
Dynamic Signal Analysis are
introduced as needed in each
measurement situation.

This note avoids the use of rigor-
ous mathematics and instead
depends on heuristic arguments.
We have found in over a decade
of teaching this material that such
arguments lead to a better under-
standing of the basic processes
involved in the various domains
and in Dynamic Signal Analysis.
Equally important, this heuristic
instruction leads to better instru-
ment operators who can intelli-
gently use these analyzers to
solve complicated measurement
problems with accuracy and
ease*.

* A more rigorous mathematical justification
for the arguments developed in the main
text can be found in Appendix A.
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Chapter 2

The Time, Frequency and
Modal Domains:

Section 1:
The Time Domain

The traditional way of observing
signals is to view them in the time
domain. The time domain is a
record of what happened to a
parameter of the system versus
time. For instance, Figure 2.1
shows a simple spring-mass
system where we have attached
a pen to the mass and pulled a
piece of paper past the pen at a
constant rate. The resulting graph
is a record of the displacement of
the mass versus time, a time do-

main view of displacement.

Such direct recording schemes
are sometimes used, but it usually
is much more practical to convert
the parameter of interest to an
electrical signal using a trans-
ducer. Transducers are commonly
available to change a wide variety
of parameters to electrical sig-
nals. Microphones, accelerom-
eters, load cells, conductivity
and pressure probes are just a
few examples.

This electrical signal, which
represents a parameter of the
system, can be recorded on a strip
chart recorder as in Figure 2.2. We
can adjust the gain of the system
to calibrate our measurement.
Then we can reproduce exactly
the results of our simple direct
recording system in Figure 2.1.

Why should we use this indirect
approach? One reason is that we
are not always measuring dis-
placement. We then must convert
the desired parameter to the
displacement of the recorder pen.
Usually, the easiest way to do this
is through the intermediary of
electronics. However, even when
measuring displacement we
would normally use an indirect
approach. Why? Primarily be-
cause the system in Figure 2.1 is
hopelessly ideal. The mass must
be large enough and the spring
stiff enough so that the pen’s
mass and drag on the paper will

A matter of Perspective

In this chapter we introduce the
concepts of the time, frequency
and modal domains. These three
ways of looking at a problem are
interchangeable; that is, no infor-
mation is lost in changing from
one domain to another. The
advantage in introducing these
three domains is that of a change
of perspective. By changing per-
spective from the time domain,
the solution to difficult problems
can often become quite clear in
the frequency or modal domains.

After developing the concepts of
each domain, we will introduce
the types of instrumentation avail-
able. The merits of each generic
instrument type are discussed to
give the reader an appreciation of
the advantages and disadvantages
of each approach.

Figure 2.2

Indirect recording

of displacement.

Figure 2.1

Direct record-

ing of displace-

ment - a time

domain view.
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not affect the results appreciably.
Also the deflection of the mass
must be large enough to give a
usable result, otherwise a me-
chanical lever system to amplify
the motion would have to be
added with its attendant mass
and friction.

With the indirect system a trans-
ducer can usually be selected
which will not significantly affect
the measurement. This can go to
the extreme of commercially
available displacement transduc-
ers which do not even contact the
mass. The pen deflection can be
easily set to any desired value
by controlling the gain of the
electronic amplifiers.

This indirect system works well
until our measured parameter be-
gins to change rapidly. Because of
the mass of the pen and recorder
mechanism and the power limita-
tions of its drive, the pen can only
move at finite velocity. If the mea-
sured parameter changes faster,
the output of the recorder will be
in error. A common way to reduce
this problem is to eliminate the
pen and record on a photosensi-

Figure 2.3

Simplified

oscillograph

operation.

Figure 2.4

Simplified

oscilloscope

operation

(Horizontal

deflection

circuits

omitted for

clarity).

tive paper by deflecting a light
beam. Such a device is called
an oscillograph. Since it is only
necessary to move a small,
light-weight mirror through a
very small angle, the oscillograph
can respond much faster than a
strip chart recorder.

Another common device for dis-
playing signals in the time domain
is the oscilloscope. Here an
electron beam is moved using
electric fields. The electron beam
is made visible by a screen of
phosphorescent material. It is

capable of accurately displaying
signals that vary even more rap-
idly than the oscillograph can
handle. This is because it is only
necessary to move an electron
beam, not a mirror.

The strip chart, oscillograph and
oscilloscope all show displace-
ment versus time. We say that
changes in this displacement rep-

resent the variation of some pa-
rameter versus time. We will now
look at another way of represent-
ing the variation of a parameter.
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Section 2: The Frequency
Domain

It was shown over one hundred
years ago by Baron Jean Baptiste
Fourier that any waveform that
exists in the real world can be
generated by adding up sine
waves. We have illustrated this in
Figure 2.5 for a simple waveform
composed of two sine waves. By
picking the amplitudes, frequen-
cies and phases of these sine
waves correctly, we can generate
a waveform identical to our
desired signal.

Conversely, we can break down
our real world signal into these
same sine waves. It can be shown
that this combination of sine
waves is unique; any real world
signal can be represented by only
one combination of sine waves.

Figure 2.6a is a three dimensional
graph of this addition of sine
waves. Two of the axes are time
and amplitude, familiar from the
time domain. The third axis is
frequency which allows us to
visually separate the sine waves
which add to give us our complex
waveform. If we view this three
dimensional graph along the
frequency axis we get the view
in Figure 2.6b. This is the time
domain view of the sine waves.
Adding them together at each
instant of time gives the original
waveform.

Figure 2.6

The relationship

between the time

and frequency

domains.

a) Three

dimensional

coordinates

showing time,

frequency and

amplitude

b) Time

domain view

c) Frequency

domain view

Figure 2.5

Any real

waveform

can be

produced

by adding

sine waves

together.

However, if we view our graph
along the time axis as in Figure
2.6c, we get a totally different
picture. Here we have axes of
amplitude versus frequency, what
is commonly called the frequency
domain. Every sine wave we
separated from the input appears
as a vertical line. Its height repre-
sents its amplitude and its posi-
tion represents its frequency.
Since we know that each line

represents a sine wave, we have
uniquely characterized our input
signal in the frequency domain*.
This frequency domain represen-
tation of our signal is called the
spectrum of the signal. Each sine
wave line of the spectrum is
called a component of the
total signal.

* Actually, we have lost the phase
information of the sine waves.  How
we get this will be discussed in Chapter 3.
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The Need for Decibels

Since one of the major uses of the frequency
domain is to resolve small signals in the
presence of large ones, let us now address
the problem of how we can see both large
and small signals on our display
simultaneously.

Suppose we wish to measure a distortion
component that is 0.1% of the signal. If we set
the fundamental to full scale on a four inch
(10 cm) screen, the harmonic would be only
four thousandths of an inch. (.1mm) tall.
Obviously, we could barely see such a signal,
much less measure it accurately. Yet many
analyzers are available with the ability to
measure signals even smaller than this.

Since we want to be able to see all the
components easily at the same time, the only
answer is to change our amplitude scale. A
logarithmic scale would compress our large
signal amplitude and expand the small ones,
allowing all components to be displayed at the
same time.

Alexander Graham Bell discovered that the
human ear responded logarithmically to
power difference and invented a unit, the Bel,
to help him measure the ability of people to
hear. One tenth of a Bel, the deciBel (dB) is
the most common unit used in the frequency
domain today. A table of the relationship
between volts, power and dB is given in
Figure 2.8. From the table we can see that our
0.1% distortion component example is 60 dB
below the fundamental. If we had an 80 dB
display as in Figure 2.9, the distortion
component would occupy 1/4 of the screen,
not 1/1000 as in a linear display.

Figure 2.8

The relation-

ship between

decibels, power

and voltage.

Figure 2.9

Small signals

can be measured

with a logarithmic

amplitude scale.
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Figure 2.7

Small signals

are not hidden

in the frequency

domain.

a) Time Domain - small signal not visible

b) Frequency Domain - small signal easily resolved

It is very important to understand
that we have neither gained nor

lost information, we are just

representing it differently.  We
are looking at the same three-
dimensional graph from different
angles. This different perspective
can be very useful.

Why the Frequency Domain?

Suppose we wish to measure the
level of distortion in an audio os-
cillator. Or we might be trying to
detect the first sounds of a bear-
ing failing on a noisy machine. In
each case, we are trying to detect
a small sine wave in the presence
of large signals. Figure 2.7a
shows a time domain waveform
which seems to be a single sine
wave. But Figure 2.7b shows in
the frequency domain that the
same signal is composed of a
large sine wave and significant
other sine wave components
(distortion components). When
these components are separated
in the frequency domain, the
small components are easy to see
because they are not masked by
larger ones.

The frequency domain’s useful-
ness is not restricted to electron-
ics or mechanics. All fields of
science and engineering have
measurements like these where
large signals mask others in the
time domain. The frequency
domain provides a useful tool
in analyzing these small but
important effects.

The Frequency Domain:

A Natural Domain

At first the frequency domain may
seem strange and unfamiliar, yet
it is an important part of everyday
life. Your ear-brain combination
is an excellent frequency domain
analyzer. The ear-brain splits the
audio spectrum into many narrow
bands and determines the power
present in each band. It can easily
pick small sounds out of loud
background noise thanks in part

to its frequency domain capabil-
ity. A doctor listens to your heart
and breathing for any unusual
sounds. He is listening for
frequencies which will tell him
something is wrong. An experi-
enced mechanic can do the same
thing with a machine. Using a
screwdriver as a stethoscope,
he can hear when a bearing is
failing because of the frequencies
it produces.
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So we see that the frequency
domain is not at all uncommon.
We are just not used to seeing it
in graphical form. But this graphi-
cal presentation is really not any
stranger than saying that the
temperature changed with time
like the displacement of a line
on a graph.

Spectrum Examples

Let us now look at a few common
signals in both the time and fre-
quency domains. In Figure 2.10a,
we see that the spectrum of a sine
wave is just a single line. We
expect this from the way we con-
structed the frequency domain.
The square wave in Figure 2.10b
is made up of an infinite number
of sine waves, all harmonically
related. The lowest frequency
present is the reciprocal of the
square wave period. These two
examples illustrate a property of
the frequency transform: a signal
which is periodic and exists for
all time has a discrete frequency
spectrum. This is in contrast to
the transient signal in Figure
2.10c which has a continuous

Figure 2.10

Frequency

spectrum ex-

amples.

fore, require infinite energy to
generate a true impulse. Never-
theless, it is possible to generate
an approximation to an impulse
which has a fairly flat spectrum
over the desired frequency range
of interest. We will find signals
with a flat spectrum useful in our
next subject, network analysis.

spectrum. This means that the
sine waves that make up this
signal are spaced infinitesimally
close together.

Another signal of interest is the
impulse shown in Figure 2.10d.
The frequency spectrum of an
impulse is flat, i.e., there is energy
at all frequencies. It would, there-
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Network Analysis

If the frequency domain were
restricted to the analysis of signal
spectrums, it would certainly not
be such a common engineering
tool. However, the frequency
domain is also widely used in
analyzing the behavior of net-
works (network analysis) and
in design work.

Network analysis is the general
engineering problem of determin-
ing how a network will respond
to an input*.  For instance, we
might wish to determine how a
structure will behave in high
winds. Or we might want to know
how effective a sound absorbing
wall we are planning on purchas-
ing would be in reducing machin-
ery noise. Or perhaps we are
interested in the effects of a tube
of saline solution on the transmis-
sion of blood pressure waveforms
from an artery to a monitor.

All of these problems and many
more are examples of network
analysis. As you can see a “net-
work” can be any system at all.
One-port network analysis is
the variation of one parameter
with respect to another, both
measured at the same point (port)
of the network. The impedance or
compliance of the electronic or
mechanical networks shown in
Figure 2.11 are typical examples
of one-port network analysis.

Figure 2.11

One-port

network

analysis

examples.

* Network Analysis is sometimes called
Stimulus/Response Testing. The input is
then known as the stimulus or excitation
and the output is called the response.
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Two-port analysis gives the re-
sponse at a second port due to an
input at the first port. We are gen-
erally interested in the transmis-
sion and rejection of signals and
in insuring the integrity of signal
transmission. The concept of two-
port analysis can be extended to
any number of inputs and outputs.
This is called N-port analysis, a
subject we will use in modal
analysis later in this chapter.

We have deliberately defined net-
work analysis in a very general
way. It applies to all networks
with no limitations. If we place
one condition on our network,
linearity, we find that network
analysis becomes a very powerful
tool.

Figure 2.12

Two-port

network

analysis.

θ2

θ2

θ1

θ1

Figure 2.14

Non-linear

system

example.

Figure 2.15

Examples of

non-linearities.

Figure 2.13

Linear network.
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When we say a network is linear,
we mean it behaves like the net-
work in Figure 2.13. Suppose one
input causes an output A and a
second input applied at the same
port causes an output B. If we
apply both inputs at the same
time to a linear network, the
output will be the sum of the
individual outputs, A + B.

At first glance it might seem that
all networks would behave in this
fashion. A counter example, a
non-linear network, is shown
in Figure 2.14. Suppose that the
first input is a force that varies in
a sinusoidal manner. We pick its
amplitude to ensure that the
displacement is small enough so
that the oscillating mass does not
quite hit the stops. If we add a
second identical input, the mass
would now hit the stops. Instead
of a sine wave with twice the
amplitude, the output is clipped
as shown in Figure 2.14b.

This spring-mass system with
stops illustrates an important
principal: no real system is

completely linear. A system may
be approximately linear over a
wide range of signals, but eventu-
ally the assumption of linearity
breaks down. Our spring-mass
system is linear before it hits the
stops. Likewise a linear electronic
amplifier clips when the output
voltage approaches the internal
supply voltage. A spring may com-
press linearly until the coils start
pressing against each other.

Figure 2.16

A positioning

system.

∑

Other forms of non-linearities are
also often present. Hysteresis (or
backlash) is usually present in
gear trains, loosely riveted joints
and in magnetic devices. Some-
times the non-linearities are less
abrupt and are smooth, but non-
linear, curves. The torque versus
rpm of an engine or the operating
curves of a transistor are two
examples that can be considered
linear over only small portions of
their operating regions.

The important point is not that all
systems are nonlinear; it is that
most systems can be approxi-

mated as linear systems. Often
a large engineering effort is spent
in making the system as linear as
practical. This is done for two
reasons. First, it is often a design
goal for the output of a network
to be a scaled, linear version of
the input. A strip chart recorder
is a good example. The electronic
amplifier and pen motor must
both be designed to ensure that
the deflection across the paper
is linear with the applied voltage.

The second reason why systems
are linearized is to reduce the
problem of nonlinear instability.
One example would be the posi-
tioning system shown in Figure
2.16. The actual position is com-
pared to the desired position and
the error is integrated and applied
to the motor. If the gear train
has no backlash, it is a straight
forward problem to design this
system to the desired specifica-
tions of positioning accuracy and
response time.

