
08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 1 of 93
This is an unapproved 1394TA specification, subject to change

1394TA IICP
Draft Specification for the
Instrument & Industrial Control
Protocol

Draft 1.00RC3 (release candidate 3)
August 2, 1999
Sponsored by:
Instrumentation and Industrial Control Working Group (II-WG) of the 1394 Trade Association

Approved for Release by:
This document has not yet been approved for release by the II-WG or the 1394 Trade Assocation

Abstract:
This document describes a lightweight protocol for efficient asynchronous communication to
electronic instrumentation and industrial control devices using the IEEE-1394 serial bus. This
protocol uses a dual-duplex plug structure for transfer of data and command/control sequences.
A consumer communicates to a connected producer the space available in a consumer segment
buffer, so all communication is flow controlled. This document specifies the establishment, use,
and maintenance of the plugs. This document also specifies the discovery process for nodes
implementing the protocol, and furthermore, specifies the discovery and operation of minimal
memory mapped nodes.

Keywords: protocol, instrument, industrial control, 1394, asynchronous, lightweight, flow control,
discovery, memory mapped

1394 Trade Association
2350 Mission College Blvd. , Suite 350 , Santa Clara, CA, 95054, USA
http://www.1394TA.org

Copyright © 1998-1999 by the 1394 Trade Association. Permission is granted to members of the 1394 Trade Association
to reproduce this document for their own use or the use of other 1394 Trade Association members only, provided this
notice is included. All other rights reserved. Duplication for sale, or for commercial or for-profit use is strictly prohibited
without the prior written consent of the 1394 Trade Association.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 2 of 93
This is an unapproved 1394TA specification, subject to change

1394 Trade Association Specifications are developed with Working Groups of the 1394 Trade
Association, a non-profit industry association devoted to the promotion of and growth of the market for IEEE
1394 computer products. Participants in working groups serve voluntarily and without compensation from
the Trade Association. Most participants represent member organizations of the 1394 Trade Association.
The specifications developed within the working groups represent a consensus of the expertise represented
by the participants.

Use of a 1394 Trade Association Specification is wholly voluntary. The existence of a 1394 Trade
Association Specification is not meant to imply that there are not other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of the 1394 Trade Association
Specification. Furthermore, the viewpoint expressed at the time a specification is approved and issued is
subject to change, brought about through developments in the state of the art and comments received from
users of the specification. Users are cautioned to check to determine that they have the latest revision of any
1394 Trade Association Specification.

Comments for revision of 1394 Trade Association Specifications are welcome from any interested party,
regardless of membership affiliation with the 1394 Trade Association. Suggestions for changes in
documents should be in the form of a proposed change of a proposed change of text, together with
appropriate supporting comments.

Interpretations: Occasionally, questions may arise about the meaning of specifications in relationship to
specific applications. When the need for interpretations is brought to the attention of the 1394 Trade
Association, the Association initiates action to prepare appropriate responses.

Comments on specifications and requests for interpretations should be addressed to:

Editor, 1394 Trade Association
2350 Mission College Blvd. Suite 350
2350 Mission College Blvd.
Santa Clara, California 95054, USA

1394 Trade Association Specifications are adopted by the 1394 Trade Association without
regard to patents which may exist on articles, materials or processes or to other proprietary
intellectual property which may exist within a specification. Adoption of a specification by the
1394 Trade Association does not assume any liability to any patent owner or any obligation
whatsoever to those parties who rely on the specification documents. Readers of this
document are advised to make an independent determination regarding the existence of
intellectual property rights which may be infringed by conformance to this specification.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 3 of 93
This is an unapproved 1394TA specification, subject to change

Introduction

The 1394TA II-WG was formed with the following charter:
• Investigate protocols specific to instrumentation and industrial control applications.
• Efficiently and robustly transfer data in a standard way between serial bus compliant nodes.
• Use enhanced features of the IEEE1394 architecture to encapsulate existing command sets

and protocols, for example GPIB.
• Expand into native IEEE1394 usage models to adopt and implement new features now

possible.

The II-WG decided in September 1998 to first create a baseline document. Higher level protocol
documents, for example GPIB using IICP (IICP488), will follow, building on this baseline IICP
document.

Committee Membership

Chairman: Andreas Schloissnik
Company: 3A International
Email: aschloissnik@3a.com
Phone: (602) 437-1751

Secretary: Gary Sakmar
Company: Keithley Instruments
Email: gsakmar@keithley.com
Phone: (440) 542-8016

Editor: Andy Purcell
Company: Hewlett-Packard
Email: andyp@lvld.hp.com
Phone: (970) 679-5976

II-WG Reflector: '1394-ii@1394TA.org'

The following individuals are acknowledged for their contributions to this specification:

Greg Hill
Steve Schink
Dave James
Andrew Thomson

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 4 of 93
This is an unapproved 1394TA specification, subject to change

Table of contents

1.1 Scope ... 8

3.1 Word usage – shall, should, may, can.. 10
3.2 Definitions.. 10
3.3 Numeric notation.. 11
3.4 State machine notation.. 12

3.4.1 State machine logic.. 12
3.4.2 State machine transitions – text description .. 12

3.5 Packets with data payload ... 13
3.6 Reserved fields ... 13
3.7 Figures depicting 1394 address space .. 13

4.1 Configuration ROM.. 14
4.1.1 Configuration ROM structure .. 14
4.1.2 Multi-protocol devices ... 19
4.1.3 Read operations on the configuration ROM.. 19
4.1.4 Device aliases (nicknames) in the configuration ROM.. 19

5.1 Interrupt mechanism for IICP memory mapped devices ... 20
interrupt_enable register .. 20
interrupt_handlr register .. 20

5.2 1394 memory mapped only IICP device limitations... 21

6.1 Introduction to IICP connection plugs ... 22
6.1.1 IICP frames ... 22
6.1.2 Plug architecture.. 24

6.2 Plug register details .. 25
6.2.1 ProducerLimits register.. 25
6.2.2 SmallFramePageTableElement register .. 26
6.2.3 SmallFrameProducer register ... 26
6.2.4 LargeFrameProducer register ... 27
6.2.5 LargeFramePageTableElement registers... 27
6.2.6 SmallFrameConsumer register ... 28
6.2.7 LargeFrameConsumer register ... 28

6.3 1394 operations allowed on plug registers ... 29
6.3.1 Efficient updating of plug registers .. 29

6.4 Large frame transfers .. 29
6.4.1 Sequential and non-sequential writes for large frame transfers .. 30

6.5 Small frame transfers .. 31
6.6 Mixing of large frame mode and small frame transfer mode... 32
6.7 Consumer segment buffers.. 33
6.8 Plug schematics .. 33
6.9 Multiple devices ... 34
6.10 Connection variations... 34
6.11 Creating an IICP connection... 35

6.11.1 Connection creation sequence .. 36
6.11.2 Note on dataFrameSize, controlFrameSize and sizing of consumer buffers 42

6.12 Connection deactivation ... 43
6.13 Connection reactivation.. 43

6.13.1 Reactivation sequence.. 44
6.14 Disconnecting IICP connections ... 46

6.14.1 Disconnection sequence... 46
6.15 Obtaining connection information .. 49

1. Instrumentation and industrial control protocol (IICP) overview... 8

2. References .. 9
3. Document definitions and notation .. 10

4. Functional discovery ... 14

5. IICP 1394 memory-mapped I/O... 20

6. IICP asynchronous plug connections ... 22

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 5 of 93
This is an unapproved 1394TA specification, subject to change

6.15.1 Connection information sequence .. 49
6.16 Summary of connection packet fields ... 53

6.16.1 ConnectPktId values .. 53
6.16.2 connectRequestStatus values.. 53

6.17 Miscellaneous macro values ... 54
6.18 Connection manager state machine... 55

6.18.1 Connection manager state machine: request startup .. 56
6.18.2 Connection manager state machine: LockRegisters(device1,device2)................................ 57
6.18.3 Connection manager state machine: UnlockRegisters()... 59
6.18.4 Connection manager state machine: creating a plug.. 61
6.18.5 Connection manager state machine: reactivating a connection .. 63
6.18.6 Connection manager state machine: stopping a connection ... 64
6.18.7 Connection manager state machine: get plug information ... 65
6.18.8 Connection manager state machine: get specific plug information 66
6.18.9 Connection manager state machine: CM_busReset() .. 66

6.19 Connection client state machine.. 67
6.19.1 Locking of connection register and waiting for request... 68
6.19.2 Connection client request == CREQ1... 69
6.19.3 Connection client request == CREQ2... 70
6.19.4 Connection client request == REACT .. 70
6.19.5 Connection client request == STOP ... 71
6.19.6 Connection client request == FREE ... 71
6.19.7 Connection client request == GETINFO .. 72
6.19.8 Connection client request == GETPLUGINFO... 72

6.20 Consumer state machine... 73
6.20.1 Large frame consumer state machine terminology .. 73
6.20.2 Large frame consumer state machine.. 74
6.20.3 Small frame consumer state machine terminology .. 76
6.20.4 Small frame consumer state machine.. 77

6.21 Producer state machines ... 79
6.21.1 Large frame producer state machine terminology.. 79
6.21.2 Large frame producer state machine, states LFP0 – LFP4... 80
6.21.3 Large frame producer state machine, states LFP4 – LFP7... 81
6.21.4 Small frame producer state machine terminology ... 84
6.21.5 Small frame producer state machine, states SFP0 – SFP4 ... 85
6.21.6 Small frame producer state machine, states SFP4 – SFP7 ... 86

7.1 IICP control request.. 88
7.1.1 Initialization of IICP layer ... 88
7.1.2 Configure the IICP layer .. 88

7.2 IICP open request ... 89
7.3 IICP close request... 90
7.4 IICP write data frame request.. 90
7.5 IICP write control frame request ... 90
7.6 IICP read data frame request ... 90
7.7 IICP CREQ1 indication .. 90
7.8 IICP connection established indication .. 90
7.9 IICP stop indication .. 91
7.10 IICP err indication.. 91
7.11 IICP control frame received indication.. 91

8.1 Application-level retries.. 92
8.2 1394 bus resets ... 92

8.2.1 Bus reset while connection registers are locked .. 92
8.2.2 Bus reset during updates of plug fields ... 92
8.2.3 Bus reset while transferring data .. 92

7. IICP services (informative).. 88

8. Error recovery ... 92

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 6 of 93
This is an unapproved 1394TA specification, subject to change

8.2.4 Duplicate writes... 93

List of figures

Figure 1 -- State machine notation ...12
Figure 2 -- 1394 block write with header and payload...13
Figure 3 -- 1394 block write (short form) ..13
Figure 4 -- Figures depicting 1394 address space ..13
Figure 5 -- IICP configuration ROM format (one unit directory) ...14
Figure 6 -- Root directory ...15
Figure 7 – IICP unit directory ...16
Figure 8 -- IICP_details..16
Figure 9 -- Connection register In 1394 space..17
Figure 10 -- IICP_Capabilities entry ...17
Figure 11 -- interrupt_enable register ...20
Figure 12 -- interrupt_handlr register..20
Figure 13 -- Typical IICP connection ..22
Figure 14 -- IICP plug contents ..24
Figure 15 -- ProducerLimits register ...25
Figure 16 – PageTableElement register ...26
Figure 17 -- SmallFrameProducer register ...26
Figure 18 -- LargeFrameProducer register ...27
Figure 19 – SmallFrameConsumer register..28
Figure 20 -- LargeFrameConsumer register ...28
Figure 21 – Large frame transfers..30
Figure 22 -- Small frame transfers..32
Figure 23 -- Consumer segment buffers...33
Figure 24 -- IICP plug schematic..33
Figure 25 -- Shorthand IICP plug schematic...34
Figure 26 -- Multiple instrument connections ..34
Figure 27 -- Connection manager with 2 independent devices..35
Figure 28 -- Connection manager with 1 independent device ...35
Figure 29 -- Establishing an IICP connection..36
Figure 30 -- Connection register lock request packet..37
Figure 31 -- Connection register lock response packet ...37
Figure 32 -- Connection request packet (CREQ1) ..38
Figure 33 -- Connection response packet (CRESP) ...39
Figure 34 -- Connection request packet (CREQ2) ..40
Figure 35 -- Connection response packet (STATUS)..40
Figure 36 - Reactivation sequence...43
Figure 37 -- Reactivation request packet (REACT)...44
Figure 38 -- Disconnect sequence..46
Figure 39 -- STOP request packet ...47
Figure 40 -- FREE request packet..48
Figure 41 -- Connection information sequence ...49
Figure 42 -- GETINFO request packet ...49
Figure 43 -- INFO response packet ..50
Figure 44 -- GETPLUGINFO request packet ..50
Figure 45 -- PLUGINFO response packet ..51
Figure 46 -- Connection manager state machine: request startup...56
Figure 47 -- Connection manager state machine: LockRegisters()...57
Figure 48 -- Connection manager state machine: UnlockRegisters() ..59
Figure 49 -- Connection manager state machine: creating a plug ...61
Figure 50 -- Connection manager state machine: reactivating a plug..63

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 7 of 93
This is an unapproved 1394TA specification, subject to change

Figure 51 -- Connection manager state machine: stopping a connection64
Figure 52 -- Connection manager state machine: get plug information65
Figure 53 -- Connection manager state machine: get specific plug information...........................66
Figure 54 -- Connection manager state machine: CM_busReset()..66
Figure 55 -- Connection client state machine: locking and waiting for request.............................68
Figure 56 -- Connection client state machine: CREQ1 processing..69
Figure 57 -- Connection client state machine: CREQ2 processing..70
Figure 58 -- Connection client state machine: REACT processing ..70
Figure 59 -- Connection client state machine: STOP processing ..71
Figure 60 -- Connection client state machine: FREE processing...71
Figure 61 -- Connection client state machine: GETINFO processing ..72
Figure 62 -- Connection client state machine: GETPLUGINFO processing.................................72
Figure 63 – Large frame consumer state machine ...74
Figure 64 - Small frame consumer state machine ..77
Figure 65 -- Large frame producer state machine, states LFP0-LFP3...80
Figure 66 -- Large frame producer state machine, states LFP4-LFP7...81
Figure 67 -- Small frame producer state machine, states SFP0-SFP3 ..85
Figure 68 -- Small frame producer state machine, states SFP4-SFP7 ..86

List of tables
Table 1 -- Configuration ROM constants ..18
Table 2 -- Configuration ROM key values...18
Table 3 -- maxLoad-payload values ...25
Table 4 -- LargeFrameConsumer.mode definition ..29
Table 5 – Consumer segment buffer size and dataFrameSize, controlFrameSize42
Table 6 -- ConnectPktId values..53
Table 7 -- connectRequestStatus values..54
Table 8 -- Miscellaneous macro values ..54
Table 9 -- Connection manager state machine terminology ..55
Table 10 -- Suggested UnlockResult bit definitions...60
Table 11 -- Connection client state machine terminology..67
Table 12 – Large frame consumer state machine terminology..73
Table 13 -- Small frame consumer state machine terminology..76
Table 14 -- Large frame producer state machine terminology...79
Table 15 -- Small frame producer state machine terminology ...84

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 8 of 93
This is an unapproved 1394TA specification, subject to change

1. Instrumentation and industrial control protocol (IICP) overview

1.1 Scope
The scope of this document is to define a lightweight communication protocol for instrumentation
and industrial devices using the high-speed IEEE1394-1995 serial bus. This document defines
structures and efficient, flow-controlled mechanisms to transfer data and command/control
sequences to devices. This document specifies the discovery of nodes that support the protocol.
It describes the set up and maintenance of the connection.

It further specifies the discovery of memory mapped 1394 devices that serve as instruments or
industrial devices. It defines an interrupt notification mechanism for memory mapped devices.

The scope of the baseline document does not extend to defining the content of data or
command/control sequences.

The following documents are anticipated to make use of this baseline document:
1. IICP488. Specifies the use of IICP to send IEEE488 (GPIB) messages and control

sequences.
2. A document (not named yet) on using IICP to communicate to a 1394-GPIB bridge device.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 9 of 93
This is an unapproved 1394TA specification, subject to change

2. References
• IEEE Std. 1394-1995, Standard for a High Performance Serial Bus
• ANSI/IEEE Std. 1212-1994.
• IEEE 1212r Configuration ROM (approved specification or latest draft available)
• P1394a (approved specification or latest draft available)
• 1394 Open Host Controller Interface Specification, Release 1.00, October 20, 1997

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 10 of 93
This is an unapproved 1394TA specification, subject to change

3. Document definitions and notation

3.1 Word usage – shall, should, may, can
The word shall is used to indicate mandatory requirements strictly to be followed in order to
conform to the specification and from which no deviation is permitted.

The word should is used to indicate that among several possibilities one is recommended as
particularly suitable, without mentioning or excluding others; or that a certain course of action is
preferred but not necessarily required; or that (in the negative form) a certain course of action is
deprecated but not prohibited.

The word may is used to indicate a course of action permissible within the limits of the
specification.

The word can is used for statements of possibility and capability, whether material, physical, or
casual.

3.2 Definitions
3.2.1 connection client:
A device capable of instantiating a plug when a connection sequence is received.

3.2.2 connection manager:
A device capable of issuing a connection sequence to a connection client to cause the creation of a plug.
The connection manager is responsible for sending reactivation sequences to the plug after bus resets.

3.2.3 connection register:
A 512-byte memory buffer mapped to contiguous 1394 space used for the connection lock register and
connection requests and responses. The word “register” is a slight misnomer, since the connection register
is much larger than a quadlet. However, this follows the naming conventions in other 1394 documents.

3.2.4 connection sequence:
A sequence of 1394 packets that cause an IICP plug to be created.

3.2.5 consumer:
A device that receives data from a producer.

3.2.6 consumer segment buffer:
Consumer memory dedicated to receiving frames from a producer. This memory is mapped to 1394 space.

3.2.7 control path (control port):
A path for control, interrupt, trigger, and commands. Actual use is determined by a higher level protocol.

3.2.8 data path (data port):
A path for data. A high level protocol using IICP plugs may use the data path for “pure” data, keeping it free
of control, interrupt, trigger, etc. information.

3.2.9 frame:
A frame is a logically complete sequence of bytes written by a producer to a consumer.

3.2.10 large frame:
A large frame is a frame that is not transmitted as a small frame. A large frame is sent to 1394 space
specified by the LargeFramePageTableElement registers.

3.2.11 LargeFrameConsumer register
A consumer-resident 32-bit register that a producer updates when the large frame space has been filled or
the producer has sent the last content of the large frame.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 11 of 93
This is an unapproved 1394TA specification, subject to change

3.2.12 LargeFramePageTableElement[] register array
A producer-resident array of PageTableElement registers describing the size and location of a consumer
segment buffer for receiving large frame content.

3.2.13 LargeFrameProducer register:
A producer-resident 32-bit register that a consumer updates when ready to receive more large frame
content.

3.2.14 node_ID:
The 10-bit bus_ID and automatically assigned 6-bit physical_ID, as defined in IEEE1394-1995, 2.2.51.

3.2.15 OHCI:
Open Host Controller Interface. This interface defines a standard set of 1394 link chip registers and the
operation of a 1394 link chip.

3.2.16 PageTableElement:
A producer-resident 64-bit register containing a 16-bit length and 48-bit address. The length and address
identify the size and location of consumer segment buffer space.

3.2.17 plug:
A data structure and associated software mechanisms for data and control communications between two
nodes.

3.2.18 port:
There are 2 ports in an IICP plug. One port consists of the producer and consumer function for the data
path. The other port consists of the producer-consumer function for the control path.

3.2.19 producer:
A device that writes data to a consumer.

3.2.20 ProducerLimits register:
A producer-resident 32-bit register that enables a consumer to control the maximum size of 1394 write
transactions.

3.2.21 small frame:
A frame of size less than or equal to 512 bytes sent in one write block packet. A small frame is sent to the
small frame space specified by the SmallFramePageTableElement register.

3.2.22 SmallFrameConsumer register
A consumer-resident 32-bit register that a producer updates when the next small frame does not fit in the
remaining small frame buffer space or the producer has sent the maximum number of small frames allowed.

3.2.23 SmallFramePageTableElement
A producer-resident PageTableElement register describing the size and location of a consumer segment
buffer for receiving small frames.

3.2.24 SmallFrameProducer register
A producer-resident 32-bit register that a consumer updates when ready to receive more small
frames.

3.2.25 unique_ID:
A 64-bit concatenation of the node_vendor_id, chip_id_hi, and chp_id_lo values in the bus_info_block. See
IEEE1394-1995, section 8.3.2.5.4. This is also sometimes referred to as an EUI, EUI-64, or Extended
Unique Identifier.

3.3 Numeric notation
Number formats are as described in IEEE1394-1995, section 1.6.4.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 12 of 93
This is an unapproved 1394TA specification, subject to change

3.4 State machine notation
State machines are shown in tabular format rather than the style in IEEE1394-1995.

ConditionState Transi-
tion Action

New state

1st condition to be testedTX#a
Actions taken when 1st condition tests true

New state

2nd condition to be testedTX#b
Actions taken when 2nd condition tests true

New state

…

State: [Name]

[Actions taken
upon entry]

…
…

…

Figure 1 -- State machine notation

3.4.1 State machine logic
The logic for many of the conditions and associated actions are written in ‘C’-style syntax. It is
assumed readers of this document are familiar with ‘C’ syntax. The conditions shall be evaluated
from top to bottom as indicated.

3.4.2 State machine transitions – text description
Following each state machine table, there is additional text that further clarifies each transition.
The state machine table and state machine textual descriptions together define the state machine
behavior.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 13 of 93
This is an unapproved 1394TA specification, subject to change

3.5 Packets with data payload
There are figures in the document that show 1394 packet data payload contents. Most figures
that contain a data payload are shown in short form, without the 1394 header and without the
data CRC at the end of the data. To illustrate, the long form of showing a block write is shown
below. Refer to the IEEE1394 specification for a description of the write-block fields.

Figure 2 -- 1394 block write with header and payload

The equivalent short form is shown below.

Figure 3 -- 1394 block write (short form)

3.6 Reserved fields
Some locations in a packet may be marked as reserved, res, or r. These fields are reserved for
future standardization uses and shall be zero-valued. An implementation is not required, and is
not expected to check all reserved fields for zero-values.

3.7 Figures depicting 1394 address space
Any figure depicting 1394 space is depicted with the convention that the 1394 space goes from
lower 1394 address space (top of figure) to higher 1394 address space (bottom of figure).

Figure 4 -- Figures depicting 1394 address space

1394 space Lower 1394 address

Higher 1394 address

destination_ID tl rt tcode pri

source_ID

destination_offset

data_length extended_tcode

byte0 byte1 byte2 byte3

byte4 byte5 byte6 byte7

header_CRC

data_CRC

...

byteN-1 zero-pad bytes (if necessary)

transmitted first

transmitted last

byte0 byte1 byte2 byte3

byte4 byte5 byte6 byte7

byteN-1 zero-pad bytes (if necessary)

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 14 of 93
This is an unapproved 1394TA specification, subject to change

4. Functional discovery
Functional discovery is the process whereby one node on the 1394 bus discovers the attributes of
another node on the 1394 bus. Node attributes are stored in the node configuration ROM.

