
Introduction
The most basic definition of power describes it as the
rate at which work is performed or energy is transferred.
It seems like such a simple concept, yet power
measurements are anything but simple.  In
communications even the definition of power takes on
many forms:  peak power, average power and adjacent
channel power, for example.   These terms all describe
power measurements which give an indication of some
unique aspect of system performance.  

Even for a given type of power measurement there can
be many variations.  When we talk about the average
power of a TDMA signal, are we referring to the average
power while the carrier is on, or the average power over
all time? Although there are many different types of
power measurements, they can all be placed in one of
three categories:  time selective, frequency selective, or
time and frequency selective.  In this paper we analyze
measurements that fall into each of these three
categories and determine what type of instrumentation
is required to make each measurement.  We also describe
the advantages and limitations of using different types of
equipment for specific measurements.  Before we can do
that, however, we need to understand the characteristics
of the signal to be measured.  So, we'll start with a
review of the basic time and frequency domain
relationships of several different signals.

Time, Frequency and
the Fourier Transform
Just as there are right and left-handed people, so too are
there people who mostly think about signals in the time
domain, and people who mostly think about signals in
the frequency domain.  And just as there are a few
people who can comfortably use either hand, there are
also a few people who can shift easily between thinking
about a signal and its spectrum.   For time and frequency
selective power  measurements it's important to
understand the general signal characteristics in both
domains, since without this understanding, data can be
misinterpreted, or worse yet, the instrumentation
improperly configured.  Even if you're not ambidextrous
you can easily predict a signal's characteristics if you
know a few basic Fourier transform pairs and identities.

Fourier Transform

Inverse Fourier Transform

The Fourier transform is such a fundamental tool to
electrical engineers that they often forget some of the
basic assumptions that go along with it.  For example,
who can say that they've actually observed a signal over
a time period extending from minus infinity to infinity?
No one has.  Instead, most of us compromise by looking
at a signal over shorter periods of time and then assume
that our observations are close to what we'd get if we had
observed the signal over all time.  Alternatively, we
assume that the signal is periodic and that we only need
to measure over one period of the signal to understand
what the signal is doing at all other times.  A variation
on this second assumption is the assumption that the
signal is stationary and that it doesn't matter at which
point or points in time the signal is observed.  For
example, swept spectrum analysis uses this assumption
since each frequency point is measured at a different
time. 
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Figure 1.  Useful Fourier Transform Pairs



For the purposes of this paper there's no need to actually
solve a Fourier integral.  We can predict a signal's
spectrum using only a handful of transform pairs and a
few identities as shown in figures 1 and 2.

Let's use these relationships to analyze two signals in
both time and frequency domains.  We'll start with a sine
wave and multiply it in the time domain by a single
pulse (rect).  In the frequency domain, the spectrums of
the pulse and sinusoid are convolved to produce a
sin(x)/x type of response centered on the sine frequency.
Note that the spectrum does not have any discrete tones
associated with it.  If we use a pulse train instead of a
single pulse , then the spectrum has the same overall
shape except that it consists entirely of discrete tones.   
We can think of the single pulse example as a

time-selective power-spectrum analysis of the pulse train
signal.  Obviously, the time-selective spectral analysis of
a single pulse in the pulse train will produce a different
power spectrum than obtained when analyzing the entire
pulse train.   Is it wrong?  Not necessarily.  The limited
observation interval has also limited the frequency
resolution.  This is a fundamental limitation that affects
not only instrumentation, but receivers as well.  This
suggests that spectrum measurements must be designed
for the system under test if results are going to be used
to characterize system performance.
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Figure 2.  Useful time-frequency identities

Figure 3.  A sine wave multiplied by a rect
function has a spectrum that is a sinc function
convolved with a dirac delta function

Figure 4.  Spectrum sine wave multiplied by a
train of rect functions.