However, if the gear train has ex-
cessive backlash, the motor will
“hunt” causing the positioning
system to oscillate around the
desired position. The solution
is either to reduce the loop gain
and therefore reduce the overall
performance of the system, or to
reduce the backlash in the gear
train. Often, reducing the back-
lash is the only way to meet the
performance specifications.
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Analysis of Linear Networks

As we have seen, many systems
are designed to be reasonably lin-
ear to meet design specifications.
This has a fortuitous side benefit
when attempting to analyze
networks*.

Recall that an real signal can
be considered to be a sum of
sine waves. Also, recall that the
response of a linear network is
the sum of the responses to each
component of the input. There-
fore, if we knew the response of
the network to each of the sine
wave components of the input
spectrum, we could predict the
output.

It is easy to show that the steady-
state response of a linear network
to a sine wave input is a sine
wave of the same frequency. As
shown in Figure 2.17, the ampli-
tude of the output sine wave is
proportional to the input ampli-
tude. Its phase is shifted by an
amount which depends only on
the frequency of the sine wave. As
we vary the frequency of the sine
wave input, the amplitude propor-
tionality factor (gain) changes as
does the phase of the output.
If we divide the output of the

* We will discuss the analysis of networks
which have not been linearized in
Chapter 3, Section 6.

Figure 2.17

Linear network

response to a

sine wave input.

Figure 2.18

The frequency

response of a

network.
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network by the input, we get a

normalized result called the fre-

quency response of the network.
As shown in Figure 2.18, the fre-
quency response is the gain (or
loss) and phase shift of the net-
work as a function of frequency.
Because the network is linear, the
frequency response is indepen-
dent of the input amplitude; the

frequency response is a property

of a linear network, not depen-
dent on the stimulus.

The frequency response of a net-
work will generally fall into one
of three categories; low pass, high
pass, bandpass or a combination
of these. As the names suggest,
their frequency responses have
relatively high gain in a band of
frequencies, allowing these fre-
quencies to pass through the
network. Other frequencies suffer
a relatively high loss and are
rejected by the network. To see
what this means in terms of the
response of a filter to an input,
let us look at the bandpass
filter case.

Figure 2.19

Three classes

of frequency

response.
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In Figure 2.20, we put a square
wave into a bandpass filter. We
recall from Figure 2.10 that a
square wave is composed of
harmonically related sine waves.
The frequency response of our
example network is shown in
Figure 2.20b. Because the filter is
narrow, it will pass only one com-
ponent of the square wave. There-
fore, the steady-state response of
this bandpass filter is a sine wave.

Notice how easy it is to predict
the output of any network from
its frequency response. The
spectrum of the input signal is
multiplied by the frequency re-
sponse of the network to deter-
mine the components that appear
in the output spectrum. This fre-
quency domain output can then
be transformed back to the time
domain.

In contrast, it is very difficult to
compute in the time domain the
output of any but the simplest
networks. A complicated integral
must be evaluated which often
can only be done numerically on a
digital computer*. If we computed
the network response by both
evaluating the time domain inte-
gral and by transforming to the
frequency domain and back, we
would get the same results. How-
ever, it is usually easier to com-
pute the output by transforming
to the frequency domain.

Transient Response

Up to this point we have only
discussed the steady-state re-
sponse to a signal. By steady-state
we mean the output after any
transient responses caused by
applying the input have died out.
However, the frequency response
of a network also contains all the

Figure 2.20

Bandpass filter

response to a

square wave

input.

Figure 2.21

Time response

of bandpass

filters.

* This operation is called convolution.
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information necessary to predict
the transient response of the net-
work to any signal.

Let us look qualitatively at the
transient response of a bandpass
filter. If a resonance is narrow
compared to its frequency, then
it is said to be a high “Q” reso-
nance*.  Figure 2.21a shows a
high Q filter frequency response.
It has a transient response which
dies out very slowly. A time re-
sponse which decays slowly is
said to be lightly damped. Figure
2.21b shows a low Q resonance.
It has a transient response which
dies out quickly. This illustrates a
general principle: signals which

are broad in one domain are

narrow in the other. Narrow,
selective filters have very long
response times, a fact we will find
important in the next section.

Section 3:
Instrumentation for the
Frequency Domain

Just as the time domain can
be measured with strip chart
recorders, oscillographs or
oscilloscopes, the frequency
domain is usually measured with
spectrum and network analyzers.

Spectrum analyzers are instru-
ments which are optimized to
characterize signals. They intro-
duce very little distortion and few
spurious signals. This insures that
the signals on the display are
truly part of the input signal
spectrum, not signals introduced
by the analyzer.

Figure 2.22

Parallel filter

analyzer.

Network analyzers are optimized
to give accurate amplitude and
phase measurements over a
wide range of network gains and
losses. This design difference
means that these two traditional
instrument families are not
interchangeable.**  A spectrum
analyzer can not be used as a
network analyzer because it does
not measure amplitude accurately
and cannot measure phase. A net-
work analyzer would make a very
poor spectrum analyzer because
spurious responses limit its
dynamic range.

In this section we will develop the
properties of several types of
analyzers in these two categories.

The Parallel-Filter

Spectrum Analyzer

As we developed in Section 2 of
this chapter, electronic filters can
be built which pass a narrow band
of frequencies. If we were to add
a meter to the output of such a
bandpass filter, we could measure
the power in the portion of the
spectrum passed by the filter. In
Figure 2.22a we have done this
for a bank of filters, each tuned to
a different frequency. If the center
frequencies of these filters are
chosen so that the filters overlap
properly, the spectrum covered
by the filters can be completely
characterized as in Figure 2.22b.

* Q is usually defined as:

Q =
Center Frequency of Resonance

Frequency Width of  -3 dB Points

** Dynamic Signal Analyzers are an
exception to this rule, they can act as both
network and spectrum analyzers.
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How many filters should we use
to cover the desired spectrum?
Here we have a trade-off. We
would like to be able to see
closely spaced spectral lines, so
we should have a large number
of filters. However, each filter is
expensive and becomes more ex-
pensive as it becomes narrower,
so the cost of the analyzer goes
up as we improve its resolution.
Typical audio parallel-filter ana-
lyzers balance these demands
with 32 filters, each covering
1/3 of an octave.

Swept Spectrum Analyzer

One way to avoid the need for
such a large number of expensive
filters is to use only one filter and
sweep it slowly through the fre-
quency range of interest. If, as in
Figure 2.23, we display the output
of the filter versus the frequency
to which it is tuned, we have the
spectrum of the input signal. This
swept analysis technique is com-
monly used in rf and microwave
spectrum analysis.

We have, however, assumed the
input signal hasn’t changed in the
time it takes to complete a sweep
of our analyzer. If energy appears
at some frequency at a moment
when our filter is not tuned to
that frequency, then we will not
measure it.

One way to reduce this problem
would be to speed up the sweep
time of our analyzer. We could
still miss an event, but the time in
which this could happen would be
shorter. Unfortunately though, we
cannot make the sweep arbitrarily
fast because of the response time
of our filter.

To understand this problem,
recall from Section 2 that a filter
takes a finite time to respond to

* More information on the performance of
swept spectrum analyzers can be found in
Hewlett-Packard Application Note Series
150.

Figure 2.24

Amplitude

error form

sweeping

too fast.

Figure 2.23

Simplified

swept spectrum

analyzer.

changes in its input. The narrower
the filter, the longer it takes to
respond. If we sweep the filter
past a signal too quickly, the filter
output will not have a chance to
respond fully to the signal. As we
show in Figure 2.24, the spectrum
display will then be in error; our
estimate of the signal level will be
too low.

In a parallel-filter spectrum ana-
lyzer we do not have this prob-
lem. All the filters are connected
to the input signal all the time.
Once we have waited the initial
settling time of a single filter, all
the filters will be settled and the
spectrum will be valid and not
miss any transient events.

So there is a basic trade-off
between parallel-filter and swept
spectrum analyzers. The parallel-
filter analyzer is fast, but has

limited resolution and is expen-
sive. The swept analyzer can be
cheaper and have higher resolu-
tion but the measurement takes
longer (especially at high resolu-
tion) and it can not analyze
transient events*.

Dynamic Signal Analyzer

In recent years another kind of
analyzer has been developed
which offers the best features
of the parallel-filter and swept
spectrum analyzers. Dynamic Sig-
nal Analyzers are based on a high
speed calculation routine which
acts like a parallel filter analyzer
with hundreds of filters and yet
are cost competitive with swept
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Figure 2.26

Tuned net-

work analyzer

operation.

Figure 2.25

Gain-phase

meter

operation.

spectrum analyzers. In addition,
two channel Dynamic Signal
Analyzers are in many ways better
network analyzers than the ones
we will introduce next.

Network Analyzers

Since in network analysis it is
required to measure both the in-
put and output, network analyzers
are generally two channel devices
with the capability of measuring
the amplitude ratio (gain or loss)
and phase difference between the
channels. All of the analyzers dis-
cussed here measure frequency
response by using a sinusoidal
input to the network and slowly
changing its frequency. Dynamic
Signal Analyzers use a different,
much faster technique for net-
work analysis which we discuss
in the next chapter.

Gain-phase meters are broadband
devices which measure the ampli-
tude and phase of the input and
output sine waves of the network.
A sinusoidal source must be
supplied to stimulate the network
when using a gain-phase meter
as in Figure 2.25. The source
can be tuned manually and the
gain-phase plots done by hand or
a sweeping source and an x-y
plotter can be used for automatic
frequency response plots.

The primary attraction of gain-
phase meters is their low price. If
a sinusoidal source and a plotter
are already available, frequency
response measurements can be
made for a very low investment.
However, because gain-phase
meters are broadband, they mea-
sure all the noise of the network
as well as the desired sine wave.
As the network attenuates the
input, this noise eventually
becomes a floor below which
the meter cannot measure. This

typically becomes a problem
with attenuations of about
60 dB (1,000:1).

Tuned network analyzers mini-
mize the noise floor problems of
gain-phase meters by including a
bandpass filter which tracks the
source frequency. Figure 2.26
shows how this tracking filter

virtually eliminates the noise
and any harmonics to allow
measurements of attenuation to
100 dB (100,000:1).

By minimizing the noise, it is also
possible for tuned network ana-
lyzers to make more accurate
measurements of amplitude and
phase. These improvements do
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not come without their price,
however, as tracking filters and a
dedicated source must be added
to the simpler and less costly
gain-phase meter.

Tuned analyzers are available
in the frequency range of a
few Hertz to many Gigahertz
(109 Hertz). If lower frequency
analysis is desired, a frequency
response analyzer is often used.
To the operator, it behaves
exactly like a tuned network
analyzer. However, it is quite
different inside. It integrates the
signals in the time domain to
effectively filter the signals at
very low frequencies where it is
not practical to make filters by
more conventional techniques.
Frequency response analyzers
are generally limited to from
1 mHz to about 10 kHz.

Section 4:
The Modal Domain

In the preceding sections we have
developed the properties of the
time and frequency domains and
the instrumentation used in these
domains. In this section we will
develop the properties of another
domain, the modal domain. This
change in perspective to a new
domain is particularly useful if
we are interested in analyzing
the behavior of mechanical
structures.

To understand the modal domain
let us begin by analyzing a simple
mechanical structure, a tuning
fork. If we strike a tuning fork, we
easily conclude from its tone that
it is primarily vibrating at a single
frequency. We see that we have
excited a network (tuning fork)
with a force impulse (hitting
the fork). The time domain
view of the sound caused by
the deformation of the fork is a

Figure 2.27

The vibration

of a tuning fork.

Figure 2.28

Example

vibration modes

of a tuning fork.

lightly damped sine wave shown
in Figure 2.27b.

In Figure 2.27c, we see in the fre-
quency domain that the frequency

response of the tuning fork has a
major peak that is very lightly
damped, which is the tone we
hear. There are also several
smaller peaks.
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Each of these peaks, large and
small, corresponds to a “vibration
mode” of the tuning fork. For in-
stance, we might expect for this
simple example that the major
tone is caused by the vibration
mode shown in Figure 2.28a. The
second harmonic might be caused
by a vibration like Figure 2.28b

We can express the vibration
of any structure as a sum of its
vibration modes. Just as we can
represent an real waveform as a
sum of much simpler sine waves,
we can represent any vibration as
a sum of much simpler vibration
modes. The task of “modal” analy-
sis is to determine the shape and
the magnitude of the structural
deformation in each vibration
mode. Once these are known, it
usually becomes apparent how to
change the overall vibration.

For instance, let us look again at
our tuning fork example. Suppose
that we decided that the second
harmonic tone was too loud. How
should we change our tuning fork
to reduce the harmonic? If we had
measured the vibration of the fork
and determined that the modes of
vibration were those shown in
Figure 2.28, the answer becomes
clear. We might apply damping
material at the center of the tines
of the fork. This would greatly
affect the second mode which
has maximum deflection at the
center while only slightly affect-
ing the desired vibration of the
first mode. Other solutions are
possible, but all depend on know-
ing the geometry of each mode.

The Relationship Between

The Time, Frequency and

Modal Domain

To determine the total vibration
of our tuning fork or any other
structure, we have to measure the

Figure 2.29

Reducing the

second harmonic

by damping the

second vibration

mode.

Figure 2.30

Modal analysis

of a tuning fork.

vibration at several points on the
structure. Figure 2.30a shows
some points we might pick. If
we transformed this time domain
data to the frequency domain,
we would get results like Figure
2.30b. We measure frequency
response because we want to

measure the properties of the
structure independent of the
stimulus*.

* Those who are more familiar with
electronics might note that we have
measured the frequency response of a
network (structure) at N points and thus
have performed an N-port Analysis.
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We see that the sharp peaks
(resonances) all occur at the
same frequencies independent
of where they are measured on
the structure. Likewise we would
find by measuring the width of
each resonance that the damping
(or Q) of each resonance is inde-
pendent of position. The only
parameter that varies as we move
from point to point along the
structure is the relative height
of resonances.*   By connecting
the peaks of the resonances of a
given mode, we trace out the
mode shape of that mode.

Experimentally we have to mea-
sure only a few points on the
structure to determine the mode
shape. However, to clearly show
the mode shape in our figure, we
have drawn in the frequency re-
sponse at many more points in
Figure 2.31a. If we view this
three-dimensional graph along the
distance axis, as in Figure 2.31b,
we get a combined frequency re-
sponse. Each resonance has a
peak value corresponding to the
peak displacement in that mode.
If we view the graph along the
frequency axis, as in Figure 2.31c,
we can see the mode shapes of
the structure.

We have not lost any information
by this change of perspective.
Each vibration mode is character-
ized by its mode shape, frequency
and damping from which we can
reconstruct the frequency domain
view.

Figure 2.31

The relationship

between the

frequency and

the modal

domains.

