HP SCMVX008 Option 040
4-Channel DDR TIM-40 Board

Programmer’s Guide

[ercicano

Part Number VX008-90010+

Printed in U.S.A.
Print Date: TBD, 1998

© Hewlett-Packard Company 1997. All rights reserved.
8600 Soper Hill Road Everett, Washington 98205-1298 U.S.A.

NOTICE

The information contained in this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or
direct, indirect, special, incidental or consequential damages in connection with
the furnishing, performance, or use of this material.

Warranty

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication, or disclosure is subject to HP standard commercial license
terms or to the following restrictions, whichever is applicable:

® For non-DoD Departments and Agencies of the U.S. Government, as set forth
in FAR 52.227-19(c) (1-2) (Jun 1987);

® For the DoD and its Agencies, as set forth in DFARS 252.227-7013 (c) (1) (ii)
(Oct 1988), or DFARS 252.221-7015(c) (May 1991), whichever is applicable.

HEWLETT-PACKARD COMPANY
3000 Hanover St.
Palo Alto, CA 94304

©Copyright 1997, 1998 Hewlett-Packard Company. All rights Reserved

This document contains proprietary information which is protected by copy-
right. All rights are reserved. No part of this document may be photocopied,
reproduced or translated to another language without the prior written consent
of Hewlett-Packard Company. The information contained in this document is
subject to change without notice.

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for this
pack is restricted to this product only. Additional copies of the programs can be
made for security and back-up purposes only. Resale of the software in its pres-
ent form or with alterations is expressly prohibited.

Printing History
Edition 1: January, 1998

Table of Contents

Table of Contents

Introduction

Overview.
Requirements

Terminology
Definitionof Terms
Acronyms/Abbreviations

Hardware Installation

Installing TIM-40 Modules

Jumpers.
ClockJumper
Comm Port Jumper
DDR CommPort.
Comm Port Selection

Audio (DAC)Outputs.

Software Installation

Windows 95/NT
HP-UX9.0x....... . .

Directoriesand Files

Windows 95/NT Directories

HP-UX Directories

Example Program
Hardware Configuration.
Running HP Radio
DDRGroups

Example Configurations
4-channel, 4ch/DSP
8-channel, 4ch/DSP
16-channel, 8ch/DSP
24-channel, 12ch/DSP
16-channel, 4ch/DSP

Table of Contents

System Software Development 20
OVEIVIEW . . . o 20
Software Requirements 20
Hardware Requirements 21
HPVXS LIbrary e 22
Program Development. 23

GrOUDING .« o ot 23
System Definition. 23
Host<>Target and Target<>Target Messaging 24
Host<starget Commands 24
Host Flunctions 26
Host Programming Example 28
Target Functions 30
Target Programming Example. 32
DDR Interface Programming 32
DDR Programming Example 40
HP Radio Target Program 43
Reference Documentation. 43
Data Flowo 44
VX8 Shared Bus 49
Control Flow 51
Interrupt Service Routines. 58
Synchronization 59
Cdx Memory Utilization 59
Final Noteso 60
Building the Radio DSP Programs. 61

Appendix A: Hardware Configuration 63
Introduction 63
SCMVX008/040 Example Configurations 63

SCMVXO008 Configuration: (1) 040, (0) 011, (0)012.................. 64
SCMVXO008 Configuration: (2) 040, (0) 011, (0)012.................. 65
SCMVXO008 Configuration: (4) 040, (0) 011, (0)012.................. 66
SCMVXO008 Configuration: (6) 040, (0) 011, (0)012.................. 67
SCMVXO008 Configuration: (4) 040, (2) 011, (0)012.................. 68
SCMVXO008 Configuration: (2) 040, (2) 011, (0)012.................. 69
SCMVXO008 Configuration: (2) 040, (0) 011, (2)012.................. 70
SCMVXO008 Configuration: (2) 040, (0) 011, (2)012.................. 71
Index 73

ii

HP VX8 DDR TIM Introduction
Programmer’s Guide

Introduction

The SCMVX008! option 040 DDR TIM board is a 4-channel digital downconverter
(DDCO). It also provides 4 digital-to-analog converters (DAC). See figure below.
This TIM-40 module is designed to be installed on the SCMVXO008 carrier board (by
Spectrum Signal Processing) and is referred to as the DDR TIM elsewhere in this
document.

—~JChO N Ch0}—
™ooc [| FFo]
comm port
I 0 16 L~JCh1 N Ch 1 switch
R 16 | [o0c "] ARO[Doc comm f¢> port 0
E ﬂ_ﬁ register > output £ po][t K> k=S port 4
2 register | | interface |
2 12 register 2 = BhDg ~ Ethé - g K= port b
= 5 {} comrln pog
= is selecte
B _ data L Ch3 [, Ch3 L data router with jumpers
& [~ interpolation —oocTrFO & control
|2 & control . {} i
ﬁl N SIDEA%O ; ze g
DOC | | DAC | | DAC D> S zE
control | | control SF3|28| g S8
stereo [%’ S22 8
DAC g5
I i A

This discussion describes how to install the hardware and software, including a
general description of the pieces, where they are located (i.e.. directory names), and
how to run the demonstration program.

! The SCMVX008 is referred to elsewhere in this document simply as VX8.

Introduction HP VX8 DDR TIM
Overview Programmer’s Guide

Overview

This discussion describes how the DDR TIM and C40 modules may be used to create
multi-channel, narrowband receiver systems.

The VX8 Carrier Board has 2 TMS320C40 DSPs permanently installed on it and sites
to install 6 TIM-40 plug-in boards. The TIM-40 boards may be either HP DDR TIMs
or more C4x DSP TIMs. Default configurations are discussed on page 14.

Digital Drop Receiver The following figure shows the generic block diagram of a digital drop receiver
(DDR). Signal data flows through the system as follows:

1. An analog tuner (optional) downconverts the antenna signal to an IF near
baseband.

2. A wideband analog-to-digital converter (ADC) digitizes the tuner’s IF output.

3. The wideband digital data is transferred over the VXI Local Bus to the VX8
module where it is broadcast to one or more digital downconverter (DDC)
modules. The DDC channelizes a signal (tunes to a specific narrowband
frequency).

4. The channelized, lower-bandwidth digital signal is transferred to a C4x digital
signal processor (DSP) module on the VX8 board via a comm port. The DSP
performs detection/demodulation of the data, transforming it to audio information
in digital format.

5. The digital audio data is transferred to a digital-to-analog converter (DAC) on the
DDR TIM board via comm port and it is converted to analog format.

Generic Digital Drop ST VX8 ---oooeeee

Receiver z : :
analog ADC - C40 : .
tuner _’(wideband)% DDC (> >4 DAC —E—raudlo

Requirements

The software provided with this product supports Windows NT, Windows 95, and
HP-UX 9.0x. There are some differences in the level of support for each as
described in more detail later.

Supported system configurations:

PC embedded slot-0 controller (e.g. HP E6233)

PC connected via MXI-2 interface (National Instruments VXI-PCI8000 kit) to
the VXI chassis

— HP-UX embedded slot-0 controller (e.g. E1498A)
— HP-UX workstation connected via MXI interface (E1482B) to the VXI chassis

Requirements for the HP Radio demonstration program:

Runs on a PC controller, only.

PC host/controller is Pentium or better

VXI chassis

One VX8 VXI module

At least one DDR TIM installed on the VX8 board.
For more detail see Example Program on page 11.

HP VX8 DDR TIM Introduction
Programmer’s Guide Terminology

Terminology

This topic defines the terms, abbreviations, and acronyms used in this document.

Definition of Terms

Channelize - to extract a narrowband signal at a specific center frequency from
a wideband digital data stream. One DDR TIM board can channelize four signals
at any four center frequencies within the ADC bandwidth.

Host - the computer system which starts and controls the high-level processes in
a narrowband receiver system; a PC or HP-UX workstation. The HP Radio pro-
gram runs on the ~ost. It downloads the radio program to the target system on
the VX8 carrier board.

Target - the VX8-based computer system which is started and controlled by the
host system in a narrowband receiver system; also referred to as the dsp system.
It is composed of one or more C4x DSPs on one or more VX8 carrier boards. The
function of the target system is to manage the assets and perform the processes
of the low-level narrowband receiver system. Commands and responses pass be-
tween the host and the target via a shared-memory messaging scheme.

Embedded - installed directly in a system chassis or on a VXI module.

When used to describe a VXI controller, “embedded” means the computer system
is, itself, a VXI module installed in slot 0 of a VXI chassis as opposed to an exter-
nal (desktop) computer which could be used in conjunction with a MXI interface.
Embedded controllers have front-panel connectors for a mouse, a keyboard, and a
monitor as well as interfaces such as LAN, SCSI, and RS232.

When used to describe a C40 DSP, "embedded" refers to one of the two TI
TMS320C40 DSP ICs installed permanently on the carrier board as opposed to
TIM-40 boards which are plugged into node sites on the board. You can get 24
narrowband receiver channels on one VX8 board by installing 6 DDR TIM boards
and grouping 3 each with the two embedded C40s.

Node - one of the eight locations on the VX8 carrier board which may contain an
embedded C40 or TIM-40 module. The nodes are identified by the letters of the

alphabet, A through H; nodes A and B contain embedded C40 DSPs and nodes C
through H are locations supporting the TIM-40 plug-in modules. See page 4.

Comm Port - TMS320C4x high-speed interprocessor communication feature.
The C40 has 6 comm ports and the C44 has 4. See page 6.

Acronyms/Abbreviations

VX8 - shorthand for Spectrum Signal Processing’s SCMVX008 carrier board
DDC - digital downconverter

DSP - digital signal processor

DAC - digital-to-analog converter

DDR - digital drop receiver (DDC + DSP/detection + DAC/audio out).

See DDR Groups on page 14.

TIM - Texas Instruments Module, also used as TIM-40

C40 - The Texas Instrument TMS320C40 DSP.

e (C4x - Refers to either the TI C40 or C44 DSPs. The C40 may be either one of the

two embedded ICs installed on the VX8 carrier board or additional TIM-40 boards.

¢ ISR - interrupt service routine
e EOB - end of block

Hardware Installation HP VX8 DDR TIM
Installing TIM-40 Modules Programmer’s Guide

Hardware Installation

Installing TIM-40 Modules

The DDR TIM modules are usually installed on the VX8 carrier board by
Hewlett-Packard before they are shipped. They should be configured properly when
you receive them. Checking or changing the configuration requires removal of the
VX8 carrier board cover. To move, install, or remove a DDR TIM module on the VX8
carrier board, see Spectrum Signal Processing’s VX8 Carrier Board Installation
Guide provided with the VX8 VXI module. See also Appendix A on page 63.

The following figure shows a VX8 with the cover off and one DDR TIM installed in
node C (note that the connectors are visible in the other nodes).
A

¢

\\\\\\

<] [
* 3 v v v v v VXIbus g g
0 node B 2 &
& nodeH |¢»| nodeF [¢»| nodeD |e»| 40 Interface x %
+—
& Ah 4X AA 44 Shared @
£ e e %ﬁ DRAM g
5 R MR 438
o L L Local Bus & o
o) X Interface g =
% global shared bus = E
Ay e —
i vy v vv vv y YV comm port %
= nnde A o connections m
L;:o node G (¢—»| nodeE |¢»{ nodeC [a0 Each node
(C through H)
DU N S . S S U DR I oot
the 2 application-specific

front-panel connectors
(not shown here)

Note

HP VX8 DDR TIM Hardware Installation
Programmer’s Guide Jumpers

Jumpers

The jumpers on the DDR TIM module select the clock source and the module’s
single comm port as follows. The jumper settings for several example configurations
are described in Appendix A: Hardware Configuration on page 63.

Clock Jumper

The clock source may be either the ADCCLK signal from the VXIbus or a clock
generated on the VX8 board (SYSCLK). Normally (using the default setting) the
ADCCLK signal is selected so that the data processed by the DAC section stays in
sync with the ADC that generates the digital information.

The ADC must be set to drive this clock over the ECLTRG1 line by becoming the
clock master. DDR programming requires thatl the clock signal is present.

The SYSCLK is provided for the special case in which the DAC section is used and
there is no ADCCLK signal; either there is no ADC module to provide it or it is not
available on the ECLTRIGI line of the VXIbus.

The clock selection is made with the Clock Select jumper as follows; see figure:

* no jumper selects the ADCCLK signal (default)
¢ jumper selects the SYSCLK signal

jumpers
Comm Port Select ! ClockSelect

port 0: no jumpers CP4 CP5 & A
port 4: CP4 (o] [xa] ==

port 5: CP5 " audio circuitry

ROM 0

[@]1

data interpolation/control DDC 3

[®]2

audio coax connectors

DDC 0 DDC 1 DDC 2 3

Notes

Comm Port Jumper

The DDR TIM comm port is selected as follows:

¢ Comm Port 0: no jumper
e Comm Port 4: jumper at CP4
e Comm Port 5: jumper at CP5

There is no default setting for the comm port jumper. Since they come installed on
the VX8 board and must be able to communicate with a C4x DSP, each board’s
comm port is set at the factory based on its node location and that of its C4x master.
See the table on page 6.

If no jumper is needed, you may place a jumper on one of the two pins to keep it
available for future changes.

Hardware Installation HP VX8 DDR TIM
Jumpers Programmer’s Guide

DDR Comm Port

Comm ports are used to pass data between nodes on the VX8 carrier board as shown
in the following figure. The DDR TIM module has a single comm port interface
which may be configured as either comm port 0, 4, or 5. The comm port determines
which node the DDR TIM module uses to communicate with its C4x controller. The
comm port selected depends on the node locations of both the DDR TIM module and
the C4x.

The comm port on the DDR TIM is used for several purposes:

1. Channelized, lower-bandwidth data is passed from the DDR TIM to the C4x.

2. Detected/demodulated digital audio is passed from the C4x to the DDR TIM for
conversion to analog format by the DACs.

3. Configuration/control information is passed from the C4x to the DDR TIM

] Bo
D2 «11
o o F2 «14
Apps,,ﬂ H¢,Apps H3+—0—) /
COE |y ' FGH) Yy y Y
a0 »5 a0 TIM-40 TIM-40 Embedded’] ¢
U U Cix 0o« »3 Cix 0 »5 Cix 0 »5 C40
: ° . 5 NodeH Node F Node D NodeB |o
0a St ol 4 4 1 3 1p 4 4 15
° e S A > A A » A
9 o 2 : — : : :
5 : s 5 :
a3 [«ic2 &
oo S : 7 : ‘ i ‘
o ; A : 3 :
BB**H H*’DZ g v > v v ‘ v
s s = ‘ 4 1 T 4 3 4 1 T 4
8 ° 2 TIM40 TIM-40 TIM-40 Embeddea® €
G3 *H H¢E2 Cix 0g« »(3 Cax 0 »5 Cix 0 »5 C40
SR 5 Node G Node E Node C Node A 2d¢
o o 3 2 5 2
A A A
M3t [kF2 B3¢0
¢ 0 E2 «{4
VX008 G2
— A3 1
<4—p C40/C44 connection [/] bi-directional buffers
«----p (40 connection only o set as an output port after reset

Comm Port Selection

The following table lists the comm port to use given the node location of the DDR
TIM and the node location of the C4x DSP that will control it and process its data.
For more information about group configurations, sce DDR Groups on page 14.

DDR C4x DDR DDR Cax DDR DDR Cax DDR
TIM DSP Comm TIM DSP Comm TIM DSP Comm
node node Port node node Port node node Port
A 0 B 0 C 0
C D* 4 D A 4 E F* 4
E 5 F 5 A 5
D 0 E 0 F 0
F G* 4 G H* 4 H E* 4
B 5 A 5 B 5

* A DDR TIM cannot communicate with a C44 module in this position.

Also, the jumper settings for several example configurations are described in Appen-
dix A: Hardware Configuration on page 63.

Audio Connections

HP VX8 DDR TIM Hardware Installation
Programmer’s Guide Audio (DAC) Outputs

Audio (DAC) Outputs

The audio outputs of each DDR TIM channel’s DAC are routed to the VX8 applica-
tion-specific connectors as given in the following table:

Node udio Pin # BoB |\ o audio Pin # BoB |\ o Audio Pin # BoB
ch. # | signal |return | jack® ch. # | signal |return | jack® Ch. # | signal | return | jack™

0 15 14 1 0 19 18 5 0 23 | 22 9

c 1 3 4 2 D 1 7 8 § : 1 1 12 10
2 1 3 2 § 5 7 2 10 9 1

3 1 17 4 3 20 | 21 8 3 24 | 25 12

0 15 14 1 0 19 18 5 0 23 | 22 9

: 1 3 4 2 g 1 7 8 6 " 1 1 12 10
2 2 1 3 2 § 5 7 2 10 9 1

3 16 17 4 3 20 | 21 8 3 24 | 25 12

Pin # refers to the pin numbers as shown in the figure directly below.

* BoB jack refers to the jack number (1-12) of the audio breakout box (BoB) E3245A
shown in the bottom figure. This accessory provides monaural connections.