4.1 Configuration ROM
This chapter describes and defines a method for querying an IEEE1394 node and determining its
capabilities and available functionality. It is based on the IEEE 1212-1994 specification for
Control and Status Register Architecture and on work currently underway in the IEEE 1212r
working group for unit function discovery. The data structures, key and value types defined in this
document pertain to nodes that are compliant with the IICP specification.

4.1.1 Configuration ROM structure
All IICP nodes shall provide a configuration ROM located at a fixed destination offset of FFFF
F000 040016. All IICP nodes shall implement the general ROM format. All IICP nodes shall
include:
• A bus information block
• A root directory
• At least one unit directory
• A text leaf containing a string for the manufacturer
• A text leaf containing a string for the unit model.

info_length=4 crc_length rom_crc_value

Bus_info_block

Root directory

Unit directory

Model manufacturer text leaf

Unit model # text leaf

Figure 5 -- IICP configuration ROM format (one unit directory)

4.1.1.1 First quadlet
The first quadlet in the configuration ROM contains the info_length, crc_length, and
rom_crc_value. This is described in IEEE 1212-1994. Implementations shall adhere to newer
applicable standards when approved. At this time, the IEEE 1212r working group recommends
the crc_length to be the length in quadlets of the Bus_info_block.

4.1.1.2 Bus_info_block
The bus information block for 1394 nodes is defined in IEEE1394-1995, section 8.3.2.5.4.
Implementations shall adhere to newer applicable standards (for example: P1394a) as they are
approved.

First Quadlet
@ FFFF F000 040016

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 15 of 93
This is an unapproved 1394TA specification, subject to change

4.1.1.3 Root directory
The root directory is the top level in a hierarchy of subdirectories, leaves and immediate data
values. Each quadlet entry in the root directory may represent an immediate value (the quadlet
contains the data value) or an indirect offset (the quadlet contains an offset value, used to create
a pointer to the data). The root directory is required by IEEE1394-1995, 8.3.2.5.5, to contain
module_vendor_id, node_capabilities, and node_unique_id entries. However, at this time, the
node_unique_id leaf only contains redundant information, is not used by enumeration software,
and the IEEE 1212r working group is indicating the node_unique_id entry is obsolete. An
example root directory is shown below.

Figure 6 -- Root directory

All fields are as defined in the referenced documents. The text_leaf offset is the offset in quadlets,
from the current quadlet, to a text leaf that contains a string of human-readable characters for
module_vendor_id.

4.1.1.4 Unit directory
Unit directories contain additional information about a unit. Unit directories are referenced from
the root directory and from any optional instance directories. Information contained in the unit
directory specifies the protocol the unit uses for communications. If a node complies with more
than one protocol specification, there will be multiple unit directories. There shall be at least one
unit directory in an IICP compliant node.

Some IICP units are capable of generating interrupt packets and sending those packets to an
interrupt handler node. The interrupt_enable_reg and interrupt_handlr_reg entries are optional
entries that shall both be present for those IICP units that support this capability. If a unit does not
support this capability, neither of these registers shall be present in the unit directory.

An example unit directory is shown in the figure below. Key values and macros are found in Table
1 and Table 2.

directory_length directory_CRC

node_capabilities

module_vendor_id

node_capabilities key

module_vendor_id key

text_leaf offsettext_leaf key

unit_directory offsetunit_directory key

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 16 of 93
This is an unapproved 1394TA specification, subject to change

unit_spec_idunit_spec_id key

directory_length directory_CRC

model_idmodel_id key

text_leaf offsettext_leaf key

command_set_spec_id key command_set_spec_id

command_set_details key command_set_details

command_set key command_set

interrupt_handlr_reg_offset
key

interrupt_handlr_reg_offset (optional)

connection_reg_offset key connection_reg_offset key

IICP_capabilities key IICP_capabilities

interrupt_enable_reg_offset
key

interrupt_enable_reg_offset (optional)

unit_sw_versionunit_sw_version key

IICP_detailsIICP_details_key

Figure 7 – IICP unit directory

• The required unit_spec_id is an immediate entry that identifies the organization that has
specified the protocol for this unit. For IICP, and higher level protocols above IICP developed
within the 1394 Trade Association, this shall be the number assigned to the 1394 Trade
Association, 1394TA_SPEC_ID.

• The required unit_sw_version is an immediate entry that identifies the protocol. This value is
determined by the organization specified in the unit_spec_id. The unit_sw_version is
IICP_UNIT_SW_VERSION. This number shall represent the baseline IICP protocol and may,
in some cases, result in a driver for IICP being layered on top of an operating system 1394
driver. Note that the API for an IICP driver is beyond the scope of this specification.

• The required IICP_details immediate entry specifies a revision number and details of the
IICP implemented. The format of the 24 bits is shown below. The revision is interpreted as
AB.CD. Decimal revision 2.39 would have nibbles ABCD valued as 016, 216, 316, and 916

respectively. Each nibble shall be encoded as a binary-coded-decimal value: 016 <= nibble
value <= 916. The revision following 1.39 would be 1.40. IICP_details shall be set to
IICP_DETAILS.

Figure 8 -- IICP_details

• The required model_id is a 24-bit immediate entry. It is the model designation assigned by
the vendor.

• The required text_leaf offset is an immediate entry that specifies the offset to a text leaf that
contains a textual descriptor for the previous model_id entry.

• The required command_set_spec_id is an immediate entry in the unit directory that
identifies the organization responsible for the command_set definition for the unit. For this
baseline IICP protocol, and for any protocol developed by a 1394 Trade Association working
group, the 24-bit command_set_spec_id value shall be set to the value assigned to the
1394TA, 1394TA_SPEC_ID.

• The required command_set immediate entry that, in combination with the
command_set_spec_id, specifies the command set or higher level protocol implemented by
the unit. For a unit that implements IICP only, and no protocol on top of IICP, command_set
shall be set to IICP_UNIT_SW_VERSION.

nibble A nibble B nibble C nibble D reserved

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 17 of 93
This is an unapproved 1394TA specification, subject to change

• The required command_set_details immediate entry specifies a revision number and details
of the command_set. The format of the 24 bits is as described for IICP_details above. For a
unit that implements IICP only, and no protocol on top of IICP, command_set_details shall be
set to IICP_DETAILS.

• The connection_reg_offset immediate entry specifies a 1394 destination offset for the 512-
byte connection register. All IICP units that are capable of performing as a connection
manager or as a connection client shall have a connection_reg_offset entry. An octlet (8
bytes) is reserved at the beginning of the space for a connection lock register. It is called a
lock register because connection managers must do a successful compare & swap lock
request on the connection lock register before sending a connection request packet. The
remaining space is used for connection requests and connection responses. The 24-bit
connection_reg_offset field shall contain the offset for the connection register, in quadlets,
from the base destination offset of initial register space, FFFF F000 000016.

Figure 9 -- Connection register In 1394 space

A zero-valued lock register corresponds to an unlocked condition. A non-zero valued lock
register corresponds to a locked condition.

Connection lock registers shall be initialized to 0000 0000 0000 000016 at power-on and after
a bus reset.

Only 16 byte data_length compare & swap lock requests are permitted on the 8 byte
connection lock register. Only write requests are permitted on the 504 byte connection
command/response space.

The connection lock register provides robustness in multi-controller and multi-threaded
environments. It also simplifies device software since the device only needs to handle
connection requests from at most one connection manager.

• The format of the required IICP_Capabilities immediate entry is shown below.

Figure 10 -- IICP_Capabilities entry

− The reserved for higher level protocols field is 0 unless specified in a higher-level
protocol document.

− The reserved for IICP field is 0.
− The ccli bit (connection client bit) shall be one-valued if the unit is capable of receiving

connection sequences and creating plugs.
− The cmgr bit (connection manager bit) shall be one-valued if the unit is capable of

issuing connection sequences to nodes to create plugs and connection sequences to
maintain those created plugs.

− The 4-bit maxIntLength field specifies the data-payload size limitations for an individual,
single 1394 write block request that may communicate interrupt information. See 5.1 for
further explanation. This field shall be ignored if the unit directory does not contain both

8 byte connection lock register

504 bytes for connection commands and responses

FFFF F000 000016 + (connection_reg_offset)*4

FFFF F000 000016 + (connection_reg_offset+2)*4

cmgr
ccli

maxIntLengthreserved for IICPreserved for higher level
protocols

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 18 of 93
This is an unapproved 1394TA specification, subject to change

the optional interrupt_enable_reg_offset register and the optional
interrupt_handlr_reg_offset register. The maxIntLength value is restricted to a value <=
8, so the maximum sized write block request containing interrupt information is 512
bytes. If the maxIntLength value is 0, this node does not support this interrupt
mechanism.

PayloadSizeInBytes = 2maxIntLength+1
• The optional interrupt_enable_reg_offset immediate entry contains the offset for the

interrupt_enable register, in quadlets, from the base destination offset of initial register space,
FFFF F000 000016. This entry is required if the interrupt_handlr_reg_offset entry is present.
See section 5.1 for a detailed description of the interrupt_enable register.

• The optional interrupt_handlr_reg_offset immediate entry shall contain the offset for the 64-
bit interrupt_handlr register, in quadlets, from the base destination offset of initial register
space, FFFF F000 000016. The interrupt_handlr register contains the nodee_ID and the 1394
destination offset that the interrupter should use when sending an interrupt packet. This entry
is required if the interrupt_enable_reg_offset entry is present. See section 5.1 for a detailed
description of the interrupt_handlr register.

4.1.1.5 Configuration ROM spec_id’s, unit_sw_version, and command_set values

Configuration ROM constant Where used Value (Hex)
1394TA_SPEC_ID • unit_spec_id,

• command_set_spec_id
00A02D16

IICP_UNIT_SW_VERSION • unit_sw_version 4B661F16

IICP_DETAILS • IICP_details,
• command_set_details (if

device does not implement a
protocol on top of IICP)

This value is the version of IICP
on the title page of the IICP
document that correlates to the
implementation.

Table 1 -- Configuration ROM constants

4.1.1.6 Configuration ROM key values
The unit directory for an IICP compliant node requires several entries and associated key values
not defined in IEEE 1212. The key values for these entries are from the vendor-dependent key
space defined in IEEE 1212. The table below summarizes the IICP entries and key values.

Configuration ROM key Key = (key_type << 6) || key_value
IICP_details key 3816

command_set_spec_id key 3916

command_set key 3A16

command_set_details key 3B16

connection_reg_offset key 3C16

IICP_capabilities key 3D16

interrupt_enable_reg_offset key 3E16

interrupt_handlr_reg_offset key 3F16

Table 2 -- Configuration ROM key values

Note that these keys are the vendor-defined keys and that the IEEE 1212r working group is
defining a method to extend the key space.

4.1.1.7 Text leaves
The format for text leaves is shown in IEEE 1212-1994, 8.2.5. Text leaves shall conform to newer
standards as they are approved.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 19 of 93
This is an unapproved 1394TA specification, subject to change

4.1.1.8 Instance directories
Instance directories are optional. If instance directories are implemented in an IICP node, the II-
WG should be consulted for keywords. The table below shows the keywords the II-WG has
submitted at this time.

ACTUATOR AMPLIFIER ANALOG_INPUT ANALOG_OUTPUT
ANALYZER COUNTER DIGITAL_INPUT DIGITAL_OUPUT
DMM FUNCTION_GENERATOR LINE_MONITOR LOGIC_ANALYZER
MANOMETER OSCILLOSCOPE PATTERN_GENERATOR POWER_METER
POWER_SUPPLY RECORDER SENSOR SIGNAL_ANALYZER
SPECTRUM_ANALYZER SWITCH THERMOMETER WAVEFORM_GENERATOR

4.1.2 Multi-protocol devices
Some IICP devices may need to implement more than one protocol. For example, a device may
implement IICP and may also implement an Internet protocol 1394 stack and/or an SBP-2 1394
stack.

To do this requires the configuration ROM to implement a unit directory specifically for each
protocol that is supported.

4.1.3 Read operations on the configuration ROM
An implementation shall allow quadlet reads and block reads of the configuration ROM space.

4.1.4 Device aliases (nicknames) in the configuration ROM
At this time, the IEEE 1212r working group is defining a modifiable portion of the configuration
ROM to be used for a device alias or nickname. A device alias can provide a human-readable
description of a device. This mechanism, when implemented in non-volatile memory, offers
convenient identification of devices and it is our recommendation that device aliases be
implemented when the appropriate standards are in place.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 20 of 93
This is an unapproved 1394TA specification, subject to change

5. IICP 1394 memory-mapped I/O
Some IICP implementations may support memory mapped I/O in addition to the memory mapped
I/O required by the CSR Architecture, Serial Bus, and configuration ROM. The device provides
some device-dependent memory that is mapped to 1394 space.

Memory mapped 1394 I/O means that the 48-bit destination offset in a 1394 packet is used to
determine the memory that is accessed on the memory mapped device. For example, a digital to
analog converter may define a 48-bit destination offset as the offset that contains the digital value
it will convert to an analog value. The application may issue a 1394 write quadlet request to write
the new digital value to be converted. The destination offset in the write-quadlet request packet is
set by the application to be the understood (device-dependent) destination offset that the memory
mapped device uses for new digital data.

5.1 Interrupt mechanism for IICP memory mapped devices
An interrupt mechanism is defined for memory mapped IICP (not plug-capable) implementations.

The unit directory in the configuration ROM has a pair of optional entries:
• An interrupt_enable_reg_offset entry.
• An interrupt_handlr_reg_offset entry.

If a unit directory does not have both of these entries, then this interrupt mechanism is not
supported. If a unit directory has both of these entries and the configuration ROM unit directory
has a non-zero valued maxIntLength field, this interrupt mechanism is supported.

5.1.1 interrupt_enable register
The format for the interrupt_enable register is shown below.

Figure 11 -- interrupt_enable register

• The reserved field shall be reserved for future use.
• The en-bit (enable) enables the sending of device-dependent interrupt information to the

destination_offset specified in the interrupt_handlr register. The device receiving the interrupt
information must update this register and re-enable the bit (en = 1) to receive more interrupts.
Updating the interrupt_enable register shall be done with a write quadlet request.

The initial value of the interrupt_enable register shall be 0.

After a bus reset, the interrupt_enable register en-bit shall be cleared. A device making use of this
mechanism will need to update this register and set the en-bit to 1.

A read of the interrupt_enable register shall return the current register contents.

A write of this register results in an unconditional update of the contents of the register.

5.1.2 interrupt_handlr register
The format for the interrupt_handlr register is shown below.

Figure 12 -- interrupt_handlr register

reserved en

node_ID

destination_offset

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 21 of 93
This is an unapproved 1394TA specification, subject to change

• The node_ID is as defined in 1394-1995, section 6.2.4.2.1. Any node utilizing this
mechanism shall be responsible for updating this field after a bus reset since the node_ID
may change.

• The destination_offset is used as the destination offset for the 1394 write request when
sending the interrupt information to the node specified in node_ID.

The initial value of the interrupt_handlr register shall be 0.

After a bus reset, the content of the interrupt_handlr register remains unchanged. A device
making use of this register may need to update the node_ID field after a bus reset.

A read of the interrupt_handlr register shall return the current register contents.

A write of this register results in an unconditional update of the contents of the register.

When an interrupt condition occurs, and the en-bit in the interrupt_enable register has been
programmed to 1, the interrupting device sends device-dependent interrupt information to the
destination address specified in the “interrupt_handlr register”. The size of the data payload shall
not be larger than that specified in the maxIntLength field in the configuration ROM
“IICP_Capabilities” entry. The content of the interrupt information is beyond the scope of this
document.

The interrupt-handling device processes the interrupt and when done, re-enables the interrupting
device to send another interrupt by writing to the interrupt_enable register. To re-enable, the en-
bit shall be one-valued. Devices shall not send any more interrupts until after a one-value is
written to the en-bit.

An implementation is not required to clear the en-bit. If an implementation does clear the en-bit, it
is recommended that the en-bit be cleared prior to sending the interrupt.

5.2 1394 memory mapped only IICP device limitations
Devices equipped with only 1394 memory mapped I/O may lack certain attributes that may be
key in some 1394 applications.
• Memory mapped devices may not be robust in multi-controller or multi-threaded

environments.
• Memory mapped devices provide only device-dependent I/O. The memory mapped locations

for I/O must be built into the software drivers.
• Memory mapped devices provide no defined data flow control mechanisms.
• There is no defined control path. If the data path becomes blocked for some reason, there is

no defined mechanism for recovery.

These limitations provide motivation for the next chapter, “IICP asynchronous plug connections”.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 22 of 93
This is an unapproved 1394TA specification, subject to change

6. IICP asynchronous plug connections
This chapter explains the creation, use, and maintenance of a communication path for the
transfer of data frames and control frames from one IICP device to another IICP device.

The figure below shows a typical IICP connection between a computer and an instrument.

Figure 13 -- Typical IICP connection

6.1 Introduction to IICP connection plugs
A plug contains two ports: a data port and a control port.

Each port allows duplex communications with the connected node.

Using the data port, data bytes may be transferred from the computer (acting as a producer) to
the instrument (acting as a consumer). Data bytes may also be transferred from the instrument
(acting as a producer) to the computer (acting as a consumer).

Using the control port, control bytes may be transferred from the computer (acting as a producer
of control bytes) to the instrument (acting as a control byte consumer). Control bytes may also be
transferred from the instrument (acting as a producer of control bytes) to the computer (acting as
a control byte consumer). Control bytes may be control messages, interrupts, triggers, and/or
commands. The actual use of the data port and control ports is determined by higher-level
protocols.

The control port allows the data path to remain a pure data path. This may, in some higher level
protocols, free a device from parsing received packets. The control port also provides the means
to communicate a potential remedy in case the data communication path hangs for some reason.

Although the IICP plug architecture allows duplex communication, simplex operation results if one
of the ports does not produce frames. If an IICP connection is simplex and not duplex, resources
are scaled back appropriately.

6.1.1 IICP frames
Data bytes and control bytes are transferred with one or more 1394 write operations. Data and
control bytes are transferred in a logical group of bytes called a frame.

IICP plugs provide two methods, or modes, of transferring frames. small frame transfer mode is
used when a frame is 512 bytes or less and fits in one 1394 write transaction. large frame

Computer

Connection
register

Data
Port

Control
Port

Plug

p

c

p

c

Data
Port

Control
Port

p

c

p

c

Plug

Connection
register

InstrumentData Frames

Control
Frames

p = producer
c = consumer

Connection requests and responses

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 23 of 93
This is an unapproved 1394TA specification, subject to change

transfer mode shall be used when a frame requires more than one 1394 write transaction or when
a consumer disallows small frame transfer mode.

Some producers, such as a simple sensor or analog-to-digital converter may not have logical
frames. Such producers are free to produce conveniently sized or optimally sized data frames.
These data frames may be sized for maximum transfer efficiency. A frame should not be too
small, because if transferred as a large frame, there are three 1394 transactions per frame. If
transferred as a small frame, 1394 bus bandwidth is best utilized if the frame size is 512 bytes.
Frames are not required to be of similar size.

Sections 6.4 and 6.5 provide an introduction to how large frame transfers and small frame
transfers are accomplished. Actual producer and consumer state machine details are given later,
in sections 6.20 and 6.21.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 24 of 93
This is an unapproved 1394TA specification, subject to change

6.1.2 Plug architecture
A plug is a data structure consisting of “private” memory and “public” memory. The public memory
is mapped to 1394 space and the connected node may update this mapped memory. The plug
data structure is illustrated in the figure below.

Figure 14 -- IICP plug contents

The plug private memory contains information needed in setting up and maintaining the
connection. This includes plug state information and information about the connected node. It is
called private because this information is not mapped into 1394 space.

PlugState information may include (but is not limited to):
• Producer state machine “state”.
• Consumer state machine “state”.

PlugDestinationOffset + 496

PlugDestinationOffset + 272

PlugDestinationOffset + 264

PlugDestinationOffset + 260

PlugDestinationOffset + 504

512 Byte aligned
(PlugDestinationOffset % 512) == 0)

Control
Port

(public)

PlugDestinationOffset + 508

PlugDestinationOffset + 0

PlugDestinationOffset + 4

PlugDestinationOffset + 16

PlugDestinationOffset + 8

PlugDestinationOffset + 20

PlugDestinationOffset + 240

PlugDestinationOffset + 256

PlugDestinationOffset + 248

Data
Port

(public)

PlugDestinationOffset + 252

PlugDestinationOffset + 24

PlugDestinationOffset + 32

reserved

SmallFrameConsumer

ProducerLimits

LargeFramePageTableElement[0]

LargeFramePageTableElement[1]

...

LargeFramePageTableElement[27]

SmallFramePageTableElement

SmallFrameProducer

LargeFrameProducer

LargeFrameConsumer

PlugState

Connected Node Information
Not mapped to 1394 space Plug private

memory

PlugDestinationOffset + 276

PlugDestinationOffset + 280

PlugDestinationOffset + 288

reserved

SmallFrameConsumer

ProducerLimits

LargeFramePageTableElement[0]

LargeFramePageTableElement[1]

...

LargeFramePageTableElement[27]

SmallFramePageTableElement

SmallFrameProducer

LargeFrameProducer

LargeFrameConsumer

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 25 of 93
This is an unapproved 1394TA specification, subject to change

The “Connected Node” information consists of whatever information is necessary to communicate
to the connected node. This information may include (but is not limited to) the following:
• The 64-bit 1394 destination address (see IEEE1394-1995, 6.2.4.2) for the plug data port on

the connected node.
• The attributes about the connected node plug communicated during the connection

sequence. See section 6.11.

The plug public memory is memory mapped into contiguous 1394 space. This memory contains a
ProducerLimits register, a SmallFramePageTableElement register, a SmallFrameProducer
register, a LargeFrameProducer register, a LargeFramePageTableElement[] register array, a
SmallFrameConsumer register and a LargeFrameConsumer register.

The plug public memory shall be 512 bytes, evenly distributed to the data port and control port.

IICP implementations shall place plug public memory in 1394 space such that write transactions
to public plug registers result in an interrupt to the controlling software.

Each plug shall be created with the resources shown. Higher level protocols, implemented on top
of IICP, may decide how the data port and control ports are utilized.

6.2 Plug register details
This section describes the definitions of bits in each of the plug registers. The reader should skim
this section first, then refer back to it when necessary.

6.2.1 ProducerLimits register
The ProducerLimits register is a 32-bit register that a consumer updates. The ProducerLimits
register contains a value that limits the size of individual write requests sent by a producer. The
format of the ProducerLimits register is shown below.

Figure 15 -- ProducerLimits register

• The 4-bit maxLoad field specifies the data-payload size limitations for individual, single 1394
segment-buffer writes, as specified in Equation 1. The amount of data in the write request
cannot exceed the payloadSizeInBytes value. The maxLoad value shall be equal to or larger
than 1, and is allowed to exceed the size of the node’s ROM-specified max_rec value, as
defined by the Serial Bus in IEEE 1394-1995, section 8.3.2.5.4.