However, the equivalence
between the modal, time and
frequency domains is not quite
as strong as that between the time
and frequency domains. Because
the modal domain portrays the
properties of the network inde-
pendent of the stimulus, trans-
forming back to the time domain
gives the impulse response of
the structure, no matter what
the stimulus. A more important
limitation of this equivalence is
that curve fitting is used in trans-
forming from our frequency re-
sponse measurements to the

modal domain to minimize the
effects of noise and small experi-
mental errors. No information is
lost in this curve fitting, so all
three domains contain the same
information, but not the same
noise. Therefore, transforming
from the frequency domain to the
modal domain and back again will
give results like those in Figure
2.32. The results are not exactly
the same, yet in all the important
features, the frequency responses
are the same. This is also true of
time domain data derived from
the modal domain.

* The phase of each resonance is not
shown for clarity of the figures but it
too is important in the mode shape.  The
magnitude of the frequency response gives
the magnitude of the mode shape while the
phase gives the direction of the deflection.
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Figure 2.32

Curve fitting

removes

measurement

noise.

Figure 2.33

Single mode

excitation

modal analysis.

Section 5:
Instrumentation for
the Modal Domain

There are many ways that the
modes of vibration can be deter-
mined. In our simple tuning fork
example we could guess what the
modes were. In simple structures
like drums and plates it is pos-
sible to write an equation for the
modes of vibration. However, in
almost any real problem, the
solution can neither be guessed
nor solved analytically because
the structure is too complicated.
In these cases it is necessary to
measure the response of the
structure and determine the
modes.

There are two basic techniques
for determining the modes of
vibration in complicated struc-
tures; 1) exciting only one mode
at a time, and 2) computing the
modes of vibration from the total
vibration.

Single Mode Excitation

Modal Analysis

To illustrate single mode excita-
tion, let us look once again at our
simple tuning fork example. To
excite just the first mode we need
two shakers, driven by a sine
wave and attached to the ends of
the tines as in Figure 2.33a.
Varying the frequency of the gen-
erator near the first mode reso-
nance frequency would then give
us its frequency, damping and
mode shape.

In the second mode, the ends
of the tines do not move, so to
excite the second mode we must
move the shakers to the center of
the tines. If we anchor the ends
of the tines, we will constrain the
vibration to the second mode
alone.
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In more realistic, three dimen-
sional problems, it is necessary to
add many more shakers to ensure
that only one mode is excited.
The difficulties and expense of
testing with many shakers has
limited the application of this tra-
ditional modal analysis technique.

Modal Analysis From

Total Vibration

To determine the modes of vibra-
tion from the total vibration of the
structure, we use the techniques
developed in the previous section.
Basically, we determine the fre-
quency response of the structure
at several points and compute at
each resonance the frequency,
damping and what is called the
residue (which represents the
height of the resonance). This is
done by a curve-fitting routine to
smooth out any noise or small
experimental errors. From these
measurements and the geometry
of the structure, the mode shapes
are computed and drawn on a
CRT display or a plotter. If drawn
on a CRT, these displays may be
animated to help the user under-
stand the vibration mode.

Figure 2.34

Measured mode

shape.

* HP-IB, Hewlett-Packard’s implementation
of IEEE-488-1975 is ideal for this
application.

From the above description, it is
apparent that a modal analyzer
requires some type of network
analyzer to measure the frequency
response of the structure and
a computer to convert the fre-
quency response to mode shapes.
This can be accomplished by
connecting a Dynamic Signal
Analyzer through a digital inter-
face* to a computer furnished
with the appropriate software.
This capability is also available
in a single instrument called a
Structural Dynamics Analyzer. In
general, computer systems offer
more versatile performance since
they can be programmed to solve
other problems. However, Struc-
tural Dynamics Analyzers gener-
ally are much easier to use than
computer systems.

Section 6: Summary

In this chapter we have developed
the concept of looking at prob-
lems from different perspectives.
These perspectives are the time,
frequency and modal domains.
Phenomena that are confusing in
the time domain are often clari-
fied by changing perspective to
another domain. Small signals
are easily resolved in the pres-
ence of large ones in the fre-
quency domain. The frequency
domain is also valuable for pre-
dicting the output of any kind of
linear network. A change to the
modal domain breaks down com-
plicated structural vibration prob-
lems into simple vibration modes.

No one domain is always the best
answer, so the ability to easily
change domains is quite valuable.
Of all the instrumentation avail-
able today, only Dynamic Signal
Analyzers can work in all three
domains. In the next chapter we
develop the properties of this
important class of analyzers.
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Chapter 3

Understanding Dynamic
Signal Analysis

We saw in the previous chapter
that the Dynamic Signal Analyzer
has the speed advantages of paral-
lel-filter analyzers without their
low resolution limitations. In
addition, it is the only type of
analyzer that works in all three
domains. In this chapter we will
develop a fuller understanding of
this important analyzer family,
Dynamic Signal Analyzers. We
begin by presenting the properties
of the Fast Fourier Transform
(FFT) upon which Dynamic Sig-
nal Analyzers are based. No proof
of these properties is given, but
heuristic arguments as to their
validity are used where appropri-
ate. We then show how these FFT
properties cause some undesir-
able characteristics in spectrum
analysis like aliasing and leakage.
Having demonstrated a potential
difficulty with the FFT, we then
show what solutions are used to
make practical Dynamic Signal
Analyzers. Developing this basic
knowledge of FFT characteristics
makes it simple to get good
results with a Dynamic Signal
Analyzer in a wide range of
measurement problems.

Section 1: FFT Properties

The Fast Fourier Transform
(FFT) is an algorithm* for
transforming data from the time
domain to the frequency domain.
Since this is exactly what we
want a spectrum analyzer to do, it
would seem easy to implement a
Dynamic Signal Analyzer based
on the FFT. However, we will see
that there are many factors which
complicate this seemingly
straight-forward task.

First, because of the many calcu-
lations involved in transforming
domains, the transform must be
implemented on a digital com-
puter if the results are to be

Figure 3.1

The FFT samples

in both the time

and frequency

domains.

Figure 3.2

A time record

is N equally

spaced samples

of the input.

sufficiently accurate. Fortunately,
with the advent of microproces-
sors, it is easy and inexpensive to
incorporate all the needed com-
puting power in a small instru-
ment package. Note, however,
that we cannot now transform to
the frequency domain in a con-
tinuous manner, but instead must
sample and digitize the time
domain input. This means that our
algorithm transforms digitized
samples from the time domain to
samples in the frequency domain
as shown in Figure 3.1.**

Because we have sampled, we no
longer have an exact representa-
tion in either domain. However,
a sampled representation can be
as close to ideal as we desire by
placing our samples closer to-
gether. Later in this chapter,
we will consider what sample
spacing is necessary to guarantee
accurate results.

* An algorithm is any special mathematical
method of solving a certain kind of
problem; e.g., the technique you use
to balance your checkbook.

** To reduce confusion about which domain
we are in, samples in the frequency domain
are called lines.



26

Time Records

A time record is defined to be
N consecutive, equally spaced
samples of the input. Because it
makes our transform algorithm
simpler and much faster, N is
restricted to be a multiple of 2,
for instance 1024.

As shown in Figure 3.3, this
time record is transformed as a
complete block into a complete
block of frequency lines. All the
samples of the time record are
needed to compute each and
every line in the frequency do-
main. This is in contrast to what
one might expect, namely that a
single time domain sample trans-
forms to exactly one frequency
domain line. Understanding this
block processing property of the
FFT is crucial to understanding
many of the properties of the
Dynamic Signal Analyzer.

For instance, because the FFT
transforms the entire time record
block as a total, there cannot be
valid frequency domain results
until a complete time record has
been gathered. However, once
completed, the oldest sample
could be discarded, all the
samples shifted in the time
record, and a new sample added
to the end of the time record as
in Figure 3.4. Thus, once the time
record is initially filled, we have
a new time record at every time
domain sample and therefore
could have new valid results in
the frequency domain at every
time domain sample.

This is very similar to the behav-
ior of the parallel-filter analyzers
described in the previous chapter.
When a signal is first applied to a
parallel-filter analyzer, we must

wait for the filters to respond,
then we can see very rapid
changes in the frequency domain.
With a Dynamic Signal Analyzer
we do not get a valid result until
a full time record has been gath-
ered. Then rapid changes in the
spectra can be seen.

It should be noted here that a new
spectrum every sample is usually

too much information, too fast.
This would often give you thou-

sands of transforms per second.
Just how fast a Dynamic Signal
Analyzer should transform is a
subject better left to the sections
in this chapter on real time band-
width and overlap processing.

Figure 3.3

The FFT works

on blocks

of data.

Figure 3.4

A new time

record every

sample after

the time record

is filled.
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How Many Lines are There?

We stated earlier that the time
record has N equally spaced
samples. Another property of
the FFT is that it transforms
these time domain samples to
N/2 equally spaced lines in the
frequency domain. We only get
half as many lines because each
frequency line actually contains
two pieces of information, ampli-
tude and phase. The meaning of
this is most easily seen if we look
again at the relationship between
the time and frequency domain.

Figure 3.5 reproduces from Chap-
ter II our three-dimensional graph
of this relationship. Up to now we
have implied that the amplitude
and frequency of the sine waves
contains all the information nec-
essary to reconstruct the input.
But it should be obvious that the
phase of each of these sine waves
is important too. For instance, in
Figure 3.6, we have shifted the
phase of the higher frequency sine
wave components of this signal.
The result is a severe distortion
of the original wave form.

We have not discussed the phase
information contained in the spec-
trum of signals until now because
none of the traditional spectrum
analyzers are capable of measur-
ing phase. When we discuss mea-
surements in Chapter 4, we shall
find that phase contains valuable
information in determining the
cause of performance problems.

What is the Spacing of

the Lines?

Now that we know that we have
N/2 equally spaced lines in the
frequency domain, what is their
spacing? The lowest frequency
that we can resolve with our FFT
spectrum analyzer must be based
on the length of the time record.
We can see in Figure 3.7 that if
the period of the input signal is

longer than the time record,
we have no way of determining
the period (or frequency, its
reciprocal). Therefore, the lowest
frequency line of the FFT must
occur at frequency equal to the
reciprocal of the time record
length.

Figure 3.5

The relationship

between the time

and frequency

domains.

Figure 3.6

Phase of

frequency domain

components is

important.
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In addition, there is a frequency
line at zero Hertz, DC. This is
merely the average of the input
over the time record. It is rarely
used in spectrum or network
analysis. But, we have now estab-
lished the spacing between these
two lines and hence every line; it
is the reciprocal of the time
record.

What is the Frequency Range

of the FFT?

We can now quickly determine
that the highest frequency we can
measure is:

fmax   =  •

because we have N/2 lines spaced
by the reciprocal of the time
record starting at zero Hertz *.

Since we would like to adjust the
frequency range of our measure-
ment, we must vary fmax. The
number of time samples N is fixed
by the implementation of the FFT
algorithm. Therefore, we must
vary the period of the time record
to vary fmax.  To do this, we must
vary the sample rate so that we
always have N samples in our
variable time record period. This
is illustrated in Figure 3.9. Notice
that to cover higher frequencies,
we must sample faster.

* The usefulness of this frequency range can
be limited by the problem of aliasing.
Aliasing is discussed in Section 3.

Figure 3.7

Lowest frequency

resolvable by the

FFT.

Figure 3.8

Frequencies of

all the spectral

lines of the FFT.

Figure 3.9

Frequency range

of Dynamic Signal

Analyzers is

determined by

sample rate.

N 1

2 Period of Time Record
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Section 2*:
Sampling and Digitizing

Recall that the input to our
Dynamic Signal Analyzer is a
continuous analog voltage. This
voltage might be from an elec-
tronic circuit or could be the
output of a transducer and be
proportional to current, power,
pressure, acceleration or any
number of other inputs. Recall
also that the FFT requires digi-
tized samples of the input for its
digital calculations. Therefore, we
need to add a sampler and analog
to digital converter (ADC) to our
FFT processor to make a spec-
trum analyzer. We show this basic
block diagram in Figure 3.10.

For the analyzer to have the high
accuracy needed for many mea-
surements, the sampler and ADC
must be quite good. The sampler
must sample the input at exactly
the correct time and must accu-
rately hold the input voltage
measured at this time until the
ADC has finished its conversion.
The ADC must have high resolu-
tion and linearity. For 70 dB of
dynamic range the ADC must
have at least 12 bits of resolution
and one half least significant bit
linearity.

A good Digital Voltmeter (DVM)
will typically exceed these

Figure 3.10

Block diagram

of dynamic

Signal Analyzer.

Figure 3.11

The Sampler

and ADC must

not introduce

errors.

Figure 3.13

Plot of tempera-

ture variation

of a room.

Figure 3.12

A simple

sampled

data system.

* This section and the next can be skipped
by those not interested in the internal
operation of a Dynamic Signal Analyzer.
However, those who specify the purchase
of Dynamic Signal Analyzers are especially
encouraged to read these sections. The
basic knowledge to be gained from these
sections can insure specifying the best
analyzer for your requirements.

specifications, but the ADC for
a Dynamic Signal Analyzer must
be much faster than typical fast
DVM’s. A fast DVM might take a
thousand readings per second, but
in a typical Dynamic Signal Ana-
lyzer the ADC must take at least
a hundred thousand readings
per second.

Section 3: Aliasing

The reason an FFT spectrum
analyzer needs so many samples
per second is to avoid a problem
called aliasing. Aliasing is a
potential problem in any sampled
data system. It is often over-
looked, sometimes with
disastrous results.

A Simple Data Logging

Example of Aliasing

Let us look at a simple data log-
ging example to see what aliasing
is and how it can be avoided. Con-
sider the example for recording
temperature shown in Figure 3.12.
A thermocouple is connected to a
digital voltmeter which is in turn
connected to a printer. The sys-
tem is set up to print the tempera-
ture every second. What would
we expect for an output?

If we were measuring the tem-
perature of a room which only
changes slowly, we would expect
every reading to be almost the
same as the previous one. In fact,
we are sampling much more often
than necessary to determine the
temperature of the room with
time. If we plotted the results of
this “thought experiment”, we
would expect to see results like
Figure 3.13.
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The Case of the

Missing Temperature

If, on the other hand, we were
measuring the temperature of a
small part which could heat and
cool rapidly, what would the
output be?  Suppose that the
temperature of our part cycled
exactly once every second. As
shown in Figure 3.14, our printout
says that the temperature never
changes.

What has happened is that we
have sampled at exactly the same
point on our periodic temperature
cycle with every sample. We have
not sampled fast enough to see
the temperature fluctuations.

Aliasing in the

Frequency Domain

This completely erroneous result
is due to a phenomena called
aliasing.* Aliasing is shown in the
frequency domain in Figure 3.15.
Two signals are said to alias if the
difference of their frequencies
falls in the frequency range of in-
terest. This difference frequency
is always generated in the process
of sampling. In Figure 3.15, the
input frequency is slightly higher
than the sampling frequency so a
low frequency alias term is gener-
ated. If the input frequency equals
the sampling frequency as in our
small part example, then the alias
term falls at DC (zero Hertz) and
we get the constant output that
we saw above.

