Simulating Real-World Signal Environments for Receiver Testing

Howard Hilton, Hewlett-Packard, Lake Stevens Division
Everett, Washington

Abstract—One of the challenges in designing a
digital communications receiver is verification
of performance with ''real world" signals. The
generation of test signals which can be
calibrated and customized often requires the
development of specialized signal generation
hardware. Standard transmitters may not yet
exist and usually do not have the flexibility to
produce signals necessary to evaluate the
receiver's ability to handle interference from
a crowded and highly dynamic spectral
environment. A thorough test also requires
combining multiple transmitter outputs into a
fully occupied signal scenario which mimics
the complete antenna signal in an operational
situation. This paper describes a signal
generation system which eliminates the need
for developing custom hardware. The system
is easily configurable to output most existing
communication signal types as well as new
signal types.

Introduction

The recent high level of activity in wireless
communications has resulted in a proliferation of
digitally modulated signal types. The generation
and reception of these modern signals involves
complicated signal processing algorithms which
are unique to each signal type. In many cases the
complexity is handled in software which runs on
a digital signal processor (DSP). However, some
of the high speed algorithms require dedicated
hardware. Typically a general DSP is combined
with function specific hardware to produce a
complete implementation of a modern digital
communications source or receiver. It has been
difficult to define a general source or receiver
which can be reconfigured to work with an
arbitrary digital modulation type.

Motivations for a generic source

One reason for wanting a versatile source is to
generate signals which deviate in some
controlled manner from an ideal signal. This
capability is wuseful in the design or
manufacturing of receivers, providing a way to
examine a receiver’s response to non-ideal

signals. For example, the symbol rate may be
adjusted to examine the range over which a
receiver is able to acquire symbol-lock. Standard
commercial transmitters cannot be used since
they are usually not designed to produce these
controlled impairments.

A second application of a generic source is to
produce new signal types for which commercial
transmitters are not yet available. During the
development of a new wireless system, designers
often run into a “chicken and egg” problem—not
having a source to verify a receiver nor a receiver
to verify a source. Also, designers often want to
test the ability of a new modulation scheme in a
real-world environment to see if their
assumptions about the modulation performance
are correct. With a configurable source and
receiver, a new modulation scheme can be tested
without having to spend the time or money to
build a specialized prototype of the system.

A third use for a generic source is to produce a
complete spectral environment for receiver
testing. This requires multiple signal sources with
independent control of frequency, amplitude and
modulation. With an increasing number of
wireless modulation types being used, it is
important for manufacturers to know that their
equipment will work in a crowded spectrum. The
multiple channel source can also be used to
simulate multipath effects by programming
several channels to produce the same signal with
varying amplitude and delay so that they interfere
with each other in a random fashion.

A fourth application becomes practical if the
generic source is low cost and small. The generic
source may be used as an operational transmitter
in wireless applications where the number of
installations is small enough to not warrant the
cost of developing a specialized transmitter. The
generic source may also be an attractive option in
cases where a transmitter must be capable of
generating multiple signal types. Having a
specialized transmitter for each signal type may
be too bulky or costly. Also, the interoperability
of individual commercial transmitters may
provide a logistical problem. How does the

Simulating Real-World Signal Environments for Receiver Testing

appropriate source get activated? How about
multiplexing the antenna or the data source?

To summarize, the motivations for a generic

source include:

e Generation of impaired signals

e New signal types

* Real-world spectrum simulation, including
multipath

e Versatile operational transmitter

Historical approaches to a generic source

There has been a progression of sources with
increasing flexibility starting with simple
oscillators, function generators, and sweepers.
Later came signal generators with built-in
amplitude, phase or frequency modulation. More
recent are signal generators with I/Q modulation
inputs, some of which have built-in capability to
produce selected digital modulation types. A few
even have the flexibility to produce impairments.
These have gone a long way toward satisfying
the need to generate standard signals with
potential impairments. Signal generators have
also been used in a few real-world spectrum
simulation systems; however, the cost of these
systems has limited their use and the number of
independent channels which have been
simulated. One problem with current signal
generators which are dedicated to standard signal
types, is the delayed availability for new or
emerging standards.