The following figure shows the pin numbers for the application-specifc connectors.
The part numbers for the connector that fit the front panel connectors are:

e (Cable connector, plug: AMP 750833-1
¢ Backshell kit: AMP 750850-3

AMP 786199-1

Note

E3245A Audio Breakout
Box Accessory

13 1
\DDDDDDDDDDD/
DO000DOOOOOO
Apps 26 14
FGH
. (o)
0 OC [ele) 0 Of)0 8
0 0 o0 0 of DO §
Apps
CDE

The DDR TIM board also has 4 coax connectors mounted on the board which may be
used to connect to the DAC outputs. See the figure on page 5. Your VX8 carrier
board may have a number of small bulkhead connectors on the front panel to which
these attach. The connector type is OSMT from M/A-COM. See series part number
9950-4100-xx for available cables.

e 10 20|50 80|90 1O

30 +O|| 70 8O || 1O 120

This accessory provides monaural miniature phone plug connections (3.5 mm as are
commonly found on headphones) from the VX8 application-specific front-panel
connectors. For connections, see the BoB jack column in the table above.

Software Installation HP VX8 DDR TIM
Windows 95/NT Programmer’s Guide

Software Installation

The software provided with the SCMVX008 option 140 software development kit
supports C language programming and includes libraries and header files for devel-
opment in three environments:

¢ Windows 95
e Windows NT
e HP-UX 9.0x

Windows 95/NT

To install the software on a PC, insert floppy disk #1 into drive A: and run A:\setup.
Follow the instructions given by the installation program.

To run the radio demonstration program under Windows NT:

® Microsoft service pack 2 or greater should be installed. The installation program
checks this and notifies you if the update is not installed. The NT service pack
can be obtained from Microsoft’s web site, www.microsoft.com.

e VXI plug&play support must be installed. The installation program verifies that
VISA32.DLL exists in the Windows system directory.

e Spectrum Signal Processing’s ssvx8_32.dll must be installed in the
\vxipnp\bin\winxx directory. (xx depends on the operating system.)

o Seethe readme. txt filein \vxipnp\winxx\hpradio directory for informa-
tion about the hardware required to run the HP radio demonstration program.

HP-UX 9.0x

To install the software on an HP-UX workstation, insert the DAT (digital audio tape)
in the DDS DAT drive and execute the following command as superuser (root):

/etc/update -s /dev/update.src “*”

This command assumes that the /dev/update. src device file refers to the DDS
DAT drive. If this device file has not been pre-configured, use SAM (System Admin-
istration Manager) to create and configure the appropriate device file for the DDS
DAT drive.

HP VX8 DDR TIM Software Installation
Programmer’s Guide Directories and Files

Directories and Files

The files and directory names vary depending on the system type.

Windows 95/NT Directories

All installed directories and files are placed in the default directory:

® c:\vxipnp\winnt for Windows NT systems
¢ c:\vxipnp\win95 for Windows 95 systems

The drive letter may vary but we recommend that the \vxipnp\winxx directory is
used. VISA library support and drivers for the VXIbus host controller interface
should also be in this directory (\vxipnp\winxx) as should Spectrum Signal
Processing’s ssvx8 host libraries for the SCMVX008 Carrier Board.

The following directories and files are installed for Window 95/NT systems:

¢ include\ - library and VXI plug&play include files
¢ hpvx8.h - the main hpvx8 library include file
e 1ib\ - archive libraries
° msc\ - the Microsoft-C compatible libraries
. hpvx8.1lib - the hpvx8 static library
* hpvx8\ - top directory for the HP libraries and example programs
. readme. txt - describes files and directories installed
e ddrifc\ - contains digital drop receiver interface code
° readme. txt - describes the ddrifc code
° dsp\ - ddrifc target C code files
. include\ - contains ddrifc target include files
° src\ - contains the ddrifc target source files
° hpvx8\ - contains the hpvx8 code
. readme. txt - describes hpvx8 code
. dsp\ - hpvx8 target C code
° include\ - hpvx8 target include files
. src\ - hpvx8 target source files
o host\ - hpvx8 host C code
. build\ - hpvx8 host build and library files
. include\ - hpvx8 host include files
o src\ - hpvx8 host source files
e radio\ - host & target C programs for the example program
(more detail for this directory appears on page 50)
dsp\ - radio target C code
build\ - radio target build files
include)\ - radio target include files
src\ - radio target source files
host\ - radio host C code
include\ - radio host include files
hpradio\ - GUI directory for the radio example code
readme . txt - information about the HP Radio example code
resource\ - radio resource files

Software Installation HP VX8 DDR TIM
Directories and Files Programmer’s Guide

HP-UX Directories

All directories and files are installed in /opt/vxipnp. SICL/VISA library support
and drivers for the VXIbus host controller interface should be placed in the same
directory (/opt/vxipnp) as should Spectrum Signal Processing’s ssvx8 host
libraries for the SCMVX008 Carrier Board.

The following directories and files are installed for HP-UX systems:

bin/ - shared libraries

libhpvx8.sl - the hpvx8 shared library

include/ - contains library and VXI plug&play include files

hpvx8.h - the main hpvx8 library include file

1ib/ - archive libraries

libhpvx8.a - the hpvx8 static (archive) library

hpvx8/ - top directory for the HP libraries and example programs

readme . txt - describes files and directories installed
ddrifc/ - contains digital drop receiver interface code
readme . txt - describes the ddrifc code
dsp/ - ddrifc target C code files
include/ - ddrifc target include files
src/ - the ddrifc target source files
hpvx8/ — the hpvx8 code
readme . txt - describes hpvx8 code
dsp/ - hpvx8 target C code
include/ - hpvx8 target include files
src/ - hpvx8 target source files
host/ - hpvx8 host C code
build/ - hpvx8 host build and library files
include/ - hpvx8 host include files
src/ - hpvx8 host source files
radio/ - host & target C programs for the example program
(more detail for this directory appears on page 50)
readme.pdf - (this file) includes details about the radio example code
dsp/ - radio target C code
build/ - radio target build files
include/ - radio target include files
src/ - radio target source files
host/ - radio host C code
include/ - radio host include files
hpradio/ - GUI directory for the radio example code
readme . txt - information about the HP Radio example code
resource/ - radio resource files

10

HP VX8 DDR TIM Software Installation
Programmer’s Guide Example Program

Example Program

This discussion describes the hardware and software required to run the example
program HP Radio. More information is available in the readme. txt file in the
hpradio directory.

HP Radio uses the hpvx8 library to create a multi-channel, narrowband receiver
system. It provides a graphic user interface (GUI) which allows you to exercise the
capabilities of the narrowband receiver system hardware.

Hardware Configuration

Before you can run the program, you must collect the required hardware and soft-
ware and configure them correctly. The following figure shows an example hard-
ware configuration.

@B W|®]

— audio output(s)

[e]

o
o o
° o

(e O
°o oo O

O O O O

antenna input

|
b © ©

oo oo ol oo VO oo o
oo ol ool oo o oo

slot-0 controller
(COOEEEO) (ETEEEEE0)
| (ET06TR
©)
h

analog
input

lamato|||9ngr | £1437]|\vxoos|

- (D VXI Chassis

Note

Installed Hardware
The numbers in the following list correspond to circled numbers in the figure above:

. VXI chassis/mainframe

. PC slot-0 controller (NI MXI-2 interface to a PC workstation)

. Analog downconverter (optional; the WJ-9119 is an HF tuner; 100 kHz-32 MHz)

. Wideband ADC (the E1437A has an 8 MHz BW)

. VX008 is a VXI carrier board containing 2 embedded C40s and 6 sites (nodes)
that accept TIM-40 plug-in modules such as the HP DDR TIM and the MDC40SS
Super SRAM C40
— At least 4 MB DRAM installed on the VX008
— At least one DDR TIM installed on the VX008

QU W DN =

The model type and configuration of the analog tuner and wideband ADC are
declared/defined for the example program in the file hpradio.cfg.
See Resource Files on page 12.

11

Software Installation HP VX8 DDR TIM
Example Program Programmer’s Guide

VX8 Configuration

The system and VX8 hardware configuration must be defined in resource files that
the software uses to define the elements it controls.

Resource Files There are four resource files required by the radio program. These
files define the hardware configuration and are used by the libraries to initialize the
system. They must match the hardware configuration used with radio.

hpradio.cfg - system hardware configuration file

hpradio.grp - hpvx8 group resource file

hpradio.sdf - ssvx8 system definition file (for VX8 configuration)
hpradio.ldf - ssvx8 load definition file (for VX8 configuration)

These files are installed in the \vxipnp\winxz\hpvx8\hpradio directory. The
resource subdirectory contains templates and examples for five different VX8 hard-
ware configurations. The resource files listed above define a configuration consist-
ing of one group composed of one C40 and one DDR TIM. The templates support
1x1, 2x1, 2x2, 2x3, and 4x1 configurations where, given nxm, n is the number of
groups and m is the number of DDR TIMs per group. For example, to change
resource files for a VX8 with DDR TIMs in nodes C and D, use the following
command:

copy resource\2x1.* hpradio.*
If the files provided do not match your hardware exactly, select the closest configu-

ration and edit the files as explained in the readme. txt file in the hpradio direc-
tory.

For more information about the various supported receiver configurations, see DDR
Groups on page 14.

12

Note

HP VX8 DDR TIM Software Installation
Programmer’s Guide Example Program

Running HP Radio

When the hardware and resource files are properly configured, you can run the
example program.

To start it, either:

¢ (lick on the HP Radio menu item in the Start\Programs\HP VX8 Radio\ menu or
¢ In Explorer, double-click Hpradio in \vxipnp\winzx\hpvx8\hpradio

N HP Radio =10] =]
File Show Channels Tuner & Digtizer Window Help

X Group A-CG IS S | S T[S | =L 1=l
Group Contrals——————— |~ System Controls——————————— Group A-CG T Group B-D T Giroup FH 1
|— Marker T~ Mute [Mute || B Turer Bypass — Group Control

Yalume | | | Yolumne ‘| |'| I Marker [~ Mute [~ AGC [T Deenph Step&Unitsl
Squelch | | I | -8F Tuner Frequenes Yolume | | i Few[eomn [k
IF B |1 E.000 @ kHz Start ID_UDDUDD MHz Squelch <| | '| Demod IAM l

I vl Cent I ' tH
Demad |44 S - Chanrel 5 Channel & Channel 7 Channel 8
Frequency [MHz] Mute Stop |4_DDDDDD MHz Channel 1 Channel 2 Channel 3 Chanrel 4
Ch.1 I ‘IDDDDDD§| I UnitsIMHz l JJ
— Yolume +| Taone * '
th I . SSDDDD‘EI = g ey Sl Frequeﬂcy JJ J Gain Contral
2 Running < Overload 2 Ermor
ch3 | 1230000f%] (1.000000 ZMHz Tune|| & AuoSlow
Ch 4 | 15800003 € fuito Fast
Eassband Tumimng Diset = Manual:
T (0.000 HHe [Tune] [0 2]<e
I_ Trace I_ Grid . Background Fef. Lewvel ID dBm Cd Pl cop
0 dBm “300.000 e | Ture| (6‘ WSE € [5R
Power B3dBm [T Mute

10de
£ div

-100 dBm

0. DDIDDDD lHz 2l DDDDDD MHz

The first time HP Radio is run, the interface shows one group window with two
channels active. This group window is labeled Group A-C, which refers to a group
consisting of a C40 in node A and a DDR TIM slave at node C. Node locations are
shown in the figure on page 6.

With one DDR TIM installed, 4 channels are present in this group. In this case, the
number of channels that may selected from the Channels menu is either 1, 2, or 4.
You may want to select a number less than 4, depending on the bandwidth and
modulation type of the signals you plan to receive. Since all four channels are being
processed by the same DSP, more channels means less processing power per chan-
nel. The maximum real-time IF bandwidth (IF BW) decreases when the number of
active channels is increased.

To set the IF BW, either increment or decrement it with the spin buttons or enter a
value in the text box. The amber User LED on the VX8 front panel will illuminate
when the processing workload has become greater than the processor’s ability to
handle it real time. It will continue to process data but there will be gaps in it. See
the discussion on page 47.

More information exists concerning the operation of HP Radio in the readme.txt file
in the hpradio directory.

13

2

Software Installation HP VX8 DDR TIM
Example Configurations Programmer’s Guide

DDR Groups

One, two, or three® DDR TIMs may be connected to a single C40 DSP? on the VX8 to
form a group. A group is composed of one C4x (DSP) and the DDR-TIM(s) associ-
ated with it. The IF bandwidth is the same for all channels in a group. The DDC
channels may be individually tuned to any frequency in the bandwidth of the
wideband digital data stream created by the ADC. See Grouping on page 23.

The following figures are block diagrams showing data flow through the receiver
system for various configurations. The group configuration for the example program
HP Radio is defined in the file hpradio.grp. See Resource Files on page 12.

Example Configurations

The default configurations available from Hewlett-Packard are:

1x1 -1 group, 1 DDR TIM per group; 4 channels per VXS.

2x 1 - 2 groups, 1 DDR TIM per group; 8 channels per VX8.
2% 2 - 2 groups, 2 DDR TIMs per group; 16 channels per VX8.
2% 3 - 2 groups, 3 DDR TIMs per group; 24 channels per VX8.
4x 1 - 4 groups, 1 DDR TIM per group; 16 channels per VX8.

These configurations offer various numbers of channels per VX8 module and varying
amounts of digital signal processing power per channel.

Four DDR TIMs per C40 is also possible if you install them in nodes C, D, E, and G with a
corresponding reduction in available processing power per DDR. See the figure on page 6.

222222

3 The number of channels that can be processed simultaneously by one C40 DSP is limited by the

333333

bandwidth and detection type. See the table on page 60.

14

HP VX8 DDR TIM Software Installation
Programmer’s Guide Example Configurations

4-channel, 4ch/DSP

The configuration shown below could be created by installing a DDR TIM at node C
and grouping it with the embedded C40 at node A. See bottom figure.

e VXB --eeeeeeeees
---DDR TIM--~-~. -

zanalog_, ADC 54-ch :>c0mm<f:$ Cdx

(detect] 1x1 configuration

tuner | | (wideband)f*] DDC [*] port |
g AV .1 group,
audio ++—3— 1| .1 DDR per C4x

This configuration provides 4 high-performance receiver channels.
The VX8 configuration layout is illustrated in the figure below.

VXlbus

H F D B Interface

empty empty empty

Shared
DRAM

Local Bus

c40

g Interface
A

C40

Local Bus

I, &,

A S

4-ch

empty empty DDC

A

4-ch
DAC

Detailed installation information for this configuration exists on page 64.

15

Software Installation HP VX8 DDR TIM
Example Configurations Programmer’s Guide

8-channel, 4ch/DSP

The configuration shown in the figure below could be created by installing DDR
TIMs at nodes C and D (see bottom figure), grouping them with the embedded C40s
at nodes A and B, respectively. These groups are identified as A-C and B-D.

s R

i analog ADC dh [nJoommin] Cax |
twuner’ || iwideband = 7] DOC P port [(detect]|:
241 conficurat 1 VR ’

x1 configuration L audio <2 4-ch
2 groups, o]

1 DDR per C4x || oR T

L 4-on [nJcommain] Cax
_J‘> DDC > port <:> (detect] |:

This configuration has virtually the same performance as the 1x1 configuration (4
ch/DSP) with double the number of channels (8) and the ability to process 2 differ-
ent bandwidths simultaneously.

The VX8 configuration layout is illustrated in the figure below.

D&
v : B VXIbus
empty empty s < Interface

c40
Shared
% % DRAM
Local Bus

Interface
4-ch

empty empty DDC

VXlbus

A 4

Local Bus

A A

A 4
()
=
o

A

4-ch
DAC

Detailed installation information for this configuration exists on page 65.

16

HP VX8 DDR TIM

Programmer’s Guide

16-channel, 8ch/DSP

Software Installation
Example Configurations

The configuration shown in the figure below could be created by installing DDR
TIMs at nodes C, D, G and H (see bottom figure), grouping them with the embedded
C40s at nodes A and B, respectively. These groups are identified as A-CG and B-DH.

analog | ,| ADC

tuner (wideband)[]

2x2 configuration
2 groups,
2 DDRs per C4x

----------------------------------- VXB ---emmmmm
SRS DDRTIM------ SO | DDRTIM------ .
{ L ach [Joomm] 4 [4ch nJoomm| <
: :> DOC 5> port <I:> i> DDC 5> port <I>
ik N f N
A a4 4ch | Condin <4 dch
111 audio«=4 b Cdx : audio «=4 Cax |
- DAC | © l(detect| ||i LI DAC | | (detect) |
i| [~~~ ODR TIM------, .-—--DDRTIM ’
J 4-ch comm] 4 | 4-ch comm
_J‘> DDC R port <I:> _J‘> boC R port <)
P AV : WV
Dot 4| Ach b 4L Ach

: audio <=4 DAC E audio <=4 DAC

This configuration provides 16 channels and 2 different simultaneous bandwidth
settings. Its performance and cost/channel falls between the 2x3 and 4x1 configura-

tions.

The VX8 configuration layout is illustrated in the figure below.

D 4-ch
DAC A 4
F 4-ch &
empty DDC N C40
E C
empty ool “ C40
4-ch A
DAC

VXlbus
Interface

Shared
DRAM

Local Bus
Interface

Detailed installation information for this configuration exists on page 66.

