

Short Form Catalog

Family of Networking Products

FibreXpress™ Network

- ANSI Standard Fibre Channel
- 1.062 Gbit/sec. Baud Rate
- 100 MByte/sec. Data Rate
- Class 1, 2, and 3 Services
- Arbitrated Loop, Switched Fabric, and Point-to-Point Topologies

Introduction

Systran Corp.'s *FibreXpress Network* is designed to maximize the superior communication and interconnect capabilities of ANSI standard Fibre Channel. This makes FibreXpress the right choice for all types of image processing, advanced digital signal processing, and mass storage applications demanding high-throughput, low-latency, real-time data transfers.

Combining the delivery and repeatability of a channel with the connectivity and protocol multiplexing of a network, Fibre Channel delivers the high-speed data transfers and interconnect versatility required by today's – and tomorrow's – data-intensive applications:

Digital signal processing

High-speed data acquisition

Particle physics

Medical imaging

Range and telemetry systems

Simulation systems

Workstation clustering

Network backbones

Video production

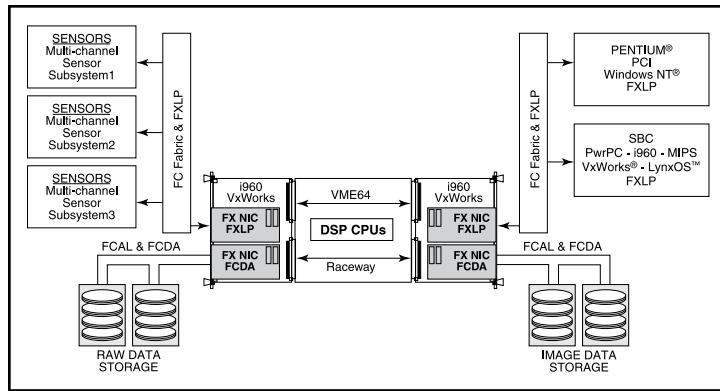
Advanced Architecture

Systran's FibreXpress Network Interface Card (NIC) design enables ultra-efficient interaction among the adapter's host interface, SRAM buffer, and intelligent Fibre Channel ASIC. The host bus interface includes

both memory-mapped and multi-channel DMA access to the SRAM buffer and provides either polling or interrupt event notification. The on-board SRAM buffer is available in either 512 KB (VME, SBUS) or 1 MB (PCI, PMC).

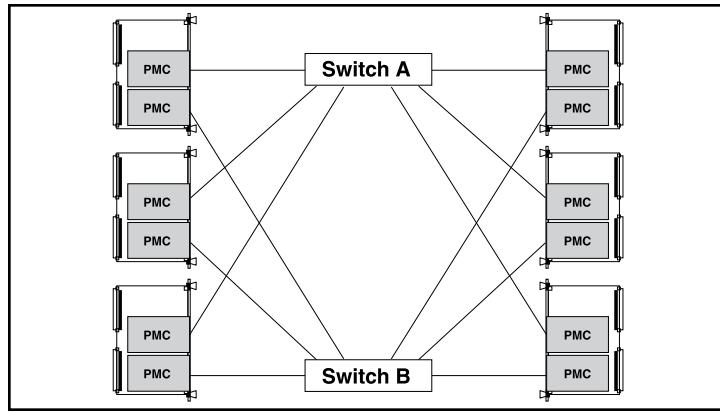
The intelligent Fibre Channel ASIC features hardware assists for both IP and SCSI FCP protocols and sophisticated queue management capabilities. As a result, burst throughputs of 100 MBytes/sec. and sustained throughputs of 50-75 MBytes/sec. can be achieved, limited only by the speed of the host system.

Host Bus and Network Media


FibreXpress NICs are available for all popular bus architectures, including PCI, PMC, VME64, and SBUS, providing maximum flexibility in the selection of computer hardware. All NICs are single-slot designs that minimize demands on precious backplane resources. Two 1 MB PMC and two 1 MB PCI versions are available with built-in network media support for copper and 850 nm optics, at 1.062 Gbit/sec. speed. The VME, SBUS, and PCI 512K NICs support direct interface to copper and optical cables through the industry standard 80-pin Gigabit Link Module (GLM).