Figure 5.  Sine wave multiplied by a rect
function that changes polarity at t=0



Consider the signal in figure 5.   If we take a sine wave
and multiply it by a bipolar pulse, that is, a pulse having
a positive  polarity over the first half of the pulse and a
negative polarity over the second half, the resulting
spectrum will be much broader than our previous
example  due to phase modulation of the sine wave.
When the pulse changes polarity, the phase of the carrier
also changes (in this case by 180 degrees), but the carrier
power (integrated over one cycle) does not.    (Note: In
these examples the spectrum appears slightly
asymmetrical because of the negative frequency image.
If the carrier were at a higher frequency the sidebands
would have diminished before reaching zero Hz.)  Now,
let's relate this signal to a real system. 

Imagine a transmitter system that fails the
adjacent-channel power (ACP) test.  In this system, one
designer carefuly controlled the amplitude profile of a
pulsed power amplifier.  Similarly, another designer
worked to ensure that the filtering used to create the
digitally modulated carrier was correct.  Yet, when the
modulated signal was passed through the amplifier and
pulsing enabled, the system exceeded ACP limits.  The
cause?  The pulsing of the power amplifier caused a
phase disturbance in one of the local oscillators, which
translated to extra phase modulation of the carrier
during the turn-on transition.  In this scenario, a
time-selective power measurement will not show a
problem.  The power profile would look normal.  A
frequency selective power measurement will indicate a
problem but will not help identify the cause.  However, a
time and frequency-selective power measurement will
show that the excess ACP occurred at the carrier
off-to-on transition.

Basic Power Definitions
Let's review some of the basic terminology associated
power measurements.  Whenever possible,the
terminology associated with modulated carriers as
defined in the IEEE Standard Dictionary of Electrical
and Electronic Terms is used.   

Instantaneous power is the time derivative of work,
which for electrical circuits is equal to the product of the
instantaneous voltage and current.   If the voltage is
applied to a purely resistive load, an assumption that
will be used throughout the rest of this paper,  then the
power is:  

For a carrier, the definition of instantaneous power is
modified so that the power does not appear to fluctuate if
the carrier is not amplitude modulated.  This is achieved
by defining the instantaneous power to be the power
averaged over a carrier cycle.  A more descriptive term
would be instantaneous envelope power.   Let v(t) be an
amplitude and phase-modulated carrier.

The average power over one cycle of the carrier is:

  
It's often safe to assume that the modulation (both
amplitude and phase) is slow relative to the carrier
frequency.  This allows the previous equation to be
simplified.
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Peak Power is defined as the maximum instantaneous
power.

Peak Envelope Power (PEP) is defined as the
maximum instantaneous envelope power which is the
power averaged over a carrier cycle at the maximum
amplitude that can occur with any combination of signals
to be transmitted.  Peak envelope power is often referred
to as peak power.

Average Power is the power averaged over a specified
time interval.

Crest Factor is a ratio of the peak amplitude to the
RMS amplitude, which is the square root of the ratio of
the peak to average power.

The Mean Square Voltage is a quantity proportional
to power.   It can be calculated as the average power into
a 1 ohm load.

The Root Mean Square Voltage is the square root of
the mean square voltage.

The subject of Random Processes is too important to
ignore, but it is also beyond the scope of this paper.  The
modulation of a carrier usually involves signals that can
only be described by their statistics.   In the time
domain, the voltage variance of a signal is closely
related to the mean square voltage and hence to the
average power.  In the frequency domain we deal with
the Power Spectral Density (PSD), which is defined as
the Fourier transform of the autocorrelation function.   
For practical applications, the PSD is a measure of the
power contained in a unit of bandwidth (normally 1 Hz).
By integrating the PSD over a range of frequencies we
get the power in that frequency band.    It's worth noting
that the PSD is not useful with periodic signals (e.g.
unmodulated carriers).  A periodic signal can be
expressed as a Fourier series (sum of sine waves), and
the power in a sine wave occupies an infinitely narrow
bandwidth.