Local Bus

I, &,

17

Software Installation HP VX8 DDR TIM
Example Configurations Programmer’s Guide

24-channel, 12ch/DSP

The configuration shown in the figure below could be created by installing DDR
TIMs at nodes C, D, E, F, G, and H, grouped with the embedded C40s at nodes A and
B, respectively. These groups are identified as A-CEG and B-DFH.

z T VX8
analog | ,| ADC :

tuner | *|(wideband) o DDRTIM—---- oo DDR TIM------ |
2x3 configuration | L 4ch Jcomm]| < [4ch nJoomm] 4
2 groups, 'J‘> 0DC R port <:I:> 'J‘> DoC R port <:I:>
3DDRsper C4x il |: AV, AV,
| audio«34 %XE audio 34 %XE
: CUDDRTIME ' ~----DDRTIM----- . '
L 4ch bJoomm in] C4x [ach LnJcomm]in] Céx |
:> poc [} port <:I:> (detect) $> ooc P port <:I:> (detect) |
ik AV ; o :
audio «< %XB audio « < égg
| DDRTIM " -~ DDR TIM------ :
| L] 4-ch [Joomm| A [4ch nJoomm] 4
_J‘> DDC > port <:I:> —J‘> DDC > port <:I:>
o VA : VA
audio 34 %XE audio 4] %XE

This configuration offers the highest channel-count per VX8 board (24) but also has
the lowest DSP performance per channel. Possible applications include use for very
narrow-bandwidth signals or for channelization-only, where the demodulation is
performed on another system or VX8 board. In the latter case, the C40s would be
used to multiplex the channel data onto one or two comm ports and pass it to
connectors on the front panel where they are passed to the other system/board.

D 4-ch
DAC Yy VXIbus
Interface

c40
Shared

% DRAM A
Local Bus

4-ch
DDc

VXIbus

A

Local Bus

Interface <ﬂ

ST K

4-ch
DDC

A
<)
s
o

4-ch A 4
DAC

Detailed installation information for this configuration exists on page 67.

18

HP VX8 DDR TIM Software Installation
Programmer’s Guide Example Configurations

16-channel, 4ch/DSP

The configuration shown in the figure below could be created by adding C40 TIM
boards at nodes E and F and DDR TIMs at nodes C, D, G, and H. These can be
grouped with one DDR per C40 and identified as groups A-C, B-D, E-G, and F-H.

----------------------------------- T
analog | ,| ADC
tuner_| | (wideband)[) [DORTIM-—— || e DOR TIM------
4x1 configuration 4¢ch L~Jcomm Cax 4-ch fcomm Cax
4 groups, j’> DDC R port <I> (detect) i> DDC R port <I> (detect)|:
1DDRperChx | AV, g AV |
|+ audio« %XE‘ audio«34 %XE‘
{|-~DORTIM--~. -DDRTIM-~--~. |
L 4ch [~Joomm] in] Céx ach Jeommain] Cax |
_J‘> ooc [port <:> (detect) _J‘> ooc [port <I> (detect)|
o N VR :
audio € %XE‘ audio «2] %XE

This configuration offers the highest performance (DSP/channel) and most flexibil-
ity (4 different bandwidths processed simultaneously). The VX8 board would be
loaded as shown in the figure below.

H " D n
F - VXlbus 2
bl ool C40 iohl o] cao Interface x
Shared
DRAM
i
Local Bus [~
Interface p—— =
% ~) &
4-Ch b - A
noc g > C40
4-ch
DAC

Detailed installation information for this configuration exists on page 68.

19

System Software Development HP VX8 DDR TIM
Overview Programmer’s Guide

System Software Development

Overview

Software development for HP’s DDR TIM module involves the following tasks:

® Development of software that runs on the host computer (VXI slot O controller)
that communicates with and controls the VX8 and other VXI modules. This soft-
ware is referred to as the host program.

® Development of software that runs in the target DSP (VX8 C4x DSP) that con-
trols local resources on the VX8 (e.g. HP DDR TIM) and other resources within
the VXI chassis (e.g. ADC). This software is referred to as the target program.

® Development of a command, control, data, and synchronization interface between
the host and target programs to coordinate overall system operation.

This is an iterative development process whereby coordinated changes in the host
and target software must be made. This allows incremental progress in the overall
system development while the host and target programs continue to work in concert
with one another. Host and target software examples and target source code are
supplied to help enable the learning process.

Software Requirements

Software development for a VXI system containing HP’s DDR TIM module requires a
working knowledge of the following subject areas:

® “C” programming language. “C” is the primary software development language
used in both the host and target development environments. Even though it is
not required, it is recommended that the target software developer also have a
working knowledge of the TMS320C4x assembly language.

e VXI architecture. For more about VXI, please refer to Feeling Comfortable with
VXI, HP PN: 5965-6497E. For detailed insight, see IEEE Std. 1155-1992 I[EEE
Standard for VMEbus Extensions for Instrumentation: VXIbus or IEEE Std.
1014-1987, IEEE Standard for a Versatile Backplane Bus: VMEbus.

e VX8 DSP VXI module architecture. For detailed insight into the VX8, please refer
to both the Technical Reference Manual and the Programming Guide supplied
with the VX8 from Spectrum Signal Processing.

® TMS320C4x DSP architecture. For detailed insight into the TMS320C4x architec-
ture, please refer to the TMS320C4x User’s Guide supplied with the VX8 from
Texas Instruments.

® Host and target software development environments. This includes compilers,
linkers, debuggers and build tools (e.g. “make™). For host development, one of
the following environments is recommended:

— HP-UX Workstations: “ANSI-C Development Bundle”
— PC Workstations: Microsoft Visual C++ (version 5.0 or later)

For target development, you need Texas Instrument’s TMS320C4x Code Generation
Tools, Revision 4.70. It is recommended that you have the PC Release of these
tools. In addition to the basic Texas Instrument’s code generation toolset, it is also

20

HP VX8 DDR TIM System Software Development
Programmer’s Guide Hardware Requirements

recommended that a third-party debugger/development toolset be employed for
target development, e.g. GO DSP’s Code Composer.

Hardware Requirements

Software development for a VXI system containing HP’s DDR TIM module requires
the following hardware:

® VXI chassis with slot 0 controller. The slot O controller can be either an HP-UX or
PC workstation. HP-UX support includes both embedded (E1498A) and external
(via E1482B MXI) controllers. PC support includes both embedded (E623xA)
and external (via National Instrument’s VXI-PCIS8000) controllers.

Once the appropriate controller has been chosen, you must install and configure
the appropriate I/O layer libraries to communicate with the VXI backplane.
Choices of I/O layers include either SICL (Standard Instrument Control Lan-
guage) or VISA (Virtual Instrument System Architecture). Refer to the documen-
tation for your particular slot O controller for more details.

® A VX8 Carrier module with shared DRAM SIMM and one or more HP DDR TIM
modules installed. For details on installing the shared DRAM SIMM, please refer
to Spectrum’s VX8 Carrier Board Installation Guide. For details on installing the
HP DDR TIM, please refer Hardware Installation on page 4.

® An external PC with XDS debugger hardware. This external PC is the target soft-
ware development workstation. This PC should have the TT TMS320C4x code
generation tools loaded as well as any third-party development tools (described in
Software Requirements section). This PC interfaces with the VX8 via the XDS
debugger hardware through the VX8’s front panel JTAG connector.

The XDS debugger hardware consists of a plug-in PC card with a ribbon-cabled
pod. This ribbon-cabled pod coming from the PC connects to a small JTAG con-
version board that provides a connection to the JTAG connector on the VX8 front
panel.

The XDS debugger hardware is available from either Texas Instruments
(XDS-510) or Spectrum Signal Processing (XDSC40). The JTAG conversion
board and VX8 JTAG cable is available as a development option to the VXS.

21

System Software Development HP VX8 DDR TIM
HPVX8 Library Programmer’s Guide

HPVXS Library

The hpvx8 library provides the means to quickly develop multi-channel, narrowband
receiver systems based on the VX8 VXI carrier board, the HP DDR TIM module, and
(C40/C44 TIM modules. It provides control of the narrowband DDR channelizer
modules as well as a method for a host program to communicate with a target
program.

The hpvx8 library is built on top of Spectrum Signal Processing’s ssvx8 host and
DSP (target) libraries. The following figure illustrates how program layers in the
host are used to communicate with their counterparts running on the target.

application

host

target
(VX8)

The hpvx8 communication strategy uses a FIFO-based, shared-memory method
which also supports communication between DSP units on the VX8 carrier board.
This method is one of many possible communication schemes; the source code is
provided to allow the developer to explore this approach. The radio demonstration
program is an example of how to use the library.

Further information concerning contents of individual files, messaging schemes, and
build instructions resides in the readme . txt file in the hpvx8 directory.

22

Note

HP VX8 DDR TIM System Software Development
Programmer’s Guide Program Development

Program Development

Grouping

The hpvx8 library requires a group resource file (.grp) to organize C4x DSPs and
DDR TIM boards into groups as well as providing some VX8 board setup information.
Examples of the .grp file are in the hpvx8/hpradio directory (hpradio.grp) and the
hpvx8/hpradio/resource directory (6 *.grp files). These .grp files provide support
for various hardware configurations and must match their corresponding .sdf files
(see same directories).

The hpradio.grp file is used by the hpvx8 library to determine the groupings of C4x
DSPs and DDR TIM modules. The concept of a group is used to describe a collec-
tion of processing and DDR components. For HP Radio, a group consists of 1 C4x
DSP and 1, 2, or 3 DDR TIM modules. In general, systems built with the hpvx8
library define a group to be a C4x master and a number of C4x and DDR TIM slaves
(limited by the number of communication ports). The C4x slaves can in turn have a
number of C4x and DDR slaves. The HP Radio example restricts a group to one C4x
master with only DDR modules as slaves.

The hpradio.grp file also specifies the number of VX8 boards in a system and some
parameters specific to VX8s with DDR TIM modules. In general, the hpvx8 library
allows any number of VX8 boards to specified as long as they are all in the same
VXIbus chassis. However, HP Radio is programmed to use only one board.

The hpradio.grp file also defines the following DDR parameters:

¢ the HP local bus mode
e HP local bus DMA wait states and target values
¢ mapping the IRQ connections.

In general, the .grp files provided in the resource subdirectory should either match
or closely approximate the configuration of your VX8 hardware. Comments within
the .grp file are provided to help you edit the file according to VX8 configuration.

If using the HP E1430A digitizer, the DMA wait states parameter should be set to '5'.
If using the HP E1437A digitizer, the DMA wait states should be set to '1".

One digitizer should be selected as the clock (Fs) master on the VXI backplane
(ECLTRG1). Other digitizers and VX8s receive this clock. The DDR TIM cards
should have their clock selection jumper removed to use this clock.

System Definition

The system definition file (.sdf) is required by the ssvx8 library to specify the logical
address used by the VX8 and the TIM modules installed. The group resource (.grp)
file must match the hardware configuration described in the .sdf file. When the .grp
file references an empty site, an error occurs. Note that the .grp file contains the
names of the .sdf and .1df that are used by the program accessing the .grp file. The
Idf (load definition file) is also used by the ssvx8 library to determine which target
.out file gets loaded to each DSP. See page 12.

See Spectrum Signal Processing's VX8 Carrier Board Programmang Guide for
more information on the ssvx8 library and the .sdf and .1df files. See the other
readme.txt files distributed with this software for further system information.

The hpvx8 library source files that are involved in extracting information from the
.grp and .sdf files are hpvx8res.h, hpvx8res.c, hpvx8sdf.h, and hpvx8sdf.c. The
grouping concepts are used throughout the library and are defined and manipulated
in hpvx8ifc.h and hpvx8ifc.c. Refer to these source files for more information.

23

System Software Development HP VX8 DDR TIM
Program Development Programmer’s Guide

Host—Target and Target«—Target Messaging

The hpvx8 library builds a communication system between the host and target
groups and between target master nodes and their slaves. Recall that each group
has one master C4x DSP. The communication takes place between the host and the
master of a group and between a master node and its slaves. Any messages that
need to be communicated to a slave node are first passed through the group master.

For host<>target messaging, a command and return-messaging FIFO structure is
created in the VX8 shared DRAM. This requires that the VX8 have at least one 4 MB
DRAM SIMM installed. The location of the messaging FIFOs are set at startup (see
hpvx8_system_open() below). The hpvx8 library source files involved with
host«starget communication are hpvx8ifc.h and hpvx8ifc.c on the host side and
hpvx8msg.h and hpvx8msg.c on the DSP (or target) side. Refer to these source files
for more information.

For target<>target messaging the same type of messaging FIFO structure is created
in each of the slave's near-global SRAM. The hpvx8 library source files that are
involved with target<>target communication are hpvx8msg.h and hpvx8msg.c. Refer
to these source files for more information. The HP Radio example does not make
use of hpvx8 library target<starget messaging.

Hostotarget Commands

A set of basic commands (and replies) are defined as a starting point for
host«starget communication. Normally, an application requires a set of unique
commands and replies which can easily be added to the basic set as long as the
formats are kept the same. The list of defined commands and replies are as follows:

HPVX8 CMD AdcSetup

The group master that receives this command is responsible for monitoring and
throttling the ADC.

HPVX8 CMD_DdcSetup

The five-bit tag passed with this command is used to identify a DDR module. This
information is encoded into each sample point coming out of the DDR module.

HPVX8 CMD AssignStat

This command assigns a channel statically, meaning it remains assigned until reas-
signed. The argument specifies a tuned frequency for the channel.

HPVX8 CMD_ AssignDyn

This command assigns a channel dynamically, meaning it is assigned until some
specified signal-related condition causes it to be released. When the channel is
released, the target returns a _Released message to the host (see below).

24

HPVX8 CMD_Start

HPVX8_CMD_Stop

HPVX8_CMD_Ifbw

HP VX8 DDR TIM System Software Development
Programmer’s Guide Program Development

This command starts the group, or moves the group from the configuration state to
the process state. If a group did not receive an _AdcSetup command, the HP local
bus DMA is set up and waits for data. If a group did receive an _AdcSetup
command, it querys the ADC for block available before enabling the HP local bus
DMA.

This command stops the group, or moves the group from the process state back into
the configuration state.

This command sets the IF bandwidth for all DDR TIM modules in the group.

HPVX8_RET_CmdReply

This is a reply to any of the above commands. The target must issue a reply to the
above commands. This is not a requirement for user-defined commands.

HPVX8 RET Released

HPVX8 RET Error

This reply is used to notify the host that a channel has been released due to a
pre-specified condition of the data stream. It would occur only after a channel has
been Assigned Dynamically (see above).

This message is used to notify the host that an error has occurred.

HPVX8 RET AdcError

This message notifies the host that an ADC error has occurred. The error code is
generated by ANDing the ADC status register contents and the error mask that is
provided with the AdcSetup command. Note that this message can be sent only by
nodes which have received the AdcSetup command.

See the file hpvx8cmd.h for more details on the format and description of these
commands.

25

System Software Development HP VX8 DDR TIM
Program Development Programmer’s Guide

Host Functions

The following functions are included in the hpvx8 host library (see hpvx8ifc.c).

hpvx8 system open (STRING rsrc_file, HPVX8 SYS *sys, FLOAT64 time out)

Arguments:

Returns:

Synopsis:

Note

rsrc_file - name of the group resource file (.grp)
sys - pointer to hpvx8 system to be created
time_out - time out (in seconds) parameter for all target accesses

Status

Opens a VX8 system and loads code to target DSPs.

1. First this function reads and parses the group resource file (.grp) to obtain
information about the grouping of DSPs and DDRs

2. Then the group resource information is checked for validity.

3. Next, a call is made to ssVX8_SystemOpen() to open the VX8 system, reset it,
and load code to the target DSPs. This call reads and parses the .sdf and .1df files
for information about the VX8 hardware. This information is extracted with a call
to parse_sdf() and the hpvx8 system structure is then created.

4. Finally, the target DSP sites are set up and initialized and group messaging FIFOs
are set up between the host and groups via shared memory.

This function should be called before any calls are made to hpvx8_group_read() or
hpvx8_group_write().

Since this function handshakes with DSP function HPVX8 _host msg_setup
(page 30), the DSP program must call the msg_setup function to allow a return.
The system_open function does not return until msg_setup has performed its task

hpvx8 system close (HPVX8_ SYS *sys)

Arguments:
Returns:

Synopsis:

Note

sys - hpvx8 system structure pointer
Status

Close system, shutdown VX8 hardware.

This function should be called last, after all processing is finished.

hpvx8 group read (HPVX8 GRP *grp, PVOID data, PUINT32 length)

Arguments:

Returns:

Synopsis:

grp - pointer to hpvx8 group
data - pointer to buffer where data will be placed
length - pointer to length of data read (to be returned)

Status

Read data from group return messaging FIFO.

Each group has a pair of messaging FIFOs: the command FIFO is used to write
data from the host to the group DSP; the return FIFO is used to read data from the
group DSP to the host. The return messages have a message tdentifier word which
includes a length field defining the number of words in the rest of the message.

This routine first reads the identifier word, then determines the length of the rest of
the message, and then reads the rest of the message. The routine must wait for data

26

Note

HP VX8 DDR TIM System Software Development
Programmer’s Guide Program Development

to be available. A time-out timer is used to ensure the routine doesn’t hang. The
time-out interval can be set with the hpvx8_set_time_out() routine.

This routine can be called only after hpvx8_system_open() is called.

hpvx8 group write (HPVX8 GRP *grp, PVOID data, UINT32 length)

Arguments:

Returns:

Synopsis:

Note

grp - pointer to hpvx8 group
data - pointer to data buffer to be written
length - length of data read (to be returned)

Status

Write data to group command messaging FIFO.