The most flexible signal sources have been
arbitrary waveform synthesizers or arbitrary
waveform generators (AWS, AWG, ARB).
These are often used to drive the modulation
inputs of an RF signal generator to produce an
arbitrarily modulated signal. Although this type
of system may appear completely flexible, the
practical limitations of the AWS make it fall
short for some applications of a generic source.
Most AWS sources use a limited memory to save
a sample sequence of a signal. The samples are
pre-computed and stored. Then they are played
back by continuously looping through the sample
memory. Care must be taken so that when the
memory loops back to the beginning, there is no
undesired transient in the output. This often
places a constraint on the signal which is
inconsistent with the desired specification. The
necessity to pre-compute the samples means that
an AWS cannot be used for an operational radio.

The timing of samples in AWS can provide
difficulty for digital modulation using a given
symbol rate. The reason for this is that the
computation of samples often requires the AWS
sample rate and the symbol rate be related by a
small integer ratio. This may force the AWS to
have a variable synthesized output sample rate.

Another limitation of the AWS approach comes
from its finite memory size. This makes it
difficult to simultaneously achieve both high
sample rate and long duration signal segments.
Getting sufficient time duration of a wideband
signal with the necessary signal content is a
challenge with the AWS approach.

Real-time Signal Computations

The limitations of the AWS approach has led to a
new type of generic source—one which digitally
computes the signal samples in real-time.
Clearly, a general purpose DSP and a digital-to-
analog converter can be used for real-time
computation up to a limited sample rate.
However, the signal bandwidth has been severely
limited because of the amount of computation
required by the DSP to produce each output
sample. In order to achieve bandwidths required
by many common digitally modulated signals,
some of the computations must be done in
dedicated high-speed hardware. The trick to
maintaining generality is carefully choosing a
flexible hardware architecture. Most digital
modulation signals can be generated using the
block diagram summarized in figure-1.

In Data

— MUX — Code - Map - Filter

:

|_ Resample [Modulate | DAC RF

Figure-1 Generic Communication Source

The data multiplexer (MUX) is used to select the
source of data for various fields within the
transmitted data sequence. Most digital
communications protocols define fields within a
transmission. One field might contain a fixed
data pattern used for synchronization. The next
might contain a certain number of traffic data
words. There may be guard fields with a fixed
data pattern at the beginning and end of a
transmission. In time domain multiplexed
(TDMA) systems, the gap between bursts can be
considered as another field consisting of special

Simulating Real-World Signal Environments for Receiver Testing

data words which produce a NULL signal output.
A generic communications source needs to
include appropriate data source options,
multiplexers, and counters to provide sufficient
field generation flexibility.

The coder takes a sequence of data words and
produces a sequence of symbol codes. One
common example is differential coding, where
the output symbol codes depend on the current
and previous input data words. Another use of
the coder is for error correction. For example, a
3-bit symbol sequence may be generated from 2-
bit input data sequence where the additional bit
of information contains redundancy used by the
receiver for correcting errors. The coder should
be general enough for implementing such diverse
examples as Morse coding, for which the input
data is a sequence of ASCII bytes and the output
is a sequence of one-bit symbols with the
appropriate timing to create the Morse code
pattern for each ASCII character. In this last
example, each input code produces a variable
number of output symbols.

The map function converts a symbol code
sequence to a sequence of signal samples.
Mapping modes which are useful include:
symbol codes to real samples, symbol codes to
complex samples, dual channel (I/Q) symbols to
1/Q samples. When mapping to complex sample
values it is also useful to be able to specify an
additional fixed angle of rotation between
symbols. This is useful for implementing such
modulation types as pi/4 DQPSK and VSB.

The filter function applies an arbitrary filter to
the sample sequence. It needs to handle real
signals, complex signals, or interleaved 1/Q
signals. For complex signal types the filter
coefficients themselves should be allowed to be
complex. This provides the capability of creating
asymmetric frequency responses which are useful
in simulating certain signal transmission
impairments. For offset modulation it is
necessary to create filters with a different amount
of delay in the I and Q (real and imaginary)
outputs.