Time-Selective Power
Measurements
Time-selective power measurements determine the
average power over a time interval.  These
measurements can be made with power meters, peak
power meters, and frequency-selective instruments
(swept spectrum analyzers and vector signal analyzers),
provided the bandwidth of the instrument is wider than
the bandwidth of the signal to be measured.  Because
time-selective power measurements are not frequency
selective, the measured power will include contributions
from the signal of interest, its harmonics and from noise
sources both internal and external to the
instrumentation.  

The most fundamental time-selective power
measurement is a measure of the average power over a
long time interval.  This very common measurement,
most often made using power meters, is used to
determine parameters such as the gain through a
system, or the average transmitter power levels.   For
digitally modulated carriers, the average power  does not
 typically vary with the information being broadcast.
This is somewhat different than AM or SSB modulation,
for example, where the power is a function of the
statistics of the modulating signal (e.g. voice or music).
For a single carrier system operating normally, a power
meter may provide sufficient information about the peak
power of a digitally modulated signal since the crest
factor of a well designed system is a function of the
design, and not the data being transmitted.   It's
important to consider the response time of the power
meter, as the response time defines the time selectivity
of the measurement.  As an extreme example, a simple
power meter responds too quickly to correctly indicate
the average power of a signal that is on for ten seconds
and off for twenty.

For pulsed signals, the average power measurement
described above would be influenced by the signal's duty
cycle.  While one could measure the power averaged over
a long interval (long relative to the repetition rate of the
pulse) and then use an estimate of the duty cycle to
determine the average power during the pulse, this is not
recommended.  The average power could be quite low
relative to the average power during the pulse, and the
duty cycle may not be precisely known.  A better
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technique is to use instrumentation that can average the
instantaneous power over a specified time interval.  Peak
power meters, swept spectrum analyzers with gating
capability, and vector signal analyzers can perform this
type of measurement.

With short integration times the measured power is
considered to be the instantaneous power.  By measuring
the instantaneous power as a function of time, one can
determine the peak power, the power distribution and
the power envelope.  The peak power in a digitally
modulated signal is of obvious interest because of the
linearity and headroom requirements in power
amplifiers.  The power distribution can be used in testing
the linearity of power amplifiers, or in verifying the
statistics of the modulation data.  

The power envelope is extremely important in TDMA
systems where both time and spectrum must be shared.
A transmitter which has an envelope that is too long will
interfere with another transmitter in an adjacent time
slot.  An envelope that's too short may prevent the data
from being properly transmitted.   Also, as will be
demonstrated later, an envelope with fast rise and fall
times may create adjacent channel interference.
Determining the instantaneous power requires very
short integration times.  Although integration over one
cycle of the carrier is desirable, it's usually impractical at
the higher frequencies and is also unnecessary.  The rate
at which the power level of a carrier can change is a
function of the bandwidth of the modulating signal.   In

other words, the integration time for the power
measurement needs to be short relative to the dynamics
of the modulating signal and is not, in general, a
function of the carrier frequency.

In figure 6, a single marker is used to show that the peak
envelope power during this pulse is 4.6 dBm.  Band
power markers are used to compute the average power
while the carrier is on.  This is displayed in the lower left
corner as 
1.8 dBm.  Based on this one measurement (not a very
good basis for the peak), the crest factor is 1.95.  Note
that because we are computing the average value of the
power (not the energy) over a time interval , the spacing
of the band power markers is not critical provided the
carrier-off regions are avoided.  Obviously the markers
should be placed as far apart as possible to obtain the
best estimate of the average power.
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Figure 6.  Magnitude profile (envelope) of a
pulsed PI/4 DQPSK carrier showing the peak
power and average power (while carrier is on).

TRACE B: Ch1 Main Time
B Marker             91.85268  us           4.649 dBm

Start: -50 us Stop: 178.459821429 us

Power: 1.764 dBm
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Frequency-Selective
Power Measurements
All frequency-selective measurements attempt to
determine the power of a signal within a specified
bandwidth or at the output of a specified filter.   As these
measurements are not time selective, the results should
correlate well with those predicted by the Fourier
transform.  For example, a frequency-selective
measurement of a pulse-modulated sine wave will result
in a spectrum with discrete spectral lines, with the line
spacing equal to the pulse repetition rate.  The frequency
selectivity of the measurement is determined, not by the
span, but by the resolution bandwidth filter (RBW), or
more precisely its equivalent noise bandwidth (ENBW).
For periodic signals which are comprised of discrete
tones, the bandwidth over which the power is measured
is of minor importance.  As was mentioned earlier, the
occupied bandwidth of a sine wave is infinitely narrow.  