Each group has a pair of messaging FIFOs: the command FIFO is used to write data
from the host to the group DSP and the return FIFO is used to read data from the
group DSP to the host. In the hpvx8 scheme, the first word of the data is a
command which includes a command field and a data length field. This is followed
by length data words. A total of length + 1 words are written.

This routine first checks the command messaging FIF'O for room to place length
words of data into it. Once room is available, the 'data' is written to the FIFO. Note
that time-outs are used to make sure the routine doesn’t hang. The time-out inter-
val can be set with the hpvx8_set_time_out() routine.

This routine can be called only after hpvx8_system_open() is called.

hpvx8 error query (RESULT error, STRING error_msg)

Arguments:

Returns:

Synopsis:

error - error number to be matched with error message
error_msg - string pointer to be filled with error message

Status

This routine returns a descriptive error message corresponding to the error number
passed to it. The error message is obtained by querying the ssvx8 library, the hpvx8
library and finally the SICL or VISA library. In the case of an hpvx8 error, the error
message will contain some additional details that are set by the function setting the
error. These details are set by calling set_error_detail(). Note that the detail is a
static variable so error reporting is inherently non-reentrant.

hpvx8 set time out (FLOAT64 time_ out)

Arguments:
Returns:

Synopsis:

time_out - time out value in seconds
void

This function is used to set the time-out value for VX8 system accesses. The
time-out value is global and is used by all hpvx8 functions that access the system.

27

System Software Development HP VX8 DDR TIM
Program Development Programmer’s Guide

Host Programming Example

The following host .c file demonstrates the use of the most commonly used hpvx8
library function calls. This example simply opens a system as defined by the file
hpradio.grp (and thus hpradio.sdf and hpradio.sdf), writes a command and reads the
reply to that command for each group defined in the system, and then closes the

system.

/***/
/* */
/* Example program opens a system, writes the start command to each group, */
/* reads each group's reply, and then closes the system. */
/* */
/* WindowsNT/95 compile directions */
/* */

/* For WindowsNT/95, be sure to define WINDOWS and VISA (via compiler). */
/* The necessary include files can be found in the following directories: */
/* */
/* C:\vxipnp\winnt\include */
/* C:\vxipnp\winnt\ssvx8\host\include */
/* C:\vxipnp\winnt\hpvx8\hpvx8\host\include */
/* */
/* This program needs to be linked with hpvx8.1lib, ssvx8.1lib, sdf.lib, */
/* and visa32.lib, all of which can be found in: */
/* */
/* C:\vxipnp\winnt\lib\msc */
/* */
/* DNote: for Windows95, winnt becomes win95 in the above directory paths. */
/* */
/* HP-UX compile directions */
[R —— */

/* TFor HP-UX, be sure to define _HPUX and SICL (or VISA). The necessary */
/* dinclude files can be found in the following directories: */
/* */
/* /opt/vxipnp/hpux/include */
/* /opt/vxipnp/hpux/ssvx8/host/include */

P
/* /opt/vxipnp/hpux/hpvx8/hpvx8/host/include */
P P

/* */
/* This program needs to be linked with libhpvx8.a, libssvx8.a, and */
/* 1libsdf.a, which can be found in: */
/* */
/* /opt/vxipnp/hpux/1lib */
/* */
/* Be sure to use the -1lsicl (-lvisa) flag to link in the appropriate */
/* library. */
/* */

/***/

#include <stdio.h>
#include "hpvx8.h"

volid main (void)

{

RESULT status; /* function return status */
HPVX8 SYS sys; /* hpvx8 system structure */
char error msg[HPVX8 ERROR MSG SIZE]; /* error message buffer */
HPVX8 GRP *gp; /* group pointer */

UINT32 msg buf[2]; /* message buffer */

UINT32 msg_len; /* message length */

28

HP VX8 DDR TIM System Software Development
Programmer’s Guide Program Development

/* open system with no timeout */
status = hpvx8 system open ("hpradio.grp", &sys, HPVX8 INFINITE TIME);
if (status != SUCCESS)
{
hpvx8 error query(status, error msg);
printf ("Error during open: %s\n", error msgq);
exit (status) ;

/* send start command to each group defined in system */
for (gp = sys.group; gp != NULL; gp = gp->next)
{

/* send command */

msg buf[0] = HPVX8 CMD Start;

status = hpvx8 group write(gp, msg buf, 1);

if (status != SUCCESS) break;

/* read reply from group */
status = hpvx8 group read(gp, msg buf, &msg len);
if (status != SUCCESS) break;

/* is reply what we're expecting? */
if ((msg buf[0] != HPVX8 RET CmdReply) || (msg buf[l] != SUCCESS))
{

printf ("Error, group '$s' sent bad reply\n", gp->name);

break;

/* report error before closing */
if (status != SUCCESS)
{
hpvx8 error query(status, error msg);
printf ("Error while communicating with group '%s': %s\n",
gp->name, €rror msqg);

/* close system */
hpvx8 system close (&sys);

exit (status) ;

29

System Software Development HP VX8 DDR TIM
Program Development Programmer’s Guide

Target Functions

The following functions make up the hpvx8 target library (see hpvx8msg.c).

hpvx8 host msg_ setup (HPVX8_ SITE *site)
Arguments: site - pointer to site information, to be copied from host
Returns: Pointer to the host<ssite message FIFOs

Synopsis: This routine synchronizes with the host via handshakes to ensure that:

1. the DSP target code gets started at the right time
2. the site setup information is transferred and read at the right time

The pointers to the host«ssite messaging FIFOs are derived from the site setup
information and returned.

hpvx8 master msg_setup (UINT32 site_id)
Arguments: site_id - site id of the slave

Returns: Pointer to the master<sslave messaging FIFO

Synopsis: This routine is used to set up messaging between the master (DSP) of a group and

one of its slave nodes. Program synchronization between the nodes also occurs.

This routine should be called only by the master node. The slaves should call

hpvx8_slave_msg_setup() to synchronize with their master. The master must call

this routine once for each of its slaves.

The messaging FIFOs are of the same type as the host<>target messaging FIFOs.

hpvx8 slave msg setup()
Arguments: void
Returns: Pointer to the master<sslave messaging FIFO

Synopsis: This routine is used to set up messaging between the calling slave (DSP) and its
master. Program synchronization between the two also occurs.

This routine should be called only by a slave. A master should call
hpvx8_master_msg_setup() to synchronize with its slaves.

The messaging FIFOs are the same type as the host<starget messaging FIFOs.

hpvx8 msg _cmd level (HPVX8 MSG *msg)
Arguments: msg - address of messaging structure

Returns: Number of slots filled with data in the command FIFO

hpvx8 msg_ret level (HPVX8 MSG *msgq)
Arguments: msg - address of messaging structure

Returns: Number of slots filled with data in the return FIFO

30

HP VX8 DDR TIM System Software Development
Programmer’s Guide Program Development

hpvx8 msg _cmd read (HPVX8 MSG *msg, UINT32 cmd[], UINT32 length)

Arguments:

Returns:

Synopsis:

msqg - address of messaging structure
cmd - pointer to return data, read from FIFO
length - amount of data to be read from FIFO

void
Reads data from command messaging FIFO.

You must call hpvx8_msg_cmd_level() prior to this command to determine the
number of words to read. That is, the data must exist in the FIFO before this
routine reads it.

hpvx8 msg_cmd write (HPVX8 MSG *msg, UINT32 cmd[], UINT32 length)

Arguments:

Returns:

Synopsis:

msqg - address of messaging structure
cmd - pointer to data to be written to FIFO
length - amount of data to be written to FIFO

void
Writes data to command messaging FIFO.

You must call hpvx8_msg_cmd_level() prior to this command to make sure that
there is enough room in the command FIFO to write the data.

hpvx8 msg ret read(HPVX8 MSG *msg, UINT32 ret[], UINT32 length)

Arguments:

Returns:

Synopsis:

msg - address of messaging structure
ret - pointer to return data, read from FIFO
length - amount of data to be read from FIFO

void
Reads data from return messaging FIFO.

You must call hpvx8_msg_ret_level() prior to this command to determine the
number of words to read. That is, the data must exist in the FIFO before this
routine reads it.

hpvx8 msg_ret write (HPVX8 MSG *msg, UINT32 ret[], UINT32 length)

Arguments:

Returns:

Synopsis:

msqg - address of messaging structure
ret - pointer to data to be written to FIFO
length - amount of data to be written to FIFO

void
Writes data to return messaging FIFO.

You must call hpvx8_msg_ret_level() prior to this command to make sure that there
is enough room in the return FIFO to write the data.

31

Data Flow

System Software Development HP VX8 DDR TIM
Program Development Programmer’s Guide

Target Programming Example

The radio target code provides an example of using the hpvx8 target functions.
Refer to source files in \hpvx8\radio\dsp for details.

DDR Interface Programming

This section describes the sub-directories and files contained in the
\Wwxipnp\winXX\hpvx8\ddrifc directory on WindowNT/95 systems and the
/opt/vxipnp/hpux/hpvx8/ddrifc directory on HP-UX systems.

dsp/ # DSP (C4x) target code
include/ # C4x include directory
ddr.h # C4x<->DDR TIM interface header file
src/ # C4x C source directory
ddr.c # C4x<->DDR TIM interface C source file

The purpose of each file will be described in sections that follow.

DDR TIM hardware overview
A digital drop receiver usually performs three functions:

1. Channelization and down-conversion of broadband digital data
2. Signal detection or demodulation to extract information
3. Converting information to analog audio output

"Channelization" means to extract a narrowband signal at a specific center frequency
from a wideband digital data stream.

The DDR TIM provides functions #1 and #3 with four channels of DDCs and four
channels of DACs. The DDR TIM is connected to a C4x DSP processor via a commu-
nication port. The C4x DSP processor provides the function #2 portion of the digital
drop receiver.

The source of the broadband digital data is a VXIbus digitizer (ADC) such as the HP
E1430A (10 Msamples/sec) or HP E1437A (20 Msamples/sec). The ADC sends real
(unmixed), 16-bit data to the VX8 via the HP local bus. The HP local bus receiver
on the VX8 moves the data into a 1024-word FIFO. This data is then moved to any
(or all) of the six TIM sites and the two onboard C40s via a dedicated DMA control-
ler.

The ADC sends the data as two 16-bit samples packed into a 32-bit word. This word
is sent to the DDR TIM module in one of the six TIM sites. The two samples are
extracted, optionally interleaved with O—samples4, and then loaded into each of the
four DDC chips. The interleaving and subsequent DDC filter operation is effectively
an interpolate-by-2 operation. Interpolation is used with the E1430A to provide 20
Msamples/sec data to the DDC chips. This allows the same decimation steps to be
used with both the E1430A and the E1437A since the effective sample rate seen at
the DDC input will be 20 Msamples/sec for either ADC.

4 Depends on the ADC installed. Not necessary with the E1437A.

32

Comm Port Operation

HP VX8 DDR TIM System Software Development
Programmer’s Guide Program Development

The DDC chip is the Harris Semiconductor HSP50016 digital downconverter. Each
of the four DDCs accepts data from the same ADC data stream, mixes it with a
unique programmable complex center frequency, and decimates the resulting
complex signal to provide a 24-bit complex, channelized, and downconverted output
signal. The decimation rate must be the same for each DDC on the module. A gate
array on the DDR TIM module collects the output signals from each of the four
DDCs, multiplexes them together, and then sends the collective data stream out a
communication port to a C4x DSP.

The comm port interface (based on the C4x comm port) provides bi-directional data
flow. Data from the DDCs is sent to the C4x while DDC control words are sent from
the C4x to the DDR TIM module and then routed to the DDC chips on the module.
The DDC control words allow the C4x DSP to set DDC parameters such as center
frequency, decimation rate (or IF bandwidth) and gain, among others.

The channelized data from the DDCs are multiplexed and sent to the C4x in the
following order:

channel 0 real

channel 0 imaginary
channel 1 real
channel 1 imaginary
channel 2 real
channel 2 imaginary
channel 3 real
channel 3 imaginary

This process repeats for each sample point. The data is sent in a 32-bit word (as per
the C4x comm port specification) and contains a 24-bit real or imaginary sample
point along with some identification information. See the DDR Communication
Formats section (following) for more details. The DDR TIM module can be
programmed to output data from either all 4 channels or just the first two channels,
channels 0 and 1. The C4x should be ready to accept data from the DDR TIM (via
its comm port) without delay since data can be missed if not read in a timely
manner. Aslong as the C4x reads its input comm port FIFO such that the FIFO
never becomes full, no data will be lost. Setting up an internal C4x DMA process to
transfer data from the comm port to memory is an efficient way to manage this data
flow. The 'radio' target example shows one way of doing this.

More information about the Harris Semiconductor HSP50016 DDC chip can be found
at Harris' website, www.semi.harris.com under the 'Digital Signal Processing' link.

The comm port interface is used to pass data and control words between the C4x
DSP and the DDR TIMs. The operations allowed are as follows:

send data from the DDCs to C4x DSP

send data from the C4x DSP to the output audio DACs
send control information to the DACs

program the DAC decimation counter

send control information to the DDCs

configure the operation of the DDR TIM module

The data and control word formats are detailed in the DDR Communication
Formats section (following).

After the C4x DSP receives the channelized data and detects or demodulates it, it
can optionally send the audio information contained in the signal back to the DDR
TIM module’s onboard audio DACs. Each of the four DACs is sent a 16-bit real audio
data stream in the format described in the DDR Communication Formats section.
The data must always be sent in channel pairs (i.e. channels 0 and 1, and then chan-
nels 2 and 3). Even if only one audio channel is being utilized, its paired channel
must have data sent to it.

33

System Software Development HP VX8 DDR TIM
Program Development Programmer’s Guide

The DAC has a decimation counter associated with it to provide control over the
output sample rate. The counter divides the ADC sample rate by the number it is
programmed to. The ADC clock and the DAC clock must be synchronized to ensure
that data flows at the appropriate rate through the system. If these clocks were not
derived from the same source, data starvation or overflow could occur. The DAC
decimation counter should be programmed with the rate equal to the decimation
rate of the DDCs, scaled up (or down) for any interpolation (or decimation) that the
C4x DSP program performs in its processing. The audio DACs accept any DAC
sample rate within the octave 16.276 kHz to 32.5652 kHz.

For the demodulated audio signal data rate to fall within this octave, the C4x
program must interpolate or decimate the DDC's output sample rate by the appro-
priate factor of two. For example, if the system is using an E1437A with a sample
rate of 20.48 MHz and the DDCs are programmed to decimate by 2048, the DDCs
send a stream of 10 kHz (10 ksa/sec) data to the C4x for detection. Somewhere in
the processing flow the C4x program must interpolate this data stream by 2 to get
its data rate to fall within the DAC's allowed octave.

The DACs’ analog audio output signals are buffered and connected to the VX8's
front panel via the application specific connector. The mapping of each TIM site's
audio outputs and the front panel connector pins is provided in the table on page 7.

DDR Communication Formats

The DDR data and control word formats are provided below. Each data word is
32-bits wide, as specified by the C4x comm port.

¢ DDC data word (from DDR to DSP)

bits 31- 8: 24-bit real or imaginary data, 2's-complement

bits 7- 3: copy of tag field in control register, allows DDR id
bits 2- 1: indicates data came from DDC channel number (0-3)
bit 0: indicates data is real (0) or imaginary (1)

Bits 7-0 are forced to 0 unless the DDCINFO flag in the control register is set to 1.

¢ DAC data word format (from DSP to DDR)

bits 31-16: 1l6-bit 2's-complement audio data

bits 15- 8: set these bits to O

bits 7- 4: command id (0x1)

bits 3- 2: set these bits to 0

bits 1- 0: the DAC ch. to which audio data should be routed (0-3)

e DAC control word format (from DSP to DDR)

bits 31-24: set these bits to O

bits 23-16: stereo DAC control word, where:
bit 23: if 0 select channel 0|2, else select channel 1|3
bit 22: if 1 mute output
bits 21-16: attenuation in dB (0-63)

bits 15- 8: set these bits to O

bits 7- 4: command id (0x2)

bits 3- 1: set these bits to 0

bits 0: if 0 select DAC channels 0 and 1, else channels 2 and 3

The combination of bits 0 and 23 are used to select the channel to which the mute
and attenuation parameters are sent:

bit 0 | bit 23 | DAC channel

R BP OO
w N P O

= O Rr O

34

HP VX8 DDR TIM System Software Development
Programmer’s Guide Program Development

¢ DAC decimation counter value (from DSP to DDR)

bits 31-25: set these bits to 0

bits 24-16: 9-bit DAC decimation count-1 (clock divider)
bits 15- 8: set these bits to O

bits 7- 0: command id (0x22)

See the ddr.h and ddr. c files for more information.

¢ DDC control start command (from DSP to DDR)

bits 31- 8: set these bits to 0
bits 7- 0: command id (0x44)

This control command is required to start off the DDC control word sequence. To
write to a particular DDC, write this word first, then write five consecutive DDC
control bytes to make a 40-bit DDC control word value.