Equation 1: payloadSizeInBytes = 2(maxLoad+1)

MaxLoad PayloadSizeInBytes
1 4
2 8
… …
10 2048 (400 Mbps maximum value)
…

Table 3 -- maxLoad-payload values

The initial value of the ProducerLimits register shall be all zeros.

After a bus reset, the values remain unchanged.

A read of this register returns the current register contents.

maxLoadreserved

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 26 of 93
This is an unapproved 1394TA specification, subject to change

A write of this register results in an update of the contents of the register. A consumer shall only
update this register when the producer is expecting both a SmallFrameProducer and
LargeFrameProducer update.

6.2.2 SmallFramePageTableElement register
The SmallFramePageTableElement register uses the PageTableElement format shown below.
There is a 16-bit length and a 48-bit pointer to a consumer segment buffer. A consumer writes the
SmallFramePageTableElement register so that the destination_offset is mapped to non-physical
DMA 1394 space on the consumer. An interrupt will occur when a producer writes to the 1394
space specified in the SmallFramePageTableElement.

Figure 16 – PageTableElement register

• The length specifies the number of bytes a producer may write to the consumer segment
buffer, which begins at the specified destination_offset. A value of 0 specifies 64 KBytes.

• The destination_offset is the 48-bit destination offset marking the start of the consumer
buffer.

The initial value of the SmallFramePageTableElement register shall be all zeros.

After a bus reset, the values remain unchanged.

A read of this register returns the current register contents.

A write of this register results in an update of the contents of the register. A consumer is allowed
to write this register prior to, or concurrently with, updating the SmallFrameProducer register.

6.2.3 SmallFrameProducer register
The SmallFrameProducer register is a 32-bit register that a consumer updates when ready to
receive more small frames. The format of the SmallFrameProducer register is shown below.

Figure 17 -- SmallFrameProducer register

• A one-valued run bit enables small frame transfers and shall be cleared when a bus reset
occurs. A zero-valued run bit shall inhibit transfer of small frames. The intent is to delay small
frame transfers until the consumer’s state has been properly initialized.

• The sc-bit is the segment count bit. The consumer, when updating the SmallFrameProducer
register, shall toggle the value in the sc-bit. The first consumer update of the
SmallFrameProducer register shall set the sc-bit to one, the second consumer update of the
SmallFrameProducer register shall set the sc-bit to zero, and so on.

• The 16-bit maxSmallFrameCount field specifies the maximum number of small frames that
a producer can send before updating the consumer SmallFrameConsumer register. This
serves to limit the size of data structures the consumer may require for processing small
frames. If the maxSmallFrameCount is 0, the producer shall send all frames using the large
frame transfer mode and the producer shall ignore the SmallFramePageTableElement
register.

The initial value of the SmallFrameProducer register shall be all zeros.

After a bus reset, the run bit is set to 0. The other bits are not changed.

length

destination_offset

reserved sc maxSmallFrameCountrun reserved

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 27 of 93
This is an unapproved 1394TA specification, subject to change

A read of this register returns the current register contents.

A write of this register results in an update of the contents of the register, provided the sc-bit is a
different value. The consumer is allowed to update the producer SmallFrameProducer register to
initially start small frame transfers, after a bus reset, and after the producer has written to the
consumer SmallFrameConsumer register and the consumer is ready for more small frames.

6.2.4 LargeFrameProducer register
The LargeFrameProducer register is a 32-bit register that a consumer updates. The consumer
updates the LargeFrameProducer register when the consumer is ready to receive large frame
content. The format of the register is shown below.

Figure 18 -- LargeFrameProducer register

• A one-valued run bit enables the operation of the producer and shall be cleared when a bus
reset occurs. A zero-valued run bit shall inhibit large frame transfers.

• The sc-bit is the segment count bit. The consumer, when updating the LargeFrameProducer
register, shall toggle the value in the sc-bit. The first consumer update of the
LargeFrameProducer register shall set the sc-bit to one, the second consumer update of the
LargeFrameProducer register shall set the sc-bit to zero, and so on.

• The 21-bit count specifies the total number of bytes in the consumer segment buffer
described in the LargeFramePageTableElement[] registers for receiving large frame content.
The consumer segment buffer space is described beginning with PageTableElement[0].

The initial value of the LargeFrameProducer register shall be all zeros.

After a bus reset, the run bit is set to 0. The other bits are not changed.

A read of this register returns the current register contents.

A write of this register results in an update of the contents of the register, provided the sc-bit is a
different value. The consumer is allowed to update the LargeFrameProducer register to initially
start large frame transfers, after a bus reset, and after the producer has written to the consumer
LargeFrameConsumer register and the consumer is ready for more data.

6.2.5 LargeFramePageTableElement registers
The LargeFramePageTableElement[] array consists of PageTableElement registers as shown in
Figure 16. The LargeFramePageTableElement[] registers point to consumer segment buffers
mapped to 1394 space on the connected node.

The multiple LargeFramePageTableElement[] registers allow a consumer to program a producer
with a scatter/gather list describing the location of a consumer segment buffer in possibly non-
contiguous 1394 space.

Use of scatter/gather may increase efficiencies by limiting the number of times 1394 data gets
copied. For example, OHCI 1394 link implementations allow physical memory to be directly
mapped to 1394 space. It is normal (at least on the computer side), for an application buffer, or
user-space buffer, to reside in multiple physical memory locations. If a scatter/gather list is
communicated to the producer, the producer can write 1394 data directly to the user-space
buffer, filling up different physical pages in memory.

countreserved sc reservedrun

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 28 of 93
This is an unapproved 1394TA specification, subject to change

To simplify producer implementations, the consumer shall program the length field of all but the
first and the last relevant LargeFramePageTableElement registers with a length = 2N. N shall be
the same value for all but the first and last relevant LargeFramePageTableElement[] registers.

The initial value of the LargeFramePageTableElement[] registers shall be all zeros.

After a bus reset, the values remain unchanged.

A read of any LargeFramePageTableElement[] registers returns the current contents.

A write of LargeFramePageTableElement[] registers results in an update of the contents of the
registers. A consumer is allowed to write this register immediately prior to, or concurrently with,
updating the LargeFrameProducer register.

6.2.6 SmallFrameConsumer register
The SmallFrameConsumer register is a 32-bit register that a producer updates when the small
frame buffer space has been filled such that the next small frame would not fit in the remaining
space or the producer has sent the maximum number of small frames. The format is shown
below.

Figure 19 – SmallFrameConsumer register

• The producer shall write a one-valued (SFB_FULL) mode-bit when the small frame buffer
space is exhausted or the producer has sent the maximum number of small frames.

• The sc-bit is the segment count bit. The producer, when updating the consumer’s
SmallFrameConsumer register, shall set this bit to the most recent sc-bit value that the
consumer wrote into the producer’s SmallFrameProducer sc-bit. This bit distinctively labels
the sequential handshakes between the consumer and the producer.

The initial value of the SmallFrameConsumer register shall be all zeros.

After a bus reset, the values remain unchanged.

A read of this register returns the last successfully written data.

A write of this register results in an update of the contents of the register provided the sc-bit is the
same value the consumer wrote to the SmallFrameProducer register.

6.2.7 LargeFrameConsumer register
The LargeFrameConsumer register is a 32-bit register that a producer updates. Examples of
when the producer updates this register include:
1) The producer has finished the transfer of a large frame.
2) There is no space left in the buffer space described by the LargeFramePageTableElement[]

registers.

Figure 20 -- LargeFrameConsumer register

• The 2-bit mode field provides frame-completion information, as specified in the table below.

reserved

mode

sc reserved

countreserved mode sc reserved

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 29 of 93
This is an unapproved 1394TA specification, subject to change

Mode Name Descriptionf
0 FREE Initial (never written) state. Shall never be written by the producer.
1 MORE Indication for leading (not end of frame, last) content.
2 LAST Indication for last, end of frame content.
3 TRUNC Indication for truncated frame content, end of frame

Table 4 -- LargeFrameConsumer.mode definition

• The sc-bit is the segment count bit. The producer, when updating the consumer’s
LargeFrameConsumer register, shall set this bit to the most recent sc-bit value that the
consumer wrote into the producer’s LargeFrameProducer.sc bit. This bit distinctively labels
the sequential handshakes between the consumer and the producer.

• The 21-bit count value identifies how many bytes have been written by the producer to the
buffers identified in the LargeFramePageTableElement[] registers since the last
LargeFrameProducer update. Note that this value may be less than the amount of bytes the
consumer allowed the producer to send.

The initial value of the LargeFrameConsumer register shall be all zeros.

After a bus reset, the values remain unchanged.

A read of this register returns the last successfully written data.

A write of this register results in an update of the contents of the register provided the sc-bit is the
same value the consumer wrote to the LargeFrameProducer register.

6.3 1394 operations allowed on plug registers
Plug registers shall be updated with write block or write quadlet transactions. The destination
offset in the 1394 write request shall be quadlet aligned. The length of the write transaction shall
be a multiple of 4.

IEEE 1394 lock request transactions are not permitted on plug registers.

6.3.1 Efficient updating of plug registers
For efficiency, a consumer is allowed to update multiple port registers with one write block
transaction. However, registers may only be updated at the proper times.

If a consumer updates producer port registers with more than one write operation, the consumer
update shall affect the LargeFrameProducer only once, and the write affecting the
LargeFrameProducer shall occur after, or concurrent with, the writing of the
LargeFramePageTableElement[] array. The LargeFramePageTableElement[] array registers shall
not be changed after a LargeFrameProducer update until the producer updates the
LargeFrameConsumer register.

Similarly, the consumer update of the producer port shall affect the SmallFrameProducer only
once, and the write affecting the SmallFrameProducer shall occur after, or concurrent with, the
writing of the SmallFramePageTableElement. The SmallFramePageTableElement register shall
not be changed after a SmallFrameProducer update until the producer updates the
SmallFrameConsumer register.

6.4 Large frame transfers
Frames that do not fit the requirements for small frames are transferred using the large frame
transfer mode. In this mode, LargeFrameConsumer and LargeFrameProducer registers are
updated after each frame transfer.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 30 of 93
This is an unapproved 1394TA specification, subject to change

The sequence below illustrates a producer sending large frames to a consumer. The sequence
assumes the ProducerLimits register has been previously updated. Refer to the producer and
consumer state machines in sections 6.20 and 6.21for more detail.

1. The consumer, when ready to receive more frame contents:
a) Sends a write block transaction to update the producer LargeFrameProducer and

LargeFramePageTableElement[] registers as necessary. After the LargeFrameProducer
register is updated, the consumer is not permitted to change the
LargeFramePageTableElement[] registers until after a LargeFrameConsumer update.

2. The producer:
a) Waits for a request from an application layer to transfer frame content.
b) Waits for a LargeFrameProducer update if necessary. This is necessary if the

LargeFrameProducer register has never been updated or the producer has written to the
consumer LargeFrameConsumer register.

c) Writes the frame content to the consumer segment buffer described by
LargeFramePageTableElement[0]. This may consist of several 1394 packets. If multiple
LargeFramePageTableElement[] registers have been set up, the producer sequences
through PageTableElement[0], PageTableElement[1], and so on.

d) Updates the consumer’s LargeFrameConsumer register. This lets the consumer know
how much data the producer sent.

3. The consumer:
a) Processes the data.

Repeat steps 1a through 3a.

The table below shows the general flow for large frame transfers.

Producer Consumer
ç Update the LargeFrameProducer and

LargeFramePageTableElement[] registers.
Send data. May be multiple write block requests. è
Update the consumer’s LargeFrameConsumer
register.

è

Read how much data the producer sent.
Process the data.

ç Update the LargeFrameProducer and
LargeFramePageTableElement[] registers.

Send data. May be multiple write block requests. è
Update the consumer’s LargeFrameConsumer
register.

è

… … …

Figure 21 – Large frame transfers

6.4.1 Sequential and non-sequential writes for large frame transfers
Normally, a producer will fill the consumer buffer space sequentially. However, some consumers
may not care about the ordering of writes from the producer. This is determined during the
connection sequence.

If a consumer requires sequential writes, the initial write request is sent with a destination offset
equal to the LargeFramePageTableElement[0] destination_offset value. Subsequent packets are
sent to a destination offset increasingly offset from the first destination_offset value. The
increasing offset value corresponds to the amount of data sent. These writes continue until the
complete frame has been sent or the consumer buffer space specified in the
LargeFramePageTableElement[0] is full. If the buffer specified in
LargeFramePageTableElement[0] is full, and multiple LargeFramePageTableElement[] registers

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 31 of 93
This is an unapproved 1394TA specification, subject to change

have been set up, and there is still more frame content to be sent, writes continue in the same
way, beginning with a destination offset equal to the LargeFramePageTableElement[1]
destination_offset value.

If the consumer does not require sequential writes during large frame transfers, the producer is
free to write the data with an unspecified ordering for the destination offsets, eventually filling up
the consumer segment buffers. The result for both sequential and non-sequential writes is the
same – a filled or partially filled consumer buffer space that begins with the consumer buffer
space specified in LargeFramePageTableElement[0].

6.5 Small frame transfers
A small frame is a frame that may be sent in a single write transaction with payload size <= 512
bytes.

There are many situations where a computer may repeatedly send small frames to a device. An
example is when a computer is sending some kind of query to an instrument to get measurement
results.

For small frames, there is no need for flow control updates for every frame. Instead, the flow
control updates only need occur when the next small frame does not fit completely into the small
frame space. This allows frame transfers using just one 1394 transaction per frame. This is more
efficient than the three 1394 transactions used in large frame mode, where
LargeFrameConsumer and LargeFrameProducer registers are updated for each frame. Small
frame transfers rely on 1394 drivers sending the small frame in one 1394 transaction.

The sequence below illustrates a producer sending small frames to a consumer. The sequence
assumes the ProducerLimits register has been previously updated. Refer to the producer and
consumer state machines in sections 6.20 and 6.21for more detail.

1. The consumer, when ready for more small frames:
a) Updates the producer SmallFramePageTableElement and SmallFrameProducer register

as necessary. After the SmallFrameProducer register is updated, the consumer is not
permitted to change the SmallFramePageTableElement register until after a
SmallFrameConsumer update.

2. The producer:
a) Waits for a request from an application layer to transfer a small frame.
b) Waits for a SmallFrameProducer register update if necessary. This is necessary if the

SmallFrameProducer register has never been updated or the producer has written to the
consumer SmallFrameConsumer register.

c) Checks that the frame may be sent as a small frame.
d) Writes the frame to the small frame space specified in the

SmallFramePageTableElement register, offset by an amount equal to the amount of data
transferred to the small frame space since the last SmallFrameProducer register update.

3. The consumer:
a) Receives the small frame and forwards it to the application.

Steps 2 and 3 are repeated until the next small frame will not fit completely into the remaining
small frame space or the producer has sent the maximum allowed number of small frames. When
that happens, the producer shall not send any part of the small frame. The producer shall instead
update the consumer’s SmallFrameConsumer register, indicating the remaining small frame
space is insufficient size. The consumer then updates the producer’s SmallFrameProducer
register when ready for more data.

The table below shows the general flow for small frame transfers.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 32 of 93
This is an unapproved 1394TA specification, subject to change

Producer Consumer
ç Update the SmallFramePageTableElement and

SmallFrameProducer register as necessary.
Receive transfer request. Perform tests. Send
the small frame, using one 1394 transaction.

è

Interrupt occurs when frame received. Send
frame to application.

… … …
Receive transfer request. Perform tests and see
the small frame will not fit into the small frame
space. Update the SmallFrameConsumer
register.

è

ç Process the SmallFrameConsumer update.
Update the SmallFramePageTableElement and
SmallFrameProducer register as necessary.

Receive transfer request. Perform tests. Send
the small frame, using one 1394 transaction.

è

… … …

Figure 22 -- Small frame transfers

The size of small-frames is indicated by the 1394 header and is not replicated in the payload
portion of the packet.

For this reason, implementations are expected to have hardware/software mechanisms for
associating the write-transaction payload size (from the write request packet header) with the
data payload.

After receiving a small frame, a consumer shall not hold off subsequent small frames via
ack_busy’s or any other mechanism while the small frame is being processed. A consumer is
obligated to let the producer send maxSmallFrameCount small frames, so long as the small
frame consumer segment buffer is not filled.

6.6 Mixing of large frame mode and small frame transfer mode
Once a producer has started a large frame transfer, small frame transfers are not permitted until
the LargeFrameConsumer register has been updated with a mode value indicating the end of a
large frame. Once the LargeFrameConsumer register has been updated with a mode value
indicating the end of a large frame, small frame transfers may resume, beginning at an offset
equal to the total size of all of the small frames sent before the large frame transfer commenced.

A producer is allowed to send a small frame and then begin a large frame transfer without
updating the SmallFrameConsumer register.

A producer is allowed to send frames that fit the criteria for small frames using the large frame
transfer mode.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 33 of 93
This is an unapproved 1394TA specification, subject to change

6.7 Consumer segment buffers
A producer writes frame contents to consumer segment buffers on the connected node. A
consumer may utilize one or more consumer segment buffers for receiving large frames. A
consumer may utilize one or more consumer segment buffers for receiving small frames. The use
of multiple segment buffers allows overlap – the consumer may process a filled segment buffer
while the producer is filling up an available segment buffer. The figure below illustrates a
suggested strategy of using 2 large frame consumer segment buffers and 1 small frame
consumer segment buffer.

Figure 23 -- Consumer segment buffers

6.8 Plug schematics
For clarity, the schematic view of 2 plugs connected together to form a dual-duplex
communication path is shown below. “p” is short for producer, “c” is short for consumer. Note that
although 2 receive segment buffers are shown in the data paths, only 1 receive segment buffer is
required.

Figure 24 -- IICP plug schematic

Node B

plug

c

p

c

p
Control
frames

Node A

plug

c

p

c

p

data

Receive
segment
buffers

Receive
Segment

 buffers

Producer

large frame PageTableElement[]

small frame PageTableElement

Consumer

for large
frames

#2,4,6,...

for large
frames

#1,3,5,...

page 0

page 1

page N
...

large
frame

segment
buffer 1

page 0

page 1

page N
...

large
frame

segment
buffer 2

small frame
space

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 34 of 93
This is an unapproved 1394TA specification, subject to change

This may also be drawn as:

Figure 25 -- Shorthand IICP plug schematic

6.9 Multiple devices
For a node to communicate to more than one other node, separate and distinct plugs need to be
created for each attached node. In the figure below, there would be N plugs on the computer for
the N devices.

Figure 26 -- Multiple instrument connections

6.10 Connection variations
In all cases, a plug is used for data and control communications between two nodes. A plug is not
expandable.

There is no limit in this specification concerning the number of plugs a device may create.

An IICP device that is plug-capable may also implement device-dependent 1394 memory
mapped capabilities.

…

Node
A

Node
B

IICP

Computer Instrument 1
IICP

Instrument 2
IICP

Instrument N
IICP

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 35 of 93
This is an unapproved 1394TA specification, subject to change

6.11 Creating an IICP connection
An IICP connection manager establishes an IICP connection by sending connection request
packets to device1 and device2. In the figure below, Device1 and Device2 are attached nodes on
the bus, distinct from the node acting as the IICP connection manager.

Figure 27 -- Connection manager with 2 independent devices

An IICP device may be integrated into the connection manager, as shown below. In this case,
connection requests sent to Device1 and connection responses received from Device1 are not
1394 packets but rather internal software actions. Device1 is both a connection manager and a
connection client.

Figure 28 -- Connection manager with 1 independent device

The table below shows the general flow in creating a connection between device1 and device2.
See section 6.18 for the connection manager state machine and section 6.19 for the connection
client state machine for complete details.

Device1
(Connection Client)

Connection
Register Connection Requests and responses

Connection Manager

Connection
Register

IICPPlug

Device2
(Connection Client)

Connection
Register

Plug

Device2
(Connection Client)

Connection
Register

Device1
(Connection
Manager +

Connection Client)

Connection
Register

Plug IICP

Connection Requests and responses

Plug

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 36 of 93
This is an unapproved 1394TA specification, subject to change

Step Device1 Connection Manager Device2
1 Lock connection register.
2 ç Lock device1 connection

register.
3 Lock device2 connection

register.
è

4 ç Send connection request
packet (CREQ1) to device1.

5 Create plug. Send connection
response packet (CRESP).

è

6 Send connection request
packet (CREQ1) to device2.

è

7 ç Create plug. Send connection
response packet. (CRESP1).

8 ç Send connection request
packet (CREQ2) to device1.

9 Allocate segment buffers.
Send connection response
packet (STATUS).

è

10 Send connection request
packet (CREQ2) to device2.

è

11 ç Allocate segment buffers.
Send connection response
packet (STATUS).

12 Unlock connection register.
13 ç Unlock device1 connection

register.
14 Device1 may now update

plug registers on device2.
Unlock device2 connection
register.

è

15 Device2 may now update
plug registers on device1.

Figure 29 -- Establishing an IICP connection

6.11.1 Connection creation sequence
The details for each of the steps in the table are given below.

6.11.1.1 Connection manager locks its connection lock register
The connection manager shall first lock its connection lock register. Locking of its connection lock
register is done with an atomic test and set operation. The need to specify “atomic” is to make the
point that the connection manager must be able to test the state of its own lock register and then
set the lock, without worrying about an external lock request from another device interfering.

6.11.1.2 Connection manager locks device1 connection lock register
The connection manager next locks the device1 connection register. Locking of all non-
connection manager connection registers is accomplished by using a 1394 compare and swap
lock transaction. The connection manager executes a 1394 compare & swap lock operation on
the device connection lock register. Refer to IEEE1394-1995 sections 3.5.2, 6.2.2.3.2, 6.2.2.3.4,
6.2.4.9, and 7.3.4.3 for more details on compare and swap lock requests and responses. A lock
request packet is shown below.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 37 of 93
This is an unapproved 1394TA specification, subject to change

Figure 30 -- Connection register lock request packet

• destination_offset shall be set to the location of the connection register, as specified in the
configuration ROM.

• arg_value shall be 64-bits and shall be all 0’s when attempting to lock the connection
register, since an unlocked connection register is by definition, 0-valued.

• data_value shall be 64-bits and shall be the unique_ID of the device attempting to lock the
connection register.

A compare_swap lock request performs the following equivalent “C” code:

if (old_value == arg_value) new_value = data_value;
return old_value; // in the lock response packet

The device returns a lock response. If the lock response indicates old_value = 0, the lock was
successful. If the lock response indicates non-zero, the lock was unsuccessful. A lock response
packet is shown below.