Aliasing is not always bad. It is
called mixing or heterodyning in
analog electronics, and is com-
monly used for tuning household
radios and televisions as well as
many other communication prod-
ucts. However, in the case of the
missing temperature variation of
our small part, we definitely have
a problem. How can we guarantee
that we will avoid this problem in
a measurement situation?

Figure 3.16 shows that if we
sample at greater than twice the
highest frequency of our input,
the alias products will not fall
within the frequency range of our
input. Therefore, a filter (or our
FFT processor which acts like
a filter) after the sampler will
remove the alias products while
passing the desired input signals
if the sample rate is greater than

twice the highest frequency of the

input. If the sample rate is lower,
the alias products will fall in the
frequency range of the input and
no amount of filtering will be able
to remove them from the signal.

Figure 3.14

Plot of temp-

erature variation

of a small part.

Figure 3.15

The problem

of aliasing

viewed in the

frequency

domain.

* Aliasing is also known as fold-over or
mixing.
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This minimum sample rate
requirement is known as the
Nyquist Criterion. It is easy to see
in the time domain that a sam-
pling frequency exactly twice the
input frequency would not always
be enough. It is less obvious that
slightly more than two samples
in each period is sufficient infor-
mation. It certainly would not be
enough to give a high quality time
display. Yet we saw in Figure 3.16
that meeting the Nyquist Criterion
of a sample rate greater than
twice the maximum input fre-
quency is sufficient to avoid
aliasing and preserve all the
information in the input signal.

The Need for an

Anti-Alias Filter

Unfortunately, the real world
rarely restricts the frequency
range of its signals. In the case of
the room temperature, we can be
reasonably sure of the maximum
rate at which the temperature
could change, but we still can not
rule out stray signals. Signals in-
duced at the powerline frequency
or even local radio stations could
alias into the desired frequency
range. The only way to be really
certain that the input frequency
range is limited is to add a low
pass filter before the sampler and
ADC. Such a filter is called an
anti-alias filter.

An ideal anti-alias filter would
look like Figure 3.18a. It would
pass all the desired input frequen-
cies with no loss and completely
reject any higher frequencies
which otherwise could alias into
the input frequency range. How-
ever, it is not even theoretically
possible to build such a filter,
much less practical. Instead, all
real filters look something like
Figure 3.18b with a gradual roll

Figure 3.16

A frequency

domain view

of how to avoid

aliasing - sample

at greater than

twice the highest

input frequency.

Figure 3.18

Actual anti-alias

filters require

higher sampling

frequencies.

Figure 3.17

Nyquist

criterion in the

time domain.
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off and finite rejection of undes-
ired signals. Large input signals
which are not well attenuated in
the transition band could still
alias into the desired input fre-
quency range. To avoid this, the
sampling frequency is raised to
twice the highest frequency of the
transition band. This guarantees
that any signals which could alias
are well attentuated by the stop
band of the filter. Typically, this
means that the sample rate is now
two and a half to four times the
maximum desired input fre-
quency. Therefore, a 25 kHz FFT
Spectrum Analyzer can require an
ADC that runs at 100 kHz as we
stated without proof in Section 2
of this Chapter*.

The Need for More

Than One Anti-Alias Filter

Recall from Section 1 of this
Chapter, that due to the proper-
ties of the FFT we must vary the
sample rate to vary the frequency
span of our analyzer. To reduce
the frequency span, we must
reduce the sample rate. From
our considerations of aliasing,
we now realize that we must
also reduce the anti-alias filter
frequency by the same amount.

Since a Dynamic Signal Analyzer
is a very versatile instrument used
in a wide range of applications, it
is desirable to have a wide range
of frequency spans available.
Typical instruments have a mini-
mum span of 1 Hertz and a maxi-
mum of tens to hundreds of
kilohertz. This four decade range
typically needs to be covered with
at least three spans per decade.

Figure 3.19

Block diagrams

of analog and

digital filtering.

This would mean at least twelve
anti-alias filters would be required
for each channel.

Each of these filters must have
very good performance. It is de-
sirable that their transition bands
be as narrow as possible so that
as many lines as possible are free
from alias products. Additionally,
in a two channel analyzer, each
filter pair must be well matched
for accurate network analysis
measurements. These two points
unfortunately mean that each of
the filters is expensive. Taken
together they can add signifi-
cantly to the price of the analyzer.
Some manufacturers don’t have a
low enough frequency anti-alias
filter on the lowest frequency
spans to save some of this ex-
pense. (The lowest frequency
filters cost the most of all.) But
as we have seen, this can lead to
problems like our “case of the
missing temperature”.

Digital Filtering

Fortunately, there is an alterna-
tive which is cheaper and when
used in conjunction with a single

analog anti-alias filter, always
provides aliasing protection. It is
called digital filtering because it
filters the input signal after we
have sampled and digitized it. To
see how this works, let us look at
Figure 3.19.

In the analog case we already
discussed, we had to use a new
filter every time we changed the
sample rate of the Analog to Digi-
tal Converter (ADC). When using
digital filtering, the ADC sample
rate is left constant at the rate
needed for the highest frequency
span of the analyzer. This means
we need not change our anti-alias
filter. To get the reduced sample
rate and filtering we need for the
narrower frequency spans, we
follow the ADC with a digital
filter.

This digital filter is known as
a decimating filter. It not only
filters the digital representation
of the signal to the desired fre-
quency span, it also reduces the
sample rate at its output to the
rate needed for that frequency
span. Because this filter is digital,
there are no manufacturing varia-

* Unfortunately, because the spacing of the
FFT lines depends on the sample rate,
increasing the sample rate decreases the
number of lines that are in the desired
frequency range. Therefore, to avoid
aliasing problems Dynamic Signal Analyzer
have only .25N to .4N lines instead of N/2
lines.
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tions, aging or drift in the filter.
Therefore, in a two channel ana-
lyzer the filters in each channel
are identical. It is easy to design
a single digital filter to work on
many frequency spans so the need
for multiple filters per channel is
avoided. All these factors taken
together mean that digital filtering
is much less expensive than
analog anti-aliasing filtering.

Section 4:
Band Selectable Analysis

Suppose we need to measure
a small signal that is very close
in frequency to a large one. We
might be measuring the powerline
sidebands (50 or 60 Hz) on a
20 kHz oscillator. Or we might
want to distinguish between the
stator vibration and the shaft
imbalance in the spectrum of a
motor.*

Recall from our discussion of the
properties of the Fast Fourier
Transform that it is equivalent to
a set of filters, starting at zero
Hertz, equally spaced up to some
maximum frequency. Therefore,
our frequency resolution is lim-
ited to the maximum frequency
divided by the number of filters.

To just resolve the 60 Hz side-
bands on a 20 kHz oscillator
signal would require 333 lines (or
filters) of the FFT. Two or three
times more lines would be re-
quired to accurately measure the
sidebands. But typical Dynamic
Signal Analyzers only have 200 to
400 lines, not enough for accurate
measurements. To increase the
number of lines would greatly
increase the cost of the analyzer.
If we chose to pay the extra cost,

* The shaft of an ac induction motor always
runs at a rate slightly lower than a multiple
of the driven frequency, an effect called
slippage.

** Also sometimes called “zoom”.

we would still have trouble seeing
the results. With a 4 inch (10 cm)
screen, the sidebands would be
only 0.01 inch (.25 mm) from the
carrier.

A better way to solve this prob-
lem is to concentrate the filters
into the frequency range of inter-
est as in Figure 3.20. If we select
the minimum frequency as well as
the maximum frequency of our
filters we can “zoom in” for a high
resolution close-up shot of our
frequency spectrum. We now have
the capability of looking at the
entire spectrum at once with low
resolution as well as the ability to
look at what interests us with
much higher resolution.

This capability of increased reso-
lution is called Band Selectable
Analysis (BSA).** It is done by
mixing or heterodyning the input

signal down into the range of the
FFT span selected. This tech-
nique, familiar to electronic
engineers, is the process by
which radios and televisions
tune in stations.

The primary difference between
the implementation of BSA in
Dynamic Signal Analyzers and
heterodyne radios is shown in
Figure 3.21. In a radio, the sine
wave used for mixing is an analog
voltage. In a Dynamic Signal Ana-
lyzer, the mixing is done after the
input has been digitized, so the
“sine wave” is a series of digital
numbers into a digital multiplier.
This means that the mixing will
be done with a very accurate and
stable digital signal so our high
resolution display will likewise be
very stable and accurate.

Figure 3.20

High resolution

measurements

with Band

Selectable

Analysis.

Figure 3.21

Analyzer block

diagram.
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Section 5: Windowing

The Need for Windowing

There is another property of the
Fast Fourier Transform which
affects its use in frequency do-
main analysis. We recall that the
FFT computes the frequency
spectrum from a block of samples
of the input called a time record.
In addition, the FFT algorithm is
based upon the assumption that
this time record is repeated
throughout time as illustrated in
Figure 3.22.

This does not cause a problem
with the transient case shown.
But what happens if we are mea-
suring a continuous signal like a
sine wave?  If the time record
contains an integral number of
cycles of the input sine wave,
then this assumption exactly
matches the actual input wave-
form as shown in Figure 3.23. In
this case, the input waveform is
said to be periodic in the time
record.

Figure 3.24 demonstrates the dif-
ficulty with this assumption when
the input is not periodic in the
time record. The FFT algorithm
is computed on the basis of the
highly distorted waveform in
Figure 3.24c.

We know from Chapter 2 that the
actual sine wave input has a fre-
quency spectrum of single line.
The spectrum of the input as-
sumed by the FFT in Figure 3.24c

Figure 3.24

Input signal not

periodic in time

record.

Figure 3.22

FFT assumption -

time record

repeated

throughout

all time.

Figure 3.23

Input signal

periodic in time

record.
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should be very different. Since
sharp phenomena in one domain
are spread out in the other
domain, we would expect the
spectrum of our sine wave to be
spread out through the frequency
domain.

In Figure 3.25 we see in an actual
measurement that our expecta-
tions are correct. In Figures 3.25
a & b, we see a sine wave that is
periodic in the time record. Its
frequency spectrum is a single
line whose width is determined
only by the resolution of our
Dynamic Signal Analyzer.* On
the other hand, Figures 3.25c & d
show a sine wave that is not peri-
odic in the time record. Its power
has been spread throughout the
spectrum as we predicted.

This smearing of energy through-
out the frequency domains is a
phenomena known as leakage. We
are seeing energy leak out of one
resolution line of the FFT into all
the other lines.

It is important to realize that leak-
age is due to the fact that we have
taken a finite time record. For a
sine wave to have a single line
spectrum, it must exist for all
time, from minus infinity to plus
infinity. If we were to have an in-
finite time record, the FFT would
compute the correct single line
spectrum exactly. However, since

* The additional two components in the
photo are the harmonic distortion of the
sine wave source.

Figure 3.25

Actual FFT results.

a) b)

a) & b) Sine wave periodic in time record

c) d)

c) & d) Sine wave not periodic in time record

we are not willing to wait forever
to measure its spectrum, we only
look at a finite time record of the
sine wave. This can cause leakage
if the continuous input is not
periodic in the time record.

It is obvious from Figure 3.25 that
the problem of leakage is severe
enough to entirely mask small
signals close to our sine waves.
As such, the FFT would not be a

very useful spectrum analyzer.
The solution to this problem is
known as windowing. The prob-
lems of leakage and how to solve
them with windowing can be the
most confusing concepts of Dy-
namic Signal Analysis. Therefore,
we will now carefully develop the
problem and its solution in sev-
eral representative cases.
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What is Windowing?

In Figure 3.26 we have again
reproduced the assumed input
wave form of a sine wave that is
not periodic in the time record.
Notice that most of the problem
seems to be at the edges of the
time record, the center is a good
sine wave. If the FFT could be
made to ignore the ends and con-
centrate on the middle of the time
record, we would expect to get
much closer to the correct single
line spectrum in the frequency
domain.

If we multiply our time record by
a function that is zero at the ends
of the time record and large in
the middle, we would concentrate
the FFT on the middle of the time
record. One such function is
shown in Figure 3.26c. Such func-
tions are called window functions
because they force us to look at
data through a narrow window.

Figure 3.27 shows us the vast
improvement we get by
windowing data that is not peri-
odic in the time record. However,
it is important to realize that we
have tampered with the input data
and cannot expect perfect results.
The FFT assumes the input looks
like Figure 3.26d, something like
an amplitude-modulated sine
wave. This has a frequency
spectrum which is closer to the
correct single line of the input
sine wave than Figure 3.26b, but
it still is not correct. Figure 3.28
demonstrates that the windowed
data does not have as narrow a
spectrum as an unwindowed
function which is periodic in the
time record.

Figure 3.26

The effect of

windowing in the

time domain.

Figure 3.27

Leakage reduction

with windowing.

a) Sine wave not periodic in time record b) FFT results with no window function

c) FFT results with a window function
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The Hanning Window

Any number of functions can be
used to window the data, but the
most common one is called
Hanning. We actually used the
Hanning window in Figure 3.27 as
our example of leakage reduction
with windowing. The Hanning
window is also commonly used
when measuring random noise.

The Uniform Window*

We have seen that the Hanning
window does an acceptably good
job on our sine wave examples,
both periodic and non-periodic
in the time record. If this is true,
why should we want any other
windows?

Suppose that instead of wanting
the frequency spectrum of a con-
tinuous signal, we would like the
spectrum of a transient event. A
typical transient is shown in Fig-
ure 3.29a. If we multiplied it by
the window function in Figure
3.29b we would get the highly
distorted signal shown in Figure
3.29c. The frequency spectrum
of an actual transient with and
without the Hanning window is
shown in Figure 3.30. The
Hanning window has taken our
transient, which naturally has en-
ergy spread widely through the
frequency domain and made it
look more like a sine wave.

Therefore, we can see that for
transients we do not want to use
the Hanning window. We would
like to use all the data in the time
record equally or uniformly.
Hence we will use the Uniform
window which weights all of the
time record uniformly.

The case we made for the
Uniform window by looking at

transients can be generalized.
Notice that our transient has the
property that it is zero at the
beginning and end of the time
record. Remember that we intro-
duced windowing to force the in-
put to be zero at the ends of the

time record. In this case, there is

no need for windowing the input.
Any function like this which does
not require a window because it
occurs completely within the time
record is called a self-windowing

function. Self-windowing func-
tions generate no leakage in the
FFT and so need no window.

* The Uniform Window is sometimes
referred to as a “Rectangular Window”.

Figure 3.28

Windowing reduces

leakage but does

not eliminate it.

b) Windowed measurement - input not
periodic in time record

a) Leakage free measurement - input periodic
in time record

Figure 3.29

Windowing loses

information from

transient events.