¢ DDC control word format (from DSP to DDR)

bits 31-24: set these bits to 0

bits 23-16: control byte, one of 5 in the 40-bit DDC control word
bits 15- 8: set these bits to O

bits 7- 4: command id (0x4)

bits 3- 2: set these bits to O

bits 1- 0: select DDC channel (0-3)

For more information on the 40-bit DDC control words, see the Harris Semiconduc-
tor HSP50016 DDC data sheet.

e DDR control register (from DSP to DDR)

bits 31-16: DDR control word, where:
bits 31-29: set these bits to 0
bits 28-24: tag field value gets inserted in bits 7-3 of each
DDC data word sent to C4x if DDCINFO is set to 1

bit 23: set this bit to 0

bit 22: DATAEN enables the data flow from DDC to comm port
(and then to DSP) when set to 1

bit 21: DDCINFO causes the DDC data information to be placed
in the lower bits of each data word when set to 1

bit 20: SYNCEN enables the 'DAC ready for data' interrupt
signal to DSP when set to 1

bit 19: CH2 limits the DDC output to two channels when set
to 1, four channels when cleared to 0

bit 18: INTERP activates the interpolator (L=2) when set to 1
(to be used with E1430A ADC)

bit 17: DACRST* resets the DAC circuitry when cleared to 0

bit 16: SRST* resets the entire DDR TIM when cleared to 0

bits 15- 8: set these bits to O
bits 7- 0: command id (0x80)

Each bit in the control register (bits 31-16) is cleared to 0 on power-up, iclear vxi, or
hard reset (VX8 reset).

35

System Software Development HP VX8 DDR TIM
Program Development Programmer’s Guide

DDR Data Structures

To simplify the task of programming the DDR TIM module, a DDR library is provided
(see ddr.c). The state of a DDR TIM module is contained in a structure of type
DDR_STATE (see ddr.h). This structure has the following DDR TIM parameters:

the C4x communication port the DDR TIM is connected to (comm port)
the DDC decimation value (ddc_decimation)
the DAC decimation value (dac_decimation)
the state of the DDR TIM control register SRST* bit (reset)
0 =reset, 1 =not reset
¢ the state of the DDR TIM control register DACRST* bit (dac reset)
0 =reset, 1 =not reset
¢ the state of the DDR TIM control register INTERP bit (interpolate)
0 =no interpolation (for E£1437A), 1 =interpolate (for E1430A)
¢ the state of the DDR TIM control register CH2 bit (number channels)
0 =4 channels, 1 =2 channels
¢ the state of the DDR TIM control register SYNCEN bit (sync enable)
0 =disable, 1 =enable
¢ the state of the DDR TIM control register DDCINFO bit (ddc info)
(turns on tag, channel, & real/imag information bits in DDC words)
0 =00000000’, 1 =tttttcer’, where ttttt =tag, cc =channel, r =real(0)/imag(1)
¢ the state of the DDR TIM control register DATAEN bit (data enable)
0 =disable, 1 =enable
¢ the DDR TIM control register tag field (data tag). A 5-bit, user-defined tag
placed in the lower byte of the DDC data (bits 7-3). Active only when the
ddc_info bit is set.
¢ a set of four channel-specific parameters (DDR_CHANNEL):
— the DDC center frequency (phase_increment)
the DDC spectrum type, up convert or normal (spectrum_type)
the DDC spectrum reversal flag (spectrum_reverse)
the DAC mute state (mute)
the DAC attenuation value (attenuation)

The DDR library functions are used to control and communicate with the DDR TIM
module and use the DDR_STATE to determine which parameters to set. Normally
the desired DDR_STATE parameter is changed and then the appropriate function is
called to make this change to the DDR TIM hardware. A list of DDR library func-
tions follows:

36

HP VX8 DDR TIM System Software Development
Programmer’s Guide Program Development

DDR Functions

Typically, the only functions required to setup and control DDRs are ddr new,
ddr_init,ddr delete,and ddr set all. Functions used while running are
ddc_center,dac_control, and dac_set. See example code for typical use.

ddr new(long comm port)

Arguments:
Returns:

Synopsis:

Note

comm_port - C40 comm port to which the relevant DDR is attached
Pointer to the DDR state structure created.

This function creates a new DDR_STATE structure and initializes it with known
reset values of the DDR TIM module. This function is called first.

ddr init () should be called after ddr new to initialize the DDR hardware.

ddr_init(DDR_STATE *ddr)

Arguments:
Returns:

Synopsis:

Notes

ddr - Pointer to DDR state structure (used to identify comm port)
void

This function initializes the DDR TIM hardware to be ready for a call to
ddr_set_all(). It clears out the DAC buffers and initializes each DDC on the DDR
with a write to control word 5. This routine should be called second, after
ddr_new().

ddr_ init () should be called immediately after ddr new to initialize the DDR
hardware.

Upon exit ddr->reset = RESET and ddr->dac_reset = DAC_UNRESET.

ddr set all (DDR_STATE *ddr list[], long length)

Arguments:

Returns:

Synopsis:

ddr_1list[] - array of pointers to DDR state structure of DDRs to be programmed
length - number of DDRs on ddr 1list[]

void

Sets up and programs all parameters on all DDR TIMs listed in its argument. This
routine first initializes the DACs of each DDR by calling dac_set (). The DDRs are
then un-reset in reverse order in a tight loop so that the DAC clocks for each DDR
are fairly close to each other. It is assumed that the first DDR in the passed-in list
will be the one that generates the DAC service interrupt; the order of module
un-resetting guarantees that the other DDRs will be ready to accept new DAC data
when the interrupt is generated. The rest of the DDR (and DDC) parameters are set
by calling ddr set () for each DDR in the list. This function should be call third,
after ddr new () and ddr init () has been called for each DDR on the list.

37

System Software Development HP VX8 DDR TIM
Program Development Programmer’s Guide

ddr set (DDR_STATE *ddr)

Arguments:
Returns:

Synopsis:

Note

ddr - pointer to DDR state structure (used to identify comm port)
void

Sets all DDR and DDC control words on a DDR TIM module, except for the parame-
ters set in dac_set(), according to the DDR_STATE for the module. Again, all of the
fields of the DDR_STATE structure should be changed to their desired values before
calling this routine. The state of the DDR TIM hardware will match the
DDR_STATE after this routine completes. It is usually called after dac_set ().

See ddr set all().

It is easier to call ddr set all () to set up all of the DDRs in the correct order.

ddr control (DDR_STATE *ddr)

Arguments:
Returns:

Synopsis:

ddr - pointer to DDR state structure (used to identify comm port)
void

Updates the DDR control word from the parameters in the DDR_STATE structure.
This function is called by ddr set all().

ddc_ifbw_and spectrum(DDR_STATE *ddr)

Arguments:
Returns:

Synopsis:

Notes

ddr - pointer to DDR state structure (used to identify comm port)
void

Changes the decimation rate (IF bandwidth) and spectrum type (up convert, spec-
tral reverse) for each of the 4 (or 2) DDCs on the specified DDR. All DDCs on the
DDR will be updated to reflect the IF bandwidth and spectrum parameters of the
DDR_STATE structure.

It is easier to call ddr set all () since all DDRs must use the same IF BW.

The desired decimation and spectrum values should be set in the DDR state struc-
ture before calling this function.

ddc_center (DDR_STATE *ddr, long channel number)

Arguments:

Returns:

Synopsis:

ddr - pointer to DDR state structure (used to identify comm port)
channel number - DDC channel number (range 0..3)

void

Changes the phase increment (LO center frequency) of the specified DDC channel
on a given DDR.

. Fc 33
ddr—phase_increment = Fx 2

s

where F,is LO frequency and is F, incoming sampling frequency.

This can be used “on the fly” while the DDC is operating.

38

HP VX8 DDR TIM System Software Development
Programmer’s Guide Program Development

dac_set (DDR_STATE *ddr)
Arguments: ddr - pointer to DDR state structure (used to identify comm port)
Returns: void

Synopsis: Initializes the DDR DAC by writing zero samples to the DAC buffers and by writing
the DAC decimation counter (clock divider) value. Usually called before
ddr set (). See ddr set all().

Note It is easier to call ddr_set all () since it calls associated routines in the correct
order.

dac_control (DDR_STATE *ddr, long channel number)

Arguments: ddr - pointer to DDR state structure (used to identify comm port)
channel number - DAC channel number (range 0..3)

Returns: void

Synopsis: Sets the DAC control bits including mute and attenuation values for the specified
channel.

This can be used “on the fly” while the DAC is operating.

dac_decimate (DDR_STATE *ddr)
Arguments: ddr - pointer to DDR state structure (used to identify comm port)
Returns: void

Synopsis: Sets DAC decimation (clock divider) value. The decimation value range is 0..511.
o dec
decimation= 7—1

where dec is the desired decimation rate from either 20 MHz (the sample rate of the
E1437A) or 20.48 MHz (the interpolated sample rate of the E1430A).

This function is called by dac_set () which is, in turn, called by
ddr _set all().

dac_out (DDR_STATE *ddr, long channel number, long data)

Arguments: ddr - pointer to DDR state structure (used to identify comm port)
channel number - DAC channel number (range 0..3)
data - 16-bit, signed integer (range -32768..32767)

Returns: void

Synopsis: Outputs audio data sample to specified DAC channel. Normally this routine is called
from a DAC interrupt service routine.

ddr delete (DDR_STATE *ddr)
Arguments: ddr - pointer to DDR state structure
Returns: void

Synopsis: Returns a structure of type DDR_STATE to the memory heap.

39

System Software Development HP VX8 DDR TIM
Program Development Programmer’s Guide

DDR Programming Example

The following C4x .c file demonstrates the use of the DDR library function calls.
This example simply creates a DDR_STATE structure for one DDR connected to
comm port 5. It then initializes and sets the DDR TIM hardware. After some
processing the center frequency of channel 0 is changed.

/***/

/* */
/* Example program demonstrates the use of the DDR library functions. */
/* */
/* compile directions */
/xS */

/* Compile ddr.c and link with this program. Make sure the following */
/* directory is in the include path: */
/* */
/* C:\vxipnp\winnt\ddrifc\dsp\include */
/* */

/***/

#include "ddr.h"
#define POW2 33 8589934592.0 /* 2733 */

void main (void)
{
DDR_STATE *ddr; /* DDR state structure */

int 1i; /* loop counter */

/* create new DDR state structure for DDR connected to comm port 5 */
ddr = ddr new(95);

/* initialize DDR hardware for programming */
ddr_init (ddr);

/* set state of DDR, note reset and dac reset were set by ddr init()
*/

/* DDCs decimate by 2048 -> 10 kSamples/sec, IF bandwidth = 5.5 kHz */
ddr->ddc_decimation = 511;

/* DACs decimate by 1024 -> 20 kSamples/sec */
ddr->dac_decimation = 255;

/* E1437A is being used, 20.48 MSamples/sec */
ddr->interpolate = NO INTERPOLATE;

/* all four DDC channels will be used */
ddr->number channels = CHANNELS 4;

/* don't enable DAC interrupt until ready to output audio data */
ddr->sync_enable = SYNC DISABLE;

/* enable tag, channel, and real/imaginary information in the data */
ddr->ddc_info = DDC_ INFO;

/* enable data to flow from DDCs immediately */
ddr->data enable = DATA ENABLE;

40

HP VX8 DDR TIM System Software Development
Programmer’s Guide Program Development

/* set DDR identification tag */
ddr->data tag = 1;

/* set parameters for each channel */

for (i = 0; i < NUM DDR _CHANNELS; i++)

{
/* set phase increment = (2733)*Fc/Fs to 'i' MHz */
ddr->channel[i].phase increment = POW2 33 * i / 20.48;

/* use normal spectrum */
ddr->channel[i].spectrum type = NO UP CONVERT;

/* use no spectral reversal */
ddr->channel[i].spectrum reverse = NO REVERSE;

/* no audio mute */
ddr->channel[i] .mute = NO MUTE;

/* full volume */

ddr->channel[i] .attenuation = 0;
/* set all DDR hardware parameters and start up hardware */
ddr set all(&ddr, 1);
/*** do some processing here ***/
/* set channel 0 frequency to 950 kHz */
ddr->channel[0] .phase increment = POW2 33 * 0.950 / 20.48;
ddc_center(ddr, 0);

/*** do some more processing here ***/

/* return ddr memory to heap */
ddr delete (ddr) ;

41

Note

System Software Development HP VX8 DDR TIM
Program Development Programmer’s Guide

HPVX8 Host Library

For WindowsNT/95 systems, you must have Microsoft Visual C++ 5.0 to use the
winnt.mak and winnt.dsp files (in the hpvx8\host\build directory) directly.

Although the makefile is called 'winnt', it works for both WindowsNT and
Windows95. In fact, the hpvx8 library works on either platform regardless of the
platform it was built on.

Once Microsoft Visual Studio comes up, select the 'Build->Rebuild All' menu pick to
rebuild the library. If another host compiler is being used, compile all of the
hpvx8\host\src files with the following preprocessor definitions:

WIN32, WINDOWS, and VISA.
Include paths require pointers to the ssvx8 and VISA include directories. The result-
ing object files can be linked directly with the host application files or built as a

library, either shared or static. Note that the hpvx8 library requires the ssvx8 library
as well as the VISA library to function.

For HP-UX, simply use the following command to make both the shared and archive
(static) libraries:

make -f hpux.mak
The HP-UX version of the hpvx8 library requires the ssvx8 shared library as well as

the SICL or VISA shared libraries (depending on the HP-UX version) to run with an
application program.

HPVX8 Target Program

To use the target side of the hpvx8 library, compile hpvx8msg.c and link with the
C4x application program. See the radio build instructions on page 61 for more infor-
mation.

42

HP VX8 DDR TIM System Software Development
Programmer’s Guide HP Radio Target Program

HP Radio Target Program

The VX8 Opt. 140 AM/FM/Sideband Multi-channel Radio (HP Radio), is a system
demonstration tool for the HP VX8 VXI DSP board (VX8) and the companion VX8
Opt. 040 DDR TIM module.

HP Radio is a programming example demonstrating the use of the VX8 and DDR
TIM to create a multi-channel, narrowband receiver system. The system is
comprised of two main parts: the host (controller) and the target (DSP).

The target portion of HP Radio ("Radio") is an example application, with source
code, illustrating concepts necessary for the successful development of a VX8 DDR
system. This document describes the Radio DSP example software, providing an
overview and discussing the relationship between the software and constraints
presented by the hardware.

Reference Documentation

This discussion assumes that you have access to and are familiar with:

® the VX8 documentation, in particular the Technical Reference and the Pro-
gramming Guide

® the TI TMS320C4x processor family and its documentation, in particular the C4x
User's Guide.

® the TI C4x code development tools and their associated documentation, in partic-
ular the Optimizing C Compiler User's Guide, the Assembly Language Tools User's
Guide, and the Parallel Runtime Support Library User's Guide.

43

System Software Development HP VX8 DDR TIM
HP Radio Target Program Programmer’s Guide

Data Flow

Overview

Information flows from an antenna through the system front end to the VX8 board
where the narrowband receiver functionality exists. The process is described in the
following discussion by tracking the data flow through the various steps.

The VXI system overview.

The VX8 carrier board moves ADC data from the HP local bus to the DDR TIM
The DDR boards perform digital downconversion and decimation.

C4x flow and digital processing

Data flows back through the comm port to the DACs on the DDR TIM which con-
verts the digital audio to analog signals.

VXI System

The data flow through the system is illustrated by the figures below. At the very
highest level, a system ADC module to the left of the VX8 acquires data, possibly
from an RF downconverter, and sends it to the VX8 over local bus. This unidirec-
tional high-speed bus between adjacent HP VXI modules is also called HP local bus.
The VX8, with its C4x processors and DDR TIM modules, then tunes to specific
frequency bands, demodulates the signal within each band, and outputs the demod-
ulated audio.

The figure below illustrates how data moves back and forth between the DSP and
the DDR modules; one comm port is used to move data from the DDC to the DSP
and then from the DSP to the DAC.

e VKB -eeeeeseeeenes .

i analog || ADC :E>4-chi>comm<:§:> C40

tuner | |(wideband)[%"| DDC port (detectlé

The following discussions cover these steps in more detail.

44

HP VX8 DDR TIM System Software Development
Programmer’s Guide HP Radio Target Program

VX8

On the VX8 carrier board, the HP local bus interface receives the system ADC data,
and then HP local bus DMA sends it to all or a particular subset of the eight nodes
on the VX8. (See Setting DMA Target on page 50.) These nodesconsist of two
embedded C4x sites A and B, and six TIM sites C through H. In an HP Radio system,
DDR TIM modules or additional C4x processor modules are plugged into some or all
of the TIM sites, and the DDR TIM modules receive the HP local bus DMA data for
digital downconversion. C4x nodes can also receive this data for other processing
such as computing its spectrum.

< 1 [
L T . 'y VXbus 2 »
0 node B =S =
= nodeH || nodeF |«—»| nodeD »| Cc40 Interface x 8
= (]
3 Th 42 Th 42 Shared 2
S g g ﬁ 3 ©
&) T LTI Local Bus a o
5 X Interface <ﬂ g E
ch global shared bus = §1
- V S V v #\/? V 4 v —p comm port %
< node A connections oa)
E node G »| nodeE |¢—p| nodeC » C40 Each node
(C through H)
A Iso has 4 pairs of
<J ? T T f ‘ T coifl(:zct?(s)nsli?)lf)sng of
the 2 application-specific

front-panel connectors
(not shown here)

The next discussion covers data flow on the DDR TIM board in more detail.