Fibre Channel truly is the "next generation" in high-performance system interconnects...and Systran's FibreXpress Network is your link to bringing the power of Fibre Channel to *your application!*

Applications


Image Processing Application

New and emerging distributed DSP-based image processing systems must handle continuous data flow at enormous rates. FibreXpress ANSI standard Fibre Channel compliant hardware and software products are specifically designed to address the data flow requirements of advanced radar, sonar, medical, and other DSP-based imaging systems. A typical DSP architecture is shown in the diagram.

Avionics Application

New and emerging distributed avionics systems must handle continuous high data flow with low-latency precision. FibreXpress ANSI standard Fibre Channel compliant hardware and software products are specifically designed to address the high-speed, low-latency data transfers and interconnect versatility required by today's-and tomorrow's-avionics systems. A typical avionics system is shown in the diagram.

Specifications

ANSI Fibre Channel Standard:

FC-PH Revision 4.3

FC-AL Revision 4.3

Fibre Channel Topologies:

Point-to-Point

Arbitrated Loop

Switched Fabric

Electrical Requirements:

+5 VDC, 1.6 Amp. (typ.)

Operating Temperature:

0° to 50° C (32° to 122° F)

Storage Temperature:

-40° to +70° C (-40° to 158° F)

Operating Humidity:

5% to 95% (non-condensing)

Copper:

Data Rate: 1062.1 Mbit/sec.

Twinax

Connector: 9-pin D-SUB (GLM)

dual 1 x 3 differential (PCI/PMC)

Distance: 30 meters (D-Sub Duplex Cable)

10 meters (1 x 3 differential

Simplex Cable)

Shortwave Laser:

Wavelength: 850 nm

Data Rate: 1062.1 Mbit/sec.

Cable: 50/125 µm MM fiber

Connector: dual SC

Distance: 300 m

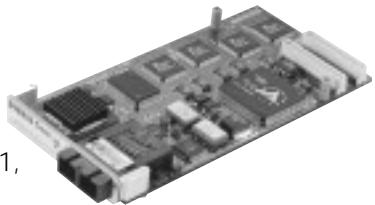
Longwave Laser:

Wavelength: 1300 nm

Data Rate: 1062.1 Mbit/sec.

Cable: 9/125 µm SM fiber

Connector: dual SC

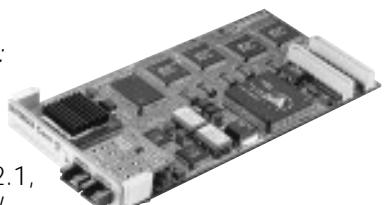

Distance: 10 km

FibreXpress Network Product Line

PMC (Fiber Optic)

Hardware Compatibility:

PMC IEEE P1386.1/
Draft 2.0
PCI Local Bus
Specification Version 2.1,
and CMC IEEE P1386/
Draft 2.0

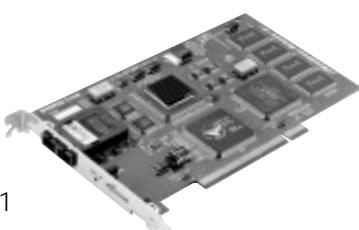

Physical Dimensions:

2.915" x 5.866" (74.041 mm x 148.996 mm)

PMC (Copper)

Hardware Compatibility:

PMC IEEE P1386.1/
Draft 2.0
PCI Local Bus
Specification Version 2.1,
and CMC IEEE P1386/
Draft 2.0

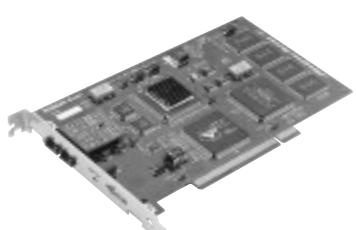

Physical Dimensions:

2.915" x 5.866" (74.041 mm x 148.996 mm)

PCI (Fiber Optic)

Hardware Compatibility:

PMC IEEE P1386.1/
Draft 2.0
PCI Local Bus
Specification Version 2.1


Physical Dimensions:

4.200" x 6.860" (106.680 mm x 174.244 mm)

PCI (Copper)

Hardware Compatibility:

PMC IEEE P1386.1/
Draft 2.0
PCI Local Bus
Specification Version 2.1

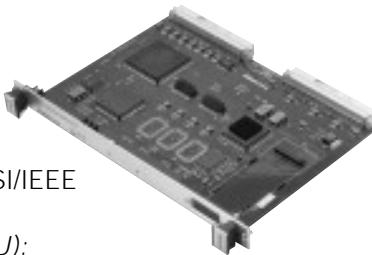
Physical Dimensions:

4.200" x 6.860" (106.680 mm x 174.244 mm)

PCI (512 KB Buffer)

Hardware Compatibility:

PMC IEEE P1386.1/
Draft 2.0
PCI Local Bus
Specification Version 2.1

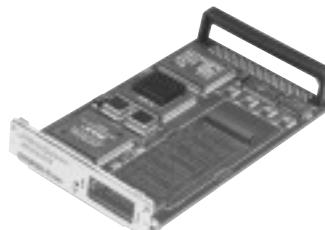

Physical Dimensions:

4.200" x 7.000" (106.680 mm x 177.800 mm)

VME6U/9U

Hardware Compatibility:

VMEbus Rev. C.3, ANSI/IEEE
Standard 1014-1987


Physical Dimensions (6U):

9.187" x 6.299" (233.000 mm x 160.000 mm)

SBus

Hardware Compatibility:

SBus Specification IEEE
Standard 1496-1993

Physical Dimensions:

3.299" x 5.825" (83.795 mm x 147.955 mm)

Gigabit Link

Modules (GLM)

FibreXpress GLMs
provide flexible support
for a variety of speed
and media options.

FibreXpress options
include copper, shortwave laser, or longwave laser at
1.062 Gbit/sec. Other standard GLMs may be used.

Interface Cables

FibreXpress fiber optic and coax cables are available in a variety
of standard and custom lengths. Contact a Systran Account
Manager for details on price and availability.

Fibre Channel Ultra Balanced Twin-ax Cable:

Simplex, 1x3 Differential Connectors, Commercial Grade
Duplex, 9-pin D-SUB to 1x3 Differential Pair, Commercial Grade
Duplex, 9-pin D-SUB Connectors, Commercial Grade

Fibre Channel 50/125 μ m Multi-mode Optical Cable:

Duplex, Dual SC Connectors, Commercial Grade

Product Specifications are subject to change without notice.

FibreXpress is a trademark of Systran Corp.

All other trademarks or registered trademarks mentioned herein are the sole property of their respective owners.

© 1998, SYSTRAN Corp. All Rights Reserved

Doc. F-T-SH-FCSFCTLG-A-0-B3 (1/15/98) 8M

FibreXpress™ Software

- Application-specific drivers maximize data throughput
- Support for a variety of computing platforms and operating systems
- Drivers provide a direct link to application for improved performance

Software Drivers

Two FibreXpress protocol drivers are available: the Fibre Channel Direct Attach (FCDA) disk device driver and Systran's FibreXpress Lightweight Protocol (FXLP) device driver.

FCDA is a Fibre Channel Association profiled device driver assuring interoperability with other Fibre Channel products. The driver is designed for private-loop, mass-storage SCSI communication. With the FCDA device driver, FibreXpress network interface cards interface directly to mass-storage devices, providing performance characteristics not found in any other mass storage interface. Applications generally access

the disk through the OS file system. However, for real-time systems, the application may link directly to the driver to dramatically improve performance to the storage system.

FXLP was designed for computer-to-computer communication in data-intensive image processing applications. It allows an application to be linked directly to the device driver, bypassing the TCP-IP protocol stack to achieve high-throughput, low-latency data communication that cannot be achieved with TCP-IP. FXLP loosely follows the sockets paradigm which allows an application to set up a virtual channel to a specific destination, then send and receive data at the highest possible throughput.