Figure 3.30

Spectrums

of transients.

b) Hanning windowed transientsa) Unwindowed trainsients
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There are many examples of self-
windowing functions, some of
which are shown in Figure 3.31.
Impacts, impulses, shock re-
sponses, sine bursts, noise bursts,
chirp bursts and pseudo-random
noise can all be made to be
self-windowing. Self-windowing
functions are often used as the
excitation in measuring the fre-
quency response of networks,
particularly if the network has
lightly-damped resonances (high
Q). This is because the self-
windowing functions generate no
leakage in the FFT. Recall that
even with the Hanning window,
some leakage was present when
the signal was not periodic in the
time record. This means that
without a self-windowing excita-
tion, energy could leak from a
lightly damped resonance into
adjacent lines (filters). The result-
ing spectrum would show greater
damping than actually exists.*

The Flattop Window

We have shown that we need a
uniform window for analyzing
self-windowing functions like
transients. In addition, we need a
Hanning window for measuring
noise and periodic signals like
sine waves.

Figure 3.33

Flat-top

passband

shapes.

* There is another way to avoid this problem
using Band Selectable Analysis. We will
illustrate this in the next chapter.

** It will, in fact, be periodic in the time
record

Figure 3.31

Self-windowing

function examples.

Figure 3.32

Hanning

passband

shapes.

We now need to introduce a third
window function, the flattop win-

dow, to avoid a subtle effect of
the Hanning window. To under-
stand this effect, we need to look
at the Hanning window in the fre-
quency domain. We recall that the
FFT acts like a set of parallel fil-
ters. Figure 3.32 shows the shape
of those filters when the Hanning
window is used. Notice that the
Hanning function gives the filter a
very rounded top. If a component
of the input signal is centered in

the filter it will be measured accu-
rately**. Otherwise, the filter
shape will attenuate the compo-
nent by up to 1.5 dB (16%) when it
falls midway between the filters.

This error is unacceptably large
if we are trying to measure a
signal’s amplitude accurately. The
solution is to choose a window
function which gives the filter a
flatter passband. Such a flattop
passband shape is shown in
Figure 3.33. The amplitude error
from this window function does
not exceed .1 dB (1%), a 1.4 dB
improvement.

Figure 3.34

Reduced

resolution

of the flat-top

window.



39

The accuracy improvement
does not come without its price,
however. Figure 3.34 shows
that we have flattened the top of
the passband at the expense of
widening the skirts of the filter.
We therefore lose some ability to
resolve a small component,
closely spaced to a large one.
Some Dynamic Signal Analyzers
offer both Hanning and flattop
window functions so that the
operator can choose between
increased accuracy or improved
frequency resolution.

Other Window Functions

Many other window functions
are possible but the three listed
above are by far the most com-
mon for general measurements.
For special measurement situa-
tions other groups of window
functions may be useful. We will
discuss two windows which are
particularly useful when doing
network analysis on mechanical
structures by impact testing.

The Force and

Response Windows

A hammer equipped with a force
transducer is commonly used to
stimulate a structure for response
measurements. Typically the
force input is connected to one
channel of the analyzer and the
response of the structure from
another transducer is connected
to the second channel. This
force impact is obviously a
self-windowing function. The
response of the structure is
also self-windowing if it dies
out within the time record of the
analyzer. To guarantee that the
response does go to zero by the
end of the time record, an expo-
nential-weighted window called
a response window is sometimes
added. Figure 3.35 shows a

response window acting on the
response of a lightly damped
structure which did not fully
decay by the end of the time
record. Notice that unlike the
Hanning window, the response
window is not zero at both ends
of the time record. We know that
the response of the structure will
be zero at the beginning of the
time record (before the hammer
blow) so there is no need for the
window function to be zero there.
In addition, most of the informa-
tion about the structural response
is contained at the beginning of
the time record so we make sure
that this is weighted most heavily
by our response window function.

The time record of the exciting
force should be just the impact
with the structure. However,
movement of the hammer before

and after hitting the structure can
cause stray signals in the time
record. One way to avoid this is
to use a force window shown in
Figure 3.36. The force window is
unity where the impact data is
valid and zero everywhere else
so that the analyzer does not
measure any stray noise that
might be present.

Passband Shapes or

Window Functions?

In the proceeding discussion we
sometimes talked about window
functions in the time domain. At
other times we talked about the
filter passband shape in the fre-
quency domain caused by these
windows. We change our perspec-
tive freely to whichever domain
yields the simplest explanation.
Likewise, some Dynamic Signal

Figure 3.36

Using the

force window.

Figure 3.35

Using the

response

window.
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Analyzers call the uniform,
Hanning and flattop functions
“windows” and other analyzers
call those functions “pass-band
shapes”. Use whichever terminol-
ogy is easier for the problem at
hand as they are completely inter-
changeable, just as the time and
frequency domains are completely
equivalent.

Section 6:
Network Stimulus

Recall from Chapter 2 that we can
measure the frequency response
at one frequency by stimulating
the network with a single sine
wave and measuring the gain and
phase shift at that frequency. The
frequency of the stimulus is then
changed and the measurement
repeated until all desired frequen-
cies have been measured. Every
time the frequency is changed, the
network response must settle to
its steady-state value before a
new measurement can be taken,
making this measurement process
a slow task.

Many network analyzers operate
in this manner and we can make
the measurement this way with a
two channel Dynamic Signal Ana-
lyzer. We set the sine wave source
to the center of the first filter as
in Figure 3.37. The analyzer then
measures the gain and phase of
the network at this frequency
while the rest of the analyzer’s
filters measure only noise. We
then increase the source fre-
quency to the next filter center,
wait for the network to settle and
then measure the gain and phase.

We continue this procedure until
we have measured the gain and
phase of the network at all the
frequencies of the filters in our
analyzer.

This procedure would, within
experimental error, give us the
same results as we would get
with any of the network analyzers
described in Chapter 2 with any

network, linear or nonlinear.

Noise as a Stimulus

A single sine wave stimulus does
not take advantage of the possible
speed the parallel filters of a
Dynamic Signal Analyzer provide.
If we had a source that put out
multiple sine waves, each one
centered in a filter, then we could
measure the frequency response
at all frequencies at one time.
Such a source, shown in Figure
3.38, acts like hundreds of sine
wave generators connected to-

Figure 3.37

Frequency

response

measurements

with a sine

wave stimulus.

Figure 3.38

Pseudo-random

noise as a

stimulus.
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gether. Although this sounds
very expensive, just such a
source can be easily generated
digitally. It is called a pseudo-
random noise or periodic ran-
dom noise source.

From the names used for this
source it is apparent that it acts
somewhat like a true noise gen-
erator, except that it has period-
icity. If we add together a large
number of sine waves, the result
is very much like white noise. A
good analogy is the sound of
rain. A single drop of water
makes a quite distinctive splash-
ing sound, but a rain storm
sounds like white noise. How-
ever, if we add together a large
number of sine waves, our
noise-like signal will periodi-
cally repeat its sequence.
Hence, the name periodic ran-
dom noise (PRN) source.

A truly random noise source has
a spectrum shown in Figure
3.39. It is apparent that a ran-
dom noise source would also
stimulate all the filters at one
time and so could be used as a
network stimulus. Which is a
better stimulus? The answer
depends upon the measurement
situation.

Linear Network Analysis

If the network is reasonably
linear, PRN and random noise
both give the same results as
the swept-sine test of other
analyzers. But PRN gives the
frequency response much faster.
PRN can be used to measure the
frequency response in a single
time record. Because the ran-
dom source is true noise, it

source. We see in Figure 3.40 that
if two sine waves are put through
a nonlinear network, distortion
products will be generated
equally spaced from the signals**.
Unfortunately, these products will
fall exactly on the frequencies of
the other sine waves in the PRN.
So the distortion products add to
the output and therefore interfere

Figure 3.39

Random noise

as a stimulus.

Figure 3.40

Pseudo-random

noise distortion. ∆

∆

∆∆

* There is another reason why PRN is a
better test signal than random or linear
networks. Recall from the last section that
PRN is self-windowing. This means that
unlike random noise, pseudo-random
noise has no leakage. Therefore, with
PRN, we can measure lightly damped
(high Q) resonances more easily than with
random noise.

** This distortion is called intermodulation
distortion.

must be averaged for several time
records before an accurate fre-
quency response can be deter-
mined. Therefore, PRN is the best
stimulus to use with fairly linear
networks because it gives the
fastest results*.

Non-Linear Network Analysis

If the network is severely
non-linear, the situation is quite
different. In this case, PRN is a
very poor test signal and random
noise is much better. To see why,
let us look at just two of the sine
waves that compose the PRN
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with the measurement of the fre-
quency response. Figure 3.41a
shows the jagged response of a
nonlinear network measured with
PRN. Because the PRN source
repeats itself exactly every time
record, this noisy looking trace
never changes and will not aver-
age to the desired frequency re-
sponse.

With random noise, the distortion
components are also random and
will average out. Therefore, the
frequency response does not
include the distortion and we get
the more reasonable results
shown in Figure 3.41b.

This points out a fundamental
problem with measuring non-lin-
ear networks;  the frequency

response is not a property of the

network alone, it also depends

on the stimulus. Each stimulus,
swept-sine, PRN and random
noise will, in general, give a dif-
ferent result. Also, if the ampli-
tude of the stimulus is changed,
you will get a different result.

To illustrate this, consider the
mass-spring system with stops
that we used in Chapter 2. If the
mass does not hit the stops, the
system is linear and the frequency
response is given by Figure 3.42a.

If the mass does hit the stops,
the output is clipped and a large
number of distortion components
are generated. As the output
approaches a square wave, the
fundamental component becomes
constant. Therefore, as we in-
crease the input amplitude, the
gain of the network drops. We

get a frequency response like
Figure 3.42b, where the gain is
dependent on the input signal
amplitude.

So as we have seen, the frequency
response of a nonlinear network
is not well defined, i.e., it depends
on the stimulus. Yet it is often
used in spite of this. The fre-
quency response of linear net-
works has proven to be a very
powerful tool and so naturally
people have tried to extend it to
non-linear analysis, particularly
since other nonlinear analysis
tools have proved intractable.

If every stimulus yields a different
frequency response, which one
should we use? The “best” stimu-
lus could be considered to be one
which approximates the kind of
signals you would expect to have
as normal inputs to the network.
Since any large collection of sig-
nals begins to look like noise,
noise is a good test signal*. As
we have already explained, noise
is also a good test signal because
it speeds the analysis by exciting
all the filters of our analyzer
simultaneously.

* This is a consequence of the central limit
theorem. As an example, the telephone
companies have found that when many
conversations are transmitted together, the
result is like white noise. The same effect
is found more commonly at a crowded
cocktail party.

But many other test signals can
be used with Dynamic Signal Ana-
lyzers and are “best” (optimum) in
other senses. As explained in the
beginning of this section, sine
waves can be used to give the
same results as other types of
network analyzers although the
speed advantage of the Dynamic
Signal Analyzer is lost. A fast sine
sweep (chirp) will give very simi-
lar results with all the speed of
Dynamic Signal Analysis and so is
a better test signal. An impulse is
a good test signal for acoustical
testing if the network is linear. It
is good for acoustics because re-
flections from surfaces at differ-
ent distances can easily be
isolated or eliminated if desired.
For instance, by using the “force”
window described earlier, it is
easy to get the free field response
of a speaker by eliminating the
room reflections from the win-
dowed time record.

Band-Limited Noise

Before leaving the subject of net-
work stimulus, it is appropriate to
discuss the need to band limit the
stimulus. We want all the power

Figure 3.42

Nonlinear

system.

Figure 3.41

Nonlinear transfer function.

a) Pseudo-random noise stimulus b) Random noise stimulus
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of the stimulus to be concentrated
in the frequency region we are
analyzing. Any power outside this
region does not contribute to the
measurement and could excite
non-linearities. This can be a par-
ticularly severe problem when
testing with random noise since it
theoretically has the same power
at all frequencies (white noise).
To eliminate this problem, Dy-
namic Signal Analyzers often limit
the frequency range of their built-
in noise stimulus to the frequency
span selected. This could be done
with an external noise source and
filters, but every time the analyzer
span changed, the noise power
and filter would have to be re-
adjusted. This is done automati-
cally with a built-in noise source
so transfer function measure-
ments are easier and faster.

Section 7: Averaging

To make it as easy as possible to
develop an understanding of Dy-
namic Signal Analyzers we have
almost exclusively used examples
with deterministic signals, i.e.,
signals with no noise. However,
as the real world is rarely so
obliging, the desired signal often
must be measured in the presence
of significant noise. At other
times the “signals” we are trying
to measure are more like noise
themselves. Common examples
that are somewhat noise-like in-
clude speech, music, digital data,
seismic data and mechanical vi-
brations. Because of these two
common conditions, we must de-
velop techniques both to measure
signals in the presence of noise
and to measure the noise itself.

exist between the spectra. This
averaging technique is very valu-
able for determining the average
power in any of the filters of our
Dynamic Signal Analyzers. The
more averages we take, the better
our estimate of the power level.

In Figure 3.43, we show RMS
averaged spectra of random noise,
digital data and human voices.
Each of these examples is a
fairly random process, but when
averaged we can see the basic
properties of its spectrum.

If we want to measure a small
signal in the presence of noise,
RMS averaging will give us a good
estimate of the signal plus noise.
We can not improve the signal to
noise ratio with RMS averaging;
we can only make more accurate
estimates of the total signal plus
noise power.

The standard technique in statis-
tics to improve the estimates of
a value is to average. When we
watch a noisy reading on a Dy-
namic Signal Analyzer, we can
guess the average value. But be-
cause the Dynamic Signal Ana-
lyzer contains digital computation
capability we can have it compute
this average value for us. Two
kinds of averaging are available,
RMS (or “power” averaging) and
linear averaging.

RMS Averaging

When we watch the magnitude
of the spectrum and attempt to
guess the average value of the
spectrum component, we are do-
ing a crude RMS* average. We are
trying to determine the average
magnitude of the signal, ignoring
any phase difference that may

Figure 3.43

RMS averaged spectra.

a) Random noise b) Digital data

c) Voices

Traces were separated 30 dB for clarity
Upper trace: female speaker
Lower trace: male speaker

* RMS stands for “root-mean-square” and
is calculated by squaring all the values,
adding the squares together, dividing by
the number of measurements (mean) and
taking the square root of the result.
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Linear Averaging

However, there is a technique for
improving the signal to noise ratio
of a measurement, called linear

averaging. It can be used if a
trigger signal which is synchro-
nous with the periodic part of the
spectrum is available. Of course,
the need for a synchronizing sig-
nal is somewhat restrictive, al-
though there are numerous
situations in which one is avail-
able. In network analysis prob-
lems the stimulus signal itself c
an often be used as a synchroniz-
ing signal.

Linear averaging can be imple-
mented many ways, but perhaps
the easiest to understand is where
the averaging is done in the time
domain. In this case, the synchro-
nizing signal is used to trigger the
start of a time record. Therefore,
the periodic part of the input
will always be exactly the same
in each time record we take,
whereas the noise will, of course,
vary. If we add together a series
of these triggered time records
and divide by the number of
records we have taken we will
compute what we call a linear
average.