45

System Software Development HP VX8 DDR TIM
HP Radio Target Program Programmer’s Guide

DDR TIM

On the DDR TIM board, logic receives the wideband ADC data at the global bus
connector, unpacks it (each 32-bit word contains two 16-bit samples), hard-
ware-interpolates it by two if selected, and routes it to the four digital
downconverters (DDCs). These are Harris Semiconductor HSP50016 digital
downconverters.

Downconversion The DDCs perform digital downconversion in two steps.

1. First, the incoming real data stream is multiplied by a digital quadrature local
oscillator, generating a complex representation with the desired tuned frequency
shifted to DC.

2. Then, low-pass filtering and decimation are performed on the real and imaginary
parts of this complex data stream, reducing its bandwidth and sample rate to the
required extent to select the desired channel.

Decimation The DDCs have flexible decimation rates. Decimation is by a factor of

4x R, where R can range from 16 to 32768, inclusive, in integer steps. This gives a
minimum decimation of 4x 16 or 64, and a maximum decimation of 4x 32768 or
131072. Given an E1437A ADC running at 20.48 MHz, or an E1430A ADC running at
10.24 MHz with the hardware interpolator selected, the input rate to the DDCs is
20.48 MHz, and a DDC's (complex) output rate can range from 20.48 MHz / 64 or
320 kHz, down to 20.48 MHz / 131072 or 156.25 Hz.

The 3 dB bandwidth at the output of a DDC is 0.55 times its (complex) output
sample rate. Thus bandwidths from 176 kHz down to 85.9 Hz are possible. While
these bandwidths are possible given the DDC hardware, the Radio software is
restricted to a useful subset of these bandwidths for two reasons.

1. A power-of-two relationship is required between the DDC rate and the DAC rate,
precluding some bandwidth choices.

2. Some combinations of bandwidth, number of channels being processed, and
demodulation algorithm complexity preclude real-time operation due to the time
between blocks of input data being too short to accomplish the calculations.

DDC data flowing from the DDR TIM to the C4x consists of formatted DDC output
data. These are 32-bit words consisting of the 24-bit raw DDC output words concat-
enated with a least-significant-byte identification field. This is shown on the left side
of the next figure.

The design of the DDR TIM hardware ensures that all DDCs on a DDR TIM operate
at exactly the same bandwidth and thus output sample rate. This makes possible
the data interleaving that must occur among the DDC output data. The HPRadio
program further requires that all DDR TIM modules in a group operate at the same
bandwidth. This is due to the fact that the C4x only has one interrupt input avail-
able for output data (see the DAC ISR discussion on page 58).

46

HP VX8 DDR TIM System Software Development
Programmer’s Guide HP Radio Target Program

C4x Data Flow

The figure below illustrates the flow of data from the perspective of the Radio target
program running on the C4x DSP. At the left, DDC data from the DDR TIM enters
on the comm port and the C4x DMA coprocessors transfer it to double buffers in
RAM. This is complex data representing tuned bands in the ADC input (or RF input
in the case of a downconverter). Demodulation is done on the data streams, and the
resulting real audio data is returned to the DDR TIM via the same comm port used
to input the original data. See also, Process on page 52.

anll ICRDY I input working buffers UutTpul DDR TIM I
0| O butfers XY Z b :'_l> 0
' B Q'NHHHWDMAI TIOF2 > |1
1 comm| interrupt comm T ' B>
’ D input | output > 1 3
DDMlJ |CRDYJ input output ,# DDR TIM J
4 butfers _—> buffer [A
= ') — =X cag 4
5| O e NS ;
7 I:I i comm J = 6
L — 1 input
DDMK ICRDY K inout outout DDR TIM K
8 | O Lo~ butfers buffer 8
18 E . comm K PVAR comm K > 18
L i output =1 1
DDC DAC

As many as 3 DDR TIM modules per C4x (12 channels/DSP) are supported by the
Radio program as illustrated in the figure above. The DDR TIMs are labeled I, J, and
K. The DDC portion of each DDR TIM is shown at the left side of the figure as the
source of the input data; the DAC portion appears at the right as the destination for
the demodulated data. The following discussion covers this in more detail.

C40 DMA DDC data is brought into the C4x environment from a DDR TIM via a
comm port and its associated DMA coprocessor. The C4x DMA coprocessors reduce
the C4x processor's overhead in this task to nearly zero by continuously and
automatically loading data into an input double-buffer, auto-initializing to the
opposite side of the buffer when one side becomes full. To keep the coprocessors
from tying up internal C4x busses between input samples, the program uses ICRDY
interrupts between the comm ports and their associated C4x DMA coprocessors.
This is called source synchronization mode.

Real-Time The DMA coprocessor and the C4x communicate as follows:

¢ A bit in the C4x IIOF flag (IIF) register indicates DMA transfer complete.
¢ The C4x DMA coprocessor destination address register (memory-mapped to the
C4x processor) indicates which side of an input buffer has the most-recent data.

The C4x DSP process always checks the flag and DMA address register to determine
when and where to read input data. When the process is operating real-time, the
data is read alternately from the two buffers and the process has to wait for a buffer
to finish f1ll1ng (indicated by the flag) before it can start processing the next block.
When the process drgps out of real-time, the process may skip one or more buffers
of data on each Cycle6.

For a group with more than one DDR TIM, waiting for any of the group’s input buffers to fill
indicates real-time operation.”

Also, the process does not have to wait to read data, which indicates non-real-time operation.
Non-real-time operation is indicated by lighting the User (amber) LED on the VX8 front panel.

47

System Software Development HP VX8 DDR TIM
HP Radio Target Program Programmer’s Guide

C4x DSP From the input buffers, DDC data flows into a chain of C4x DSP operations.
A set of floating-point, working buffers called X, Y, and Z are used to hold interim
results. Data is processed from one DDR TIM at a time. The X, Y, and Z working
buffers are each a set of four, one for each channel in a DDR TIM. See the center
section of the figure on page 47. The DSP operations are discussed further under
Process on page 52.

At the end of C4x DSP operations, the demodulated audio output data is deposited
into output buffers, one buffer per DDR TIM, with each 32-bit word containing a
16-bit sample and identification information.

Digital Audio Output

From the output buffers, data flows through the comm port back to DDR TIM output
DACs (digital-to-analog converters). For more information about the DAC interrupt
service routine which performs this task see DAC ISR on page 58.

48

HP VX8 DDR TIM System Software Development
Programmer’s Guide HP Radio Target Program

VX8 Shared Bus

This discussion covers the operation/use of the Global Shared Bus which is an
important component of the DDR system. See the figure below. Also, more infor-
mation is available in the VX8 Carrier Board Technical Reference from Spectrum
Signal Processing under Bus Architecture.

HP Local Bus In HP Local Bus Out

Local Bus
Interface

TIM-40 TIM-40
Global Shared Bus Node G Node H
TIM-40 TIM-40
Node E Node F
TIM-40 TIM-40
Node C Node D
EPROM C40 60 MHz C40 60 MHz EPROM
SRAM a0 Node A Node B SRAM
Local C40
Bus SRAM SRAM Locel RS237
DUART
Shared DRAM
) Slah;lel\/l otkets <:> Test Bus Controller
DRAM
S"HB“ZQ VXI Status/Control Registers
Notes:
*Nodes are also inter-connected VX! Interiace
via comm ports not shown here Master: A32JA24/A16, D32/D16
* Shaded nodes are embedded C40s Slave: A32/A16, D32/D16
] bi-directional data/address buffers @

VXIbus

The HP local bus DMA uses the global shared bus to move ADC data from the HP
local bus interface to the near global memory space of the embedded and/or TIM
nodes. Moving ADC data is the main task for the global shared bus but it is also used
to move host commands from DRAM to the DSPs.

The ADC data throughput rate can be quite large. For example, with an E1437A
ADC running at a 20.48 MHz sample rate, the average data rate for packed, 32-bit
words is 10.24 MHz, equivalent to 40.96 megabytes per second; a significant fraction
of the capability of the global shared bus. The DMA locks the global shared bus
while it broadcasts data to the nodes. DSPs trying to access the bus during the DMA
broadcast (to get host commands from DRAM) must wait until the DMA gives up the
bus.

49

System Software Development HP VX8 DDR TIM
HP Radio Target Program Programmer’s Guide

Passing Commands

Host commands to the target program(s) running on the DSPs are read from DRAM
to the DSP’s near global RAM via the global shared bus. To get access to the global
shared bus, we use the gap interrupt, as follows.

¢ The host defines the block size for the system ADC.

¢ The ADC sends an end-of-block (EOB) signal that identifies the last block of data
in its output data stream. For Radio, the typical block size is 65,536 samples
(32,768 double-sample words). This block size should not be confused with the
C4x DMA, which operates with its own block size on post-DDCata.

e When the HP local bus interface receives an EOB signal, it halts the flow of in-
coming data and generates an interrupt.’ All C4x sites running Radio service this
interrupt with what is called the gap ISR, so named because it represents a gap in
the input data flow. The gap ISR is the only opportunity for the C4x processors
to use the global shared bus without risk of halting until the bus becomes free.

e At the end of the gap ISR, the node A program clears the interrupt, allowing the
input data to resume flowing,.

Input data accumulates in the ADC FIFO while the gap ISR runs. The ADC halts
when its FIFO becomes full, so it is important that the radio program executes the
gap ISR quickly.

For more information, see Gap ISR on page 58.

Setting DMA Target

To allow a C4x node maximum access to its own near-global assets, you should limit
the HP local bus broadcast DMA to only those nodes that require the ADC data. A
C4x node can always access its own near global memory if no other user is accessing
it, even when the global shared bus is busy. However, if another process is access-
ing a node’s near global memory, the node's access is halted until the other access
ends.

The broadcast DMA target parameter specifies which nodes receive the input data.
See the VX8 HPSetDMATarget command in the VXS Carrier Board
Programming Guide. The following targets are allowed:

All nodes

Any individual node
Nodes C, D

Nodes C, D, G, H
Nodes E, F, G, H
Nodes C, D, E, F, G, H

Limiting the broadcast to only the nodes that process input data allows the other
nodes to have free access to their near global bus memory. This is significant
because performance is maximized by distributing the DSP data and program
elements among as many of the C4x data busses as possible: internal, local external,
and global external.

For Radio, the ADC data is used by all the DDR TIM nodes. A C4x node needs raw
input data only if that site is computing a spectrum from the data. For configuration
simplicity, Radio obeys this constraint, using only internal and local external
memory. The linker command files could be edited to make use of this memory,
precluding the spectrum computation. See the section on C4x memory utilization
on page 59.

The HP local bus also halts the incoming data flow and releases the global shared bus when its 1K
FIFO is “almost empty”. The gap interrupt, however, occurs only when the EOB signal is received.

50

Note

HP VX8 DDR TIM System Software Development
Programmer’s Guide HP Radio Target Program

Control Flow

The following figure is the program state diagram for the Radio C40 target program.

Initialize

configure loop

Pre Idle

jdle :
g
=
Initialize

Variable initialization is done in the initialize state and node A initializes the memory
which is used for C4x-to-C4x interprocessor synchronization.

Global compound variables (arrays and structures) should be initialized in
code. The code generation tools for the VX8 do not initialize the .bss section
containing global and static local data to zero in the absence of explicit initializers.
There is a workaround involving the fill command in the linker command file, but it
increases the size of the executable COFF .out files and increases the load time.

Setup

A host handshake is performed, and information is retrieved from the host about
host messaging and site configuration. The host must handshake with node A
before any other site to guarantee that node A has finished initializing the
interprocessor synchronization memory before another node tries to use this
memory. Node configuration information is used to tell the program its site offset
for interprocessor synchronization.

Next, node A gets a required initial command from the host giving additional infor-
mation on system configuration, specifically which other C40s in the system are also
running Radio and thus will be involved in interprocessor synchronization. Site A
then sets up the DDR TIM to C4x DAC interrupt connection(s).

Finally, the interrupt vector table is set up.

Pre-ldle

First in the configure loop is the pre-idle state. Here the VX8 local bus DMA is reset
and prepared for restarting, but not yet restarted. This stops the flow of system
ADC input data, freeing the global shared bus.

51

System Software Development HP VX8 DDR TIM
HP Radio Target Program Programmer’s Guide

Pre-Config

During the pre-config state, the DDR TIMs are reset. In concert with this, C4x DAC
and DMA interrupts are disabled and process state working variables are cleared.
Passing through this state in reconfig, system ADC data continues to flow to the
global memory interface of the DDR TIMs, but is ignored, since the DDR TIMs are
reset. See Leaving Process below.

Idle

In the idle state, host commands from DRAM are processed, setting up program

variables or the DDR TIM state structure. This same fetch-execute cycle occurs
during the process state except that, in the process state, the fetch occurs in the
GAP ISR.

Command processing continues until a start command is received.

Start

The start command moves program execution into the start state. The HP local bus
DMA is restarted and the time-out timer is started. See Timeout ISR on page 58.

Config

The config state sets up the C4x DMA, reflecting any change in C4x DMA block size.
The C4x DAC interrupt is reenabled, and then a signal is sent to the gap ISR to
unreset and set up the DDR TIMs the next time the gap ISR occurs. The config
state is exited after a signal comes back from the gap ISR indicating that the DDR
TIM unreset and setup has occurred.

Process

The core of the Radio program is the process state. The processing described in
C4x Data Flow (page 47) occurs here. This state involves a while loop called the
process loop at the end of the main() function of radio.c The process loop has
exactly one exit. One C4x DMA block for each DDR is processed each time through
this state.

At the top of the process loop, host commands are processed. The gap ISR fetches
host, commands from a message buffer in DRAM to the DSP over the global shared
bus®. The gap ISR then sets a flag indicating that a command is available.
Commands are processed by the commandInterface () function.

The only loop exit follows immediately and is based on results of the command
processing.

Leaving Process

Execution may leave the process state in two ways: reconfig, and idle. Reconfig
involves temporarily leaving the process state, going through the pre-config and
config states, and then reentering the process state. During reconfig, the system
ADC continues to run and gap interrupts continue to occur. The primary purpose of
reconfig is to handle changes to the C40 DMA block size due to commands such as
setting the IF BW.

The other way to leave the process state is to go idle. Idle is an exit back to the idle
state, where control remains until the start command is received. Idle also repre-
sents how the program first starts up after the initialize and setup states.

See following discussions for more detail: Process on page 52 and Gap ISR on page 58.%*

52

Demodulation Types

HP VX8 DDR TIM System Software Development
Programmer’s Guide HP Radio Target Program

Next, input data is processed. The data is processed one DDR at a time. The
processing proceeds as follows for each DDR TIM:

1. Check for new data from the C4x DMA and wait if none is available. If the CPU
does not have to wait at this point for data from at least one of its DDR TIMs, then
the processing is not real time.

2. Determine which side of the input double-buffer is current and process it through
the chain shown in the general figure on page 47 and the detailed figures on
pages 53, b5, and 56. In these figures, wide arrows indicate complex data
streams and line arrows indicate real data streams. InBuff, X, Y, Z, and OutBuff
identify the buffer holding the data at the given point in the process.

3. The integer input buffer data is converted to floating point and then scaled so
that the minimum possible value on the real and imaginary sides is -1.0, and the
maximum possible value is just short of +1.0. This data resides in the X buffers,
segregated by channel.

Further processing steps vary depending on the modulation type. For the user type,
the complex samples in the X buffers are expected to be converted into an equal
number of real demodulated samples in the Y buffers. Details about the number of
samples appear later in the discussion of interpolation and decimation.

The following figures show the process flow steps for each of the demodulation
types. Since all types share a common end process, that flow diagram is given once.

FM Demodulation

[nBuff X Y

DDC —>) Scale & —> Demod &1 44 st

Convert Squelch stage

The FM demodulator is the simplest and most efficient of the three types supplied.
The algorithm employed here uses the fact that the demodulated output is propor-
tional to the instantaneous frequency of the input, and instantaneous frequency is
the time derivative of phase. Phase of the complex input (I +jQ) is arctan(Q/I), so
the objective is to find:

‘fee()

Given that

d) 1 v
E{arctan(u)} is [1+u2]dl'

then

ACNERITS

which simplifies to
a-af
F+0*

d
where ' represents a{ }

53

System Software Development HP VX8 DDR TIM
HP Radio Target Program Programmer’s Guide

To calculate @' and I' we use a simple 2-tap, type-4 FIR differentiator.
x'=xlnl—xln-1

Substituting in the numerator:
10-0r'= 1In)@ln— aln —D— alnd/n - ln =1 simplifies to —/L71a0n =1+ Al -1

Resulting in:

nstant ‘ T (=nln="11+dnln-1]
nstantaneous Frequency =~ —
S Frequency =" 1> +0n)?
Where K is the inverse proportionality constant:
peak deviation
/(=27T/ P E——

sample _rate

This operates on the X buffers, generating the demodulated output in the Y buffers.
The magnitude-squared denominator value is compared against the squelch thresh-
old to zero the output for too-small signals.

AM Demodulation

InBuff X Y Y
Scale & AM | .| Divide &
DDC —> Convert —>) Demod L > Squelch [~ 10 last

stage
AGC ?

