

SERVICE How To

Model Number:	Originator:	Topic
440LC Fraction Collector	Petro van Poppel	Determining the Delay Volume and Time

Determining the Delay Volume and Delay Time for a 440LC Fraction Collector, by measurement.

You will need one of the following:

1. 3710059100 – PTFE tube, 1/16" OD x 0.020" ID (0.508mm ID)(A)
2. 3710062800 – PTFE tube, 1/16" OD x 0.010" ID (0.254mm ID)(A)
3. 2418003300 – PTFE tube, 1/8" OD x 1/16" ID (1.588mm ID)(A)
4. 110841000 – Assy Probe 2.03 mm ID (B)
5. 110827400 – Assy Probe 0.508 mm ID (B)

Determine the tube volume:

1. Determine which tubing has been used to plumb the fraction collector into the system (#1, 2 or 3 above) (ID=A) and determine which probe is used on the fraction collector (#4 or 5 above) (ID=B).
2. Determine, in cm, the length of the tubing between the flow cell outlet and the diverter valve inlet (L=C).
3. Determine, in cm, the length of the tubing between the diverter valve outlet and the probe (include the length of the probe) (L=D)
4. Calculate the delay volume (V) of the tubing in mL, according to

$$V(\text{mL}) = (\pi \times (0.05 \times A)^2 \times C(\text{cm})) + (\pi \times (0.05 \times B)^2 \times D(\text{cm}))$$

5. Calculate the delay time (T) of the tubing in minutes, according to

$$T(\text{min}) = V(\text{mL}) / \text{flow rate}(\text{mL/min})$$