The resampler block is necessary because the
previous blocks all operate at some small integer
multiple of the symbol rate. In order to convert
the sampled sequence to a true analog signal, it is
necessary to interpolate or resample the signal at

some high sample rate which is matched to the
analog reconstruction filter cutoff.

The modulator function takes the complex
sample sequence (I/Q samples are treated as real
& imaginary) and shifts the frequency by mixing
it with a complex local oscillator. Alternatively,
the I and Q inputs can be used to control the
magnitude and frequency of the carrier. These
two modulation modes allow for all
combinations of AM, QAM, FM, and PM.

The DAC performs the digital-to-analog
conversion of the complex sample sequence to
provide [/Q analog outputs. To remove the
imaging or aliasing effects due to sampling, the
outputs must be filtered to select a single Nyquist
interval of the output spectrum.

Provided that each of the blocks in the above
block diagram are sufficiently flexible, a source
with this architecture can be used to produce
virtually any digitally modulated signal. In fact, it
can even produce high quality analog-like
modulation by treating the input data words as
quantized analog samples and mapping them to a
large number of finely spaced symbols. If the
blocks are implemented with hardware rather
than software, the source can operate at high
symbol rates. Since the function of each block is
specified with parameters, such as filter tap
values, a user knowledgeable in communication
theory can set up the parameters to produce a
wide range of signal types without having to
resort to programming. In contrast, to use an
AWS source, the user has to actually compute
the sample values. Probably the most striking
advantage of the new approach is that the data
sequence can be sent to the source in real-time,
making it capable of transmitting an actual
message with useful information as well as
protocol.

A Commercial Real-Time Source Product

A product which implements the flexible block
diagram of figure-1 is the HP E2748A. It is a
2.5”x4.2” board level module which conforms to
the TIM-40" specification. One or more of these
modules can be plugged into a carrier board. The
analog outputs can be combined to produce a

' The TIM-40 specification is a widely used
standard originated by Texas Instruments. It
defines the physical parameters and connector
pins.

Simulating Real-World Signal Environments for Receiver Testing

multi-channel source in a small physical package.
Software is included to provide an interactive
user front panel so the configuration parameters
can be set up without programming. All the
features of the module are also accessible
through a programmer’s interface library which
can be called from “C” or Microsoft Visual Basic
user programs. The software supports both a PCI
based carrier board for direct plug-in to a PC, or
a VXI carrier. The PC carrier can hold up to
three E2748A modules, while the VXI carrier
can hold up to six. Multiple carrier cards can be
used to provide higher channel count. In the VXI
carrier, provisions are made to allow modules to
be synchronized. This simplifies the simulation
of multipath by using an E2748A for each of the
reflection paths.

The configuration settings for several standard
signal types have been generated and saved in
files shipped with the E2748A. The files can be
easily loaded using the front panel interface.
These setups can be used directly for simple test
signal generation, or they can be used as starting
points for creating similar modulation types.

The following sections give specifics on the
E2748A implementation of each block in the
generic communication signal generator.

Multiplexer

The data multiplexer, shown in figure-2, consists
of a field counter which controls the selection of
the data source from among four available
sources. The sources are: an on-board pseudo-
random noise source with a repetition period of
greater than 140 trillion input data words, a user
loadable register, data memory with up to 128k
words, and a real-time data flow via the serial
COM port of the TIM-40 interface. Up to 16
fields may be specified with finite lengths
ranging from 1 to 2,097,151. Any field may also
be specified with infinite length, meaning that
once entered, the field will never complete.

Field
Counter
Noise ™
Register ™
MuXx > Out
RAM
% com p

Figure-2 Data Multiplexer

Other attributes may be associated with each
field. Specifically, each field may individually
bypass the coder, reset the coder feedback
register, reset to the beginning of the RAM data
sequence, reset the noise generator, or jump back
to field-0 on completion. The starting field may
be specified to be other than field-0.

Coder

The coder, shown in figure-3, consists of a very
general RAM based state machine. The user may
configure how many of the RAM address bits are
taken from the input data register and how many
are taken from the feedback register. The
maximum number of total address bits is 17. The
RAM output is 16-bits. The most significant bit
of the output may optionally be defined as a flag
to request a new data word into the input register.
Otherwise, a new data word will automatically be
requested for each output symbol.