Filter

For AM modulation, an AM demodulator is run on the X buffers, putting the square
root of the sum of the squares of the real and imaginary parts in the Y buffers. A
feed-forward in-band AGC system then operates. The AGC filter runs on the data in
the Y buffers. This is a single-pole no-zero IIR filter with a "diode peak-detector" to
choose between attack and decay on a sample-by-sample basis. Its attack time and
decay time can be set in the radio.h file, and these times remain constant despite
changes in input sample rate (IF bandwidth). The demodulated signal is divided by
the (relatively slowly varying) AGC filter output to generate a near-constant average
output amplitude independent of input amplitude. This must be scaled safely below
the clip level so that typical signals never exceed the attack time by enough to
generate clipped output. The AGC filter output is also compared to the squelch
threshold and the demodulated output is zeroed if the AGC filter output is too small.

54

SSB Demodulation

InBuff

Scale &
Convert

HP VX8 DDR TIM System Software Development
Programmer’s Guide HP Radio Target Program

o= Interpolate-by-2 -=----------~
P ,—-Y-- FIR Filter ----~ N

Divide & Interleave =l Convolve Re {} _Y, to last

Squelch Zeros stage

Overlap

AM AGC
Demod) Filter

Sideband and CW demodulation is the most complicated and processing-intensive of
the three demodulation types. The process begins like AM demod, except that the
AGC and squelch operate on the complex input signal in the X buffers (the AGC is a
preprocessing function). Next, a complex interpolate-by-two is performed (inde-
pendent interpolation by two on the real and imaginary sides), using the Y buffers
and ending up in X. This is necessary to prevent aliasing in the subsequent demod.

Next, the beat frequency oscillator (BFO) is applied, leaving results in the Z buffers.
The BFO is implemented with a BFO-frequency-dependent phase count increment
added modulo—(232) to a phase count which is then converted to a phase value. The
phase is used as the argument for the sine and cosine parts of the complex BFO. To
prevent aliasing, the BFO must be restricted to a range of plus or minus the IF band-
width. The demod is completed by taking the real part, leaving the demodulated
output in the Y buffers.

(This is one area where performance improvement is possible. The approach shown
here is intentionally straightforward, rather than computationally optimal. Also, the
BFO range restriction is a limitation for practical CW work. Complex interpolation
by more than a factor of two prior to the demodulation would allow a wider BFO
frequency range.)

55

System Software Development HP VX8 DDR TIM
HP Radio Target Program Programmer’s Guide

Demod Final Stages

Interpolate (0-7 times)

U

P FIR Filter ----~ n
’ N
| : ¥
v | Interleave [X1 y Yo
v
Zeros | ™ Convolve —>
: Overlap !
\ Memory)
vy | AC |x|Tone& ||y B ettt ’ Clip, Scale,
—>»{ Couple —»| Deemph 3 Convert, Ouibu] DAC
HPF T . IR Filter ——— - Build
I’/ \|
 convolve be V1, |Decimate| ¥ |
U \ by 2 !
P Overlap | !
:\ \ Memory ! !

Home Octave

Global Variables

—_————e e~

Narimata IN A timoe)

All types of demodulation have a common end process as illustrated in the figure
above. First, a single-pole single-zero-at-DC high-pass IIR filter is applied to
AC-couple the signal. Its high-pass corner frequency is set in the radio.h file, and,
like the AGC time constant, remains constant despite changes in input sample rate.
This is followed by a single-pole single-zero-at-pi low-pass IIR filter, used as a tone
control (or optionally a de-emphasis filter for FM). Its corner frequency is similarly
independent of input sample rate.

Depending on the IF bandwidth, interpolation or decimation may be required next.
The audio DACs used in the DDR TIM can operate at any arbitrary sample rate
within a one-octave range. For IF bandwidths which correspond to sample rates
within this octave, no interpolation or decimation is required. This is also called the
home octave. The DACs can operate at sample rates from 16.276 kHz to 32.552 kHz
(see radio.h). For the DDCs, bandwidth is 0.55 times the (complex) output sam-
ple rate, so the home octave for IF bandwidth is from 8.95 kHz to 17.90 kHz.

For Radio, IF bandwidths outside the home octave can be used if they convert to a
possible DAC rate after power-of-two interpolation or decimation, for narrower or
wider IF bandwidths, respectively.

Three Radio program global variables related to interpolation and decimation are
worth pointing out here:

® InterpolateBy isthe interpolation factor used to bring the DDC output rate
into the DAC octave.

® ReallInterpolateBy is the interpolation factor required in the interpolation
stage being discussed here. It is the same as InterpolateBy except for sideband
demodulation, where it differs to account for the interpolation done in the side-
band demod.

® RealDecimateBy describes the decimation factor required at this stage.

None of these factors are fractional. They bottom out at one if the corresponding
operation is not required, and thus are always either one or a positive power of two.

56

Number of Samples

Interpolator

Decimator

Clip, Scale,
Convert, Build

HP VX8 DDR TIM System Software Development
Programmer’s Guide HP Radio Target Program

In the home octave, the number of samples processed is exactly the same as
SAMPLES_PER_CHANNEL, defined in radio.h, everywhere throughout the process.
However, if interpolation or decimation is required, things become more compli-
cated. In the interpolation case, the C4x DMA is run at a correspondingly reduced
block size so that after interpolation the data still fits the buffers. In the decimation
case, decimation reduces the number of samples that are written to the output
buffer from a block by the same factor that the output sample rate is smaller than
the input rate.

The interpolation process for each power-of-two is to double the signal amplitude
and interleave zeros, then filter out the images created by the zero-interleave. This
is repeated as required for additional powers-of-two. The interpolation filter is de-
signed for use in the sideband demod interpolator (the passband is pushed out
slightly from what it could be for a straight interpolate-by-two design, to maximize
BFO range). A 16th-order FIR filter with a +0/-1.4 dB passband response and a 70
dB stopband is used. The filter is implemented using block convolution with over-
lap-add to concatenate adjacent blocks.

The decimator is similarly straightforward. For each power-of-two, the process is to
filter anything beyond the bandwidth supported by the new sample rate, then throw
away every other sample to reduce the sample rate by a factor of two. Repeat as re-
quired for additional powers of two. The decimation filter is only used for
bandwidths beyond approximately 18 kHz (9 kHz for sideband), which are rarely
used. The decimator must run as fast a possible. A 6th-order FIR filter is used. It
has a 1+ dB passband, and a stopband in the low 30's of dB.

(Performance improvements are possible in the decimate and interpolate stages.
Neither the interpolator nor the decimator take processing advantage of input zeros
or output dead samples. Also, for multiple power-of-two sample rate changes, filters
late or early in the process can be a lot less restrictive and thus faster.)

The final step is to clip the output samples in the Y buffer, scale them for the 16-bit
output format and convert to integer, and then build the output words by appending
the identification fields to each word. These are then moved into the output buffer,
where they will be handled by the DAC ISR.

57

System Software Development HP VX8 DDR TIM
HP Radio Target Program Programmer’s Guide

Interrupt Service Routines

Timeout ISR

The timeout ISR assures continued communication with the host in the event that
no EOB signal occurs for the specified amount of time.” Host communication occurs
during the idle state and the gap ISR. The gap ISR is triggered by receiving the EOB
signal. When the timeout occurs, the timeout ISR takes processing back to the idle
state. The timeout time is reset and started in the start state and at the end of the
GAP ISR.

The Timeout ISR can interrupt the Config state, the Process state, or the Gap ISR.
When the Timeout ISR is finished, control moves to the Pre-Idle state.

DAC ISR

When the DSP processing is complete, data flows through the comm port back to
DDR TIM output DACs (digital-to-analog converters). This is accomplished in a C4x
interrupt service routine. The VX8 programmable I[IOF2 routing matrix is config-
ured to connect exactly one of a group's DDR TIM's sync signals to the C4x IIOF2
input. All other DDR TIM modules in a group must share the timing of this sync
signal, hence the requirement of identical bandwidths across a group. In the DAC
ISR, one output data sample word is written to each channel on each DDR TIM.

To assure that the DAC interrupt is always serviced, the other ISRs in the system
must be either very short or interruptable. Radio generates a debugging signal in
the DAC ISR on the C40 TIMERO output pin (here used simply as an I/O with no
timer functionality) to help you verify that the DAC interrupt is never missed. Using
a logic analyzer, you can verify that every IIOF2 interrupt pulse is followed by a
corresponding TIMERO pulse.

The DAC ISR is capable of interrupting the Gap ISR.

Gap ISR

The gap ISR allows host commands to be passed to the C4x DSPs over the global
shared bus when it is not being used to pass ADC data to the DDR TIMs. For more
information see Passing Commands on page 50.

During the gap ISR, the following things happen in the order shown:

1. Commands from the host are read and command responses and error messages
are written to the host messaging area in VX8 DRAM. The host can read and
write DRAM without impacting the global shared bus due to the separation
between the global shared bus and the DRAM shared bus. See page 49.

2. DDR TIMs are configured and unreset. This does not occur regularly, but rather
only in the config state after start or reconfig. Unresetting the DDR TIMs in the
incoming data gap ISR ensures that all DDCs receive the incoming data in a
synchronized fashion after the data resumes flowing.

3. Interprocessor communication takes place concerning the desired state of the
VX8 front panel user LED, which is used as an external indicator of real-time vs.
non-real-time processing conditions.

4. Synchronization occurs among all C4x Radio programs guaranteeing all sites are
done with global shared resources and ready for the next step.

5. Site A clears the end-of-block interrupt. This ends the gap, allowing input data to
resume flowing from the system ADC.

6. The watchdog timeout timer is reset and restarted. Time-outs by the timeout
timer generate the time-out interrupt, serviced by the Timeout ISR.

If this occurs, the ADC FIFO has probably overflowed, resulting in a halted ADC.

58

Start and Idle
Requirements

Interprocessor
Synchronization

Small Memory Model

Stack Size

HP VX8 DDR TIM System Software Development
Programmer’s Guide HP Radio Target Program

Synchronization

The idle and start commands require special discussion because they have
system-wide implications and each require a set of synchronized actions by the host.
Starting requires that the host send the start command to each group running Radio,
and then start the system ADC in a timely manner. Timely means that the Radio
time-out timers, running for START_TIMEOUT_CYCLES (see radio.h), don’t time
out. Going to idle requires sending the idle command to each group running Radio
and stopping the system ADC.

One final point about the transitions among the various program states involves
interprocessor synchronization. Whenever more than one group is running Radio,
this is required, particularly in the gap ISR, while going idle and while starting.
Interprocessor synchronization always brings with it the potential for deadlocks
(one processor stuck waiting at one point, and another somewhere else). Care must
be taken to avoid this. See the share.h and share. c files which contain the
interprocessor synchronization implementation code.

C4x Memory Utilization

The TMS320C4x linker command files radio_a.cmd (site A) and radio_bt.cmd (all
other sites) control how the linker assigns memory resources. Radio is not set up to
use C4x global bus memory. This leaves C4x internal memory and C4x local bus
memory available.

For Radio, the relatively small C4x internal memory is used to hold the stack. This
limits the stack to 1 Kword or so and means that the fastest memory in the system is
utilized by local (automatic) variables which the C compiler puts on the stack.

The .bss section is put in C40 local memory. This is still zero-wait state, but not as
fast as internal memory where multiple accesses per cycle are possible in some
circumstances. Larger users of memory such as the working buffers are made global
or static local variables, which the C compiler puts in the .bss section.

The small memory model is used for speed and simplicity. The small model is faster
than the big model because direct-addressing memory accesses count on the
data-page (DP) register pointing at the .bss section, rather than reloading it every
time. Its drawback is a 64 Kword limit on the size of the .bss section. The
MAX_NUMBER_OF_DDRS and SAMPLES_PER_CHANNEL defined in the radio.h
file affect the required size of the .bss section. After any changes to these, be sure
to check the map files to be certain this .bss section size limit is not exceeded.

The stack is set up in the linker command files. Be aware of the size of the stack
and make sure it does not overflow its allotted space. See the radio_a.cmd and
radio_bt.cmd files.

59

Note

Max. IF Bandwidth for

Real-time Operation

Calculating Filter
Coefficients

HP VX8 DDR TIM
Programmer’s Guide

System Software Development
HP Radio Target Program

Final Notes

The current version of the HSP50016 DDC chip generates a small, somewhat
signal-dependent DC offset in its output when decimating by a factor which is not an
exact power-of-two. This has no effect for FM or AM modulation types, but for side-
band it can cause an output tone at the BFO frequency down near the noise floor.
The Radio program implements a workaround involving an empirically determined
DC buckout which is added to the incoming DDC signal before processing. If neces-
sary, the buckout value can be changed with the DC buckout command. Another
workaround is to operate with a power-of-two DDC decimation factor for sideband
modulation. A future version of the HSP50016 DDC IC should fix this.

Keeping in mind that the Radio program is optimized as a teaching tool rather than
for performance, the following table shows current approximate performance capa-
bilities. In using this table, be aware of the home octave concept. Because of this,
processing requirements are sometimes greater for a range of smaller bandwidths
when additional interpolation is required, even though the time between input
samples is greater.

The ability of the Radio program to operate in and out of real-time while providing
real-time indication via the VX8 front panel user LED allows the user to experiment
with changes in bandwidth and their effect on real-time operation.

The following table is intended as an approximate guide only. The performance
expressed in this table is not guaranteed!

Number of Modulation Type

Channels FM AM Sideband
1 74 kHz 64 kHz 15 kHz
2 41 kHz 36 kHz 8 kHz
4 22 kHz 19 kHz 2.1 kHz
8 13 kHz 11 kHz NA
12 9 kHz NA NA

Finally, mention was made previously of the IF bandwidth-independent operation of
the AGC filter, the AC-couple filter, and the tone-control filter. Normally when de-
signing a digital filter, the cutoff frequency and sample rate are known, and a filter
design program is used to compute the filter coefficients. For Radio, the cutoff fre-
quencies may be specified either at compile time by changing the radio.h file (in the
cases of the AGC and AC-couple filters) or at run time by the tone command (in the
case of the tone-control filter). Also for Radio, the sample rate at the filter imple-
mentation point is determined at run time based on the IF bandwidth. Thus, the fil-
ter coefficients must be computed at run time.

This is done by first solving for the filter cutoff frequency in terms of its parameters,
and then inverting to get the parameters in terms of the cutoff frequency. Trigono-
metric-series approximations are used to avoid small-angle precision problems. The
end result is the required run-time filter coefficient computations in the
commandInterface() function of the radiocmd.c module.

60

HP VX8 DDR TIM System Software Development
Programmer’s Guide HP Radio Target Program

Building the Radio DSP Programs

To build the Radio DSP programs, you must have the following:

TT tools

Tartan Math Libraries
SSVXS8 Library

HPVXS8 Files

DDRIFC Files

Radio DSP Program Files

Tl tools
You must have the TT C40 compiler/assembler/linker tools version 4.70.

Install these per TI's instructions into a single tool directory. Include the tool direc-
tory (tool dir) in the system path, and set system environment variables A_DIR
and C_DIR to point to the tool directory, as described in the instructions.

Recall that you must build the parallel runtime support library. Running the TI
library make utility as follows in the tool directory will accomplish this:

mk30 -v40 -mn -o -x —h —k prts40.src
See the TMS320C4x Parallel Runtime Support Library Users' Guide, 1994, page 1-1.

Tartan Math Libraries

You must have the Tartan Vectar High Performance Vector Math Library for the
TMS320C40, version 2.0 or greater, and the Tartan Sigtar Optimized Signal
Processing Library for the TMS320C40, version 2.0 or greater. Install these per
Tartan's instructions.

For Vectar, copy the vectar.h and vect40ss.lib files into the TI tool directory.

For Sigtar, make a modified copy of sigtar.h, removing the typedef for complex, and
removing the declarations for the valaw and vulaw functions. These are duplicates
of identical information in the vectar.h file. Without these changes, errors occur
during the compile. Copy this modified sigtar.h file to the TI tool directory.

The "convl" function in the version 2.0 Sigtar library contains a bug which causes it
not to work correctly with strides of two, as it is used in the Radio sideband demod-
ulator. If your sigt40ss.lib file is dated 8/1/95, you must obtain a fix from Tartan
(later library files may have incorporated this, and it is presumed that a version 2.0
library could not be dated earlier). The fix is in the form of a replacement object file
for the convl function. Replace the original with the fix in a copy of the library by
running the TI archiver as follows in the directory containing the copy of the library:

ar30 -r sigt40ss.lib convl.obj
Copy the fixed sigt40ss.lib file to the T1I tool directory.

VX8 Library

Install the VX8 library per instructions in the VX8 Carrier Board Installation
Guide from Spectrum Signal Processing,.

The hpvx8 and ddrifc files are installed with HP VX8 Radio.

61

System Software Development HP VX8 DDR TIM
HP Radio Target Program Programmer’s Guide

Radio DSP Program Files

This section describes the sub-directories and files contained in the
\wxipnp\winXX\hpvx8\radio directory on Windows95/NT systems and the
/opt/vxipnp/hpux/hpvx8/radio directory on HP-UX systems. The entire directory
structures are discussed on page 9.