The measurement bandwidth can be significant if the
power in the sine wave is not significantly greater than
the noise power in that same bandwidth.  Figure 7 shows
how changing the RBW of a spectrum measurement
causes the noise floor to drop,while the level of the
unmodulated carrier remains fixed.  This is true except
at the widest RBW where the noise power add noticibly
to the power of the sine wave.  Note: This result may not
be obtained with swept spectrum spectrum analyzers
because behaviour of the log-amp/detector combination

for a sine wave plus noise.  A true-RMS detector was
used for the measurement shown in Figure 7.

It's important to understand that the noise level in this
measurement has remained constant.  The decrease  in
RBW lowers the noise floor of the measurement because
the power at each frequency point is integrated over a
narrower bandwidth.  In this plot the widest RBW is 100
kHz and the narrowest RBW is 10 kHz.   Since the RBW

changed by a factor of 10, the noise power in the RBW
filter has also changed by a factor of 10, or 10 dB.  

Like noise, digitally modulated signals are also described
by their PSD function.  If you observe a power spectrum
measurement and note the ratio between the in-band
spectrum and the out-of-band spectrum and then change
the RBW, the ratio will not change even though the
absolute levels have.   This is shown in figure 8.  For this
reason, when dealing with noise and digitally modulated
signals, it's often more convenient to use the PSD
function rather than the power spectrum.  The PSD is
the power spectrum normalized to a 1 Hz bandwidth and
is normally computed from a power spectrum
measurement by dividing the spectrum result by the
equivalent noise bandwidth of the RBW filters.  It's
worth noting that if you're interested in the ratio of
in-band to out-of-band power, e.g. an adjacent channel
power ratio measurement, then the ENBW of the RBW
filters is unimportant.  However, if you are interested in
making absolute power level measurements, then the
filter's ENBW must be precisely known.  The ENBW for
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Figure 7.  Spectrum measurements of a sine
wave at three different RBW settings

Figure 8.  Spectrum measurements of a 32 QAM
signal at two different RBW settings

TRACE A: Ch1 Spectrum
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a filter is generally wider than its RBW (depending on
how RBW is defined).  How much wider is a function of
the filter's shape factor.
When making frequency-selective measurements it's
important to consider the time interval over which the
measurement is made.  The time interval must be long
enough to ensure that the measurement is not time
selective.  That is to say that the results will not change
if the observation interval occurs at a different point in
time, or changes in length.  If you are unsure of the

measurement, decrease theRBW to increase the
integration time.  The observed PSD should not change.

A very common frequency-selective measurement is the
measurement of the power in an adjacent or alternate
channel.  Adjacent channel power limits are intended to
insure that a transmitter does not interfere with another
station on a different frequency.  Figure 9 shows an
ACPR measurement on a 32 QAM signal.   The ACPR is
computed by taking the ratio between the in-band power
(power between left and center markers) and the
out-of-band power (power between center and right
markers).  

In this example, the measured PSD in the adjacent
channel is uniformly weighted and no allowance is made
for a guard band. Some standards specify a weighting
function  (i.e. a filter).   This is often done to make the
measurement relate more closely to the characteristics of
the receiver in a given type of  system.  In other cases,
the filter specification matches the characteristics of
RBW filters found in swept-spectrum analyzers -- for
convenience.  In these cases the power at the output of

the filter is measured directly rather than integrating
the PSD.  For mixed and evolving systems (i.e. systems
with more than one modulation format), such as might
be found in a satellite transponder,  the ACP
measurements should not be weighted as the adjacent
channel receiver characteristics may not be known or
may change over time.  