Since the periodic signal will have
repeated itself exactly in each
time record, it will average to its
exact value. But since the noise is
different in each time record, it

will tend to average to zero. The
more averages we take, the closer
the noise comes to zero and we
continue to improve the signal to
noise ratio of our measurement.
Figure 3.44 shows a time record
of a square wave buried in noise.
The resulting time record after

128 averages shows a marked im-
provement in the signal to noise
ratio. Transforming both results
to the frequency domain shows
how many of the harmonics can
now be accurately measured be-
cause of the reduced noise floor.

Figure 3.44

Linear averaging.

b) Single record, no averaginga) Single record, no averaging

d) 128 linear averagesc) 128 linear averages
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Section 8:
Real Time Bandwidth

Until now we have ignored the
fact that it will take a finite time
to compute the FFT of our time
record. In fact, if we could com-
pute the transform in less time
than our sampling period we
could continue to ignore this
computational time. Figure 3.45
shows that under this condition
we could get a new frequency
spectrum with every sample. As
we have seen from the section on
aliasing, this could result in far
more spectrums every second
than we could possibly compre-
hend. Worse, because of the com-
plexity of the FFT algorithm, it
would take a very fast and very
expensive computer to generate
spectrums this rapidly.

A reasonable alternative is to add
a time record buffer to the block
diagram of our analyzer. In Figure
3.47 we can see that this allows
us to compute the frequency spec-
trum of the previous time record
while gathering the current time
record. If we can compute the
transform before the time record

buffer fills, then we are said to be
operating in real time.

To see what this means, let us
look at the case where the FFT
computation takes longer than the
time to fill the time record. The
case is illustrated in Figure 3.48.
Although the buffer is full, we
have not finished the last trans-
form, so we will have to stop tak-
ing data. When the transform is
finished, we can transfer the time
record to the FFT and begin to
take another time record. This
means that we missed some input
data and so we are said to be not

operating in real time.

Recall that the time record is not
constant but deliberately varied to
change the frequency span of the
analyzer. For wide frequency
spans the time record is shorter.
Therefore, as we increase the fre-
quency span of the analyzer, we
eventually reach a span where the
time record is equal to the FFT
computation time. This frequency
span is called the real time band-

width. For frequency spans at and
below the real time bandwidth,
the analyzer does not miss any
data.

Real Time Bandwidth

Requirements

How wide a real time bandwidth
is needed in a Dynamic Signal
Analyzer? Let us examine a few
typical measurements to get a
feeling for the considerations
involved.

Adjusting Devices

If we are measuring the spectrum
or frequency response of a device
which we are adjusting, we need
to watch the spectrum change in
what might be called psychologi-

cal real time. A new spectrum
every few tenths of a second is
sufficiently fast to allow an opera-
tor to watch adjustments in what

he would consider to be real

time. However, if the response
time of the device under test is
long, the speed of the analyzer is
immaterial. We will have to wait
for the device to respond to the
changes before the spectrum will
be valid, no matter how many

spectrums we generate in that

time. This is what makes adjust-
ing lightly damped (high Q)
resonances tedious.

Figure 3.45

A new

transform

every sample.

Figure 3.46

Time buffer

added to

block diagram.

Figure 3.48

Non-real time

operation.

Figure 3.47

Real time

operation.
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RMS Averaging

A second case of interest in
determining real time bandwidth
requirements is measurements
that require RMS averaging. We
might be interested in determin-
ing the spectrum distribution of
the noise itself or in reducing the
variation of a signal contaminated
by noise. There is no requirement
in averaging that the records must
be consecutive with no gaps*.
Therefore, a small real time band-
width will not affect the accuracy
of the results.

However, the real time bandwidth
will affect the speed with which
an RMS averaged measurement
can be made. Figure 3.49 shows
that for frequency spans above
the real time bandwidth, the time
to complete the average of N
records is dependent only on the
time to compute the N trans-
forms. Rather than continually
reducing the time to compute the
RMS average as we increase our
span, we reach a fixed time to
compute N averages.

Therefore, a small real time band-
width is only a problem in RMS
averaging when large spans are
used with a large number of aver-
ages. Under these conditions we
must wait longer for the answer.
Since wider real time bandwidths
require faster computations and
therefore a more expensive pro-
cessor, there is a straight forward
trade-off of time versus money. In
the case of RMS averaging, higher
real time bandwidth gives you
somewhat faster measurements
at increased analyzer cost.

Transients

The last case of interest in deter-
mining the needed real time band-
width is the analysis of transient
events. If the entire transient fits
within the time record, the FFT
computation time is of little inter-
est. The analyzer can be triggered
by the transient and the event
stored in the time record buffer.
The time to compute its spectrum
is not important.

Figure 3.49

RMS averaging

time.

However, if a transient event con-
tains high frequency energy and
lasts longer than the time record
necessary to measure the high
frequency energy, then the pro-
cessing speed of the analyzer is
critical. As shown in Figure 3.50b,
some of the transient will not be
analyzed if the computation time
exceeds the time record length.

In the case of transients longer
than the time record, it is also im-
perative that there is some way
to rapidly record the spectrum.
Otherwise, the information will be* This is because to average at all the signal

must be periodic and the noise stationary.

Figure 3.50

Transient

analysis.
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lost as the analyzer updates the
display with the spectrum of the
latest time record. A special dis-
play which can show more than
one spectrum (“waterfall” dis-
play), mass memory, a high speed
link to a computer or a high speed
facsimile recorder is needed. The
output device must be able to
record a spectrum every time
record or information will be lost.

Fortunately, there is an easy way
to avoid the need for an expensive
wide real time bandwidth ana-
lyzer and an expensive, fast spec-
trum recorder. One-time transient
events like explosions and pass-
by noise are usually tape recorded
for later analysis because of the
expense of repeating the test. If
this tape is played back at re-
duced speed, the speed demands
on the analyzer and spectrum re-
corder are reduced. Timing mark-
ers could also be recorded at one
time record intervals. This would
allow the analysis of one record
at a time and plotting with a very
slow (and commonly available)
X-Y plotter.

So we see that there is no clear
cut answer to what real time
bandwidth is necessary in a Dy-
namic Signal Analyzer. Except in
analyzing long transient events,
the added expense of a wide real
time bandwidth gives little advan-
tage. It is possible to analyze long
transient events with a narrow
real time bandwidth analyzer, but
it does require the recording of
the input signal. This method is
slow and requires some operator
care, but one can avoid purchas-
ing an expensive analyzer and fast
spectrum recorder. It is a clear
case of speed of analysis versus
dollars of capital equipment.

Figure 3.51

Understanding

overlap

processing.

Section 9:
Overlap Processing

In Section 8 we considered the
case where the computation of
the FFT took longer than the col-
lecting of the time record. In this
section we will look at a tech-
nique, overlap processing, which
can be used when the FFT com-
putation takes less time than
gathering the time record.

To understand overlap process-
ing, let us look at Figure 3.51a.
We see a low frequency analysis
where the gathering of a time
record takes much longer than the
FFT computation time. Our FFT
processor is sitting idle much of
the time. If instead of waiting for
an entirely new time record we
overlapped the new time record
with some of the old data, we
would get a new spectrum as of-
ten as we computed the FFT. This
overlap processing is illustrated
in Figure 3.51b. To understand the
benefits of overlap processing, let
us look at the same cases we used
in the last section.

Adjusting Devices

We saw in the last section that we
need a new spectrum every few
tenths of a second when adjusting
devices. Without overlap process-
ing this limits our resolution to a
few Hertz. With overlap process-
ing our resolution is unlimited.
But we are not getting something
for nothing. Because our over-
lapped time record contains old
data from before the device ad-
justment, it is not completely cor-
rect. It does indicate the direction
and the amount of change, but we
must wait a full time record after
the change for the new spectrum
to be accurately displayed.

None the less, by indicating the
direction and magnitude of the
changes every few tenths of a sec-
ond, overlap processing does help
in the adjustment of devices.
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RMS Averaging

Overlap processing can give
dramatic reductions in the time
to compute RMS averages with a
given variance. Recall that win-
dow functions reduce the effects
of leakage by weighting the ends
of the time record to zero. Over-
lapping eliminates most or all of
the time that would be wasted
taking this data. Because some
overlapped data is used twice,
more averages must be taken to
get a given variance than in the
non-overlapped case. Figure 3.52
shows the improvements that can
be expected by overlapping.

Transients

For transients shorter than the
time record, overlap processing
is useless. For transients longer
than the time record the real time
bandwidth of the analyzer and
spectrum recorder is usually a
limitation. If it is not, overlap
processing allows more spectra to
be generated from the transient,
usually improving resolution of
resulting plots.

Section 10: Summary

In this chapter we have developed
the basic properties of Dynamic
Signal Analyzers. We found that
many properties could be under-
stood by considering what hap-
pens when we transform a finite,
sampled time record. The length
of this record determines how
closely our filters can be spaced
in the frequency domain and the
number of samples determines
the number of filters in the fre-
quency domain. We also found
that unless we filtered the input
we could have errors due to
aliasing and that finite time
records could cause a problem
called leakage which we mini-
mized by windowing.

We then added several features to
our basic Dynamic Signal Ana-
lyzer to enhance its capabilities.
Band Selectable Analysis allows
us to make high resolution mea-
surements even at high frequen-
cies. Averaging gives more
accurate measurements when
noise is present and even allows
us to improve the signal to noise
ratio when we can use linear aver-
aging. Finally, we incorporated a
noise source in our analyzer to act
as a stimulus for transfer function
measurements.

Figure 3.52

RMS averaging

speed improve-

ments with

overlap

processing.
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In Chapters 2 & 3, we developed
an understanding of the time,
frequency and modal domains
and how Dynamic Signal Analyz-
ers operate. In this chapter we
show how to use Dynamic Signal
Analyzers in a wide variety of
measurement situations. We
introduce the measurement
functions of Dynamic Signal
Analyzers as we need them for
each measurement situation.

We begin with some common
electronic and mechanical
measurements in the frequency
domain. Later in the chapter we
introduce time and modal domain
measurements.

Section 1: Frequency
Domain Measurements

Oscillator Characterization

Let us begin by measuring the
characteristics of an electronic
oscillator. An important specifica-
tion of an oscillator is its har-
monic distortion. In Figure 4.1,
we show the fundamental through
fifth harmonic of a 1 KHz oscilla-
tor. Because the frequency is not
necessarily exactly 1 KHz,
windowing should be used to re-
duce the leakage. We have chosen
the flattop window so that we
can accurately measure the
amplitudes.

Notice that we have selected the
input sensitivity of the analyzer so
that the fundamental is near the
top of the display. In general, we
set the input sensitivity to the
most sensitive range which does
not overload the analyzer. Severe
distortion of the input signal will
occur if its peak voltage exceeds
the range of the analog to digital
converter. Therefore, all dynamic
signal analyzers warn the user of

Chapter 4

Using Dynamic
Signal Analyzers

this condition by some kind of
overload indicator.

It is also important to make sure
the analyzer is not underloaded. If
the signal going into the analog to
digital converter is too small,
much of the useful information of
the spectrum may be below the
noise level of the analyzer. There-
fore, setting the input sensitivity
to the most sensitive range that
does not cause an overload gives
the best possible results.

In Figure 4.1a we chose to display
the spectrum amplitude in loga-
rithmic form to insure that we
could see distortion products far
below the fundamental. All signal
amplitudes on this display are in
dBV, decibels below 1 Volt RMS.
However, since most Dynamic
Signal Analyzers have very

versatile display capabilities, we
could also display this spectrum
linearly as in Figure 4.1b. Here
the units of amplitude are volts.

Power-Line Sidebands

Another important measure of an
oscillator’s performance is the
level of its power-line sidebands.
In Figure 4.2, we use Band Select-
able Analysis to “zoom in” on the
signal so that we can easily re-
solve and measure the sidebands
which are only 60 Hz away from
our 1 KHz signal. With some ana-
lyzers it is possible to measure
signals only millihertz away from
the fundamental if desired.

Phase Noise

The short term stability of a high
frequency oscillator is very

Figure 4.1

Harmonic distortion

of an Audio Oscillator -

Flattop window used.

a) Logarithmic amplitude scale b) Linear amplitude scale

Figure 4.2

Powerline

sidebands of an

Audio Oscillator -

Band Selectable

Analysis and

Hanning window

used for maxi-

mum resolution.
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important in communications and
radar. One measure of this is
called phase noise. It is often
measured by the technique shown
in Figure 4.3a. This mixes down
and cancels the oscillator carrier
leaving only the phase noise
sidebands. It is therefore possible
to measure the phase noise far
below the carrier level since the
carrier does not limit the range
of our measurement. Figure 4.3b
shows the close-in phase noise of
a 20 MHz synthesizer. Here, since
we are measuring noise, we use
RMS averaging and the Hanning
window.

Dynamic Signal Analyzers offer
two main advantages over swept
signal analyzers in this applica-
tion. First, the phase noise can
be measured much closer to the
carrier. This is because a good
swept analyzer can only resolve
signals down to about 1 Hz, while
a Dynamic Signal Analyzer can
resolve signals to a few millihertz.
Secondly, the Dynamic Signal
Analyzer can determine the com-
plete phase noise spectrum in a
few minutes where as a swept
analyzer would take hours.

Spectra like phase noise are
usually displayed against the
logarithm of frequency instead of
the linear frequency scale. This is
done in Figure 4.3c. Because the
FFT generates linearly spaced
filters, the filters are not equally
spaced on the display. It is impor-
tant to realize that no information
is missed by these seemingly
widely spaced filters. We recall on
a linear frequency scale that all
the filters overlapped so that no
part of the spectrum was missed.
All we have done here is to change
the presentation of the same
measurement.

Figure 4.3

Phase Noise

Measurement.

a) Block diagram of phase noise measurement

b) Phase noise of a frequency synthesizer -
RMS averaging and Hanning window used for noise measurements

c) Logarithmic frequency axis presentation of phase noise normalized to
a 1 Hz bandwidth (power spectral density)
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In addition, phase noise and
other noise measurements are
often normalized to the power
that would be measured in a 1 Hz
wide square filter. This measure-
ment is called a power spectral

density and is often provided on
Dynamic Signal Analyzers. It sim-
ply changes the presentation on
the display to this desired form;
the data is exactly the same in
Figures 4.3b and 4.3c, but the
latter is in the more conventional
presentation.

Rotating Machinery

Characterization

A rotating machine can be thought
of as a mechanical oscillator.*
Therefore, many of the measure-
ments we made for an electronic
oscillator are also important in
characterizing rotating machinery.

To characterize a rotating ma-
chine we must first change its
mechanical vibration into an elec-
trical signal. This is often done by
mounting an accelerometer on a
bearing housing where the vibra-
tion generated by shaft imbalance
and bearing imperfections will be
the highest. A typical spectrum

might look like Figure 4.4. It is
obviously much more compli-
cated than the relatively clean
spectrum of the electronic oscilla-
tor we looked at previously. There
is also a great deal of random
noise; stray vibrations from
sources other than our motor that
the accelerometer picks up. The
effects of this stray vibration have
been minimized in Figure 4.4b
RMS averaging.