Figure 31 -- Connection register lock response packet

• rcode is the appropriate response code.
• old_value is the original value of the connection lock register. If 0, the connection register

has been successfully locked.

destination_ID tl rt tcode=9 pri

source_ID

destination_offset

data_length=16 extended_tcode=2

arg_value (high)

arg_value (low)

header_CRC

data_CRC

data_value (high)

data_value (low)

destination_ID tl rt tcode=0xb pri

source_ID

reserved

data_length=8 extended_tcode=2

old_value (high)

old_value (low)

header_CRC

data_CRC

rcode reserved

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 38 of 93
This is an unapproved 1394TA specification, subject to change

6.11.1.3 Connection manager locks device2 connection register
The connection manager next locks the device2 connection lock register. This is again done with
a compare and swap lock request operation as described in 6.11.1.2.

If successful at locking the connection manager connection lock register and all other necessary
device connection lock registers, the connection manager temporarily “owns” the connection
services of all the devices it has locked. If unsuccessful, the connection manager shall unlock all
the connection lock registers it was successful in locking, then wait an implementation dependent
period of time before retrying.

The connection manager is allowed to lock the connection registers for only a single operation.
This is to prevent “hogging” of the connection registers by any one connection manager.

Connection clients maintain locks for time = CCLI_LOCK_TIMEOUT. See section 6.17 for the
value. If the connection manager has not unlocked a connection register in
CCLI_LOCK_TIMEOUT, the connection client shall assume some anomalous event occurred and
shall unlock its own connection lock register. Any resources allocated due to received connection
requests may and should be freed. If the CCLI_LOCK_TIMEOUT does occur, any further
transactions (except a valid lock request) to the connection register shall fail. The device shall
send a response packet as shown in Figure 35, with a status indication of
CRS_REG_NOT_LOCKED.

If a bus reset occurs and a device connection register is locked, the connection register is
implicitly unlocked by the device. The connection manager then re-locks connection registers as
necessary.

6.11.1.4 Connection manager sends connection request packet (CREQ1) to device1
The connection manager next sends a connection request packet (CREQ1) to device1. The
figure below shows the connection request packet. The destination offset for this connection
request packet is the connection register location + 8 (bytes).

Figure 32 -- Connection request packet (CREQ1)

• connectPktId identifies the connection packet as a connection request. See Table 6 --
ConnectPktId values in section 6.16.1.

• connectResponseOffset is the 48-bit destination offset for the connection response packet.
• cmgr_unique_ID is the 64-bit unique_ID for the connection manager.
• connectedNode_unique_ID is the 64-bit unique_ID for the other device being connected.

connectResponseOffset

command_set

node_ID

cmgr_unique_ID (low)

connectedNode_unique_ID (high)

connectedNode_unique_ID (low)

command_set_spec_id (low)

reserved connectPktID=CREQ1

cmgr_unique_ID (high)

command_set_spec_id (high)

connectionParameters (high)

connectionParameters (low)

command_set_detailsreserved

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 39 of 93
This is an unapproved 1394TA specification, subject to change

• node_ID is the 16-bit node_ID for the other device being connected.
• command_set_spec_id specifies the organization that defines the following command_set

value.
• command_set identifies the higher level protocol to be used for the connection. The

command_set value should match a unit directory command_set value in the configuration
ROM.

• command_set_details specifies the version of the command_set to be used.
• connectionParameters is a 64-bit field that is defined by a higher level protocol.

6.11.1.5 Device1 sends response packet (CRESP)
Device1 stores the information provided in the CREQ1 packet and formulates a connection
response packet to be sent to the connection manager. The destination offset for the response
packet is the connectResponseOffset specified in the connection request packet. The format for
the response packet is shown below.

If connectRequestStatus is not equal to CRS_SUCCESS, the connection manager may then free
any resources associated with this connection. The connection manager shall unlock the
connection registers, and return an error to the application.

Figure 33 -- Connection response packet (CRESP)

• connectPktId identifies the connection packet as a response to a CREQ1 packet. See Table
6 -- ConnectPktId values in section 6.16.1.

• connectRequestStatus is an indication of success or failure. A zero-value indicates
success. See section 6.16.2.

• The sfc-bit is one-valued if this node, acting as a producer, is capable of sending frames in
small frame transfer mode.

• The se-bit is an indication from this device of its tolerance for non-sequential writes. If se is
one-valued, the connected node producer must write data sequentially to consumer segment
buffers.

• plugDestinationOffset specifies the location in the device’s own 1394 space for the newly
created plug.

• dataFrameSize is the maximum number of bytes in a data frame sent from this device. If all
1’s, the size of data frames is unknown at this time. If all 0’s, there will be no data frames
from this device. This field provides a hint for the connected device for sizing of the data path
consumer segment buffers. See section 6.11.2.

• controlFrameSize is the maximum number of bytes in a control frame sent from this device.
If all 1’s, the size of control frames is unknown at this time. If all 0’s, there will be no control
frames sent from this device. This field provides a hint for the connected device for sizing of
the control path consumer segment buffers. See section 6.11.2.

6.11.1.6 Connection manager sends connection request packet (CREQ1) to device2
The connection manager next sends a CREQ1 connection request packet to device2. The format
for this packet was shown in Figure 32. In this case, node_ID and connectedNode_unique_ID
pertain to device1. The destination offset is the connection register offset of device2 + 8 (bytes).

se

plugDestinationOffset

reserved connectPktID=CRESP connectRequestStatusreserved

reserved

dataFrameSize

controlFrameSize

reserved

reserved

sfc

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 40 of 93
This is an unapproved 1394TA specification, subject to change

6.11.1.7 Device2 sends response packet (CRESP)
Device2 stores the information provided in the CREQ1 packet and formulates a connection
response packet to be sent to the connection manager. The destination offset for the response
packet is the connectResponseOffset specified in the connection request packet. The format for
the response packet was shown previously in Figure 33.

6.11.1.8 Connection manager sends device2 information to device1 (CREQ2)
The connection manager now sends device2 plug information to device1. The format for this
packet is shown below. The destination offset is the connection register of device1 + 8 (bytes).

Figure 34 -- Connection request packet (CREQ2)

• connectPktId identifies the packet as a final connection request. See Table 6 --
ConnectPktId values in section 6.16.1.

• connectResponseOffset is the 1394 destination offset for the connection response packet.
• The sfc-bit is one-valued if the connected node may utilize small frame transfer mode when

sending small frames. The sfc-bit is 0 if the connected node will never utilized small frame
transfer mode.

• The se-bit is one-valued if the connected node requires frame contents to be written
sequentially.

• dataFrameSize is the number of bytes the connected producer will send in a data frame. See
section 6.11.2.

• controlFrameSize is the total number of bytes the connected producer will send in a control
frame. See section 6.11.2.

6.11.1.9 Device1 sends response packet (STATUS)
Device1 processes the connection request. It is recommended that device1 allocate segment
buffer(s) for the data and control ports at this time. See section 6.11.2 below. Device1 then
formulates a connection response packet. The destination offset is the connectResponseOffset
specified in the connection request packet. The format of the response packet is shown below.

Figure 35 -- Connection response packet (STATUS)

• connectPktId identifies the connection packet as a connection response. See Table 6 --
ConnectPktId values in section 6.16.1.

• connectRequestStatus is an indication of success or failure. A zero-value indicates
success. See section 6.16.2.

If connectRequestStatus is not equal to CRS_SUCCESS, the connection manager shall unlock
the connection registers and return an error to the application.

connectResponseOffset

plugDestinationOffset

reserved connectPktID=CREQ2

sereserved

dataFrameSizereserved

controlFrameSizereserved

sfc

reserved connectPktID=STATUS connectRequestStatusreserved

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 41 of 93
This is an unapproved 1394TA specification, subject to change

6.11.1.10 Connection manager sends device1 information to device2 (CREQ2)
The connection manager next sends a second connection request packet to device2, to convey
information about device1. The format for the connection request packet is shown in Figure 34
(CREQ2). In this case, se, plugDestinationOffset, dataFrameSize, controlFrameSize are
attributes of the device1 plug. The destination offset for the CREQ2 packet is the connection
register offset of device2 + 8 (bytes).

6.11.1.11 Device2 processes request packet, sends connection response
Device2 processes the connection request. Device2 formulates a connection response packet.
The destination offset is the connectionResponseOffset specified in the request packet. The
format of the response packet is shown in Figure 35 (STATUS).

If device2 unsuccessfully processes the request, device2 shall free any resources associated with
this plug and return a connectRequestStatus not equal to CRS_SUCCESS. The connection
manager shall send a connection request packet (connectPktID = FREE) to device1, unlock the
connection registers, and return an error to the application.

6.11.1.12 Connection manager unlocks its connection register
The connection manager next unlocks its connection lock register with a simple write operation,
clearing the 64-bit connection lock register.

6.11.1.13 Connection manager unlocks device1 connection register
If device1 is not the same device as the connection manager, unlocking of the device1
connection lock register is accomplished by using a 1394 compare and swap lock transaction,
similar to the compare and swap lock request issued to lock the device1 connection register, as
shown in Figure 27. For unlocking, the lock request arg_value shall be the 64-bit unique_ID of
the connection manager that acquired the lock, and the lock request data_value shall be 0.

When the device1 connection register is unlocked, device1 may update plug registers on the
connected node.

6.11.1.14 Connection manager unlocks device2 connection register
If device2 is not the same device as the connection manager, unlocking of the device2
connection lock register is accomplished by using a 1394 compare and swap lock transaction,
similar to the compare and swap lock request issued to lock the device1 connection register, as
shown in Figure 30. For unlocking, the lock request arg_value shall be the 64-bit unique_ID of
the connection manager that acquired the lock, and the lock request data_value shall be 0.

When the device2 connection register is unlocked, device2 may update plug registers on the
connected node.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 42 of 93
This is an unapproved 1394TA specification, subject to change

6.11.2 Note on dataFrameSize, controlFrameSize and sizing of consumer buffers
The sizing of consumer buffers is highly implementation dependent. However, the table below
illustrates a recommended strategy.

Producer frame size
 (dataFrameSize or controlFrameSize)

Recommended consumer
large frame
segment buffer size

Recommended consumer
small frame
Segment buffer size

frame size == 0 0 – no buffer needed 0 – no buffer needed
1 <= frame size <= MAX_BUF_SIZE frame size, rounded up to

nearest quadlet size to
MAX_BUF_SIZE

frame size > MAX_BUF_SIZE MAX_BUF_SIZE
frame size == FF FFFF16 (unknown) MAX_BUF_SIZE

If sfc-bit == 1, the recommended
size is >= 2 Kbytes.

If sfc-bit == 0, no buffer needed.

Table 5 – Consumer segment buffer size and dataFrameSize, controlFrameSize

MAX_BUF_SIZE is implementation dependent.

Note that the frame size specification is only indicating the maximum possible frame size.
Producers may specify a large frame size and still send small frames. For this reason, consumers
should allocate space for receiving small frames, so long as the producer has indicated that they
are capable of sending small frames.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 43 of 93
This is an unapproved 1394TA specification, subject to change

6.12 Connection deactivation
Generally, a device sets all IICP plug producer and consumer state machines to the deactivated
state after a 1394-bus reset. The reason is to prevent plug communications to an incorrect
node_ID. Node_ID’s may change after a bus reset.

No updates to the public plug 1394 space are allowed, and no frame transfer activity is allowed
until the connection has been reactivated. If deactivated, and a plug access occurs, and the
implementation allows the specification of a response code, the response code shall be
resp_conflict_err.

After a bus reset, all nodes with an IICP connection shall start a reactivation timer. Any further
bus resets will cause the timer to be restarted. The connection manager that created the IICP
connection shall issue a reactivation request as soon as possible after a bus reset. If a
reactivation request is not received within time = REACT_TIMEOUT (see section 6.17 for value),
a node experiencing resource shortages that can be remedied by freeing plug resources may
discard and release plug resources associated with the timed out connection.

6.13 Connection reactivation
When a 1394 connection plug is deactivated, a reactivation sequence is used to reactivate the
connection. It is recommended that connection managers reactivate connections before
instantiating any new connections.

The connection manager that issued the connection sequence to create the plug is responsible
for issuing a reactivation sequence for the plug.

For each of the plugs a connection manager created, the connection manager shall go through a
reactivation sequence. The general flow is shown below. See section 6.18 for the connection
manager state machine and section 6.19 for the connection client state machine for complete
details.
Step Device1 Connection manager Device2
1 Lock connection register.
2 ç Lock device1 connection

register.
3 Lock device2 connection

register.
è

4 ç Send reactivation request
packet to device1 (REACT).

5 Process request. Send
connection response
packet (STATUS).

è

6 Send reactivation request
packet to device2 (REACT).

è

7 ç Process request. Send
connection response
packet (STATUS).

8 Unlock connection register.
9 ç Unlock device1 connection

register.
10 May now communicate to

Device2.
Unlock device2 connection
register.

è

11 May now communicate to
Device1.

Figure 36 - Reactivation sequence

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 44 of 93
This is an unapproved 1394TA specification, subject to change

6.13.1 Reactivation sequence
The details for each of the steps in the table are given below.

6.13.1.1 Connection manager locks its own connection register
The connection manager shall first lock its own connection register as described in section
6.11.1.1.

6.13.1.2 Connection manager locks the connection register of device1
The connection manager shall next lock the device1 connection register. This was discussed in
section 6.11.1.2.

6.13.1.3 Connection manager locks the connection register of device2
The connection manager shall next lock the device2 connection register. This was discussed in
section 6.11.1.3.

6.13.1.4 Connection manager sends reactivation request (REACT) to device1
The connection manager sends a reactivation request packet to the device1 connection register.
The format of the packet is shown below. The destination offset is the connection register of
device1 + 8 (bytes).

Figure 37 -- Reactivation request packet (REACT)

• connectPktId identifies the connection packet as a reactivation request. See Table 6 --
ConnectPktId values in section 6.16.1.

• connectResponseOffset is the 48-bit destination offset for the connection response packet.
• plugDestinationOffset specifies the destination offset of the deactivated plug on device1.
• node_ID is the possibly new 16-bit node_ID of device2.
• unique_ID is the 64-bit unique_ID for the connection manager issuing this request.

6.13.1.5 Device1 processes reactivation request and sends response packet (STATUS)
Device1 determines if it owns a plug with plugDestinationOffset that was created by the
connection manager with the specified unique_ID. If it does, and if the connection has in fact
been deactivated, device1 will reactivate the connection, updating the plug information with the
new node_ID for device2. The producer and consumer state machines are restored to their
previous state prior to the bus reset. However, no plug activity is permitted until the connection
register is unlocked.

Device1 shall return a response packet. The format of the response packet is shown in Figure 35
(STATUS). The destination offset is the connectResponseOffset specified in the connection
request packet.

If the reactivation is not successful, the connection manager shall unlock the connection registers.
Reactivation retries are allowed within the REACT_TIMEOUT limit.

connectResponseOffset

plugDestinationOffset

unique_ID (high)

unique_ID (low)

reserved connectPktID=REACT

node_ID

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 45 of 93
This is an unapproved 1394TA specification, subject to change

6.13.1.6 Connection manager sends reactivation request (REACT) to device2
The connection manager sends a reactivation request packet to the device2 connection register.
The format of the packet is shown in Figure 37 (REACT). The destination offset is the connection
register of device2 + 8 (bytes). The node_ID is the possibly new node_ID for device1.

6.13.1.7 Device2 processes reactivation request and sends response packet (STATUS)
Device2 determines if it owns a plug with plugDestinationOffset that was created by the
connection manager with the specified unique_ID. If it does, and if the connection has in fact
been deactivated, device2 will reactivate the connection, updating the plug information with the
new node_ID for device1. The producer and consumer state machines are restored to their
previous state.

Device2 shall return a response packet. The packet format is shown in Figure 35 (STATUS). The
destination offset is the connectResponseOffset specified in the request packet.

If connectRequestStatus indicates the reactivation is not successful, the connection manager
shall send a FREE request to the device1 plug that was reactivated.

6.13.1.8 Connection manager unlocks its connection register
The connection manager next unlocks its own lock register as described in section 6.11.1.12.

6.13.1.9 Connection manager unlocks device1 connection register
The connection manager next unlocks the device1 connection lock register as described in
section 6.11.1.13.

6.13.1.10 Connection manager unlocks device2 connection register
The connection manager next unlocks the device2 connection lock register as described in
section 6.11.1.14.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 46 of 93
This is an unapproved 1394TA specification, subject to change

6.14 Disconnecting IICP connections
An IICP connection may be disconnected when no longer required. For each plug to be
disconnected, the connection manager goes through the general flow shown in the table below. If
device1 or device2 no longer exist, steps involving the non-existent device are skipped. See
section 6.18 for the connection manager state machine and section 6.19 for the connection client
state machine for complete details.

Step Device1 Connection manager Device2
1 Lock connection register
2 ç Lock device1 connection

register.
3 Lock device2 connection

register.
è

4 ç Send connection request
packet (STOP) to device1.

5 Process request. Outgoing
frame transfer activity
should stop. Send response
packet.

è

6 Send connection request
packet (STOP) to device2.

è

7 ç Process request. Outgoing
frame transfer activity
should stop. Send response
packet.

8 ç Send connection request
packet (FREE) to device1.

9 Free plug resources. Send
response packet.

è

10 Send connection request
packet (FREE) to device2.

è

11 ç Free plug resources Send
response packet

12 Unlock connection register
13 ç Unlock device1 connection

register.
14 Unlock device2 connection

register.
è

Figure 38 -- Disconnect sequence

The details for each step are shown below.

6.14.1 Disconnection sequence

6.14.1.1 Connection manager locks its own connection register
The connection manager shall first lock its own connection register. This is done as described in
section 6.11.1.1.

6.14.1.2 Connection manager locks device1 connection register.
The connection manager shall next lock the device1 connection register. This was described in
section 6.11.1.2.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 47 of 93
This is an unapproved 1394TA specification, subject to change

6.14.1.3 Connection manager locks device2 connection register
The connection manager shall next lock the device2 connection register. This was described in
section 6.11.1.3.

6.14.1.4 Connection manager sends STOP request packet to device1
The connection manager next sends a STOP request packet to device1. The format of the STOP
request packet is shown below. The destination offset is the connection register of device1 + 8
(bytes).

Figure 39 -- STOP request packet

• connectPktId identifies the connection packet as a STOP request. See Table 6 --
ConnectPktId values in section 6.16.1.

• connectResponseOffset is the 1394 destination offset for the connection response packet,
set to the connection manager lock register offset + 8(bytes).

• plugDestinationOffset is the 1394 destination offset for the plug to be stopped.
• unique_ID is the 64-bit unique_ID for the connection manager.

6.14.1.5 Device1 processes STOP request and sends response packet
When device1 sees the STOP request packet, device1 should stop frame transfer activity. If any
part of a frame has been transferred, the remaining part of the frame shall not be sent. No
SmallFrameConsumer or LargeFrameConsumer update is done. After device1 has processed the
STOP request and has stopped all producer activity on the plug, device1 sends a response
packet as shown in Figure 35 (STATUS). The 1394 destination offset is the
connectResponseOffset identified in the request packet.

6.14.1.6 Connection manager sends STOP packet to device2
The connection manager next sends a STOP request packet to device2. The format of the
disconnection packet was shown in Figure 39. The destination offset used in sending the request
packet is the connection register of device2 + 8 (bytes).

6.14.1.7 Device2 processes STOP request and sends response packet
When device2 sees the STOP request packet, device2 shall immediately stop frame transfers. If
any part of a frame has been transferred, the remaining part of the frame is not sent. No
SmallFrameConsumer or LargeFrameConsumer update is done. After device2 has processed the
STOP request and has stopped all producer activity on the plug, device2 sends a response
packet as shown in Figure 35 (STATUS). The 1394 destination offset is the
connectResponseOffset identified in the request packet.

donnectResponseOffset

plugDestinationOffset

unique_ID (high)

unique_ID (low)

reserved connectPktID=STOP

reserved

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 48 of 93
This is an unapproved 1394TA specification, subject to change

6.14.1.8 Connection manager sends FREE request to device1
The connection manager sends a connection request to device1, telling device1 it may now free
resources associated with the connection.

Figure 40 -- FREE request packet

• ConnectPktId identifies the connection packet as a FREE connection request. See Table 6 -
- ConnectPktId values in section 6.16.1.

• connectResponseOffset is the 1394 destination offset for the connection response packet.
• plugDestinationOffset is the 1394 destination offset for the plug to be stopped.
• unique_ID is the 64-bit unique_ID for the connection manager.

6.14.1.9 Device1 sends response packet
Device1 frees the resources associated with the specified plug, and sends a response packet as
shown in Figure 35 (STATUS). The 1394 destination offset is the connectResponseOffset
identified in the request packet.

6.14.1.10 Connection manager sends FREE request to device2
The connection manager next sends a FREE connection request to device2, telling device2 it
may now free resources associated with the connection.

6.14.1.11 Device2 sends response packet
Device2 frees the resources associated with the specified plug, and sends a response packet as
shown in Figure 35 (STATUS). The 1394 destination offset is the connectResponseOffset
identified in the request packet.

6.14.1.12 Unlock the connection register
The connection manager unlocks its own connection register. This is as described in section
6.14.1.12.

6.14.1.13 Unlock the device1 connection register
The connection manager unlocks the device1 connection register. This is as described in section
6.14.1.13.

6.14.1.14 Unlock the device2 connection register
The connection manager next unlocks the device2 connection register. This is as described in
section 6.14.1.14.

connectResponseOffset

plugDestinationOffset

unique_ID (high)

unique_ID (low)

reserved connectPktID=FREE

reserved

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 49 of 93
This is an unapproved 1394TA specification, subject to change

6.15 Obtaining connection information
A device may wish to query other IICP devices to obtain information about the IICP connections
that exist on a device. This may be useful after a connection manager reset, or for IICP
debugging.

6.15.1 Connection information sequence
The device gathering information goes through the general flow shown in the table below. The
device gathering information is referred to as the connection manager since it is responsible for
locking the connection registers. The device may or may not have actually created the
connection. The device giving the information is referred to as a connection client, since it is
responding to connection register requests. See section 6.18 for the connection manager state
machine and section 6.19 for the connection client state machine for complete details.

Step Connection Manager (obtaining information) Connection Client (providing information)
1 Lock connection manager connection register.
2 Lock connection client connection register. è
3 Sends connect request packet (GETINFO) to

connection client.
è

4 ç Process request. Sends connect response
packet (INFO).

5 Save information from INFO packet. Send
GETPLUGINFO request to get information on plug
#1 of N.

è

6 ç Process request. Send response packet.

7 Repeat steps 5,6
8 Unlock connection manager connection register
9 Unlock connection client connection register è

Figure 41 -- Connection information sequence

The details for each step are shown below. Note that a connection manager may also lock the
connection registers and then send a GETPLUGINFO for each plug of interest, then unlock the
connection registers.

6.15.1.1 Connection manager locks its own connection register
The connection manager must lock its own connection register. This is discussed in section
6.11.1.1.

6.15.1.2 Connection manager locks the connection client lock register
The connection manager shall next lock the connection client connection register. This is
discussed in section 6.11.1.2.

6.15.1.3 Connection manager sends GETINFO request to connection client
The connection manager next sends a connection request packet (GETINFO) to the connection
client. The format of the request packet is shown below. The destination offset is the connection
register of the connection client + 8 (bytes).