Interface Card	Hardware Platform	Host OS	Application Interface	Order Number	Product Description
PMC	i960	VxWorks® 5.3	FCDA Driver	FSD2-PMVR1EC0-00	Single Computer S/W License
				FED2-PMVR1E0E-00	Doc. & Media kit, Binaries
PMC	i960	VxWorks 5.3	FXLP Driver	FSD3-PMVR1EC0-00	Single Computer S/W License
				FED3-PMVR1E0E-00	Doc. & Media kit, Binaries
PMC	MIPS	VxWorks 5.2	FCDA Driver	FSD2-PMVM1EC0-00	Single Computer S/W License
				FED2-PMVM1E0E-00	Doc. & Media kit, Binaries
PMC	MIPS	VxWorks 5.2	FXLP Driver	FSD3-PMVM1EC0-00	Single Computer S/W License
				FED3-PMVM1E0E-00	Doc. & Media kit, Binaries
PMC	PowerPC	VxWorks 5.3	FCDA Driver	FSD2-PMVP1EC0-00	Single Computer S/W License
				FED2-PMVP1E0E-00	Doc. & Media kit, Binaries
PMC	PowerPC	VxWorks 5.3	FXLP Driver	FSD3-PMVP1EC0-00	Single Computer S/W License
				FED3-PMVP1E0E-00	Doc. & Media kit, Binaries
PCI	Pentium® PC	Windows NT®	FCDA Driver	FSD2-PCWE1EC0-00	Single Computer S/W License
				FED2-PCWE1E0E-00	Doc. & Media kit, Binaries
PCI	Pentium PC	Windows NT	FXLP Driver	FSD3-PCWE1EC0-00	Single Computer S/W License
				FED3-PCWE1E0E-00	Doc. & Media kit, Binaries

Network Transparent Switch

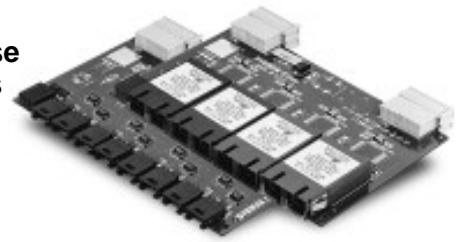
Patent Pending

- Full crossbar electronic matrix switch
- Supports copper or optical media
- Up to 32 non-blocking copper or optical ports
- Any combination of point-to-point, arbitrated loop or broadcast communication links between ports
- Remote location control of network topology via RS232 or a modem
- Support for other types of networks through network specific port cards
- Installs into 4-disk drive bay

The FibreXpress Network Transparent Switch (NTS) base unit is a full 32x32 crossbar switch, designed to support up to 32 I/O ports connected to digital signals with baud rates up to 1.5 Gb/s. The switch is called "transparent" because it does not engage in any protocol disassembly or any encoding or decoding of input data streams. Therefore, the NTS is transparent to the network protocol whose data streams are being directed, routed, or channeled by the switch.

The NTS can support any combination of point-to-point, multiple loops, or broadcast connections between ports simultaneously. Configurations can be changed on-the-fly without effect on other connected and operating ports. Each port is provided a status

line to the internal controller which allows the port circuitry to request a predefined change to a secondary connection or "automatic reconfiguration." For example, a Fibre Channel port can be automatically dropped from a loop if the node is indicating a powered-down or otherwise inactive state to the NTS port.


The NTS base unit is designed to accept up to eight "port cards" with up to four I/O ports per card. Different types of port cards provide the specific media connectors, signal conversion, and conditioning required for a specific type of network or digital signal to be switched. The NTS can be populated with multiple port card types.

Full-Speed Fibre Channel NTS Port Cards 1.0625 Gb/s — Short Wave Laser or Copper

The full-speed, 1.0625 Gb/s, 4-port NTS port card is specifically designed to operate with full-speed Fibre Channel signals. Each input port has signal detection circuitry which is indicated via a front panel LED and reported to the NTS controller via the status line. Output port signals are retimed to remove noise and line jitter, allowing signals to pass through up to five cascaded switches error free. Port cards are available for either non-OFC Short Wave Laser or copper Fibre Channel connections.