The most common approach to measuring power in a
frequency band begins by determining the PSD and then
integrating the PSD over the desired bandwidth.  With
this approach, a swept analyzer or a vector signal
analyzer is configured with a relatively narrow RBW.
The power at each frequency is divided by the equivalent
noise bandwidth, or ENBW, of the selected RBW filter to
get the PSD at that frequency.  While several techniques
are available to approximate integrals using sampled
data (e.g. trapezoidal integration), with a sufficiently
high number of frequency points the total power in a
band can be approximated by multiplying the PSD at
each frequency point by the span over which that value
applies and then summing.   The span over which each
frequency point applies is usually the frequency point
spacing -- except at the upper and lower edges of the
band.  Don't make the common mistake of confusing the
spacing of the frequency point spacing with RBW or
ENBW.   As shown in figure 10, these are two different

quantities.   Also note that a wide ENBW could result in
measurement inaccuracies because out-of-band power
influences the observed in-band PSD near the edges.   

H
Power Measurements on Digitally
Modulated Signals

Figure 9.  Measurement of the Adjacent Channel
Power Ratio for a 32 QAM signal

Figure 10.  Relationship between frequency
point spacing, RBW, ENBW and measurement
bandwidth

TRACE A: Ch1 Spectrum
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Time and Frequency
Selective Power
Measurements
There are two distinct types of power measurements
which are considered to be both time and frequency
selective.  The first  is often called gated-spectrum
analysis.  In this type of analysis, the time selectivity is
used to make a signal which is not uniformly distributed
in time, look like one that is.  This is analogous to
looking at a clock once per hour so that, based on the
hourly observations, it appears that the minute hand
never moves.  Gated-spectrum analysis is often
performed on a pulsed signal to eliminate the spectral
components associated with the on-off transitions of the
carrier.   In other words, the measurement never
observes that the signal is pulsed.  It can also be used to
avoid portions of the signal that would appear to be
periodic, such as a synchronization word.
Gated-spectrum analysis results in spectrum
measurements that are very similar to those that
observed for a continuous (non-pulsed) signal.  These
measurements can be more accurately described as
time-selective measurements of power versus frequency.

Several different HP spectrum and vector signal
analyzers are capable of making gated-spectrum
measurements.

The plot in figure 11 shows two different spectrum
measurements on the same pulsed PI/4 DQPSK signal.
The upper, left contains a spectrum computed using the
time data between the two time-gate markers shown in
the lower, left trace.  The gate markers were carefully
positioned to avoid the on-off transients at either end of
the pulse.  The upper, right trace contains a spectrum
computed using the time data over the entire pulse.  As
expected, the pulse modulation increases the bandwidth
of the signal.  Note that this is a spectrum measurement
over a single pulse in a pulse train.

The second type of time and frequency-selective
measurement can be described as a frequency-selective
measurement of power versus time.  In other words, the
power in a frequency band, or bands, is recorded as a
function of time.  Under certain conditions a
swept-spectrum analyzer can be used to make this
measurement.  These conditions include a power
bandwidth that matches one of the available RBW filters
in the instrument.  To make the measurement, the swept
analyzer is configured for a zero-span measurement with
the center frequency and RBW set so as to determine the
frequency band to be analyzed.  The result is a plot of
power verses time.  Obviously, this approach allows only
one frequency band to be observed at a time.  Using
overlapped FFT processing, a vector signal analyzer can
measure hundreds of frequency bands simultaneously.
At this point, an example of a frequency selective time
measurement is in order.

In the measurement of the 32 QAM signal shown earlier,
the ACP ratio was approximately 43 dB.  By itself, this
ACP ratio may not give all of the information necessary
to determine if the ACP will cause interference.  Also, if
there's excess ACP, the previous measurement may not
provide an indication to its cause.  This is because
frequency-selective power measurements do not take into
account how the power changes over time.  If most of the
ACP is localized in time, then the potential for
interference is greater.  For example, the adjacent
channel receiver might sustain an actual bit error on the
peak interference, whereas the lower average level of
interference may only increase the probability of a bit
error.  