Data In MSB

3 !
Data In Feedback
Register Register

v v

RAM

| N—

Symbol Out

Figure-3 Coder

The simplicity of the coder structure belies its
inherent power. The required flexibility stated
earlier in this paper is achieved and more. The
main disadvantage is the tedium of creating a
coder RAM table which implements a desired
function. The E2748A software addresses this for
commonly used coding functions.

Simulating Real-World Signal Environments for Receiver Testing

Map & Filter

Figure-4 shows a block diagram of the mapping
and filter blocks from a functional perspective.
The map merely converts symbol codes to high
resolution (16-bit) complex symbol values. The
complex L.O. multiplication provides for an
optional symbol rotation before filtering. The
multiplexer and counter insert a user selectable
number of zero samples between each symbol.
This increases the filter sample rate and available
Nyquist bandwidth over which the filter response
may be specified. The samples then enter a
direct-form FIR filter consisting of an array of
input data registers, each with a tap multiplier
and accumulation to generate the filter output.

Mod(N)

e || Counter

v
In.
]
(F PP (0
PO X XX

0 ‘Dl‘ 0 ‘ 0 ‘D2‘ 0 ‘.“‘DB‘ 0‘

Figure-4 Map/Filter Functional Diagram

Figure-5 shows another block diagram of the
mapping and filter, this time from an
implementation perspective. Clearly some
economies may be achieved relative to the
functional diagram. First, we do not need to
store, multiply or add the zero input samples.
Note that these have been eliminated from the
input data register array.

Mod(P) <3
Counter |Phase
<3

Mod(N) | ——+
Counter |Delay

Mod(I) <1 Out

Counter | 1/Q olr
=1

Mod(C) |Cluster

Counter <5 e
j <10 > <17
D2 J Symbols RAM

MUX

> TR

—
—

Figure-5 Map/Filter Implementation

Second, rather than map to 16-bit symbol values
and then perform 16x16-bit multiplies, we can
store the shorter symbol codes in the data register
array rather than the mapped values associated
with the codes. Also, rather than perform the
multiplies at run-time, we can pre-compute the
product of all possible symbols with each tap and
store the result in memory. Then at run time the
result can be recalled merely by looking up the
product using the tap number and symbol code to
form the address of the result. For example, a 32-
tap filter with four possible symbols would only
require 5+2 or 7-bits address space to look up all
the required multiplier outputs. Since more
address bits are available, it is possible to look
up more that one tap product at a time. Figure-5
shows an example where the sum of five tap
products are looked up with a single RAM
access. Thus, we need only five RAM accesses to
compute the output of a 69-tap filter (counting
the interleaved zeros shown in the original filter).

The effects of the complex local oscillator can
also be included in the lookup merely by
expanding the memory address to include all
possible rotations of the most recent symbol. One
additional address bit required for (filtering
complex symbols is an I/Q flag which indicates
whether the real or imaginary output is to be
generated.

Simulating Real-World Signal Environments for Receiver Testing

The resulting RAM address consists of the
following fields: up to 10-bits representing as
many symbol codes as can be packed into a
single cluster of taps, up to 5-bits for the current
tap cluster index, up to 1-bit to indicate I or Q
output, up to 3-bits to indicate how many zero
inputs have been inserted since the most recent
new symbol code, and up to 3-bits to include the
effects of the complex local oscillator. Since the
maximum number of address bits is 17, not all
fields can be configured to their maximum size at
the same time.

Figure-5 shows when each counter is updated to
a new value. During the time when the filter
outputs are being computed, the cluster counter
is incremented at the full 30MHz memory access
rate. Once the cluster counter “wraps around” at
the maximum cluster count, the result of the
output accumulator is clocked out as a completed
filter output, the accumulator is cleared, and the
1/Q counter is incremented. After both the I and
Q outputs have been generated the 1/Q counter
wraps around and the delay counter is
incremented to indicate another zero input has
been inserted. After the desired number of zeros
have been inserted, with outputs computed for
each, the delay counter wraps around. When this
occurs a new input symbol is shifted into the
input symbol register array and the L.O. phase
counter is incremented.