Multi-Speed General Purpose NTS Port Cards 133 MHz up to 1 GHz — Short Wave Laser or Copper

The multi-speed, general-purpose, 4-port NTS port card is designed to operate with signals of any encoding or baud rate (up to 1 GHz) from any electrically compatible Fibre Channel transceiver. There is no retiming circuitry. This allows the port cards to operate with a wide range of baud rates and various types of encoders such as SMPTE video, SONET, and FDDI. Port cards are available for both non-OFC short wave laser or copper connections.

Partial list of Systran Corporate Clients

AAI Corp.	Coastal Systems Station	IIT Research Institute	Naval Surface Warfare Center
ADE (India)	Computer Sciences Corp.	Indra (Spain)	Northrop Grumman
AIDC (Taiwan)	Computing Devices International	Integrated Microcomputer Systems	Oerlikon-Contraves (Switzerland)
AP Labs	Concurrent Computer	Interstate Electronics	PSE&G Nuclear Training
ARS Electronica Center (Austria)	Contraves USA	JTT Defense	Phillips Labs
ASCOM	DASA	Jet Propulsion Laboratory	Pratt & Whitney
Adaptive Optics Associates	DRA (U.K.)	KDN (Korea)	Raytheon Co.
Aeronautical Development Establishment	Daewoo Heavy Industries Ltd. (Korea)	Kaiser Aluminum	Rediffusion (U.K.)
Honda (Japan)	Daimler-Benz Aerospace (Germany)	Kawasaki Heavy Industries (Japan)	Reflectone
Aerospatiale (France)	Dynamic Research	Komatsu TEC	Rockwell
AeroVironment®	Dyncorp	Korea Electric Power Data Network	Rockwell Collins
Agency for Defense Development (Korea)	EASAMS (Australia)	Company Ltd. (Korea)	Rockwell International
Alcoa	EG&G	Krauss-Maffei (Germany)	Rockwell Power Systems
Alenia (Italy)	ESG (Germany)	LBE Technologies	S3 Technologies
Allied Signal	Eaton Corp.	Lawrence Livermore National Labs	SAAB Aircraft (Sweden)
Applied Dynamics International	Elbit (Israel)	Lear Astronics	SAIC
Argonne National Laboratory	Encore Computer Corp.	Lear-Siegler	SEOS (U.K.)
Army Research Laboratory	Ericsson Microwave Systems	Link-Miles (U.K.)	SRL
Ascom (Switzerland)	E-Systems	Litton Amercon	SSC Labs
Atlas Electronics (Germany)	Evans & Sutherland	Litton Guidance & Control Systems	SSI
Aydin Corp.	EXITECH Corp.	Lockheed Aeronautical	STN-Atlas Elektronik (Germany)
BBN	Fermi Labs	Lockheed Austin	Sandia National Labs
Ball Aerospace	Finnair (Finland)	Lockheed ESC	Silicon Graphics, Inc.®
Barrow Neurological Institute	FlightSafety International	Lockheed Ft. Worth	Sikorsky
Bell Helicopter Textron	Fokker Control Systems (Netherlands)	Lockheed Martin	Sparta
Bell South Telecommunications	Ford Motor Co.	Lockheed Missiles & Space	Spectrum Astro
Boeing Commercial	GE Aerospace	Logicon	Supercomputer Research Center
Boeing Computer Services	GE Aircraft Engines	Los Alamos National Labs	Technology 80, Inc.
Boeing Defense & Space	GEC Marconi	MIT Lincoln Labs	TRW
Boeing Military Airplanes	Gemini Technology	MODCOMP®	Texas Instruments
Bose Corp.	General Motors Corp.	MTS Systems	Thomson-CSF Electronik (UK & France)
British Aerospace	General Physics	MacAulay-Brown	Tokyo Electric (Japan)
CAE	Georgia Tech	Marconi (U.K.)	Tokyo University (Japan)
CAE Electronics (Canada)	Grumman Aerospace	Marlin Marietta	Trandes Corporation
CAE-Link	Harris CSD	Massachusetts Institute of Technology	USAF
CAE MRAD (Australia)	Harris RSA	Ministry of Transport (Japan)	Unisys GSG (Canada)
CASA (Spain)	Harris Computer Systems (France)	Mitsubishi Electric Corp. (Japan)	University of California at San Diego
CERN (Switzerland)	Heurikon	Motorola GSTG	University of Illinois
CHESS (Netherlands)	Hewlett-Packard®	NASA	University of Massachusetts
CSA	Hitachi Zosen (Japan)	NATC	University of Washington
Calspan Corp.	Honeywell	NLR (Netherlands)	Veda Inc.
Carolina Power & Light	Honeywell Space & Satellite Systems	NRL	Vitronics
Charles Stark Draper Labs	Hughes	NTSC	Vitro Services
Chrysler Corp.	Hughes Aircraft	NUSC	WYLE Laboratories
Chung-Swan Institute of Science and Technology MTT (Taiwan)	Hughes Training	NWC	Whittaker Communications
	IBM™	Naval Air Warfare Center	Wright Patterson AFB