Figure 42 -- GETINFO request packet

reserved connectPktID=GETINFO

connectResponseOffset

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 50 of 93
This is an unapproved 1394TA specification, subject to change

• connectPktId identifies the connection packet as a request to get plug information. See
Table 6 -- ConnectPktId values in section 6.16.1.

• connectResponseOffset is the 1394 destination offset for the connection response packet.

6.15.1.4 Connection client processes GETINFO and sends response packet
When the connection client sees the GETINFO request packet, the connection client generates a
list of all current plugs. This list shall remain intact until the connection register is unlocked. The
connection client formulates a response packet with the format shown below.

Figure 43 -- INFO response packet

• connectPktId identifies the connection packet as a connection response. See Table 6 --
ConnectPktId values in section 6.16.1.

• connectRequestStatus is an indication of success or failure. A zero-value indicates
success. See section 6.16.2.

• numberOfConnections specifies the number of IICP connections allocated on the
connection client.

• first_plugDestinationOffset specifies a destination offset for the first plug in the list of plugs
generated by the connection client.

If connectRequestStatus is not equal to CRS_SUCCESS, the connection manager shall unlock
the connection registers and return an error to the application.

6.15.1.5 Connection manager sends GETPLUGINFO request to connection client
The connection manager may next obtain information about specific plugs on the connection
client by sending a GETPLUGINFO request packet. The format of the request packet is shown
below. The destination offset is the connection register of the connection client + 8 (bytes).

Figure 44 -- GETPLUGINFO request packet

• connectPktId identifies the connection packet as a request to get plug information. See
Table 6 -- ConnectPktId values in section 6.16.1.

• connectResponseOffset is the 1394 destination offset for the connection response packet.
• plugDestinationOffset specifies the plug the connection manager wishes to obtain

information about.

6.15.1.6 Connection client processes GETPLUGINFO, sends PLUGINFO response packet
If the specified plug exists, the connection client sends a response packet, with information on the
specified plug, as shown below. The 1394 destination offset is the connectResponseOffset
identified in the request packet. If the specified plug does not exist, the connection client sends a
response packet (STATUS) as shown in Figure 35, with connectRequestStatus = CRS_PARM.

reserved connectPktID=INFO reserved connectRequestStatus

numberOfConnections

first_plugDestinationOffset

reserved

reserved connectPktID=
GETPLUGINFO

connectResponseOffset

reserved

plugDestinationOffset

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 51 of 93
This is an unapproved 1394TA specification, subject to change

Figure 45 -- PLUGINFO response packet

• connectPktId identifies the connection packet as a connection response. See Table 6 --
ConnectPktId values in section 6.16.1.

• connectRequestStatus is an indication of success or failure. A zero-value indicates
success. See section 6.16.2. If the GETPLUGINFO request was for a plug that does not
exist, or there are no plugs on the connection client, the connectRequestStatus shall be set to
CRS_UNKNOWN_PLUG.

• node_ID is the node_ID of the connected node.
• plugDestinationOffset specifies the destination offset of the plug.
• ctrlLFCS is the current state of the control port large frame consumer state machine. The

consumer state is the decimal number following the ‘CLF’ in the state label. See section 6.20
for consumer state machine documentation.

• ctrlSFCS is the current state of the control port small frame consumer state machine. The
consumer state is the decimal number following the ‘CSF’ in the state label. See section 6.20
for consumer state machine documentation.

• ctrlLFPS is the current state of the control port large frame producer state machine. The
producer state is the decimal number following the ‘LFP’ in the state label. See section 6.21
for producer state machine documentation.

• ctrlSFPS is the current state of the control port small frame producer state machine. The
producer state is the decimal number following the ‘SFP’ in the state label. See section 6.21
for producer state machine documentation.

• dataLFCS is the current state of the data port large frame consumer state machine. The
consumer state is the decimal number following the ‘CLF’ in the state label. See section 6.20
for consumer state machine documentation.

• dataSFCS is the current state of the data port small frame consumer state machine. The
consumer state is the decimal number following the ‘CSF’ in the state label. See section 6.20
for consumer state machine documentation.

• dataLFPS is the current state of the data port large frame producer state machine. The
producer state is the decimal number following the ‘LFP’ in the state label. See section 6.21
for producer state machine documentation.

• dataSFPS is the current state of the data port small frame producer state machine. The
producer state is the decimal number following the ‘SFP’ in the state label. See section 6.21
for producer state machine documentation.

plugDestinationOffset

reserved connectPktID=PLUGINFO reserved connectRequestStatus

ctrlLFCS ctrlLFPS dataLFCS dataLFPS

node_ID

reserved command_set_spec_idsesfc

ctrlSFCS ctrlSFPS dataSFCS dataSFPS

reserved

connectedPlugDestinationOffset

connectionParameters (low)

reserved

nextPlugDestinationOffset

connectionParameters (high)

command_set

command_set_detailsreserved

reserved

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 52 of 93
This is an unapproved 1394TA specification, subject to change

• The sfc-bit is one-valued if the connected node producer indicated it is capable of utilizing
small frame transfer mode.

• The se-bit is one-valued if the connected node requires sequential writes.
• command_set_spec_id indicates the original command_set_spec_id specified when the

connection was established.
• command_set indicates the original command_set specified when the connection was

established.
• command_set_details indicates the original command_set_details specified when the

connection was established.
• connectionParameters indicates the original ConnectionParameters specified when the

connection was established.
• connectedPlugDestinationOffset is the destination offset for the plug on the connected

node.
• nextPlugDestinationOffset specifies the plugDestinationOffset for the next plug in the list on

the connection client. If this is the last plug in the list generated when the GETINFO request
packet was received, or if no GETINFO request preceded this GETPLUGINFO request,
nextPlugDestinationOffset is set to FFFF FFFF FFFF16.

The consumer and producer state values may be in the process of transition and therefore may
be inaccurate. These values should be a best effort attempt to reflect the current state. If
impossible to determine state, an implementation is allowed to return a value of FF16.

If connectRequestStatus is not equal to CRS_SUCCESS, the connection manager shall unlock
the connection registers and return an error to the application.

6.15.1.7 Repeat above 2 steps
The 2 steps above are repeated until the nextPlugDestinationOffset is 0 or a
connectRequestStatus != CRS_SUCCESS is returned.

6.15.1.8 Connection manager unlocks its connection register
The connection manager unlocks its connection register. This is as described in section
6.14.1.12.

6.15.1.9 Connection manager unlocks connection client register
The connection manager next unlocks the connection client register. This is as described in
section 6.14.1.14.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 53 of 93
This is an unapproved 1394TA specification, subject to change

6.16 Summary of connection packet fields

6.16.1 ConnectPktId values
The table below enumerates the values for the 8-bit ConnectPktId.

ConnectPktId
Macro

ConnectPktId
Value
(Decimal)

Definition

CREQ1 1 Connection request packet sent to begin a connection sequence.
CREQ2 2 Connection request packet sent that includes the connected

node plug information.
REACT 3 Connection request packet issued to reactivate a connection.
STOP 4 Connection request packet issued to stop plug activity.
FREE 5 Free plug resources.
GETINFO 6 Get information about the total number of connections on a

node.
GETPLUGINFO 7 Get information about a specific plug on a node.
CRESP 128 Connection response packet sent after processing a CREQ1.
STATUS 129 General response packet sent after receiving REACT, STOP, or

FREE.
INFO 130 Response packet providing the total number of connections on a

node.
PLUGINFO 131 Response packet providing information on a specific plug on a

node.
0,8-127,132-255 Reserved

Table 6 -- ConnectPktId values

6.16.2 connectRequestStatus values
connectRequestStatus is used in all connection response packets as an indication of success or
failure. The table below summarizes connection response values.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 54 of 93
This is an unapproved 1394TA specification, subject to change

connectRequestStatus
Macro

connectRequestStatus
Decimal Value

Definition

CRS_SUCCESS 0 Success
CRS_RSRC 1 Rejected- not enough resources
CRS_PARM 2 Rejected-illegal parameter in request
CRS_UNKNOWN_PLUG 3 Rejected-unknown plug
CRS_REG_NOT_LOCKED 4 Connection Register not locked, or not

locked by the sender of the connection
request.

CRS_NOT_IN_DEACTIVATED_STATE 5 Connection received a reactivation request
and was not in the deactivated state.

CRS_NOT_STOPPED 6 Connection received a request to free plug
resources but either the producer or
consumer were not stopped yet.

CRS_BUS_RESET 7 A request failed due to a bus reset.
CRS_NO_DEV 8 A request fails because the device no longer

is found on the bus.
CRS_CONNECT_REQ_TIMEOUT 9 Request failed because a connection request

was sent and a connection response was not
received in CONNECT_REQ_TIMEOUT.

10-254 Reserved
CRS_FAIL 255 Failure, unspecified reason.

Table 7 -- connectRequestStatus values

6.17 Miscellaneous macro values

Time Macro Decimal Value Definition
CCLI_LOCK_TIMEOUT 10000 Number of milliseconds a connection client is allowed to

remain locked. If this time expires, the connection client
shall assume something anomalous occurred, and will
unlock its own connection register.

REACT_TIMEOUT 10000 Number of milliseconds a node will wait after a bus reset for
the connections to be reactivated. All connections not
reactivated in this time may then be assumed to be stale,
and the plug resources may be freed when necessary to
complete new connection requests successfully.

CONNECT_REQ_TIMEOUT 1000 Number of milliseconds to wait after sending an
acknowledged connection request packet before the sender
of the packet will time out.

Table 8 -- Miscellaneous macro values

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 55 of 93
This is an unapproved 1394TA specification, subject to change

6.18 Connection manager state machine
The table below explains terms used in the following connection manager state machine.

Term Explanation
BusReset A 1394 bus reset occurrence.
CM_busReset() Called by the connection manager to perform all necessary activities after a bus

reset.
CMGR Shorthand for the connection manager.
CMGR.lock The connection lock register for the connection manager.
F False = 0.
Indication(value) Sets up a value to be returned to the caller that initiated the request. The full return

value may be made up of more than one indication value, since some requests
communicate to more than one device.

Lock(dev,arg_val,
 data_val)

Sends a 1394 lock request (compare and swap to a device) and waits for the lock
response packet.

LockRegisters() Locks the specified connection registers. See section 6.18.2.
QueueRequest(req) Queue a connection request to the connection manager.
Send(dev,PktID) Send a connection request packet to device=dev with connectPktID=PktID and waits

for a connection response packet. Returns a connectRequestStatus value. If device
fails to send a connection response packet and a connection request timeout occurs,
the returned connectRequestStatus is set to CRS_CONNECT_REQ_TIMEOUT.

T True = 1.
TestAndSet() An atomic (non-interruptible) operation done on the connection manager lock

register. If the lock register is 0-valued prior to this operation, the TestAndSet() will
be successful and the value is set to CMGR unique_ID. If the lock register is not 0-
valued prior to this operation, the TestAndSet() will fail. TestAndSet() may succeed if
for some reason if the lock register value is already equal to the CMGR unique_ID.

UngetRequest() Re-queues the current request so the request will be retried later.
UnlockRegisters() Unlocks the specified connection registers. See section 6.18.3.

Table 9 -- Connection manager state machine terminology

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 56 of 93
This is an unapproved 1394TA specification, subject to change

6.18.1 Connection manager state machine: request startup
ConditionState Transi-

tion Action
New state

BusResetTX0a
CM_busReset();

CM0

valid request received from higher layerTX0b CM1

Invalid request received from higher layer

CM0: idle

TX0c
Indication(err)

CM0

LockRegisters() fails due to previously locked conditionTX1a
Sleep(implementation-dependent time);

CM1

LockRegisters() fails due to bus resetTX1b
UngetRequest();

CM0

LockRegisters() failsTX1c
Indication(err);

CM0

LockRegisters() succeeds && request is to create a plugTX1d CM10

LockRegisters() succeeds && request is to reactivate a plugTX1e CM20

LockRegisters() succeeds && request is to stop a plugTX1f CM30

LockRegisters() succeeds && request is to get plug information.TX1g CM40

LockRegisters() succeeds && request is to get information on a
specific plug only.

CM1: LockReg
LockRegisters()

TX1h CM50

Figure 46 -- Connection manager state machine: request startup

State CM0. The connection manager is idle.
Transition TX0a. A bus reset occurs.
Transition TX0b. A valid request is received from a higher protocol layer or from an application.
Transition TX0c. An invalid request is received from a higher protocol layer or from an
application. An error indication is returned.

State CM1. The connection manager calls LockRegisters() to lock the connection registers of all
devices to be involved in the connection request.
Transition TX1a. LockRegisters() fails due to a previously locked condition. The connection
manager shall retry after an implementation dependent time.
Transition TX1b. LockRegisters() fails due to a bus reset. UngetRequest() re-queues the original
request.
Transition TX1c. LockRegisters() fails due to some other condition. An error indication is
returned.
Transition TX1d. LockRegisters() succeeds and the request is to create a plug.
Transition TX1e. LockRegisters() succeeds and the request is to reactivate a plug.
Transition TX1f. LockRegisters() succeeds and the request is to stop plug activity.
Transition TX1g. LockRegisters() succeeds and the request is to get plug information.
Transition TX1h. LockRegisters() succeeds and the request is to get information for a specific
plug.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 57 of 93
This is an unapproved 1394TA specification, subject to change

6.18.2 Connection manager state machine: LockRegisters(device1,device2)
ConditionState Transi-

tion Action
New state

BusResetTX0a
CMGR.lock = 0; Indication(not locked due to bus reset);
CM_busReset();

Return to caller

TestAndSet() failsTX0b
Indication(not locked due to previously locked condition);

Return to caller

device1 != CMGRTX0c L1

Lock2 == 1TX0d L2

L0:
TestAndSet() on
CMGR.lock

TX0e
Indication(lock success);

Return to caller

BusResetTX1a
CMGR.lock = 0; Indication(not locked due to bus reset);
CM_busReset();

Return to caller

Lock response indicates successful lock && Lock2TX1b L2

Lock response indicates device1 not successfully lockedTX1c
CMGR.lock = 0; Indication(not locked due to locked condition);

Return to caller

Lock response indicates successful lock && !Lock2

L1:
Lock(device1,
arg_value=0,
data_value=
 CMGR uid);

TX1d
Indication(lock success);

Return to caller

BusResetTX2a
CMGR.lock = 0; Indication(not locked due to bus reset);
CM_busReset();

Return to caller

Lock response indicates successful lockTX2b
Indication(lock success);

Return to caller

Lock response indicates device2 not successfully locked

L2:
Lock (device2,
arg_value=0,
data_value=
 CMGR uid);

TX2c
CMGR.lock = 0;
UnlockRegisters(Unlock2=F);
Indication(not locked due to locked condition);

Return to caller

Figure 47 -- Connection manager state machine: LockRegisters()

The call to LockRegisters() specifies a device (device1) or devices (device1, device2) to be
locked, along with a variable Lock2 that determines if a second device, device2, is to be locked.
The connection manager may be the same as device1.

State L0. Upon entry, the connection manager attempts an atomic test-and-set operation on the
connection manager’s connection lock register, abbreviated as CMGR.lock.
Transition TX0a. A bus reset occurs. The connection manager lock register is cleared and an
indication is returned indicating the lock failed due to a bus reset. CM_busReset() is called.
Transition TX0b. The connection manager’s lock register is already locked by another node. An
indication is returned indicating the lock failed due to a locked condition.
Transition TX0c. All preceding conditions tested false, and device1 is not the connection
manager.
Transition TX0d. All preceding conditions tested false, and there is a second device is to be
locked.
Transition TX0e. All preceding conditions tested false, and no additional devices are to be
locked. A successful lock indication is returned.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 58 of 93
This is an unapproved 1394TA specification, subject to change

State L1. Upon entry, a lock request is sent to device1 in an attempt to lock the device1
connection lock register. The connection manager then waits for a lock response.
Transition TX1a. A bus reset occurs. The connection manager’s lock register is cleared. An
“unlocked due to bus reset” indication is returned. CM_busReset() is called.
Transition TX1b. Device1 returns a lock response indicating the lock request succeeded and
there is a second device to be locked.
Transition TX1c. Device1 returns a lock response indicating the lock request failed. The
connection manager’s lock register is cleared. An “unlocked due to previously locked condition”
indication is returned.
Transition TX1d. Device1 returns a lock response indicating the lock request succeeded and
there is not a second device to be locked. A successfully locked indication is returned.

State L2. Upon entry, a lock request is sent to device2 in an attempt to lock the device2
connection lock register. The connection manager then waits for a lock response.
Transition TX2a. A bus reset occurs. The connection manager’s lock register is cleared. An
“unlocked due to bus reset” indication is returned. CM_busReset() is called.
Transition TX2b. Device2 returns a lock response indicating the lock request succeeded. A
successful lock indication is returned.
Transition TX2c. Device2 returns a lock response indicating the lock request failed due to a
previously locked condition. UnlockRegisters(Unlock2=F) is called to unlock all locked connection
registers. An indication of “unlocked due to previously locked condition” is returned.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 59 of 93
This is an unapproved 1394TA specification, subject to change

6.18.3 Connection manager state machine: UnlockRegisters()
ConditionState Transi-

tion Action
New state

BusReset before CMGR.lock = 0TX0a
Indication(UnlockResult |= 1); CM_busReset();

Return to caller

BusReset after CMGR.lock = 0TX0b
Indication(UnlockResult |= 2); CM_busReset();

Return to caller

(CMGR == device1) && !Unlock2TX0c
Indication(UnlockResult);

Return to caller

(CMGR == device1) && Unlock2TX0d UL2

CMGR != device1

UL0:
UnlockResult = 0;
CMGR.lock = 0;

TX0e UL1

BusReset before lock request sentTX1a
Indication(UnlockResult |= 0x2); CM_busReset();

Return to caller

BusReset after lock request sent && lock response not receivedTX1b
Indication(UnlockResult |= 0x3); CM_busReset();

Return to caller

BusReset after lock response receivedTX1c
Indication(UnlockResult |= 0x4); CM_busReset();

Return to caller

Lock response indicates successful unlock && Unlock2TX1d UL2

Lock response indicates successful unlock && !Unlock2TX1e
Indication(UnlockResult);

Return to caller

Lock response indicates unlock failure && Unlock2TX1f
UnlockResult |= 0x10

UL2

Lock response indicates unlock failure && !Unlock2

UL1:
Lock (device1,
arg_value =
 CMGR uid,
data_value=0);

TX1g
Indication(UnlockResult |= 0x10);

Return to caller

BusReset before lock request sentTX2a
Indication(UnlockResult |= 0x4); CM_busReset();

Return to caller

BusReset after lock request sentTX2b
Indication(UnlockResult |= 0x5); CM_busReset();

Return to caller

BusReset after response receivedTX2c
Indication(UnlockResult |= 0x6); CM_busReset();

Return to caller

Lock response indicates unlock failureTX2d
Indication(UnlockResult |= 0x20) ;

Return to caller

Lock response indicates successful unlock

UL2:
Lock (device2,
arg_value =
 CMGR uid,
data_value=0);

TX2e
Indication(UnlockResult);

Return to caller

Figure 48 -- Connection manager state machine: UnlockRegisters()

The call to UnlockRegisters() specifies a device (device1) or devices (device1,device2) to be
unlocked. Variable Unlock2 determines if a second device, device2, is to be unlocked. The
connection manager may be the same as device1. The caller of UnlockRegisters(), in some
cases, needs to know the success or failure of the operation, and may need to know if a bus reset
occurred. For this reason, variable UnlockResult contains information on if and when a bus reset
occurred. Additional information indicates the success or failure of unlocking CMGR, device1, and
device2. A suggested definition for the UnlockResult bits is shown below.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 60 of 93
This is an unapproved 1394TA specification, subject to change

UnlockResult Bit Meaning
0,1,2 If non-zero, indicates point in the unlock procedure that a bus reset occurred.

0 – no bus reset
1 – bus reset before CMGR unlocked
2 – bus reset after CMGR unlocked and before unlock request sent to device1.
3 – bus reset after unlock request sent to device1 and before lock response.
4 – bus reset after unlock response from device1 and before unlock request sent to
device2.
5 – bus reset after unlock request sent to device2 and before lock response.
6 – bus reset after unlock response from device2.

3 If non-zero, indicates error in unlocking the connection manager. This should never
occur, but is provided for completeness.

4 If non-zero, indicates an error in unlocking device1.
5 If non-zero, indicates an error in unlocking device2.

Table 10 -- Suggested UnlockResult bit definitions

State UL0. Upon entry, UnlockResult is initialized to 0 and the connection manager lock register
is cleared.
Transition TX0a. A bus reset occurs before the connection manager’s lock register is unlocked.
UnlockResult is modified to indicate this condition and is returned to the caller. CM_busReset() is
called.
Transition TX0b. A bus reset occurs after the connection manager’s lock register has been
unlocked. UnlockResult is modified to indicate this condition and is returned to the caller.
CM_busReset() is called.
Transition TX0c. The connection manager is the same as device1, and Unlock2 is false. There
are no more devices to unlock. A successfully unlocked indication is returned to the caller.
Transition TX0d. The connection manager is the same as device1, and Unlock2 is true.
Transition TX0e. The connection manager is not the same as device1.

State UL1. Upon entry, a compare and swap lock request is sent to device1 in an attempt to
unlock the device1 lock register. The connection manager waits for a lock response.
Transition TX1a. A bus reset occurs before the unlock request is sent to device1. UnlockResult
is modified to indicate this event. UnlockResult is returned to the caller. CM_busReset() is called.
Transition TX1b. A bus reset occurs after the unlock request is sent to device1 and before the
response is received. UnlockResult is modified to indicate this event. UnlockResult is returned to
the caller. CM_busReset() is called.
Transition TX1c. A bus reset occurs after the unlock response returns. UnlockResult is modified
to indicate this event. UnlockResult is returned to the caller. CM_busReset() is called.
Transition TX1d. Device1 successfully unlocked and Unlock2 indicates device2 needs to be
unlocked.
Transition TX1e. Device1 successfully unlocked and there are no more devices to unlock.
UnlockResult is returned to the caller.
Transition TX1f. Device1 unlock fails. UnlockResult is modified to indicate this condition.
Device2 remains to be unlocked.
Transition TX1g. Device1 unlock fails. There are no more devices to be unlocked. UnlockResult
is modified to indicate this condition. UnlockResult is returned to the caller.

State UL2. Upon entry, a compare-swap lock request is sent to device2 in an attempt to unlock
the device2 lock register. The connection manager waits for a lock response packet.
Transition TX2a. A bus reset occurs before the unlock request is sent to device2. UnlockResult
is modified to indicate this and is returned to the caller. CM_busReset() is called.
Transition TX2b. A bus reset occurs after the unlock request has been sent but before a
response is received. UnlockResult is modified to indicate this and is returned to the caller.
CM_busReset() is called.
Transition TX2c. A bus reset occurs after the response is received. UnlockResult is modified to
indicate this and is returned to the caller. CM_busReset() is called.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 61 of 93
This is an unapproved 1394TA specification, subject to change

Transition TX2d. Device2 unlock fails. UnlockResult is modified to indicate this and is returned to
the caller.
Transition TX2e. Device2 unlock succeeds. UnlockResult is returned to the caller.