 As a demonstration, the 32 QAM signal (in figure 9) was
intentionally modified to reduce the ACPR  by 1 dB to 42
dB as shown in figure 12.  The original spectrum and
band power calculations are shown for comparison.
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Figure 11.  Gating is used to perform a time



Using the HP 89441A vector signal snalyzer's time
capture buffer and a spectrogram display, it's possible to
observe the temporal distribution of the power.  

The top trace in figure 13 shows two spectrum
measurements made at different points in time.  Notice
that the noise in the adjacent channel is higher for one of
the spectrums.   If we take the results of hundreds of
spectrum measurements, evenly distributed over time
and possibly even overlapping one another, we can create
the   spectrogram display shown in the lower trace.
In this display each row of pixels corresponds to a

spectrum measurement, so that time runs down the
vertical axis, frequency runs across the horizontal axis,
and amplitude is represented by intensity.  A scale
showing the mapping between intensity and power level
is shown on the left side of the spectrogram.  The four
horizontal bands suggests that not only is the excess
ACP very localized in time, but that it's also periodic.
The periodicity of the ACP rules out an intermodulation
distortion mechanism and strongly  suggests an
algorithmic problem.  With this information the next
logical step is to demodulate the waveform.  

The lower, left trace in figure 14 shows a large peak in
the error vector magnitude (EVM).   EVM is the vector
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Figure 13.  A Spectrogram comprised of many
spectrum measurements indicates that the
excess adjacent channel power is not
uniformly distributed in time.

Figure 14.   Plots of the demodulated signal
uncover a large error at a single symbol
location.  This is the source of the excess

Figure 12.  A problem introduces a 1 dB
degradation in the ACPR for a 32 QAM signal.
This measurement provides little insight into



difference between a measured signal and an ideal signal
transmitting the same data.  Looking at the vector
diagram in the upper right trace we see that the peak in
the EVM is associated with a point in time where the
carrier power is at a maximum.  We can also see that one
symbol in the constellation diagram is misplaced.  This
problem was introduced by mapping the maximum value
that could be output to the digital-to-analog converter
(used to generate the signal) to a value that was slightly
smaller.  In a real system this problem might occur if the
scaling of the data for certain symbol combinations
exceeds the maximum value supported by the
digital-to-analog converters which generate the I and Q
signals for the modulator.

Earlier in this paper, we reviewed some of the basics
concepts behind the Fourier transform and considered
the different spectrums that would be obtained if we
limited our observation time to a single pulse in a pulse
train.  We've also demonstrated that the inclusion of the
on-off transients in a power measurement caused an
increase in the measured bandwidth of the signal. Now,
we will limit our observations to looking at a pulsed
signal over an even shorter period in time.  When we do
this we're not interested in absolute power levels, but
more in the temporal distribution of the power over a
single pulse.    

Figure 15 shows several measurements of the same π/4
DQPSK pulse.  The traces to the right show the
instantaneous power (as a function of time) during the  
off-to-on and on-to-off transitions at either end of the
pulse.  These are shown on a logarithmic scale.  The
lower, left trace shows a spectrum computed from the
time data during the middle of the pulse.  The upper, left
trace contains a spectrogram comprised of over one
hundred spectrum measurements.  Each individual
spectrum is computed from a block of time data that is
96% overlapped with the block of time data used to
compute the previous spectrum.    The spectrogram
clearly shows that the off-to-on transition requires much
less bandwidth than the faster on-to-off transition.  As
previously mentioned, the amplitude modulation is only
part of the problem.  Even if rise and fall times had been
identical, phase modulation could have resulted in a
similar spectrogram.

A Few More Words
About Instrumentation
No one should be without a Power Meter.  They are
relatively inexpensive and make very accurate average
power measurements on continuous signals.  They are
also very useful for calibrating test systems.  The
bandwidth of a power meter is both a feature and a
detriment.  Without frequency selectivity the dynamic
range is limited because of the total noise power.  Also,
the measured power will include all distortion and
spurious signals.  This point should not be overlooked
when using a power meter to calibrate a
frequency-selective instrument like a swept spectrum or
vector signal analyzer. A frequency-selective instrument
will not observe the power in the harmonics and should
return a lower reading.