Available From

USA • Systran Corp. • Corporate Headquarters • 4126 Linden Avenue • Dayton, Ohio 45432-3068 USA • Phone: 937-252-5601
 Sales Phone: 1-800-252-5601 • Sales Fax: 937-258-2729 • E-mail: info@systran.com • Internet: <http://www.systran.com>

Australia • Advanced Systems Pty, Ltd. • 117-121 South Road, Hindmarsh • South Australia 5007 • Phone: 61-8-8346-0899 • Fax: 61-8-8346-5911
 E-mail: jlgw@advsys.com.au

France • VSYSTEMS S.A. • 2, Rue de Marly • 78150 Le Chesnay France • Phone: 33-1-39238484 • Fax: 33-1-39632875
 E-mail: 100567.1101@compuserve.com

Germany • VSYSTEMS Electronic GmbH • Elisabethstrasse 30 • 80796 München Germany • Phone: 49-89-2725306 • Fax: 49-89-2722584
 E-mail: info@vsystems.de

Italy • VSYSTEMS S.R.L. • via Cavour 151 • 10091 Al Pignano • Turin Italy • Phone: 39-11-9661319 • Fax: 39-11-9662368 • E-mail: info@vsystems.it

Japan • EIE, Inc. • Sukiabashi Building • 5-1-7 Ginza, Chuo-Ku • Tokyo 104 Japan • Phone: 81-3-3572-3442 • Fax: 81-3-3572-3434

Korea • KCE International Co., Ltd. • RM# 503 DooRay Building, 24 Youido-Dong • Youngdeungpo-Ku • Seoul 150-010 Korea
 Phone: 822-761-5200 • Fax: 822-780-5010 • E-mail: kceicom@hitel.kol.co.kr

Norway, Denmark • VSYSTEMS A/S • Nedre Rommen 5 • 0988 Oslo Norway • Phone: 47-22-10-18-52 • Fax: 47-22-10-62-02
 E-mail: info@vsystems.no

Singapore • Hai-Ou PTE., Ltd. • 155 Kallang Way #06-18/22 • Singapore 349244 • Phone: 65-296-5028 • Fax: 65-297-2285
 E-mail: haiou@singnet.com.sg

Sweden, Finland • VSYSTEMS AB • Ekbacksvagen 28, 5tr. • S-16869 Bromma Sweden • Phone: 46-8-26-65-60 • Fax: 46-8-26-65-20
 E-mail: info@vsystems.se

Taiwan • Skywave Electronics, Inc. • 52 Lane, 101 Paoching Street • Taipei Taiwan R.O.C. • Phone: 886-2-2218-6249 • Fax: 886-2-2218-6248
 E-mail: skywave@top2flicnet.net.tw

United Kingdom • Aerotech World Trade, Ltd. • St. Peter's Road • Maidenhead, Berkshire SL6 7QU England • Phone: 44-1-628-634555
 Fax: 44-1-628-781070 • E-mail: ukhq@aerotech.uk.com

For representation in other countries, contact Systran corporate headquarters at the USA office.

Corporate Headquarters • 4126 Linden Avenue • Dayton, Ohio 45432-3068 USA • Phone: 937-252-5601
 Sales Phone: 800-252-5601 • Fax: 937-258-2729 • E-mail: info@systran.com • <http://www.systran.com>