Not shown in either version of the map/filter
block diagram is a delay block in series with the
output which allows the Q-channel to be delayed
a specified number of samples relative to the I-
channel. This is useful for modulations such as
Offset-QPSK.

Resampler

The resampler shown in Figure-6 is implemented
with a single HP proprietary application specific
integrated circuit (ASIC). It consists of a filter
which, in effect, convolves the sampled input
sequence with a continuous impulse response.
The near-Gaussian impulse response is finite in
length and lasts for 7 input sample periods. The
output of this continuous convolution may be
computed at arbitrary instants in time by using
the seven input samples which fall within the
convolution interval and using the fractional time
offset of the last sample to compute the
appropriate multiplier for each of the samples.
The coefficients must be recalculated for each
new output to reflect the new position of the

samples within the continuous convolution
interval. Outputs equally spaced in time are
computed by using the time accumulator shown
in the block diagram. Whenever the time register
exceeds one input sample period, a new input
sample is clocked into the shift register
containing the most recent seven samples. The
E2748A runs the resampler output sample rate at
a constant 15MHz. Thus, the input sample rate is
15MHz times the fractional time increment, AT.
The resolution of the AT register is
1/(4096*10'°). This results in available input
sample frequency steps of 0.366uHz.

T
AT (fraction)

Figure-6 Resampler

A very important observation to make at this
point is the fact that the computations prior to the
resampler are done on an as-needed basis. The
resampler requests or “pulls” data when it is
needed. The actual time that the computations
are performed is unimportant as long as the result
is available when the resampler needs it. This
“pull” timing approach distinguishes this
approach from other real-time computed sources.
The benefits ripple all the way back to the
ultimate data source, which no longer has to
worry about precise timing. The data source may
be a host based program with interrupt driven
requests for additional data. Coupled with the
data FIFO manager built into the E2748A
software, the host software virtually does not
need to concern itself with timing. The timing of
the entire system is controlled by the 15MHz
resampler clock. This critical benefit will be
recognized by any reader who has developed a
real-time computation system with precision
timing control.

Modulator

The modulator in figure-7 is implemented with a
single ASIC. It treats the 1/Q input as a complex
number which it multiplies by the output of a

Simulating Real-World Signal Environments for Receiver Testing

complex local oscillator. The local oscillator is
implemented with a phase accumulator which,
for each sample, increments by an amount
determined by the contents of the frequency
register. An alternate FM mode switches the Q
input into the frequency adder, in effect making
the Q port be an instantaneous increment to the
center frequency. The 1 port controls the
magnitude in FM mode.

Figure-7 Modulator

Hardware implementation

The three main RAM based functions described
above: data RAM, coder, and map/filter all share
the use of the same physical memory. The user
can select how the available memory address
space is allocated among those three functions.
Because of this sharing, the existing ASICs, and
the simplicity of the remaining hardware, the
entire physical implementation of the E2748A
can be accomplished with the hardware block
diagram in figure-8. FPGA-1 implements most
of the features of the product including the COM
port interface, while FPGA-2 provides high
speed multiplexing between the resampler and
modulator ASICs. Note the conspicuous absence
of any programmable DSP chip. All control and
data are sent to the board via the serial COM
port.

FPGA — 128k x 16 Clock
COM— 1 «— RAM Generator
FPGA

2

Figure-8 Hardware Block Diagram

The clock generator uses a 30MHz voltage
controlled crystal oscillator which may free-run
or, on a VXI carrier, may be locked to a shared
10MHz external reference. When multiple
E2748As are used on a VXI carrier, a shared
ECL line may be used to synchronize the start-up
of the modules.

In order to save space the resampler and
modulator chips are mounted as bare die. They
are directly attached and wire-bonded to the
printed circuit board and encapsulated within a
single protective cover.

Summary

The E2748A represents a new level of
communications signal generation capability.
Some of its key contributions include:

¢ Extreme flexibility to produce a large variety
of existing and new signal types.

¢ Real-time computations allow live
transmission of non-repetitive protocol and
information.

e Multiple modules may be used together to
generate a complete spectral simulation,

including multipath.

e High level software front panel allows setup
and use without programming.

¢ Small size and low cost.