In Figure 4.5, we have used the
Band Selectable Analysis capabil-
ity of our analyzer to “zoom-in”
and separate the vibration of the
stator at 120 Hz from the vibration
caused by the rotor imbalance
only a few tenths of a Hertz lower
in frequency.**  This ability to
resolve closely spaced spectrum

lines is crucial to our capability to
diagnose why the vibration levels
of a rotating machine are exces-
sive. The actions we would take
to correct an excessive vibration
at 120 Hz are quite different if it is
caused by a loose stator pole
rather than an imbalanced rotor.

Since the bearings are the most
unreliable part of most rotating
machines, we would also like to
check our spectrum for indica-
tions of bearing failure. Any defect
in a bearing, say a spalling on the
outer face of a ball bearing, will
cause a small vibration to occur
each time a ball passes it. This
will produce a characteristic fre-
quency in the vibration called the
passing frequency. The frequency

Figure 4.6

Vibration caused

by small defect in

the bearing.

Figure 4.5

Stator vibration

and rotor

imbalance

measurement

with Band

Selectable

Analysis.

* Or, if you prefer, electronic oscillators can
be viewed as rotating machines which can
go at millions of RPM’s.

** The rotor in an AC induction motor always
runs at a slightly lower frequency than the
excitation, an effect called slippage.

Figure 4.4

Spectrum of

electrical motor

vibration.
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domain is ideal for separating this
small vibration from all the other
frequencies present. This means
that we can detect impending
bearing failures and schedule
a shutdown long before they
become the loudly squealing
problem that signals an immedi-
ate shutdown is necessary.

In most rotating machinery moni-
toring situations, the absolute
level of each vibration component
is not of interest, just how they
change with time. The machine is
measured when new and through-
out its life and these successive
spectra are compared. If no
catastrophic failures develop,
the spectrum components will
increase gradually as the machine
wears out. However, if an impend-
ing bearing failure develops, the
passing frequency component cor-
responding to the defect will in-
crease suddenly and dramatically.

An excellent way to store and
compare these spectra is by using
a small desktop computer. The
spectra can be easily entered
into the computer by an instru-
ment interface like HP-IB* and
compared with previous results
by a trend analysis program. This
avoids the tedious and error
prone task of generating trend
graphs by hand. In addition, the
computer can easily check the
trends against limits, pointing
out where vibration limits are
exceeded or where the trend is
for the limit to be exceeded in
the near future.

Desktop computers are also use-
ful when analyzing machinery that
normally operates over a wide
range of speeds. Severe vibration
modes can be excited when the
machine runs at critical speeds. A
quick way to determine if these

vibrations are a problem is to take
a succession of spectra as the ma-
chine runs up to speed or coasts
down. Each spectrum shows the
vibration components of the ma-
chine as it passes through an rpm
range. If each spectrum is trans-
ferred to the computer via HP-IB,
the results can be processed and
displayed as in Figure 4.8. From
such a display it is easy to see
shaft imbalances, constant fre-
quency vibrations (from sources
other than the variable speed
shaft) and structural vibrations
excited by the rotating shaft. The
computer gives the capability of
changing the display presentation
to other forms for greater clarity.
Because all the values of the

spectra are stored in memory,
precise values of the vibration
components can easily be deter-
mined. In addition, signal process-
ing can be used to clarify the
display. For instance, in Figure
4.8 all signals below -70 dB were
ignored. This eliminates meaning-
less noise from the plot, clarifying
the presentation.

So far in this chapter we have
been discussing only single chan-
nel frequency domain measure-
ments. Let us now look at some
measurements we can make with
a two channel Dynamic Signal
Analyzer.

Figure 4.7

Desktop

computer

system for

monitoring

rotating

machinery

vibration.

Figure 4.8

Run up test

from the system

in Figure 4.7.

* HP-IB, Hewlett-Packard’s implementation
of IEEE-488-1975.
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Electronic Filter

Characterization

In Section 6 of the last chapter,
we developed most of the prin-
ciples we need to characterize a
low frequency electronic filter. We
show the test setup we might use
in Figure 4.9. Because the filter is
linear we can use pseudo-random
noise as the stimulus for very fast
test times. The uniform window is
used because the pseudo-random
noise is periodic in the time
record.*   No averaging is needed
since the signal is periodic and
reasonably large. We should be
careful, as in the single channel
case, to set the input sensitivity
for both channels to the most
sensitive position which does not
overload the analog to digital
converters.

With these considerations
in mind, we get a frequency
response magnitude shown in
Figure 4.10a and the phase shown
in Figure 4.10b. The primary ad-
vantage of this measurement over
traditional swept analysis tech-
niques is speed. This measure-
ment can be made in 1/8 second
with a Dynamic Signal Analyzer,
but would take over 30 seconds
with a swept network analyzer.
This speed improvement is par-
ticularly important when the filter
under test is being adjusted or
when large volumes are tested
on a production line.

Structural Frequency

Response

The network under test does
not have to be electronic. In
Figure 4.11, we are measuring the
frequency response of a single
structure, in this case a printed
circuit board. Because this struc-
ture behaves in a linear fashion,

Figure 4.10

Frequency response

of electronic filter using

PRN and uniform window.

Figure 4.9

Test setup

to measure

frequency

response

of filter.

* See the uniform window discussion in
Section 6 of the previous chapter for
details.

Figure 4.11

Frequency

response test

of a mechanical

structure.

a) Frequency response magnitude b) Frequency response magnitude and phase
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we can use pseudo-random noise
as a test stimulus. But we might
also desire to use true random
noise, swept-sine or an impulse
(hammer blow) as the stimulus.
In Figure 4.12 we show each of
these measurements and the fre-
quency responses. As we can see,
the results are all the same.

The frequency response of a

linear network is a property

solely of the network, indepen-

dent of the stimulus used.

Since all the stimulus techniques
in Figure 4.12 give the same re-
sults, we can use whichever one
is fastest and easiest. Usually this
is the impact stimulus, since a
shaker is not required.

In Figure 4.11 and 4.12, we have
been measuring the acceleration
of the structure divided by the
force applied. This quality is
called mechanical accelerance. To
properly scale the displays to the
required g’s/lb, we have entered
the sensitivities of each trans-
ducer into the analyzer by a fea-
ture called engineering units.
Engineering units simply changes
the gain of each channel of the
analyzer so that the display corre-
sponds to the physical parameter
that the transducer is measuring.

Other frequency response mea-
surements besides mechanical
accelerance are often made on
mechanical structures. Figure 4.14
lists these measurements. By
changing transducers we could
measure any of these parameters.
Or we can use the computational
capability of the Dynamic Signal
Analyzer to compute these mea-
surements from the mechanical
impedance measurement we have
already made.

For instance, we can compute
velocity by integrating our accel-

Figure 4.12

Frequency

response of a

linear network

is independent

of the stimulus

used.

a) Impact stimulus

Figure 4.13

Engineering

units set input

sensitivities to

properly scale

results.

b) Random noise stimulus

c) Swept sine stimulus
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eration measurement. Displace-
ment is a double integration of
acceleration. Many Dynamic Sig-
nal Analyzers have the capability
of integrating a trace by simply
pushing a button. Therefore, we
can easily generate all the com-
mon mechanical measurements
without the need of many
expensive transducers.

Coherence

Up to this point, we have been
measuring networks which we
have been able to isolate from the
rest of the world. That is, the only
stimulus to the network is what
we apply and the only response
is that caused by this controlled
stimulus. This situation is often
encountered in testing compo-
nents, e.g., electric filters or

but has not completely eliminated
the 1 KHz interference.*  If we did
not know of the interference, we
would think that this filter has an
additional resonance at 1 KHz.
But Dynamic Signal Analyzers can
often make an additional mea-
surement that is not available
with traditional network analyz-
ers called coherence. Coherence
measures the power in the re-
sponse channel that is caused by
the power in the reference chan-
nel. It is the output power that is
coherent with the input power.

Figure 4.17 shows the same fre-
quency response magnitude from
Figure 4.16 and its coherence.
The coherence goes from 1
(all the output power at that
frequency is caused by the input)

parts of a mechanical structure.
However, there are times when
the components we wish to test
can not be isolated from other
disturbances. For instance, in
electronics we might be trying to
measure the frequency response
of a switching power supply
which has a very large component
at the switching frequency. Or
we might try to measure the fre-
quency response of part of a
machine while other machines
are creating severe vibration.

In Figure 4.15 we have simulated
these situations by adding noise
and a 1 KHz signal to the output of
an electronic filter. The measured
frequency response is shown in
Figure 4.16. RMS averaging has
reduced the noise contribution,

Figure 4.14

Mechanical

frequency

response

measurements.

Figure 4.15

Simulation

of frequency

response

measurement

in the presence

of noise.

Figure 4.17

Magnitude and

coherence of

frequency

response.

Figure 4.16

Magnitude of

frequency

response.

* Additional averaging would further reduce
this interference.
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to 0 (none of the output power at
that frequency is caused by the
input). We can easily see from
the coherence function that the
response at 1 KHz is not caused
by the input but by interference.
However, our filter response near
500 Hz has excellent coherence
and so the measurement here
is good.

Section 2: Time Domain
Measurements

A Dynamic Signal Analyzer usu-
ally has the capability of display-
ing the time record on its screen.
This is the same waveform we
would see with an oscilloscope,
a time domain view of the input.
For very low frequency or single-
shot phenomena the digital time
record storage eliminates the need
for storage oscilloscope. But there
are other time domain measure-
ments that a Dynamic Signal Ana-
lyzer can make as well. These are
called correlation measurements.
We will begin this section by
defining correlation and then we
will show how to make these
measurements with a Dynamic
Signal Analyzer.

Correlation is a measure of the
similarity between two quanti-

ties. To understand the correla-
tion between two waveforms, let
us start by multiplying these
waveforms together at each in-
stant in time and adding up all the
products. If, as in Figure 4.18, the
waveforms are identical, every

Figure 4.18

Correlation of

two identical

signals.

Figure 4.19

Correlation of

two different

signals.

Figure 4.20

Correlation of

time displaced

signals.

product is positive and the result-
ing sum is large. If however, as in
Figure 4.19, the two records are
dissimilar, then some of the prod-
ucts would be positive and some
would be negative. There would
be a tendency for the products to
cancel, so the final sum would be
smaller.

Now consider the waveform in
Figure 4.20a, and the same wave-
form shifted in time, Figure 4.20b.
If the time shift were zero, then
we would have the same condi-
tions as before, that is, the wave-
forms would be in phase and the
final sum of the products would
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be large. If the time shift between
the two waveforms is made large
however, the waveforms appear
dissimilar and the final sum is
small.

Going one step farther, we can
find the average product for each
time shift by dividing each final
sum by the number of products
contributing to it. If we now plot
the average product as a function
of time shift, the resulting curve
will be largest when the time shift
is zero and will diminish to zero
as the time shift increases. This
curve is called the auto-correla-

tion function of the waveform.
It is a graph of the similarity (or
correlation) between a waveform
and itself, as a function of the
time shift.

The auto-correlation function is
easiest to understand if we look
at a few examples. The random
noise shown in Figure 4.21 is not
similar to itself with any amount
of time shift (after all, it is ran-
dom) so its auto-correlation has
only a single spike at the point
of 0 time shift. Pseudo-random
noise, however, repeats itself pe-
riodically, so when the time shift
equals a multiple of the period,
the auto-correlation repeats itself
exactly as in Figure 4.22. These
are both special cases of a more
general statement; the auto-corre-
lation of any periodic waveform is
periodic and has the same period
as the waveform itself.

Figure 4.21

Auto correlation

of random noise.

a) Time record of random noise

Figure 4.22

Auto correlation

of pseudo-random

noise.

τ

Ν∆

∆

∆

Ν∆

b) Auto correlation of random noise
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This can be useful when trying to
extract a signal hidden by noise.
Figure 4.24a shows what looks
like random noise, but there is
actually a low level sine wave bur-
ied in it. We can see this in Figure
4.24b where we have taken 100
averages of the auto-correlation
of this signal. The noise has be-
come the spike around a time
shift of zero whereas the auto-
correlation of the sine wave is
clearly visible, repeating itself
with the period of the sine wave.

If a trigger signal that is synchro-
nous with the sine wave is avail-
able, we can extract the signal
from the noise by linear averaging
as in the last section. But the
important point about the auto-
correlation function is that no

synchronizing trigger is needed.
In signal identification problems
like radio astronomy and passive
sonar, a synchronizing signal is
not available and so auto-correla-
tion is an important tool. The
disadvantage of auto-correlation
is that the input waveform is not
preserved as it is in linear
averaging.

Since we can transform any time
domain waveform into the fre-
quency domain, the reader may
wonder what is the frequency
transform of the auto-correlation
function? It turns out to be the
magnitude squared of the spec-
trum of the input. Thus, there is
really no new information in the

Figure 4.23

Auto correlation

of periodic

waveforms.

Figure 4.24

Auto correlation

of a sine wave

buried by noise.
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auto-correlation function, we had
the same information in the spec-
trum of the signal. But as always,
a change in perspective between
these two domains often clarifies
problems. In general, impulsive
type signals like pulse trains,
bearing ping or gear chatter show
up better in correlation measure-
ments, while signals with several
sine waves of different frequen-
cies like structural vibrations and
rotating machinery are clearer in
the frequency domain.

Cross Correlation

If auto-correlation is concerned
with the similarity between a
signal and a time shifted version
of itself, then it is reasonable to
suppose that the same technique
could be used to measure the
similarity between two non-iden-

tical waveforms. This is called
the cross correlation function. If
the same signal is present in both
waveforms, it will be reinforced
in the cross correlation function,
while any uncorrelated noise will
be reduced. In many network
analysis problems, the stimulus
can be cross correlated with the
response to reduce the effects of
noise. Radar, active sonar, room
acoustics and transmission path
delays all are network analysis
problems where the stimulus can
be measured and used to remove
contaminating noise from the
response by cross correlation.*

Figure 4.25

Simulated radar

cross correlation.

a) ‘Transmitted’ signal, a swept-frequendy sine wave

Figure 4.26

Cross correlation

shows multiple

transmission

paths.

* The frequency transform of the cross
correlation function is the cross power
spectrum, a function discussed in
Appendix A.

b) ‘Received’ signal, the swept sine wave plus noise

c) Result of cross correlation the transmitted and received signals.
Distance from left edge to peak represents tranmission delay.
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Section 3: Modal Domain
Measurements

In Section 1 we learned how to
make frequency domain measure-
ments of mechanical structures
with Dynamic Signal Analyzers.
Let us now analyze the behavior
of a simple mechanical structure
to understand how to make mea-
surements in the modal domain.
We will test a simple metal plate
shown in Figure 4.27. The plate
is freely suspended using rubber
cords in order to isolate it from
any object which would alter its
properties.