Peak Power Meters suffer from the many of the same
problems as a power meter, such as limited dynamic
range.  However, for signals with very wide bandwidths,
the peak power meter may be the only instrument that
can provide time-selective power measurement
capability. 

Swept Spectrum Analyzers are capable of making
most of the power measurements described in this paper,
several at the press of a button.  Also, swept spectrum
analyzers can have excellent dynamic range, an
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Figure 15.  This spectrogram measurement
shows how adjacent channel power is influence
by the characteristics of the carrier off-on-off
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important consideration for measurements like ACP.
Power measurements can be made on digitally
modulated signals provided the inherent limitations of
the logarithmic amplifier and detector are considered for
the signal to be measured, and that the equivalent noise
bandwidth of the RBW filters can be determined (for
absolute power measurements).   As will be discussed
later, the phase noise performance of the spectrum
analyzer may also be a consideration.

An HP 89441A Vector Signal Analyzer was used to
make all of the measurements described in this paper.
The VSA, which uses digitized time data as the basis for
all of the measurements, is the only time and
frequency-selective instrument capable of completely
analyzing a single transient event.  VSA's have good to
excellent dynamic range and good to excellent phase
noise performance.  Because of its limited information
bandwidth, the VSA has limited power measurement
capabilities on signals with more than 7-20 MHz of
bandwidth.  In a VSA, the FFT window shape
determines the characteristics of the RBW filter, so that
the equivalent noise bandwidth is precisely known.  Add
to this the much improved shape factor, true RMS
detection and RMS averaging, for accurate power
measurements on any type of signal.

System errors
Although there is a trend toward using digital filters,  
most swept-tuned analyzers still use analog RBW filters.
With analog filters the bandwidth of the filter can vary
from nominal.  For power-ratio measurements this
variability will not usually cause problems.  For absolute
power measurements on noise and digitally modulated
signals, the bandwidth of the filter must be known.  For
example, if the tolerance on the filter bandwidth is 10%,
then the power at the output of the filter can be off by as
much as  0.45 dB.  This error would be in addition to any
absolute level error observed for sinusoidal input.  The
shape factor of the filter is also a consideration.  The
RBW of a filter specifies its 
-3 dB bandwidth.  With a standard 11:1 shape factor for
analog filters, the equivalent noise bandwidth (ENBW)
can be wider than the RBW by as much as 13%.

The RBW filter characteristics in a vector signal
analyzer are determined by the FFT window.   A
traditional window, such as the Hanning window, will

not provide adequate performance for most of the
measurements described in this paper.  The Gaussian
window in the HP 89441A has a shape factor of better
than 4:1 and stop-band attenuation (sidelobes) of better
than 120 dB.  As was already mentioned, the ENBW for
the selected window is precisely known.

The diode detectors in peak power meters may give
biased answers for non-sinusoidal signals with high crest
factors.  The amount of bias will be a function of the
detector design, calibrations, and signal characteristics.  

When using swept spectrum and vector signal analyzers
you must be careful to consider the detectors.  For
example, a peak-hold detector would bias the answer,
resulting in a larger than expected band-power reading.
The amount of bias is dependent on characteristics of the
signal to be measured, such as crest factor.   Also, most
swept analyzers have a logarithmic amplifier preceding
the detector.  For non-sinusoidal signals, the
log-amp/detector combination can further bias the
measured power.  In vector signal analyzers the FFT
provides a true RMS detector.   However, when the VSA
is configured for scalar mode operation (as opposed to
vector mode), a detector may be used to reduce the
number of frequency points displayed in the final result.
Under these conditions it is possible to select a detector
that will result in a biased answer.  The sample detector
should be used for band-power measurements.