6.18.4 Connection manager state machine: creating a plug
ConditionState Transi-

tion Action
New state

BusResetTX10a
UngetRequest(); CM_busReset();

CM0

Err == CRS_SUCCESSTX10b CM11

Err != CRS_SUCCESS

CM10:
Err =
Send(device1,
 CREQ1);

TX10c
UnlockRegisters(Unlock2=T); Indication(Err);

CM0

BusResetTX11a
UngetRequest();CM_busReset();

CM0

Err == CRS_SUCCESSTX11b CM12

Err != CRS_SUCCESS

CM11:
Err =
Send(device2,
 CREQ1);

TX11c
UnlockRegisters(Unlock2=T); Indication(Err);

CM0

BusResetTX12a
UngetRequest();CM_busReset();

CM0

Err == CRS_SUCCESSTX12b CM13

Err != CRS_SUCCESS

CM12:
Err =
Send(device1,
 CREQ2);

TX12c
UnlockRegisters(Unlock2=T); Indication(Err);

CM0

BusReset before response receivedTX13a
UngetRequest(); CM_busReset();

CM0

Err == CRS_SUCCESSTX13b CM14

Err != CRS_SUCCESS

CM13:
Err =
Send(device2,
 CREQ2);

TX13c
Err2 == Err

CM15

UnlockRegisters() fails due to bus reset before device1 unlocked.TX14a
UngetRequest();CM_busReset();

CM0

UnlockRegisters() fails due to bus reset before device2 unlocked.TX14b
QueueRequest(device1 STOP,FREE); UngetRequest();
CM_busReset();

CM0

UnockRegisters() returns success or fails after device2 unlocked.

CM14:
UnlockRegisters(
 Unlock2=T);

TX14c
Indication(success); QueueRequest(reactivate plug);

CM0

BusResetTX15a
Indication(Err); CM_busReset();

CM0

Response received

CM15:
Err =
Send(device1,
 FREE);

TX15b
Indication(Err2); UnlockRegisters(Unlock2=T);

CM0

Figure 49 -- Connection manager state machine: creating a plug

State CM10. This state is entered after the connection registers have been locked and the
connection request involves creating a new plug. Upon entry a CREQ1 connection request
packet is sent to device1.
Transition TX10a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.
Transition TX10b. Device1 returns a CRESP packet with connectRequestStatus ==
CRS_SUCCESS.
Transition TX10c. Device1 returns a packet with connectRequestStatus != CRS_SUCCESS.
UnlockRegisters() is called to unlock any locked connection registers. An error indication is
returned.

State CM11. Upon entry, a CREQ1 packet is sent to device2.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 62 of 93
This is an unapproved 1394TA specification, subject to change

Transition TX11a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.
Transition TX11b. Device2 returns a CRESP packet with connectRequestStatus ==
CRS_SUCCESS.
Transition TX11c. Device2 returns a packet with connectRequestStatus != CRS_SUCCESS.
UnlockRegisters() is called to unlock any locked connection registers. An error indication is
returned.

State CM12. Upon entry, a CREQ2 packet is sent to device1.
Transition TX12a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.
Transition TX12b. Device1 returns a STATUS packet with connectRequestStatus ==
CRS_SUCCESS.
Transition TX12c. Device1 returns a STATUS packet with connectRequestStatus !=
CRS_SUCCESS. UnlockRegisters() is called to unlock any locked connection registers. An error
indication is returned.

State CM13. Upon entry, a CREQ2 packet is sent to device2.
Transition TX13a. A bus reset occurs before a response is received. UngetRequest() re-queues
the original request. CM_busReset() is called.
Transition TX13b. Device2 returns a STATUS packet with connectRequestStatus ==
CRS_SUCCESS.
Transition TX13c. Device2 returns a STATUS packet with unexpected connectRequestStatus.
Err2 is set to the connectRequestStatus.

State CM14. Upon entry, UnlockRegisters(Unlock2=T) is called to unlock the connection
registers.
Transition TX14a. UnlockRegisters() fails due to a bus reset before device1 is unlocked.
UngetRequest() is called to re-queue the original request.
Transition TX14b. UnlockRegisters() fails due to bus reset after device1 is unlocked but before
device2 is unlocked. A request to STOP and FREE the newly created plug on device1 is queued.
UngetRequest() re-queues the original request. CM_busReset() is called.
Transition TX14c. UnlockRegisters() returns success or returns failure, but the failure occurs
after device2 unlocked. The connection remains valid. QueueRequest() is called to queue a
reactivation request for the newly created plug.

State CM15. Upon entry, a FREE request is sent to device1.
Transition TX15a. A bus reset occurs. The error indication from device2 is returned.
CM_busReset() is called.
Transition TX15b. A response is received. UnlockRegisters() is called. The error indication from
device2 is returned.

.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 63 of 93
This is an unapproved 1394TA specification, subject to change

6.18.5 Connection manager state machine: reactivating a connection
ConditionState Transi-

tion Action
New state

BusResetTX20a
CM_busReset();

CM0

(Err == CRS_SUCCESS) ||
(Err == CRS_NOT_IN_DEACTIVATED_STATE)

TX20b CM21

CM20
Err =
Send(device1,
 REACT);

TX20c
UnlockRegisters(Unlock2=T);
Indication(Err);

CM0

BusResetTX21a
CM_busReset();

CM0

(Err == CRS_SUCCESS) ||
(Err == CRS_NOT_IN_DEACTIVATED_STATE)

TX21b CM23

CM21
Err =
Send(device2,
 REACT);

TX21c
Err2 = Err;

CM22

BusResetTX22a
Indication(Err2); CM_busReset();

CM0

Response received

CM22
Err =
Send(device1,
 FREE);

TX22b
UnlockRegisters(Unlock2=T); Indication(Err2);

CM0

UnlockRegisters() completesCM23
UnlockRegisters(
Unlock2=T);

TX23a
Indication(Err);

CM0

Figure 50 -- Connection manager state machine: reactivating a plug

State CM20. This state is entered after the connection registers have been locked and the
connection request involves reactivating a plug. Upon entry, a REACT connection request packet
is sent to device1.
Transition TX20a. A bus reset occurs. CM_busReset() will reschedule a reactivation request.
Transition TX20b. Device1 returns a STATUS response packet with connectRequestStatus ==
CRS_SUCCESS or CRS_NOT_IN_DEACTIVATED_STATE.
Transition TX20c. Device1 returns a response packet with an unexpected
connectRequestStatus. UnlockRegisters() is called to unlock any locked connection registers. An
error indication is returned.

State CM21. Upon entry, a REACT connection request packet is sent to device2.
Transition TX21a. A bus reset occurs. CM_busReset() is called and will reschedule a
reactivation request.
Transition TX21b. Device2 returns a response packet with connectRequestStatus ==
CRS_SUCCESS or CRS_NOT_IN_DEACTIVATED_STATE.
Transition TX21c. Device2 returns a response packet with an unexpected
connectRequestStatus. Variable Err2 is set to Err to be returned later.

State CM22. Upon entry, a FREE request packet is sent to device1 to free the plug.
Transition TX22a. A bus reset occurs. Error indication Err2 is returned. CM_busReset() is called.
Transition TX22b. Device1 returns a response packet. UnlockRegisters() is called to unlock any
locked connection registers. Error indication Err2 is returned.

State CM23. Upon entry, UnlockRegisters(Unlock2=T) is called to unlock connection registers.
Transition TX23a. UnlockRegisters() completes. An indication made up of Err is returned.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 64 of 93
This is an unapproved 1394TA specification, subject to change

6.18.6 Connection manager state machine: stopping a connection
ConditionState Transi-

tion Action
New state

BusResetTX30a
UngetRequest(); CM_busReset();

CM0

StopDevice2TX30b CM31

(Err1 != CRS_SUCCESS)TX30c
UnlockRegisters(Unlock2=F); Indication(Err1,Err2);

CM0

CM30
Err2=no error;
Err1 =
Send(device1,
 STOP);

TX30d CM32

BusResetTX31a
UngetRequest(); CM_busReset();

CM0

((Err2 == CRS_SUCCESS) || (Err2 == CRS_UNKOWN_PLUG) ||
(Err2 == CRS_NO_DEV)) && (Err1 == CRS_SUCCESS)

TX31b CM32

(Err2 == CRS_SUCCESS) &&
((Err1 == CRS_UNKNOWN_PLUG) || (Err1 == CRS_NO_DEV))

TX31c CM33

CM31
Err2 =
Send(device2,
 STOP);

TX31d
UnlockRegisters(Unlock2=T); Indication(Err1,Err2);

CM0

BusResetTX32a
Indication(Err1, Err2); CM_busReset();

CM0

!StopDevice2TX32b
UnlockRegisters(Unlock2=F); Indication(Err1)

CM0

Err2 == CRS_SUCCESSTX32c CM33

CM32
Err1 =
Send(device1,
 FREE);

TX32d
UnlockRegisters(Unlock2=F); Indication(Err1,Err2);

CM0

BusResetTX33a
Indication(Err1,Err2); CM_busReset();

CM0CM33
Err2 =
Send(device2,
 FREE);

TX33b
UnlockRegisters(Unlock2=T); Indication(Err1,Err2);

CM0

Figure 51 -- Connection manager state machine: stopping a connection

A stop plug request specifies a device (device1) or devices (device1, device2) to be stopped.
Variable StopDevice2 determines if a second device is to be stopped. The conditions shall be
evaluated in the order given.

State CM30. This state is entered after the connection registers have been locked and the
request involves stopping plug activity. Upon entry, Err2 is initialized and a STOP connection
request packet is sent to device1.
Transition TX30a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.
Transition TX30b. There is a second device to be stopped.
Transition TX30c. Device1 returns a connection response packet with connectRequestStatus !=
CRS_SUCCESS. The connection registers are unlocked and an error indication is returned.
Transition TX30d. All of the above conditions evaluate false.

State CM31. Upon entry, a STOP connection request packet is sent to device2.
Transition TX31a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.
Transition TX31b. Err2 == CRS_SUCCESS || Err2 == CRS_UNKNOWN_PLUG || Err2 ==
CRS_NO_DEV and device1 successfully processed its STOP request. It is safe to proceed by
sending a FREE connection request packet to device1.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 65 of 93
This is an unapproved 1394TA specification, subject to change

Transition TX31c. Err2 == CRS_SUCCESS and device1 was not successfully stopped, but it is
safe to proceed and send FREE connection request packet to device2.
Transition TX31d. All of the above conditions evaluate false.

State CM32. Upon entry, a FREE request packet is sent to device1.
Transition TX32a. A bus reset occurs. An indication made up of Err1, Err2 is set up to be
returned. CM_busReset() is called.
Transition TX32b. There is not a second device to be stopped.
Transition TX32c. Err2 == CRS_SUCCESS.
Transition TX32d. All of the above conditions evaluate false.

State CM33. Upon entry, a FREE connection request packet is sent to device2.
Transition TX33a. A bus reset occurs. CM_busReset() is called.
Transition TX33b. UnlockRegisters(Unlock2=T) is called. An indication made up of Err1, Err2 is
returned.

6.18.7 Connection manager state machine: get plug information
ConditionState Transi-

tion Action
New state

BusResetTX40a
UngetRequest(); CM_busReset();

CM0

Err != CRS_SUCCESSTX40b
UnlockRegisters(Unlock2=F); Indication(Err);

CM0

NumberOfConnections == 0TX40c
UnlockRegisters(Unlock2=F); Indication(INFO);

CM0

NumberOfConnections > 0

CM40
Err = Send(
device,
GETINFO);

TX40d
Save information

CM41

BusResetTX41a
UngetRequest(); CM_busReset();

CM0

Err != CRS_SUCCESSTX41b
UnlockRegisters(Unlock2=F); Indication(Err);

CM0

More plug information to getTX41c
Save information

CM41

no more plug information to get

CM41
Err = Send(
device,
 GETPLUGINFO);

TX41d
Save information; UnlockRegisters(Unlock2=F);
Indication(success,INFO,accumulated plug information);

CM0

Figure 52 -- Connection manager state machine: get plug information

State CM40: Upon entry, the connection manager sends a GETINFO request packet to the
device.
Transition TX40a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.
Transition TX40b. A response is received with connectRequestStatus != CRS_SUCCESS. The
connection registers are unlocked. An error indication is returned.
Transition TX40c. The number of connections, or plugs, is 0. UnlockRegisters() is called. An
indication made up of the INFO response packet is returned.
Transition TX40d. The number of connections, or plugs, is greater than 0.

State CM41. Upon entry, a GETPLUGINFO request packet is sent to the device.
Transition TX41a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.
Transition TX41b. A response packet is received with connectRequestStatus !=
CRS_SUCCESS. The connection registers are unlocked and an error is returned.
Transition TX41c. There is more information to get from the device.
Transition TX41d. There is no more information to get from the device. An indication made up of
the INFO response packet and the accumulated PLUGINFO response packets is returned.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 66 of 93
This is an unapproved 1394TA specification, subject to change

6.18.8 Connection manager state machine: get specific plug information
ConditionState Transi-

tion Action
New state

BusResetTX50a
UngetRequest(); CM_busReset();

CM0

Err != CRS_SUCCESSTX50b
UnlockRegisters(Unlock2=F); Indication(Err);

CM0

Err == CRS_SUCCESS

CM50
Err = Send(
 device,
 GETPLUGINFO);

TX50c
UnlockRegisters(Unlock2=F); Indication(PLUGINFO);

CM0

Figure 53 -- Connection manager state machine: get specific plug information

State CM50: Upon entry, the connection manager sends a GETPLUGINFO request packet to the
device.
Transition TX50a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.
Transition TX50b. A response packet is received with connectRequestStatus !=
CRS_SUCCESS. The connection registers are unlocked and an error is returned.
Transition TX50c. A response packet is received with connectRequestStatus ==
CRS_SUCCESS. The connection registers are unlocked and the plug information is returned.

6.18.9 Connection manager state machine: CM_busReset()
This state machine documents the connection manager activities required after a bus reset.

ConditionState Transi-
tion Action

New state

(CMGR.lock == CMGR unique_ID) ||
(CMGR.lock != 0 && CMGR.lock occurred prior to bus reset)

TX0a

CMGR.lock = 0;

CMBR1CMBR0:
De-queue all
reactivation
requests TX0b CMBR1

BusResetTX1a CMBR0

Enumeration complete

CMBR1
Enumerate the
1394 bus. TX1b

Queue reactivation requests;
CM0

Figure 54 -- Connection manager state machine: CM_busReset()

State CM_BR0: Upon entry, all reactivation requests that are queued are de-queued.
Transition TX0a. The connection manager lock register is currently locked by the connection
manager or is locked by another node but the lock occurred prior to the bus reset event. The lock
register is unlocked.
Transition TX0b. The above condition evaluates false.

State CM_BR1. Upon entry, the bus is enumerated. This involves the connection manager going
through a process of discovery to find what IICP devices exist on the bus.
Transition TX1a. A bus reset occurs.
Transition TX1b. The enumeration is done. The connection manager queues the appropriate
reactivation requests.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 67 of 93
This is an unapproved 1394TA specification, subject to change

6.19 Connection client state machine
The table below explains terms used in the following connection client state machine.

Term Explanation
BusReset A 1394 bus reset occurrence.
CC_busReset() Called by the connection client to perform all necessary activities after a bus reset.

This will deactivate all plugs.
CCLI_UnlockEvent Event indicating an action to be performed after the connection register is unlocked.
F False = 0.
LockTimeout() Returns true if the connection client timer has expired. The timer expires after

CCLI_LOCK_TIMEOUT.
Send(pktID, status) Sends a connection response packet with connectRequestPktID = pktID and

connectRequestStatus = status. If a bus reset occurs, the send is aborted. If Send()
fails, an error should be logged.

T True = 1.
UnlockOK Variable set true if connection client expects an unlock request.

Table 11 -- Connection client state machine terminology

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 68 of 93
This is an unapproved 1394TA specification, subject to change

6.19.1 Locking of connection register and waiting for request
ConditionState Transi-

tion Action
New state

BusResetTX0a
CC_busReset();

CC0

Valid lock requestTX0b
Send lock response; initialize LockTimeout() timer;
ValidRequests = CREQ1, REACT, STOP,GETINFO,
GETPLUGINFO; UnlockOK=T; CCLI_UnlockEvent = NULL;

CC1

Invalid lock requestTX0c
Send lock response

CC0

Connect request packet receivedTX0d
Rcode = resp_type_error; Send(STATUS,CRS_NOT_LOCKED);

CC0

Connect response packet received

CC0: unlocked
UnlockOK=F;

TX0e
Rcode = resp_type_error;

CC0

Bus resetTX1a
Free any resources allocated since connection register was locked;
Unlock connection lock register; CC_busReset();

CC0

Lock request == lock || invalid unlock requestTX1b
Send lock response

CC1

Lock request == valid unlock request && UnlockOK == TTX1c
Unlock connection lock register; Send lock response;
if (CCLI_UnlockEvent == Reactivation)
 Send ReactivationEvent to producer and consumer state machines.
else if (CCLI_UnlockEvent == PlugCreation)
 Send CreationEvent to consumer state machines

CC0

Lock request == valid unlock request && UnlockOK == FTX1d
Unlock connection lock register; Free any resources allocated since
connection register was locked. Send lock response

CC0

LockTimeout()TX1e
Free any resources allocated since connection register was locked;
Unlock connection lock register;

CC0

Invalid request receivedTX1f
Rcode = resp_type_error; Send(STATUS,CRS_PARM);

CC1

Connection response packet received.TX1g
Rcode = resp_type_error;

CC1

Valid request received && request == CREQ1TX1h
UnlockOK=F;

CC10

Valid request received && request == CREQ2TX1k CC20

Valid request received && request == REACTTX1m CC30

Valid request received && request == STOPTX1n CC40

Valid request received && request == FREETX1p CC50

Valid request received && request == GETINFOTX1q CC60

Valid request received && request == GETPLUGINFO

CC1: locked
Wait for a
connection
request or for
unlock request

TX1r CC70

Figure 55 -- Connection client state machine: locking and waiting for request

State CC0. The connection client lock register is unlocked.
Transition TX0a. A bus reset occurs. CC_busReset() is called.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 69 of 93
This is an unapproved 1394TA specification, subject to change

Transition TX0b. A valid lock request is received. A lock response is sent. The LockTimeout()
timer is initialized. A variable, ValidRequests, is initialized to the set of connection requests that
will be treated as valid requests. Variable UnlockOK is set true. Variable CCLI_UnlockEvent is set
to NULL, indicating there is not yet an event to be communicated when the connection register is
unlocked.
Transition TX0c. An invalid lock request is received. An appropriate lock response is returned.
Transition TX0d. An unexpected connect request packet is received. A response code =
resp_type_error should be returned. A response packet is sent, with connectPktID = STATUS
and connectRequestStatus = CRS_NOT_LOCKED.
Transition TX0e. An unexpected connect response packet is received. A response code =
resp_type_error should be returned.

State CC1. The connection client’s lock register is locked. The connection client waits for a
connection request or unlock.
Transition TX1a. A bus reset occurs. Any resources allocated in the handling of connection
requests since the connection register was locked shall be freed. The connection client lock
register is unlocked. CC_busReset() is called.
Transition TX1b. A lock request or invalid unlock request is received. An appropriate lock
response is sent.
Transition TX1c. A valid, expected unlock request is received. The connection client lock register
is unlocked. A lock response is sent. If CCLI_UnlockEvent is set, perform the appropriate
communication to the consumer and producer state machines.
Transition TX1d. A valid, but unexpected, unlock request is received. The connection client lock
register is unlocked. A lock response is sent. Any resources allocated in the handling of
connection requests since the connection register was locked should be freed.
Transition TX1e. A LockTimeout() occurs. Any resources allocated in the handling of connection
requests since the connection register was locked should be freed. The connection client lock
register is unlocked.
Transition TX1f. An invalid connection request is received. A response code = resp_type_error
should be returned. A response packet is sent, with connectPktID = STATUS and
connectRequestStatus = CRS_PARM.
Transition TX1g. An invalid connection response packet is received. A response code =
resp_type_error should be returned.
Transition TX1h – Transition TX1r. A valid connection request packet is received and the
connection client state machine moves to the appropriate state to handle the request.

6.19.2 Connection client request == CREQ1
ConditionState Transi-

tion Action
New state

BusResetTX10a
Free any resources allocated; Unlock connection register;
CC_busReset();

CC0

Processing of CREQ1 request successful.TX10b
Send(CRESP,CRS_SUCCESS); ValidRequests = CREQ2

CC1

Processing of CREQ1 request fails

CC10:
Process the
CREQ1 request

TX10c
Send(CRESP,appropriate status); ValidRequests = none;

CC1

Figure 56 -- Connection client state machine: CREQ1 processing

State CC10. The connection client processes the CREQ1 packet. This involves creating a new
plug.
Transition TX10a. A bus reset occurs. Any resources allocated for the new plug are freed. The
connection client’s lock register is unlocked. CC_busReset() is called.
Transition TX10b. The plug is successfully created. A response packet is sent. The next valid
request is CREQ2.
Transition TX10c. The plug creation failed or a higher layer is not yet ready to handle connection
requests. A response packet is sent. The set of valid request packets is set to none.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 70 of 93
This is an unapproved 1394TA specification, subject to change

6.19.3 Connection client request == CREQ2
ConditionState Transi-

tion Action
New state

BusResetTX20a
Free any resources allocated; Unlock connection register;
CC_busReset();

CC0

Processing of CREQ2 successful.TX20b
Send(STATUS,CRS_SUCCESS); ValidRequests = FREE;
CCLI_UnlockEvent = CreationEvent;

CC1

Processing of CREQ2 fails

CC20:
Process the
CREQ2 request

TX20c
Send(STATUS,appropriate status); ValidRequests = none;

CC1

Figure 57 -- Connection client state machine: CREQ2 processing

State CC20. The connection client processes the CREQ2 request.
Transition TX20a. A bus reset occurs. Any resources allocated for the new plug are freed. The
connection client’s lock register is unlocked. CC_busReset() is called.
Transition TX20b. The request is processed successfully. A response packet is sent. The only
valid following request is FREE. Variable CCLI_UnlockEvent is set so when the connection
register is unlocked the appropriate event is communicated to the consumer state machines.
Transition TX20c. The processing of the request failed. A response packet is sent. The set of
valid request packets is set to none.

6.19.4 Connection client request == REACT
ConditionState Transi-

tion Action
New state

BusResetTX30a
Unlock connection register; CC_busReset();

CC0

Plug is deactivatedTX30b
Notify consumer and producer state machines of REACT received;
Send(STATUS,CRS_SUCCESS); ValidRequests = none;
CCLI_Event = Reactivation;

CC1

Plug not deactivated

CC30:
Check if plug is
deactivated.