The following is a road map of the Radio DSP program directories and files:

dsp\ # DSP (C4x) target code
build\ # build directory
makefile # PC nmake makefile
radio_a.cmd # linker command file, site A
radio bt.cmd # linker command file, all other sites
radio_a.out # Cdx executable COFF file, site A
radio b.out # C4x executable COFF file, site B
radio t.out # C4x executable COFF file, TIM sites
1st\ # listing file directory
obj\ # object file directory
include\ # C4x include directory
hpinit a.h # C4x HP local bus setup include file
radio.h # C4x Radio include file
radiocmd.h # C4x Radio command-interface include file
radioglb.h # C4x Radio global include file
share.h # Interprocessor synchronization include file
src\ # C4x source directory
hpinit a.c # C4x HP local bus setup source file
radio.c # C4x Radio source file
radiocmd.c # C4x Radio command-interface source file
share.c # Interprocessor synchronization source file
host\ # host code
include\ # host include directory

B

radioifc.h host«>target command-interface include file

A PC nmake makefile is supplied. The VX8C4XSS variable near the top must be set
to point to the root of the VX8 Spectrum Signal Processing library on your PC. The
HPVX8_ROOT variable, also near the top, must set to point to the root of the HPVXS8
software on your system. Nmake is run from the dsp build directory (the directory
containing the makefile).

62

HP VX8 DDR TIM Appendix A: Hardware Configuration
Programmer’s Guide Introduction

Appendix A: Hardware Configuration

Introduction

This Appendix details several example configurations that utilize a combination of
items available from Hewlett-Packard as follows:

1. VX8 carrier board, HP SCMVX008

2. VXI shared DRAM installed in the VX8, HP SCMVXO008 opts 082, 083, 085, 086

3. At least one HP DDR TIM, HP SCMVX008 opt 040

4. Optional number of C40 TIMs, HP SCMVX008 opt 011 (Spectrum MDC40SS)

5. Optional number of dual C44 TIMs, HP SCMVX008 opt 012 (Spectrum MDC44ST)
Each of the example configurations shows TIM module placement in the VX8 in

addition to the appropriate jumper settings. The example configurations covered
are summarized in the table below.

SCMVX008/040 Example Configurations

The following table lists 8 configurations of TIM-40 module placements as they may
be delivered from the factory. Each configuration is defined by the number of differ-
ent TIM module options installed and each configuration has more detail on a follow-
ing page in which module locations and jumper settings are described. Also listed is
whether the configuration is supported with the current version of the HP Radio
demo and (if supported) the configuration name.

These configurations are examples. This is not an exhaustive list of possible permu-
tations. Using the TIM-40 modules and the library software, many other configura-
tions can be created.

Option Board Quantities HP Radio Demo
040(DDR) 011(C40) 012(C44) Supported Config
1 0 0 yes 1x1
2 0 0 yes 2x1
4 0 0 yes 2x2
§ 0 0 yes 2x3
4 2 0 yes 4x1
2 2 0 no NA
2 0 2 no NA
4 0 2 no NA

The example configurations are described in the pages that follow.

63

Appendix A: Hardware Configuration

SCMVX008/040 Example Configurations

HP VX8 DDR TIM

Programmer’s Guide

SCMVXO008 Configuration: (1) 040, (0) 011, (0) 012

This configuration corresponds to the 1x1 HP Radio setup. See page 15.

Node H Node F Node D Node B
empty empty empty Embedded
C40

©

f =

: |:

=

o

[N,

Node G Node E Node C Node A
empty empty (DDR) 0c»{5 Embedded
opt 040 C40
04¥»5 comm port connections and port numbers
O indicates that the port is configured as an output after reset
TIM-40 Jumpers Comm Port Connections
Node | Module 040 DDR 040 DDR C4x DSP
Type CP4 | CP5 | CLK | Comm Port Node Comm Port

C 040 out | out | out 0 A)
D empty
E empty
F empty
G empty
H empty

For more information about DDR jumpers, see page 5.

For more information about VX8 comm ports, see page 6.

64

HP VX8 DDR TIM Appendix A: Hardware Configuration
Programmer’s Guide SCMVX008/040 Example Configurations

SCMVXO008 Configuration: (2) 040, (0) 011, (0) 012

This configuration corresponds to the 2x1 HP Radio setup. See page 16.

Node H Node F Node D Node B
empty empty (DDR) 0oj¢»5 Embedded
opt 040 C40

Front Panel

Node G Node E Node C Node A
empty empty (DDR) 0o—»{5 Embedded
opt 040 C40

04€¥»5 comm port connections and port numbers
O indicates that the port is configured as an output after reset

TIM-40 Jumpers Comm Port Connections
Node | Module 040 DDR 040 DDR C4x DSP
Type CP4 | CP5 | CLK | Comm Port Node Comm Port
C 040 DDR out | out | out 0 A 5
D 040 DDR out | out | out 0 B 5
E empty
F empty
G empty
H empty

For more information about DDR jumpers, see page 5.

For more information about VX8 comm ports, see page 6.

65

Appendix A: Hardware Configuration

SCMVX008/040 Example Configurations

SCMVXO008 Configuration: (4) 040, (0) 011, (0) 012

HP VX8 DDR TIM
Programmer’s Guide

This configuration corresponds to the 2x2 HP Radio setup. See page 17.

A 4

0
Node H Node F Node D Node B
(DDR) b5 (¢ (DDR) Oo®»5 Embedded
opt 040 empty opt 040 C40
)
=
- .
=
o
e
Node G Node E Node C Node A
(DDR) 5 |4 empty (DDR) O 5 Embedded
opt 040 opt 040 C40
0o
A
0«45 comm port connections and port numbers
0 indicates that the port is configured as an output after reset
TIM-40 Jumpers Comm Port Connections
Node | Module 040 DDR 040 DDR C4x DSP
Type CP4 | CP5 | CLK | Comm Port Node Comm Port
C 040 DDR out | out | out 0 A)
D 040 DDR out | out | out 0 B)
E empty
F empty
G 040 DDR out | in out 5 A 0
H 040 DDR out | in out 5 B 0

For more information about DDR jumpers, see page 5.

For more information about VX8 comm ports, see page 6.

66

HP VX8 DDR TIM
Programmer’s Guide

Appendix A: Hardware Configuration
SCMVX008/040 Example Configurations

SCMVX008 Configuration: (6) 040, (0) 011, (0) 012

This configuration corresponds to the 2x3 HP Radio setup. See page 18.

For more information about DDR jumpers, see page 5.

For more information about VX8 comm ports, see page 6.

v Vv
ze
Node H Node F Node D Node B
(DDR) b |¢ (DDR) 5 ¢ (DDR) 0045 Embedded
opt 040 opt 040 opt 040 C40
E
- _
=
e
L
Node G Node E Node C Node A
(DDR) 5[4 (DDR) 5[4 (DDR) 00€»15 Embedded
opt 040 opt 040 opt 040 C40
25 0
A A
|
0<€¥»5 comm port connections and port numbers
O indicates that the port is configured as an output after reset
TIM-40 Jumpers Comm Port Connections
Node | Module 040 DDR 040 DDR C4x DSP
Type CP4 | CP5 | CLK | Comm Port Node Comm Port
C 040 DDR out | out | out 0 A)
D 040 DDR out | out | out 0 B)
E 040 DDR out | in out 5 A 2
F 040 DDR out in out b B 2
G 040 DDR out | in out 5 A 0
H 040 DDR out | in out 5 B 0

67

Appendix A: Hardware Configuration
SCMVX008/040 Example Configurations

HP VX8 DDR TIM
Programmer’s Guide

SCMVX008 Configuration: (4) 040, (2) 011, (0) 012

This configuration corresponds to the 4x1 HP Radio setup. See page 19.

Node H Node F Node D Node B
(DDR) 0o |3 (C40) (DDR) 0ce»{5 Embedded
opt 040 opt 011 opt 040 C40
?é
S
=
o
[N,
Node G Node E Node C Node A
(DDR) (0olep|3 (C40) (DDR) 0g¢»{5 Embedded
opt 040 opt 011 opt 040 C40
0«45 comm port connections and port numbers
O indicates that the port is configured as an output after reset
TIM-40 Jumpers Comm Port Connections
Node| Module 040 DDR 011C40 040 DDR C4x DSP
Type | cp4 | cP5 | CLK | JP1 | JP2 | JP3 | CommPort| Node | Comm Port
C 040 DDR | out | out | out 0 A b
D | 040DDR | out | out | out 0 B)
E 011 C40 out | 12| in
F 011 C40 out | 1-2 | in
G 040 DDR | out | out | out 0 E 3
H 040 DDR | out | out | out 0 F 3

For more information about DDR jumpers, see page 5.

For more information about VX8 comm ports, see page 6.

68

HP VX8 DDR TIM
Programmer’s Guide

Appendix A: Hardware Configuration
SCMVX008/040 Example Configurations

SCMVX008 Configuration: (2) 040, (2) 011, (0) 012

This configuration is not supported by HP Radio.

Node H Node F Node D Node B
empty (C40) (DDR) Oole{5 Embedded
opt 011 opt 040 C40
©
=
Q‘E [
=
o
iy
Node G Node E Node C Node A
empty (C40) (DDR) 0o{4¥5 Embedded
opt 011 opt 040 C40
0<4»5 comm port connections and port numbers
O indicates that the port is configured as an output after reset
TIM-40 Jumpers Comm Port Connections
Node| Module 040 DDR 011C40 040 DDR C4x DSP
Type | cp4 | cP5 | CLK | JP1 | JP2 | JP3 CommPort| Node | Comm Port
C | 0ADDDR | out | out | out 0 A)
D | 040DDR | out | out | out 0 B 5
E 011 C40 out | 12| in
F 011 C40 out | 12 | in
G empty
H empty

For more information about DDR jumpers, see page 5.

For more information about VX8 comm ports, see page 6.

69

Appendix A: Hardware Configuration
SCMVX008/040 Example Configurations

HP VX8 DDR TIM
Programmer’s Guide

SCMVX008 Configuration: (2) 040, (0) 011, (2) 012

This configuration is not supported by HP Radio.

Node H Node F Node D Node B
empty (C44) (DDR) Oole{5 Embedded
opt 012 opt 040 C40
)
=
©
o
—
=
=
| .
Node G Node E Node C Node A
empty (C49) (DDR) 0o{4¥5 Embedded
opt 012 opt 040 C40

0<4¥»5 comm port connections and port numbers

O indicates that the port is configured as an output after reset

TIM-40

Jumpers

Comm Port Connections

Node| Module 040 DDR

012 C44

040 DDR C4x DSP

Type | cP4 | cP5

CLK

JP1

JP2

JP3 | JP4 | JP5

Comm Port| Node |Comm Port

040 DDR | out | out

out

0

A

5

040 DDR | out | out

out

0

B

5

012 C44

1-2

out

out

out | 1-2

012 C44

1-2

out

out

out | 1-2

empty

I O |7 MmO o

empty

For more information about DDR jumpers, see page 5.

For more information about VX8 comm ports, see page 6.

70

HP VX8 DDR TIM Appendix A: Hardware Configuration
Programmer’s Guide SCMVX008/040 Example Configurations

SCMVX008 Configuration: (4) 040, (0) 011, (2) 012

This configuration is not supported by HP Radio.

Node H Node F Node D Node B
(DDR) 0 p|13 (C44) (DDR) (om—p{5 Embedded
opt 040 opt 012 opt 040 C40

Front Panel

Node G Node E Node C Node A
(DDR) 0Ooe»(3 (C44) (DDR) (0o 5 Embedded
opt 040 opt 012 opt 040 C40

0<4»5 comm port connections and port numbers
O indicates that the port is configured as an output after reset

TIM-40 Jumpers Comm Port Connections
Node| Module 040 DDR 012 C44 040 DDR C4x DSP
Type | cp4 | CP5 | CLK | JPT | JP2| JP3 | JP4 | JP5 |Comm Port| Node | Comm Port

C | 040DDR | out | out | out 0 A)
D | 040DDR | out | out | out 0 B 5
E | 012C44 1-2 | out | out | out | 1-2

F | 012C44 1-2 | out | out | out | 1-2

G | OA0DDR | out | out | out 0 E 3
H | 040DDR | out | out | out 0 F 3

For more information about DDR jumpers, see page 5.

For more information about VX8 comm ports, see page 6.

71

Index

Index

1x1 configuration 15, 64
2x1 configuration 16, 65
2x2 configuration 17, 66
2x3 configuration 18, 67
4x1 configuration 19, 68

A

abbreviations 3
accessory breakout box 7
acronyms 3
ADC

clock signal 5

data format 32

data source 32

throughput rate 49
AM demodulation 54
application-specific connector 7
arbitrary sample rate 56
attenuation 34
audio

breakout box 7

output 34

outputs 7

B

bandwidth 46
BFO 55
block diagram
DDR TIM board 1
system 2, 44
VX8 carrier board 4, 49
board layout
DDR TIM board 5
VX8 carrier board 4
breakout box accessory 7
broadcast DMA 50
bus diagram 49

C

C4x
data flow 47
definition 3
DMA 47
memory utilization 59
cable connector 7
center frequency 38
channelize
configuration 18
definition 3
overview 32
clock selection 5
close system 26
coefficients 60
comm port
definition 3
operation 33
selection 6
VX8 interconnections 6
commands, host/target 24
communication formats 34
config state 52
configuration
16 chs/VX8, 4 chs/DSP 19
16 chs/VX8, 8 chs/DSP 17
24 chs/VX8, 12 chs/DSP 18
4 chs/VX8, 4chs/DSP 15
8 chs/VX8, 4 chs/DSP 16
files 12
hardware 4-7,11,63-71
overview 14 -19
VX8 carrier board 12
connections
audio outputs 7
front panel 6-7
internode comm ports 6
VX8 busses 49
control flow, program 51
CW demodulation 55

73

Index

D

DAC
clock selection 5
control word 34
data word 34
decimate command 39
decimation counter 35
interrupt service routine 58
data flow 32
C4x DSP 47
DDR TIM 46
overview 44
system 44
VX8 board 45
data format
DDR 34
DC offset 60
DDC
data format 33
data word 34
definition 3
operation 46
DDR
center frequency 38
communication formats 34
control 38
data structure 36
definition 3
example program 40
functions 37
groups 14, 23
overview 32
decimation 34, 56 - 57
default
channel configurations 14 - 19
comm port 5
DAC clock 5
demodulation
AM 54
CW 55
data flow 47
FM 53
single-sideband (SSB) 55
types 53
description, product 1
digital audio 48
digital drop receiver (DDR) 2
directory names 9 - 10
DMA 32,47, 50
DSP
data flow 48
definitions 3

E

embedded
C40 nodes 49
controller 21
controllers 2
definition 3
EOB
definition 3
signal 50, 58
error reporting 27
example program 11 - 13, 28, 40

F

files names 9-10
filter coefficients 60
FM demodulation 53
functions

DDR 37

host 26

target 30

G

gap interrupt 58
global shared bus 49
global variables 56
group
configurations 14
definition file 12, 23

H

hardware
block diagram 1
configuration 63-71
installation 4-7
overview (DDR) 32
requirements 21
headphone jacks 7
home octave 56
host
definition 3
example program 28
functions 26
program 20
HP-UX
directories 10
installation 8
HPVXS library 22

74

I

idle state 52
IF bandwidth 14, 60
indicators
non-real-time 13, 47, 58
installation
hardware 4-7
software 8-19
interface programming 32
interpolation 34, 56 - 57
interrupts 47, 58
ISR 3

J

jack, audio breakout box 7
jumpers

clock 5-6

comm port 5

K

K, inverse proportionality constant 54
kit

connector 7

MXI-2 interface 2

software development 8

L

library
DDR 36
HPVX8 22
overview 22
SICL/VISA 10
ssvx8 8
target 30
VISA 9

local bus 49

M

master 30

memory utilization 59
messaging 24, 30
MXI interface 2

N

narrowband receiver system 2, 11
node

busses 49

definition 3

grouping 14 -19

interconnects 6, 45

locations 4
non-real-time operation 13, 47, 53
number of samples 57

Index

0

open system 26
option
011 (C40 TIM-40 board) 63
012 (C44 TIM-40 board) 63
040 (DDR TIM-40 board) 63
output
ADC 50
AGC filter 54
analog 7
audio 34
clipped 54, 57
DAC 7
DC offset 60
DDC 46
demodulated 54 - 55
digital audio 48
DSP 48
format 57
format (DDC) 46
pin 58
pin numbers 7
rate 46
sample rate 56
system 44
tone 60
words b7

P

PC
directories 9
installation 8
performance 60
improvements 55, 57
plug connector 7
pointers 30
pre-config state 52
pre-idle state 51
programming example 11 -13

R

radio program example 11-13
real-time
IF bandwidth 13
operation 47, 60
performance 60
requirements
hardware 11
system 2
resource files 12

75

Index

S

sample rate, DAC 56
samples, number of 57
service routines 58
shared-memory 3, 22
SICL library 10
slave 30
small memory model 59
software
development 20 - 62
installation 8-19
requirements 20
SSB demodulation 55
ssvx8 library 8
stack size 59
states
config 52
idle 52
pre-config 52
pre-idle 51
start 52
synchronization 30, 47, 59
SYSCLK signal 5
system
close 26
definition file (.sdf) 12, 23
open 26
requirements 2
software development 20 - 62

T

target

definition 3

DMA 50

functions 30

program 20, 43 - 62
terms defined 3
throughput rate 49
timeout interrupt 58

U

UNIX
directories 10
installation 8

Vv

variables 56

VISA library 9

VX8 3

VX8 carrier board
block diagram 49
bus diagram 49

W

windows
directories 9
installation 8

76