The first decision we must make
in analyzing this structure is how
many measurements to make and
where to make them on the struc-
ture. There are no firm rules for
this decision; good engineering
judgment must be exercised in-
stead. Measuring too many points
make the calculations unnecessar-
ily complex and time consuming.
Measuring too few points can
cause spatial aliasing; i.e., the
measurement points are so far

apart that high frequency bend-
ing modes in the structure can
not be measured accurately. To
decide on a reasonable number
of measurement points, take a
few trial frequency response
measurements of the structure
to determine the highest signifi-
cant resonant frequencies
present. The wave length can
be determined empirically by
changing the distance between
the stimulus and the sensor
until a full 360° phase shift has
occurred from the original mea-
surement point. Measurement
point spacing should be approxi-
mately one-quarter or less of
this wavelength.

Measurement points can be
spaced uniformly over the
structure using this guideline,
but it may be desirable to
modify this procedure slightly.
Few structures are as uniform as
this simple plate example,* but
complicated structures are made
of simpler, more uniform parts.
The behavior of the structure
at the junction of these parts
is often of great interest, so

measurements should be made in
these critical areas as well.

Once we have decided on
where the measurements should
be taken, we number these mea-
surement points (the order can be
arbitrary) and enter the coordi-
nates of each point into our modal
analyzer. This is necessary so that
the analyzer can correlate the
measurements we make with a
position on the structure to
compute the mode shapes.

The next decision we must make
is what signal we should use for a
stimulus. Our plate example is a
linear structure as it has no loose
rivet joints, non-linear damping
materials, or other non-linearities.
Therefore, we know that we can
use any of the stimuli described in
Chapter 3, Section 6. In this case,
an impulse would be a particularly
good test signal. We could supply
the impulse by hitting the struc-
ture with a hammer equipped with
a force transducer. This is prob-
ably the easiest way to excite the
structure as a shaker and its asso-
ciated driver are not required. As

* If all structures were this simple, there
would be no need for modal analysis.

Figure 4.28

Spacial Aliasing -

Too few measure-

ment points lead

to inaccurate

analysis of high

frequency

bending mode.

Figure 4.27

Modal analysis

example -

Determine

the modes in

this simple

plate.
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we saw in the last chapter, how-
ever, if the structure were non-
linear, then random noise would
be a good test signal. To supply
random noise to the structure we
would need to use a shaker. To
keep our example more general,
we will use random noise as a
stimulus.

The shaker is connected firmly to
the plate via a load cell (force
transducer) and excited by the
band-limited noise source of the
analyzer. Since this force is the
network stimulus, the load cell
output is connected through a
suitable amplifier to the reference
channel of the analyzer. To begin
the experiment, we connect an
accelerometer* to the plate at the
same point as the load cell. The
accelerometer measures the
structure’s response and its
output is connected to the other
analyzer channel.

Because we are using random
noise, we will use a Hanning
window and RMS averaging just
as we did in the previous section.

The resulting frequency response
of this measurement is shown in
Figure 4.29. The ratio of accelera-
tion to force in g’s/lb is plotted
on the vertical axis by the use
of engineering units, and the
data shows a number of distinct
peaks and valleys at particular
frequencies. We conclude that
the plate moves more freely when
subjected to energy at certain
specific frequencies than it does

Figure 4.29

A frequency

response of

the plate.

in response to energy at other
frequencies. We recall that each
of the resonant peaks correspond
to a mode of vibration of the
structure.

Our simple plate supports a
number of different modes of
vibration, all of which are well
separated in frequency. Structures
with widely separated modes of
vibration are relatively straight
forward to analyze since each
mode can be treated as if it is the
only one present. Tightly-spaced,
but lightly-damped vibration
modes can also be easily analyzed
if the Band Selectable Analysis
capability is used to narrow the
analyzer’s filter sufficiently to re-
solve these resonances. Tightly-
spaced modes whose damping
is high enough to cause the re-
sponses to overlap create compu-
tational difficulties in trying to
separate the effects of the vibra-
tion modes. Fortunately, many
structures fall into the first two
categories and so can be easily
analyzed.

Having inspected the measure-
ment and deciding that it met all
the above criteria, we can store it
away. We store similar measure-
ments at each point by moving our
accelerometer to each numbered
point. We will then have all the
measurement data we need to
fully characterize the structure
in the modal domain.

Recall from Chapter 2 that each
frequency response will have the
same number of peaks, with the
same resonant frequencies and
dampings. The next task is to
determine these resonant fre-
quency and damping values for
each resonance of interest. We
do this by retrieving our stored
frequency responses and, using a
curve-fitting routine, we calculate
the frequency and damping of
each resonance of interest.

With the structural information
we entered earlier, and the
frequency and damping of each
vibration mode which we have

* Displacement, velocity or strain transduc-
ers could also be used, but accelerometers
are often used because they are small and
light, and therefore do not affect the
response of the structure. In addition, they
are easy to mount on the structure,
reducing the total measurement time.
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just determined, the analyzer can
calculate the mode shapes by
curve fitting the responses of
each point with the measured
resonances. In Figure 4.30 we
show several mode shapes of our
simple rectangular plate. These
mode shapes can be animated on
the display to show the relative
motion of the various parts of the
structure. The graphs in Figure
4.30, however, only show the
maximum deflection.

Section 4: Summary

This note has attempted to
demonstrate the advantages of
expanding one’s analysis capabili-
ties from the time domain to the
frequency and modal domains.
Problems that are difficult in one
domain are often clarified by a
change in perspective to another
domain. The Dynamic Signal
Analyzer is a particularly good
analysis tool at low frequencies.
It can not only work in all three
domains, it is also very fast.

We have developed heuristic
arguments as to why Dynamic
Signal Analyzers have certain
properties because understanding
the principles of these analyzers
is important in making good
measurements. Finally, we have
shown how Dynamic Signal Ana-
lyzers can be used in a wide range
of measurement situations using
relatively simple examples. We
have used simple examples
throughout this text to develop
understanding of the analyzer and
its measurements, but it is by no
means limited to such cases. It is
a powerful instrument, that in the
hands of an operator who under-
stands the principles developed in
this note, can lead to new insights
and analysis of problems.

Figure 4.30

Mode shapes

of a rectangular

plate.
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The Fourier Transform

The transformation from the time
domain to the frequency domain
and back again is based on the
Fourrier Transform and its
inverse. This Fourier Transform
pair is defined as:

Appendix A

The Fourier Transform: A
Mathematical Background

√


* The Fourier Series is a special case of the
Fourier Transform.

Sx(f) = x (t) e-j2πftdt (Forward Transform) A.l

x(t) = x (t) e-j2πftdt (Inverse Transform) A.2

where

x(t) = time domain representation of the signal x

S
x
(f) = frequency domain representation of the

signal x

j = -1

⌠⌠⌠⌠⌠ ∞∞∞∞∞
⌡⌡⌡⌡⌡−∞−∞−∞−∞−∞
⌠⌠⌠⌠⌠ ∞∞∞∞∞
⌡⌡⌡⌡⌡−∞−∞−∞−∞−∞

The Fourier Transform is valid for
both periodic* and non-periodic
x(t) that satisfy certain minimum
conditions. All signals encoun-
tered in the real world easily
satisfy these requirements.

The Discrete

Fourier Transform

To compute the Fourier Trans-
form digitally, we must perform a
numerical integration. This will
give us an approximation to a true
Fourier Transform called the
Discrete Fourier Transform.

There are three distinct difficul-
ties with computing the Fourier
Transform. First, the desired re-
sult is a continuous function. We
will only be able to calculate its
value at discrete points. With
this constraint our transform
becomes,

Sx(m∆f) = x (t) e-j2πm∆ftdt A.3

where m = 0, ±1, ±2

and Df = frequency spacing of our lines

⌠⌠⌠⌠⌠ ∞∞∞∞∞
⌡⌡⌡⌡⌡−∞−∞−∞−∞−∞

Figure A.l

Numerical

integration

used in the

Fourier

Transform

The second problem is that we
must evaluate an integral. This is
equivualent to computing the area
under a curve. We will do this by
adding together the areas of nar-
row rectangles under the curve as
in Figure A.l.

Our transform now becomes:

∆

π ∆

Sx(m∆f) ≈ ∆t x (n∆t) e-j2πm∆fn∆t A.4

where ∆t = time interval between samples

The last problem is that even with
this summation approximation to
the integral, we must sum samples
ouer all time from minus to plus in-
finity. We would have to wait for-
ever to get a result. Clearly then, we
must limit the transform to a finite
time interval.

∞

n=-∞
∑

Sx(m∆f) ≈ ∆t x (n∆t) e-j2πm∆fn∆t A.5

As developed in Chapter 3, the fre-
quency spacing between the lines
must be the reciprocal of the time
record length. Therefore, we can
simplify A.5 to our formula for the
Discrete Fourier Transform, S'x.

n-1

∑
n-0

S'x(m∆f) ≈   x(n∆t) e-j2πmn/Ν A.6T
N

n-1

∑
n-0
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The Fast Fourier Transform

The Fast Fourier Transform
(FFT) is an algorithm for
computing this Discrete Fourier
Transform (DFT). Before the
development of the FFT the DFT
required excessive amounts of
computation time, particularly
when high resolution was re-
quired (large N). The FFT forces
one further assumption, that N is
a multiple of 2. This allows cer-
tain symmetries to occur reducing
the number of calculations (spe-
cifically multiplications) which
have to be done.

It is important to recall here that
the Fast Fourier Transform is
only an approximation to the de-
sired Fourier Transform. First,
the FFT only gives samples of the
Fourier Transform. Second and
more important, it is only a trans-
form of a finite time record of the
input.

Two Channel Frequency

Domain Measurements

As was pointed out in the main
text, two channel measurements
are often needed with a Dynamic
Signal Analyzer. In this section
we will mathematicall define the
two channel transfer function and
coherence measurements intro-
duced in Chapter IV and prove
their more important properties.

However, before we do this, we
wish to introduce one other func-
tion, the Cross Power Spectrum,
Gxy . This function is not often
used in measurement situations,
but is used internally by Dynamic
Signal Analyzers to compute
transfer functions and coherence.

Figure A.2

Transfer

function

measurments

with noise

present.

The Cross Power Spectrum, Gxy, is defined as tak-
ing the Fourier Transform of two signals separately
and multiplying the result together as follows:

Gxy (f) = Sx (f) S*y(f)

where * indicates the complex conjugate of the
function.

With this function, we can define the

Transfer Function, H(f), using the
cross power spectrum and the spec-
trum of the input channel as follows:

H(f) =

where denotes the average of the function.

Gyx(f)

Gxx(f)

At first glance it may seem more
appropriate to compute the transfer
function as follows:

|H(f)|2 =

This is the ratio of two single chan-
nel, averaged measurements. Not
only does this measurement not give
any phase information, it also will
be in error when there is noise in
the measurement. To see why let us
solve the equations for the special
case where noise is injected into
the output as in Figure A.2. The
output is:

Gyy

Gxx

Sy(f) = Sx(f)H(f) + Sn(f)

So

Gyy=SySy*= Gxx|H|2+SxHSn+Sx*H*Sn+|Sn|2
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If we RMS average this result to
try to eliminate the noise, we
find the SxSn terms approach
zero because Sx, and Sn, are
uncorrelated. However, the |Sn|2

term remains as an error and so
we get

= |H|2 +

Therefore if we try to measure
|H|2 by this single channel tech-
niques, our value will be high by
the noise to signal ratio.

If instead we average the cross
power spectrum we will eliminate
this noise error. Using the same
example,

Gyy

Gxx

|Sn|2

Gxx

Gyx=SySx*=(SxH+Sn)Sx*= GxxH +SnSx*

so

=H(f)+SnSx*
Gyx

Gxx

Because Sn, and Sx, are uncor-
related, the second term will aver-
age to zero, making this function
a much better estimate of the
transfer function.

The Coherence Function, γ2, is
also derived from the cross power
spectrum by:

γ2(f) =

As stated in the main text, the
coherence function is a measure
of the power in the output signal
caused by the input. If the coher-
ence is 1, then all the output
power is caused by the input. If
the coherence is 0, then none of
the output is caused by the input.
Let us now look at the mathemat-
ics of the coherence function to
see why this is so.

Gyx(f)

Gxx(f)

Gxy*(f)

Gyy(f)

As before, we will assume a mea-
surement condition like Figure A.2.
Then, as we have shown before,

Gxy= Gxx|H|2+SxHSn*+ Sx*H*Sn+|S|2

Gxy=GxxH+SnSx*

As we average, the cross terms SnSx,
approach zero, assuming that the
signal and the noise are not related.
So the coherence becomes

γ2(f) =

γ2(f) =

We see that if there is no noise, the
coherence function is unity. If there
is noise, then the coherence will be
reduced. Note also that the coher-
ence is a function of frequency. The
coherence can be unity at frequen-
cies where there is no interference
and low where the noise is high.

Time Domain Measurements

Because it is sometimes easier to
understand measurement problems
from the perspective of the time
domain, Dynamic Signal Analyzers
often include several time domain
measurements. These include auto
and cross correlation and impulse
response.

Auto Correlation, Rxx(τ), is a
comparison of a signal with
itself as a function of time shift.
It is defined as;

Rxx(τ)= x(t)x(t+τ)dt

|H|2Gxx

|H|2Gxx+Sn
2

(HGyx)2

Gxx(|H|2Gxx+|Sn|2)

lim
T→∞

1
T

⌠⌠⌠⌠⌠
⌡⌡⌡⌡⌡ΤΤΤΤΤ
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That is, the auto correlation can
be found by taking a signal and
multiplying it by the same signal
displaced by a time τ and averag-
ing the product ouer all time.
However, most Dynamic Signal
Analyzers compute this quantity
by taking advantage of its dual in
the frequency domain. It can be
shown that

Rxx(τ)=F -1[Sx(f)Sx*(f)]

where F -1 is the inverse Fourier
Transform and Sx is the Fourier
Transform of x(t)

Since both techniques yield the
same answer, the latter is usually
chosen for Dynamic Signal
Anlyzer since the Frequency
Transform algorithm is already in
the instrument and the results can
be computed faster because less
multiplications are required.

Cross Correlation, Rxy(τ), is a
comparison of two signals as a
function of a time shift between
them. It is defined as:

Rxy(τ)= x(t)y(t+τ)dt

As in auto correlation, a Dynamic
Signal Analyzer computes this
quantity indirectly, in this case
from the cross power spectrum.

Rxy(τ)=F -1[Gxy]

Lastly, the Impulse Response,
h(t), is the dual of the transfer
function,

h(t) = F -1[H(f)]

Note that because the transfer
function normalized the stimulus,
the impulse response can be com-
puted no matter what stimulus is
actually used on the network.

lim
T→∞

1
T

⌠⌠⌠⌠⌠
⌡⌡⌡⌡⌡ΤΤΤΤΤ
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