TX30c
Send(STATUS,CRS_NOT_IN_DEACTIVATED_STATE);
ValidRequests = none;

CC1

Figure 58 -- Connection client state machine: REACT processing

State CC30. The connection client checks if the plug is deactivated.
Transition TX30a. A bus reset occurs. The connection client’s lock register is unlocked.
CC_busReset();
Transition TX30b. The plug is deactivated. The connection client notifies the consumer and
producer state machines. The consumer and producer state machines will restore their state to
the state they were in prior to the bus reset. A response packet is sent. The set of valid requests
is set to none. Variable CCLI_UnlockEvent is set so when the connection register is unlocked the
appropriate event is communicated to the consumer and producer state machines.
Transition TX30c. The plug was not in the deactivated state. A response packet is sent. The set
of valid request packets is set to none.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 71 of 93
This is an unapproved 1394TA specification, subject to change

6.19.5 Connection client request == STOP
ConditionState Transi-

tion Action
New state

BusResetTX40a
Free any resources allocated; Unlock connection register;
CC_busReset();

CC0

Processing of STOP successful.TX40b
Send(STATUS,CRS_SUCCESS); ValidRequests = FREE

CC1

Processing of STOP fails

CC40:
Process STOP
request.

TX40c
Send(STATUS,appropriate status); ValidRequests = none;

CC1

Figure 59 -- Connection client state machine: STOP processing

State CC40. The connection client processes the STOP request. The producer state machine is
notified and it should stop sending frame content. The consumer state machine is notified of the
STOP request and transitions to the appropriate state.
Transition TX40a. A bus reset occurs. The connection client’s lock register is unlocked.
CC_busReset() is called.
Transition TX40b. The processing of the request was successful. The device shall not send any
more frame contents or perform any other plug activities. A response packet is sent. The set of
valid requests is set to FREE.
Transition TX40c. The processing of the request failed. The device shall not send any more
frame contents or perform any other plug activities. A response packet is sent. The set of valid
request packets is set to none.

6.19.6 Connection client request == FREE
ConditionState Transi-

tion Action
New state

BusResetTX50a
Free any resources allocated; Unlock connection register;
CC_busReset();

CC0

Processing of FREE successful.TX50b
Send(STATUS,CRS_SUCCESS); ValidRequests = none;

CC1

Processing of FREE fails

CC50:
Notify consumer
and producer state
machines of
FREE. Free plug
resources. TX50c

Send(STATUS,appropriate status); ValidRequests = none;
CC1

Figure 60 -- Connection client state machine: FREE processing

State CC50. Upon entry, the connection client notifies the consumer and producer state
machines of the FREE packet having been received. Free the plug resources.
Transition TX50a. A bus reset occurs. All plug resources are freed. The connection client’s lock
register is unlocked. CC_busReset() is called.
Transition TX50b. The request was processed successfully. A response packet is sent. The set
of valid requests is set to none.
Transition TX50c. The request was not processed successfully. A response packet is sent. The
set of valid requests is set to none.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 72 of 93
This is an unapproved 1394TA specification, subject to change

6.19.7 Connection client request == GETINFO
ConditionState Transi-

tion Action
New state

BusResetTX60a
Free any resources allocated; Unlock connection register;
CC_busReset();

CC0

Processing of GETINFO successful.TX60b
Send(INFO,CRS_SUCCESS); ValidRequests = GETPLUGINFO;

CC1

Processing of GETINFO fails

CC60:
Generate
information to be
returned in the
response packet.

TX60c
Send(INFO,appropriate status); ValidRequests = none;

CC1

Figure 61 -- Connection client state machine: GETINFO processing

State CC60. Upon entry, the connection client generates a list of all known plugs. It also
generates all the information to be returned in the response packet (connectPktID=INFO).
Transition TX60a. A bus reset occurs. All allocated resources for handling this request are freed.
The connection client’s lock register is unlocked. CC_busReset() is called.
Transition TX60b. The information has been gathered. A response packet is sent. The set of
valid requests is set to GETPLUGINFO.
Transition TX60c. The processing of GETINFO failed. A response packet is sent. The set of
valid requests is set to none.

6.19.8 Connection client request == GETPLUGINFO
ConditionState Transi-

tion Action
New state

BusResetTX70a
Free any resources allocated; Unlock connection register;
CC_busReset();

CC0

Processing of GETPLUGINFO successful.TX70b
Send(INFO,CRS_SUCCESS); ValidRequests = GETPLUGINFO;

CC1

Processing of GETPLUGINFO fails

CC70:
Generate
information about
the specified plug
and a handle for
the next plug in
the list.

TX70c
Send(INFO,appropriate status); ValidRequests = none;

CC1

Figure 62 -- Connection client state machine: GETPLUGINFO processing

State CC70. Upon entry, the connection client generates information to be returned in the
response packet (connectPktID=PLUGINFO).
Transition TX70a. A bus reset occurs. All allocated resources for handling this request are freed.
The connection client’s lock register is unlocked. CC_busReset() is called.
Transition TX70b. The information has been gathered. A response packet is sent. The set of
valid requests is set to GETPLUGINFO.
Transition TX70c. The processing of GETPLUGINFO failed. A response packet is sent. The set
of valid requests is set to none.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 73 of 93
This is an unapproved 1394TA specification, subject to change

6.20 Consumer state machine
The consumer function is broken up into 2 state machines – one for handling large frames and
one for handling small frames.

6.20.1 Large frame consumer state machine terminology
The table below explains terms used by the large frame consumer state machine.

Term Explanation
BusReset A 1394 bus reset occurs.
CreationEvent A CreationEvent occurs after the plug is successfully created and the connection

register is unlocked.
WriteLFPPR Variable set True if the consumer needs to write to the connected node

LargeFrameProducer register.
LFC Consumer’s private copy of LargeFrameConsumer register.
LFC’ The public plug LargeFrameConsumer register that a producer writes to.
LogErr() Should log an error. This is implementation dependent.
Rcode The 1394 transaction response code that should be returned if the implementation

has control over the returned response code.
ReactivationEvent A ReactivationEvent occurs after a REACT connection request is received for the

plug and the connection register has been unlocked.
WriteLF_Producer-
PortRegisters()

Writes to the LargeFrameProducer register and the LargeFramePageTableElement[]
registers.

Table 12 – Large frame consumer state machine terminology

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 74 of 93
This is an unapproved 1394TA specification, subject to change

6.20.2 Large frame consumer state machine
Note that the logic for the conditions requires the condition for TX#a to be evaluated before the
condition for TX#b, which is evaluated before the condition for TX#c, and so on.

ConditionState Transi-
tion Action

New state

BusReset || valid FREE request packet is received for this plugTX0a
Free consumer port resources;

Exit

CreationEvent received from connection client state machine.

CLF0:new
Initialize consumer
port.
LFC=0;
WriteLFPPR=T;

TX0b CLF1

BusResetTX1a
RestoreState=CLF1

CLF4

Write of ProducerLimits register failed.TX1b
LogErr();

CLF5

Write of ProducerLimits register completed successfully.

CLF1:
Write
ProducerLimit
register

TX1c CLF2

BusResetTX2a
RestoreState=CLF2

CLF4

A valid STOP request packet is received for this plug.TX2b CLF5

WriteLF_ProducerPortRegisters() failsTX2c
LogErr();

CLF5

LFC’ updated && LFC’.sc == LFC.scTX2d
Ignore update. Rcode = resp_complete.

CLF2

LFC’ updated && (LFC’.count >= 0) &&
((LFC’.mode == LAST) || (LFC’.mode == TRUNC))

TX2e

LFC=LFC’; WriteLFPPR=T;
Frame received indication sent to higher layer.

CLF3

LFC’ updated && (LFC’.count > 0) && (LFC’.mode == MORE)TX2f
LFC=LFC’; WriteLFPPR=T;
Frame content received Indication may be sent to higher layer.

CLF3

LFC’ updatedTX2g
LogErr(); ignore update; Rcode = resp_data_err;

CLF2

Large frame content received.

CLF2:consume
if (WriteLFPPR)
{
WriteLF_Producer
PortRegisters(LFP.
sc=~LFC.sc);
WriteLFPPR=F;
}

Wait for
LargeFrame-
Consumer register
update.

TX2h
Frame content received indication may be sent to higher layer

CLF2

BusResetTX3a
RestoreState=CLF3

CLF4

A valid STOP request packet is received for this plug.TX3b CLF5

Large frame segment buffer available

CLF3:
Wait for a large
frame segment
buffer to be
available TX3c CLF2

BusResetTX4a CLF4

A valid STOP request packet is received for this plug.TX4b CLF5

ReactivationEvent received from connection client state machine.TX4c RestoreState

LFC’ updated || (large frame content is received)

CLF4:deactivated

TX4d
LogErr(); Ignore update; Rcode = resp_conflict_err;

CLF4

BusReset || valid FREE request packet is received for this plugCLF5:waitFREE TX5a
Free consumer port resources

Exit

Figure 63 – Large frame consumer state machine

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 75 of 93
This is an unapproved 1394TA specification, subject to change

State CLF0. This is the initial large frame consumer state machine state when a plug is created.
Variable LFC is set to 0 and variable WriteLFPPR is set true.
TransitionTX0a. A bus reset occurs or a valid FREE request packet is received for this plug. Any
resources associated with the consumer port are freed. The state machine terminates.
Transition TX0b. The connection register is unlocked, allowing consumer activity to commence.

State CLF1. Upon entry, the consumer writes to the connected node ProducerLimits register.
Transition TX1a. A bus reset occurs. Variable RestoreState is set to the current state, CLF1.
Transition TX1b. The write of the ProducerLimits register fails. An error should be logged.
Transition TX1c. The write of the ProducerLimits register completes and all of the above
conditions evaluate false. Variable WriteLFPPR is set true.

State CLF2. Upon entry, if WriteLFPPR is true, the consumer writes to the producer’s
LargeFrameProducer and, if necessary, the LargeFramePageTableElement[] registers to allow
the producer to begin a large frame transfer. The consumer writes to the connected node so that
LargeFrameProducer.sc-bit is set to the complement of the consumer’s LargeFrameConsumer.sc
bit. The consumer waits for a LargeFrameConsumer update.
Transition TX2a. A bus reset occurs. Variable RestoreState is set to the current state, CLF2.
Transition TX2b. A valid STOP request is received for this plug.
Transition TX2c. WriteLF_ProducerPortRegisters fails. An error should be logged.
Transition TX2d. A LargeFrameConsumer update occurs, but the sc-value is incorrect. This
update is ignored. A response code resp_complete should be returned.
Transition TX2e. A LargeFrameConsumer update occurs and the producer has completed a
large frame transfer. The consumer copies the new LargeFrameConsumer value. A frame-
received indication shall be sent to a higher layer.
Transition TX2f. A LargeFrameConsumer update occurs and the producer has transferred part
of a frame, but not the end of a frame. The consumer copies the new LargeFrameConsumer
value. A consumer may send an indication to a higher layer so the part of the frame that has been
transferred may be processed.
Transition TX2g. A LargeFrameConsumer update occurs, but all of the above conditions have
tested false. An error should be logged. The update is ignored. A response code = resp_data_err
should be returned.
Transition TX2h. Frame content is received. Some implementations may receive an interrupt on
each transfer of large frame content. A consumer may send an indication to a higher layer so the
part of the frame that has been transferred may be processed.

State CLF3. The consumer waits for an available consumer segment buffer.
Transition TX3a. A bus reset occurs.
Transition TX3b. A valid STOP request packet is received.
Transition TX3c. A large frame consumer segment buffer becomes available.

State CLF4. This is the deactivated state.
Transition TX4a. A bus reset occurs.
Transition TX4b. A valid STOP request packet is received.
Transition TX4c. A ReactivationEvent for this plug is received from the connection client state
machine.
Transition TX4d. A LargeFrameConsumer update occurs or large frame content is received. An
error should be logged. The plug activity should be ignored. A response code = resp_conflict_err
should be returned.

State CLF5. The consumer state machine waits for a FREE packet to be received.
Transition TX5a. A bus reset occurs or a FREE packet is received.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 76 of 93
This is an unapproved 1394TA specification, subject to change

6.20.3 Small frame consumer state machine terminology
The table below explains terms used by the small frame consumer state machine.

Term Explanation
BusReset A 1394 bus reset occurs.
CreationEvent A CreationEvent occurs after the plug is successfully created and the connection

register is unlocked.
WriteSFPPR Variable set True if the consumer needs to update the connected node

SmallFrameProducer register.
LogErr() Should log an error. This is implementation dependent.
Rcode The 1394 transaction response code that should be returned if the implementation

has control over the returned response code.
ReactivationEvent A ReactivationEvent occurs when a REACT connect request packet has been

received for this plug and the connection register has been unlocked.
SFC Consumer’s private copy of the SmallFrameConsumer register.
SFC’ The public plug SmallFrameConsumer register that a producer writes to.
WriteSF_Producer-
PortRegisters()

Writes to the SmallFramePageTableElement register and the SmallFrameProducer
register.

Table 13 -- Small frame consumer state machine terminology

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 77 of 93
This is an unapproved 1394TA specification, subject to change

6.20.4 Small frame consumer state machine
ConditionStfate Transi-

tion Action
New state

BusReset || valid FREE request packet is received for this plugTX0a
Free consumer port resources;

Exit

CreationEvent received from connection client state machine.

CSF0: new
Initialize consumer
port.
SFC = 0;
WriteSFPPR = T;

TX0b CSF1

BusResetTX1a
RestoreState=CSF1

CSF3

A valid STOP request packet is received for this plug.TX1b CSF4

WriteSF_ProducerPortRegisters() failsTX1c
LogErr();

CSF4

SFC’ updated && SFC’.sc == SFC.scTX1d
Ignore update; Rcode = resp_complete

CSF1

SFC’ updated && SFC’.mode == 1 (SFB_FULL)TX1e
SFC=SFC’; WriteSFPPR = T;

CSF2

SFC’ updatedTX1f
LogErr(); ignore update; Rcode = resp_data_err

CSF1

Small frame content received.

CSF1:consume
If (WriteSFPPR)
{
WriteSF_Producer
PortRegisters(SFP.
sc=~SFC.sc);
WriteSFPPR=F;
}

Wait for
SmallFrame-
Consumer register
update.

TX1g
Frame received indication sent to higher layer.

CSF1

BusResetTX2a
RestoreState=CSF2

CSF3

A valid STOP request packet is received for this plug.TX2b CSF4

Small frame segment buffer available

CSF2:
Wait for a small
frame segment
buffer to be
available TX2c CSF1

BusResetTX3a CSF3

A valid STOP request packet is received for this plug.TX3b CSF4

ReactivationEvent received from connection client state machineTX3c RestoreState

SFC’ updated || (small frame received)

CSF3:deactivated

TX3d
LogErr(); Ignore update; Rcode = resp_conflict_err;

CSF3

A FREE request packet is received || BusResetCSF4:waitFREE TX4a
Free consumer port resources

Exit

Figure 64 - Small frame consumer state machine

State CSF0. This is the initial small frame consumer state machine state when a plug is created.
Variable SFC is set to 0 and variable WriteSFPPR is set true.
TransitionTX0a. A FREE request packet is received for this plug, or a bus reset occurs. Any
resources associated with the consumer port are freed. The consumer state machine terminates.
Transition TX0b. The connection register is unlocked, allowing consumer activity to commence.
A consumer may wait for a read request from a higher layer before transitioning to the next state.

State CSF1. Upon entry, if WriteSFPPR is true, the consumer writes to the producer’s
SmallFrameProducer and, if necessary, the SmallFramePageTableElement registers at this time
to allow the producer to begin a small frame transfer. The consumer writes to the connected node
so that SmallFrameProducer.sc-bit is set to the complement of the consumer’s
SmallFrameConsumer.sc bit The consumer waits for small frames and/or a
SmallFrameConsumer register update.
Transition TX1a. A bus reset occurs.
Transition TX1b. A valid STOP request is received for this plug.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 78 of 93
This is an unapproved 1394TA specification, subject to change

Transition TX1c. WriteSF_ProducerPortRegisters fails. An error should be logged.
Transition TX1d. A SmallFrameConsumer update occurs, but the sc-value is incorrect. This
update is ignored. A response code = resp_complete should be returned.

Transition TX1e. A SmallFrameConsumer update occurs and the new value of the
SmallFrameConsumer.mode-bit is set to 1 indicate the small frame consumer segment buffer is
exhausted. The consumer copies the new SmallFrameConsumer value. Variable WriteSFPPR is
set true.
Transition TX1f. A SmallFrameConsumer update occurs and all of the above conditions tested
false. An error should be logged. The update is ignored. A response code = resp_data_err should
be returned.
Transition TX1g. A small frame is received. A frame-received indication shall be sent to a higher
layer.

State CSF2. The consumer waits for an available small frame segment buffer.
Transition TX2a. A bus reset occurs.
Transition TX2b. A valid STOP request packet is received.
Transition TX2c. A small frame segment buffer becomes available.

State CSF3. This is the deactivated state. The consumer state machine waits for a REACT
packet to be sent.
Transition TX3a. A bus reset occurs.
Transition TX3b. A valid STOP request packet is received.
Transition TX3c. A ReactivationEvent for this plug is received from the connection client state
machine.
Transition TX3d. A SmallFrameConsumer update occurs or a small frame is received. An error
should be logged. The plug activity should be ignored. A response code = resp_conflict_err
should be returned.

State CSF4. The consumer state machine waits for a FREE packet to be received.
Transition TX4a. A bus reset occurs or a FREE packet is received.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 79 of 93
This is an unapproved 1394TA specification, subject to change

6.21 Producer state machines
The producer function is broken up into 2 state machines – one for handling large frames and one
for handling small frames.

6.21.1 Large frame producer state machine terminology

Term Explanation
BusReset A 1394 bus reset occurs.
fp Pointer to application data structure returned from WaitForLargeFrameContent(),

WaitForSmallFrameContent().
fp->data = pointer to data buffer
fp->SF = TRUE if fp->data represents all of a frame and it will fit and be transmitted in a
single 1394 write request.
fp->MODE = LAST if fp->data represents last part of a complete frame
fp->MODE = MORE if fp->data does not represent the last part of a frame.
fp->MODE = TRUNC if fp->data represents the end of a truncated frame.
fp->size = size (in bytes) for fp->data buffer to be sent.
fp->residue = remaining number of bytes to send

FutureLFC A producer variable holding a LargeFrameConsumer value to be written later to the
LargeFrameConsumer register on the connected node.

LF_offset Large frame buffer offset. The producer uses this to keep track of the total number of bytes
sent to the consumer’s large frame buffer space specified in the PageTableElement[]
registers.

LF_PTE Current LargeFramePageTableElement[] register in use.
LF_PTE_offset Number of bytes sent to the space in the current LargeFramePageTableElement.
LFP Producer’s private copy of LargeFrameProducer register.
LFP’ The public LargeFrameProducer register that a consumer writes to.
LogErr() Should log an error. This is implementation dependent.
Rcode The 1394 transaction response code that should be returned if the implementation has

control over the returned response code.
ReactivationEvent A ReactivationEvent occurs when a REACT connection request is received for the plug and

the connection register has been unlocked.
RestoreState Variable holding the producer state machine state prior to bus reset.
WaitForLargeFrame-
Content()

WaitForLargeFrameContent() waits for new large frame content to write. The amount of
frame content buffered is implementation dependent. If WaitForLargeFrameContent() is
called and there is still some residual frame content to send (fp->residue != 0)
WaitForLargeFrameContent() returns immediately so the residue is sent.
WaitForLargeFrameContent() returns if a fp->MODE == LAST or fp->MODE == TRUNC
indication is received, even if there is no frame content to be sent.

WriteLargeFrame(fp,
 PTE, offset, nbytes);

Writes large frame content to the space described in the LargeFramePageTableElement[]
register array. The fp variable points to the frame content. Variable PTE is the
PageTableElement register. Variable offset is the offset from the current
LargeFramePageTableElement destination_offset where writes are to begin. Variable nbytes
specifies the number of bytes to write.

WriteLFC() Write to the connected node LargeFrameConsumer register.

Table 14 -- Large frame producer state machine terminology

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 80 of 93
This is an unapproved 1394TA specification, subject to change

6.21.2 Large frame producer state machine, states LFP0 – LFP4
ConditionState Tran-

sition Action
New state

LFP0: new TX0a
LFP = 0

LFP1

BusResetTX1a
RestoreState=LFP1;

LFP5

A valid STOP request packet is received for this plug.TX1b LFP6

(LFP’ updated && LFP’.sc == LFP.sc)TX1c
Ignore update; Rcode = resp_complete

LFP1

LFP’ updated && (LFP’.run == 1) && (LFP’count > 0)TX1d
LFP = LFP’; LF_offset = 0; LF_PTE = LargeFramePageTableElement[0];
LF_PTE_offset = 0;
Rcode = resp_complete

LFP2

LFP’ updated and all above conditions evaluated false

LFP1:
Wait for
LargeFrame-
Producer update

TX1e
LogErr(); ignore update; Rcode = resp_type_error

LFP1

BusResetTX2a
RestoreState=LFP2;

LFP5

A valid STOP request packet is received for this plug.TX2b LFP6

Large frame write request received
&& LF_PTE_offset + fp->residue > LF_PTE.length

TX2c

PTE = LF_PTE, offset = LF_PTE_offset;
nbytes = LF_PTE.length – LF_PTE_offset

LFP3

Large frame write request receivedTX2d
PTE=LF_PTE; offset=LF_PTE_offset; nbytes=fp->residue

LFP3

LFP’ updated

LFP2:
WaitForLarge-
FrameContent()

TX2e
LogErr(); Ignore update; Rcode = resp_type_error;

LFP2

BusResetTX3a
RestoreState=LFP3;

LFP5

A valid STOP request packet is received for this plug.TX3b LFP6

WriteLargeFrame() failsTX3c LFP6

fp->END_OF_FRAME && fp->residue == 0TX3d
FutureLFC.sc=LFP.sc; FutureLFC.mode=LAST;
FutureLFC.count=LF_offset; Indication(frame sent);

LFP4

LF_offset == LFP.count && fp->residueTX3e
FutureLFC.sc=LFP.sc; FutureLFC.mode=MORE;
FutureLFC.count=LF_offset;

LFP4

fp->residueTX3f
LF_PTE = next LargeFramePageTableElement; LF_PTE_offset = 0;

LFP2

(LF_offset != LFP.count) && (LF_PTE_offset == LF_PTE.length)TX3g
LF_PTE = next LargeFramePageTableElement; LF_PTE_offset = 0;
Indication(frame content sent);

LFP2

LF_offset != LFP.countTX3h
Indication(frame content sent);

LFP2

WriteLargeFrame() finished and all above conditions evaluated to falseTX3k
FutureLFC.sc=LFP.sc; FutureLFC.mode=MORE;
FutureLFC.count=LF_offset; Indication(frame content sent);

LFP2

LFP’ updated

LFP3:
WriteLarge-
Frame(fp, PTE,
offset, nbytes);

LF_offset +=
nbytes;

LF_PTE_offset
+= nbytes;

fp->residue -=
nbytes;

TX3m
LogErr(); Rcode = resp_type_error

LFP3

Figure 65 -- Large frame producer state machine, states LFP0-LFP3

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 81 of 93
This is an unapproved 1394TA specification, subject to change

6.21.3 Large frame producer state machine, states LFP4 – LFP7
ConditionState Tran-

sition Action
New state

BusResetTX4a
RestoreState=LFP4;

LFP5

A valid STOP request receivedTX4b LFP6

WriteLFC succeedsTX4c LFP1

WriteLFC failsTX4d
LogErr();

LFP6

LFP’ updated (before WriteLFC completes)

LFP4:
WriteLFC(
 FutureLFC);

TX4e
LogErr(); Rcode = resp_type_error;

LFP4

BusResetTX5a LFP5

A valid STOP request receivedTX5b LFP6

LFP’ updatedTX5c
Ignore update; Rcode = resp_complete

LFP5

ReactivationEvent received

LFP5:deactivtd
LFP.run = 0;

TX5d
LFP.run = 1

RestoreState

BusResetTX6a LFP7

LFP’ updatedTX6b
Ignore update; rcode = resp_complete

LFP6

All large frame transfers have stopped

LFP6: Stop

TX6c LFP7

BusReset || Valid FREE packet receivedTX7a Exit

LFP’ updated

LFP7:waitFREE

TX7b
Ignore update; rcode = resp_complete

LFP7

Figure 66 -- Large frame producer state machine, states LFP4-LFP7

State LFP0. The initial large frame producer state machine state.
Transition TX0a. The producer port is initialized. The LargeFrameProducer register is set to
zero.