The dynamic range of an adjacent channel power
measurement is limited by the residual noise in the
instrument, distortion introduced by the instrument and
the instrument's phase noise.  If the input level is
decreased by 
1 dB (using an attenuator), and the ACPR changes, then
noise or distortion is limiting the measurement.  If it
doesn't change, then the measurement is either accurate,
or it's limited by the phase noise of the instrument.  For
narrow-band systems the close-in phase noise
performance of the instrument could be the limiting
factor of the ACP measurement.

If the limiting factor is residual noise, then it may be
possible to increase the dynamic range of the instrument
by simply subtracting the residual noise power from the
measured power.  This is possible provided the noise is
uncorrelated with the signal to be measured and also
that the noise power can be accurately measured.  This is
most easily accomplished in the vector signal analyzer
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because it offers true RMS detection, RMS averaging and
extensive trace math capabilities.  

To increase the dynamic range in the HP 89441A, for
example, a measurement of the residual noise is made by
disconnecting the input signal and providing proper
termination of the input.  After a sufficient number of
averages have been made, either the spectrum or PSD is
saved into one of the data registers.  The signal is
reconnected and another averaged spectrum or PSD
measurement made.  If the PSD was saved, then a math
function which simply subtracts the noise PSD contained
in the data register from the measured PSD will produce
the desired result.  If the spectrum was saved, then the
math function will calculate the square root of the square
of the measured spectrum minus the square of the noise
spectrum (in the data register).  The squaring operation
is necessary to ensure that power, not volts, is used in
the equation.
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Figure 17.  Phase noise comparison for several different HP swept spectrum and vector
signal analysers.

Figure 16.  This ACP measurement of a GMSK
signal was limited by the instrument's noise floor.
The noise PSD was subtracted to improve the
dynamic range of the measurement by more than
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The measurement of a GMSK signal shown in figure 16
provides a graphic example of the dynamic range
improvements that are possible using the noise
subtraction technique.  The original measurement was
limited to a 61 dB ACPR.   By subtracting the
instruments noise power (as shown in the upper left
trace), the ACP decreased by 11 dB resulting in a 72 dB
ACPR.

Phase noise can limit an instrument's ability to measure
power in a band near the carrier.  The plot in figure 18
shows a distinct phase noise pedestal on what is
supposed to be an unmodulated carrier.  The band power
markers are used to measure the carrier-to-noise ratio,
which is shown as 67 dB.   If the analyzer had
contributed the phase noise, then 67 dB may be the best
CNR that can be measured in that band.   

Often, phase noise is specified at a single frequency
offset.  In this measurement, a second marker shows the
PSD halfway between the band power markers as -104.8
dBm/Hz (relative to a 0 dBm carrier) or -104.8 dBc/Hz.   
If we were to assume that the PSD was constant over the
same 5 kHz span that's measured using the band power
markers (which it obviously isn't), then we would
determine that the CNR is -104.8 + 10*log(5000) = -67.8
dB, which is 0.8 dB too low.   This  shows the danger in
relying on a single frequency point phase noise
specification.   

The phase noise specification for both swept spectrum
and vector signal analyzers is very important, especially
for measurements on narrow-band systems.  In the
previous example, we need to determine whether or not
the ACPR measurement is limited by the phase noise
performance of the analyzer.  In figure 17, we see that
the worst case phase noise for the HP 89441A over a 5
kHz band centered on a 
6 kHz offset is less than -115 dBc/Hz, or approximately
10 dB below the measured value (at the 6 kHz offset).
This would suggest that we have an accurate
measurement of CNR, provided that we aren't noise floor
limited.

SUMMARY
Power measurements on digitally modulated signals can
be time-selective, frequency-selective, or time and
frequency selective, with each measurement providing a
different perspective on system performance.  While
frequency- selective measurements can be used to
discover a problem, such as excess ACP, isolating the
cause of the problem may require a measurement that is
selective in both domains. 

A digitally modulated signal has characteristics similar
to noise, both in terms of its PSD and amplitude
distribution. This is an important consideration, since all
instruments are not equally suited to the task of
accurate noise-power measurements.
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Figure 18.  Phase noise increases the
measured adjacent channel power.
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