State LFP1. Producer state machine waits for a LargeFrameProducer register update.
Transition TX1a. A bus reset occurs. Variable RestoreState is set to the current state, LFP1.
Transition TX1b. A valid STOP request is received.
Transition TX1c. An update of the LargeFrameProducer register occurs but the sc-bit value is
the same as the current sc-bit value. A response code = resp_complete should be returned.
Transition TX1d. An update of the LargeFrameProducer register occurs and the run-bit is set
and the count is > 0. The producer’s private copy of the LargeFrameProducer register is set to the
updated value. Variable LF_PTE is set to LargeFramePageTableElement[0] and variables
LF_offset and LF_PTE_offset are set to 0. A response code = resp_complete should be returned.
Transition TX1e. The LargeFrameProducer register has been updated and all above conditions
have tested false. An error should be logged. The update shall be ignored. A response code =
resp_type_error should be returned.

State LFP2. State machine waits for large frame content to transfer.
Transition TX2a. A bus reset occurs. Variable RestoreState is set to the current state, LFP2.
Transition TX2b. A valid STOP request is received.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 82 of 93
This is an unapproved 1394TA specification, subject to change

Transition TX2c. A request from a higher layer to transfer large frame content is received and
the frame content will not fit into the current LargeFramePageTableElement[] space. Variable
PTE is set to LF_PTE, PTE_offset is set to LF_PTE_offset, and nbytes is set to exactly fill up the
current LargeFramePageTableElement[] register.
Transition TX2d. A request from a higher layer to transfer large frame content is received and
the frame content will fit into the current LargeFramePageTableElement[] space. Variable PTE is
set to LF_PTE, PTE_offset is set to LF_PTE_offset, and nbytes is set so that all of the frame
content is transferred.
Transition TX2e. An unexpected LargeFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.

State LFP3. Upon entry, the state machine writes the frame content. When done, variables
LF_offset and LF_PTE_offset are incremented by the number of bytes sent. Variable fp->residue
is reduced by the number of bytes sent.
Transition TX3a. A bus reset occurs. Variable RestoreState is set to the current state, LFP3.
Transition TX3b. A valid STOP request is received.
Transition TX3c. WriteLargeFrame() fails for some reason. An error should be logged.
Transition TX3d. WriteLargeFrame() completes and the large frame content sent represents the
last of the frame and there is no more frame content to be sent. Variable FutureLFC.sc is set to
LargeFrameProducer.sc. Variable FutureLFC.mode is set to LAST. Variable FutureLFC.count is
set to LF_offset. An indication to the higher layer that the frame has been sent.
Transition TX3e. WriteLargeFrame() completes, all above conditions evaluated false, and there
is more large frame content to be sent, but the space described by the
LargeFramePageTableElement[] registers is exhausted. Variable FutureLFC.sc is set to
LargeFrameProducer.sc. Variable FutureLFC.mode is set to MORE. Variable FutureLFC.count is
set to LF_offset.
Transition TX3f. WriteLargeFrame() completes, all above conditions evaluated false, and there
is more large frame content to be sent. Variable LF_PTE is set to the next adjacent
LargeFramePageTableElement[] register and LF_PTE_offset is set to 0.
Transition TX3g. WriteLargeFrame() completes, all above conditions evaluated false, and there
is no space remaining in the space described by the current LargeFramePageTableElement[].
Variable LF_PTE is set to the next adjacent LargeFramePageTableElement[] and variable
LF_PTE_offset is reset to 0. An indication is returned that the frame content was sent.
Transition TX3h. WriteLargeFrame() completes, all above conditions evaluated false, and
variable LF_offset != LF_LFP.count.
Transition TX3k. WriteLargeFrame() completes and all above conditions evaluated false. An
indication is returned that the frame content was sent. Variable FutureLFC.sc is set to
LargeFrameProducer.sc. Variable FutureLFC.mode is set to MORE. Variable FutureLFC.count is
set to LF_offset.
Transition TX3m. An unexpected LargeFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.

State LFP4. Upon entry, the state machine writes to the connected node LargeFrameConsumer
register.
Transition TX4a. A bus reset occurs. Variable RestoreState is set to the current state, LFP4.
Transition TX4b. A valid STOP request is received.
Transition TX4c. WriteLFC() succeeds.
Transition TX4d. WriteLFC() fails. An error should be logged.
Transition TX4e. An unexpected LargeFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.

State LFP5. This is the deactivated state. Upon entry, the LFP.sc and LFP.run bits are cleared.
Transition TX5a. A bus reset occurs.
Transition TX5b. A valid STOP request is received.
Transition TX5c. An unexpected LargeFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 83 of 93
This is an unapproved 1394TA specification, subject to change

Transition TX5d. A ReactivationEvent for this plug is received from the connection client state
machine.

State LFP6. The producer shall not initiate the sending of any more frame content. The producer
should abort any frame content transfers that are queued.
Transition TX6a. A bus reset occurs.
Transition TX6b. A LargeFrameProducer register update occurs.
Transition TX6c. All frame transfers have stopped.

State P7. The producer state machine waits for a FREE packet to be received.
Transition TX7a. A bus reset occurs or a FREE packet is received. The producer frees producer
port resources. The state machine terminates.
Transition TX7b. An update of the LargeFrameProducer register occurs. The update is ignored.
A response code = resp_complete should be returned.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 84 of 93
This is an unapproved 1394TA specification, subject to change

6.21.4 Small frame producer state machine terminology
The table below explains terms used by the small frame producer state machine.

Term Explanation
BusReset A 1394 bus reset occurs.
Fp Pointer to application data structure returned from WaitForLargeFrameContent(),

WaitForSmallFrameContent().
fp->data = pointer to data buffer
fp->SF = TRUE if fp->data represents all of a frame and it will fit and be transmitted in a
single 1394 write request.
fp->MODE = LAST if fp->data represents last part of a complete frame
fp->MODE = MORE if fp->data does not represent the last part of a frame.
fp->MODE = TRUNC if fp->data represents the end of a truncated frame.
fp->size = size (in bytes) for fp->data buffer to be sent.
fp->residue = remaining number of bytes to send

LogErr() Should log an error. This is implementation dependent.
NF Number of small frames sent since last SmallFrameProducer register update
Rcode The response code that should be returned if the implementation has control over the

returned response code.
ReactivationEvent A ReactivationEvent occurs when a REACT connection request is received for the plug and

the connection register has been unlocked.
RestoreState Variable holding the producer state machine state prior to bus reset.
SF_offset Small frame space offset. The producer uses this to keep track of how many bytes have

been sent to the consumer’s small frame space.
SF_PTE SmallFramePageTableElement register
SFP Producer’s private copy of the SmallFrameProducer register.
SFP’ The public SmallFrameProducer register that a consumer writes to.
WaitForSmallFrame-
Content()

WaitForSmallFrameContent() waits, if necessary, for new small frame content to write. If a
bus reset occurs after WaitForSmallFrameContent() returned with a small frame to send but
before the small frame was sent, WaitForSmallFrameContent() returns immediately so the
small frame is sent.

WriteSFC() Write to the connected node SmallFrameConsumer register.
WriteSmallFrame(fp,
offset, nbytes)

Writes a small frame to the space described by the SmallFramePageTableElement. The fp
variable points to the frame content. Variable PTE is the PageTableElement register.
Variable offset is the offset from the PageTableElement destination_offset where writes are
to begin. Variable nbytes specifies the number of bytes to write.

Table 15 -- Small frame producer state machine terminology

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 85 of 93
This is an unapproved 1394TA specification, subject to change

6.21.5 Small frame producer state machine, states SFP0 – SFP4
ConditionState Tran-

sition Action
New state

SFP0: new TX0a
SFP = 0

SFP1

BusResetTX1a
RestoreState=SFP1;

SFP5

A valid STOP request packet is received for this plug.TX1b SFP6

(SFP’ updated && SFP’.sc == SFP.sc)TX1c
Ignore update; Rcode = resp_complete

SFP1

SFP’ updated && (SFP’.run == 1) && (SFP’count > 0)TX1d
SFP = SFP’; SF_offset = 0; SF_PTE = SmallFramePageTableElement;
NF = 0;
Rcode = resp_complete

SFP2

SFP’ updated and all above conditions evaluated false

SFP1:
Wait for
SmallFrame-
Producer update

TX1e
LogErr(); ignore update; Rcode = resp_type_error

SFP1

BusResetTX2a
RestoreState=SFP2;

SFP5

A valid STOP request packet is received for this plug.TX2b SFP6

Small frame write request received
&& SF_offset + fp->residue > SF_PTE..length

TX2c SFP4

Small frame write request receivedTX2d
PTE=SF_PTE; offset=SF_offset; nbytes=fp->residue

SFP3

SFP’ updated

SFP2:
WaitForSmall-
FrameContent()

TX2e
LogErr(); Ignore update; Rcode = resp_type_error;

SFP2

BusResetTX3a
RestoreState=SFP3;

SFP5

A valid STOP request packet is received for this plug.TX3b SFP6

WriteSmallFrame() failsTX3c SFP6

WriteSmallFrame() completes &&
(SF_offset == SF_PTE.length) || (NF == SFP.maxSmallFrameCount)

TX3d

Indication(small frame sent);

SFP4

WriteSmallFrame() completesTX3e SFP2

SFP’ updated

SFP3:
WriteSmall-
Frame(fp, PTE,
offset, nbytes);

SF_offset +=
nbytes;

fp->residue -=
nbytes;

NF++;

TX3f
LogErr(); Rcode = resp_type_error

SFP3

Figure 67 -- Small frame producer state machine, states SFP0-SFP3

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 86 of 93
This is an unapproved 1394TA specification, subject to change

6.21.6 Small frame producer state machine, states SFP4 – SFP7
ConditionState Tran-

sition Action
New state

BusResetTX4a
RestoreState=SFP4;

SFP5

A valid STOP request receivedTX4b SFP6

WriteSFC succeedsTX4c SFP1

WriteSFC failsTX4d
LogErr();

SFP6

SFP’ updated (before WriteSFC completes)

SFP4:
WriteSFC(
 SFC.sc=SFP.sc,
 SFC.mode=1);

TX4e
LogErr(); Rcode = resp_type_error;

SFP4

BusResetTX5a SFP5

A valid STOP request receivedTX5b SFP6

SFP’ updatedTX5c
Ignore update; Rcode = resp_complete

SFP5

ReactivationEvent received

SFP5:deactivtd
SFP.run = 0;

TX5d
SFP.run = 1;

RestoreState

BusResetTX6a SFP7

SFP’ updatedTX6b
Ignore update; rcode = resp_complete

SFP6

All Small frame transfers have stopped

SFP6: Stop

TX6c SFP7

BusReset || valid FREE packet receivedTX7a Exit

SFP’ updated

SFP7:waitFREE

TX7b
Ignore update; rcode = resp_complete

SFP7

Figure 68 -- Small frame producer state machine, states SFP4-SFP7

State SFP0. The initial Small frame producer state machine state.
Transition TX0a. The producer port is initialized. The SmallFrameProducer register is set to
zero.

State SFP1. Producer state machine waits for a SmallFrameProducer register update.
Transition TX1a. A bus reset occurs. Variable RestoreState is set to the current state, SFP1.
Transition TX1b. A valid STOP request is received.
Transition TX1c. An update of the SmallFrameProducer register occurs but the sc-bit value is
the same as the current sc-bit value. A response code = resp_complete should be returned.
Transition TX1d. An update of the SmallFrameProducer register occurs and the run-bit is set
and the count is > 0. The producer’s private copy of the SmallFrameProducer register is set to the
updated value. Variable SF_PTE is set to SmallFramePageTableElement[0] and variables
SF_offset and SF_PTE_offset are set to 0. A response code = resp_complete should be
returned.
Transition TX1e. The SmallFrameProducer register has been updated and all above conditions
have tested false. An error should be logged. The update shall be ignored. A response code =
resp_type_error should be returned.

State SFP2. State machine waits for Small frame content to transfer.
Transition TX2a. A bus reset occurs. Variable RestoreState is set to the current state, SFP2.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 87 of 93
This is an unapproved 1394TA specification, subject to change

Transition TX2b. A valid STOP request is received.
Transition TX2c. A request from a higher layer to transfer a small frame is received and the
frame content will not fit into the space described by the SmallFramePageTableElement. None of
the small frame content is transferred.
Transition TX2d. A request from a higher layer to transfer a small frame is received and the
frame content will fit into the space described by the SmallFramePageTableElement. Variable
PTE is set to SF_PTE, PTE_offset is set to SF_offset, and nbytes is set so that all of the frame
content is transferred.
Transition TX2e. An unexpected SmallFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.

State SFP3. Upon entry, the state machine writes the frame content. When done, variables
SF_offset and SF_PTE_offset are incremented by the number of bytes sent. Variable fp->residue
is reduced by the number of bytes sent.
Transition TX3a. A bus reset occurs. Variable RestoreState is set to the current state, SFP3.
Transition TX3b. A valid STOP request is received.
Transition TX3c. WriteSmallFrame() fails for some reason. An error should be logged.
Transition TX3d. WriteSmallFrame() completes and the small frame space is exhausted or the
maximum number of small frames has been sent. An indication to the higher layer that the frame
has been sent.
Transition TX3e. WriteSmallFrame() completes and all above conditions evaluated false.
Transition TX3f. An unexpected SmallFrameProducer register update occurs. An error should be
logged. The update shall be ignored. A response code = resp_type_error should be returned.

State SFP4. Upon entry, the state machine writes to the connected node SmallFrameConsumer
register.
Transition TX4a. A bus reset occurs. Variable RestoreState is set to the current state, SFP4.
Transition TX4b. A valid STOP request is received.
Transition TX4c. WriteSFC() succeeds.
Transition TX4d. WriteSFC() fails. An error should be logged.
Transition TX4e. An unexpected SmallFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.

State SFP5. This is the deactivated state. Upon entry, the SFP.sc and SFP.run bits are cleared.
Transition TX5a. A bus reset occurs.
Transition TX5b. A valid STOP request is received.
Transition TX5c. An unexpected SmallFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.
Transition TX5d. A ReactivationEvent for this plug is received from the connection client state
machine.

State SFP6. The producer shall not initiate the sending of any more small frames. The producer
should abort any frame transfers that are queued.
Transition TX6a. A bus reset occurs.
Transition TX6b. A SmallFrameProducer register update occurs.
Transition TX6c. All frame transfers have stopped.

State P7. The producer state machine waits for a FREE packet to be received.
Transition TX7a. A bus reset occurs or a FREE packet is received. The producer frees producer
port resources. The state machine terminates.
Transition TX7b. An update of the SmallFrameProducer register occurs. The update is ignored.
A response code = resp_complete should be returned.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 88 of 93
This is an unapproved 1394TA specification, subject to change

7. IICP services (informative)
IICP layer services are provided at the interface between the IICP layer and higher layers.

Row Service Layer communicated with Purpose of service
1 IICP control request From higher layer This service performs one or more of the

following:
• Initialize the IICP layer.
• Configure the IICP layer.

2 IICP open request From higher layer Causes a connection sequence to be issued.
3 IICP close request From higher layer Causes a connection to be torn down and freed.
4 IICP write data frame

request
From higher layer Causes a data frame to be sent.

5 IICP write control
frame request

From higher layer Causes a control frame to be sent.

6 IICP read data frame
request

From higher layer Causes an update of the data port
ProducerMode register.

7 IICP CREQ1 indication To higher layer Indicate the reception of a CREQ1 packet from
another node..

8 IICP connection
established indication

To higher layer Indicate the completion of a connection
sequence initiated by another node.

9 IICP stop indication To higher layer Indicate the reception of a STOP packet
10 IICP error indication To higher layer Indicate an IICP layer error or lower level

protocol error.
11 IICP control frame

received indication
To higher layer Indicate reception and convey contents of control

frame to higher layer.

7.1 IICP control request
The higher layer uses this service to perform one or more of the following:
1. Initialize the IICP layer.
2. Configure the IICP layer.

Ever power-on sequence should result in control requests to initialize the layer and to configure
the IICP layer.

7.1.1 Initialization of IICP layer
This operation results in the initialization of the connection manager state machine (if the
implementation can perform as a connection manager) and the connection client state machine.
This operation would also initialize the connection lock register and map the 512-byte connection
register to 1394 space.

7.1.2 Configure the IICP layer
This operation would communicate any tunable parameters to the IICP layer. Examples of
tunable parameters are:
1. Maximum and minimum sizes for buffers.
2. Maximum sizes for scatter/gather page tables.

This would also allow registration of callback functions for certain events that a higher layer would
be interested in knowing about. Suggested callback functions an implementation may provide
are:
1. IICP_CREQ1_callback (…)
2. IICP_connectionEstablished_callback (…)
3. IICP_STOP_callback (…)
4. IICP_err_callback (…)

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 89 of 93
This is an unapproved 1394TA specification, subject to change

7.1.2.1 IICP_CREQ1_callback (…)
Notifies higher layer of a new connection. The following parameters from the CREQ1 packet are
communicated to the higher layer.
1. CommandSet
2. ConnectionParameters

The higher layer may return the following information to the IICP layer:
1. Acceptance or rejection of the connection request.
2. Whether the connected node is required to write sequentially.
3. The size of data frames that the higher layer may produce.
4. The size of control frames that the higher layer may produce.

After receiving the information from the higher layer, the IICP layer formulates the connection
response (CRESP1).

If the higher layer has not registered an IICP_CREQ1_callback(…), the IICP layer should proceed
with default parameters.

If the higher layer has registered an IICP_CREQ1_callback(…) but only returns partial
information, the IICP layer should proceed with default parameters as appropriate.

7.1.2.2 IICP_connectionEstablished_callback (…)
Notifies higher layer of the completion of a connection sequence initiated by another node. This
service communicates to a higher layer that it is now permissible to perform reads and writes
through this new connection. The following parameters from the CREQ2 packet is communicated
to the higher layer.

1. The data frame size from the connected node.
2. The control frame size from the connected node.
3. Whether the connected node requires sequential writes.
4. A handle to the newly created connection.

7.1.2.3 IICP_STOP_callback (…)
Notifies higher layer of the cessation of plug activity.

7.1.2.4 IICP_err_callback (…)
Notifies higher layer of an IICP error or lower protocol error. A higher layer may log the error to a
file, to an I/O port for printing, or to a display. An example of the use of IICP_err_callback() is if a
plug fails reactivation after a bus reset.

7.2 IICP open request
This service, available on nodes that have connection manager capability, issues a connection
sequence and establishes a plug connection between two IICP devices. The higher layer
provides the following information so the IICP layer can perform the request:
1. command_set_spec_id, command_set, and command_set_details.
2. connectionParameters.
3. Some form of node identification for the node to be connected.
4. The data frame size.
5. The control frame size.
6. Whether sequential writes are required.

When the connection sequence has completed, the following information is provided to the higher
layer:
1. Success or failure of establishing the connection.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 90 of 93
This is an unapproved 1394TA specification, subject to change

2. Whether sequential writes are required when writing to the connected node.
3. The size of data frames from the connected node.
4. The size of control frames from the connected node.

7.3 IICP close request
This service, available on nodes that have connection manager capability, issues a connection
sequence to stop a plug.

7.4 IICP write data frame request
This service results in a data frame or a part of a data frame being sent to the connected node.
Example, informative, pseudo-code is shown below.

IICP_write(…, bool END_OF_FRAME, …)
{
 bool sent = false;
 bool isSmallFrame = true;

 if (request size > 512 bytes
 || request does not represent complete frame) {
 isSmallFrame = false;
 }
 if (small frame producer state == SFP2
 && isSmallFrame
 && END_OF_FRAME) {
 sent = SmallFrameWriteRequest(…); // might not be sent if
 // not enough space
 }
 if (!sent) { // send as large frame
 block until large frame producer state == LFP2;
 LargeFrameWriteRequest(…);
 }
}

7.5 IICP write control frame request
This service results in a control frame or part of a control frame being sent to the connected node.
This service may provide a mechanism for higher layer protocols (for example, IICP488) to send
asynchronous stream trigger packets.

7.6 IICP read data frame request
This service results in the programming of the data port ProducerMode register on the connected
node. The connected node may then begin sending data frame(s).

The IICP layer blocks until the read request is satisfied. The criteria for returning from a read
request are implementation and higher level protocol dependent.

7.7 IICP CREQ1 indication
If a callback has been registered (see the IICP control service), the callback function is called with
implementation-dependent parameters.

7.8 IICP connection established indication
If a callback has been registered (see the IICP control service), the callback function is called with
implementation-dependent parameters.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 91 of 93
This is an unapproved 1394TA specification, subject to change

7.9 IICP stop indication
If a callback has been registered (see the IICP control service), the callback function is called with
implementation-dependent parameters.

7.10 IICP err indication
If a callback has been registered (see the IICP control service), the callback function is called with
implementation-dependent parameters.

7.11 IICP control frame received indication
This indication occurs when an IICP control frame is received. This indication may be a callback
function that has been set up by the higher layer. A callback may have been set up in either of
the following ways:
1) Via a parameter in the IICP open request.
2) Via the IICP connection established indication callback parameters.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 92 of 93
This is an unapproved 1394TA specification, subject to change

8. Error recovery
This section further enumerates methods and practices to ensure error free IICP
communications.

8.1 Application-level retries
The resources associated with plug-visible addresses are designed to be idempotent, in that the
effects of single and duplicated writes are the same. For this reason, transaction faults observed
by the requester (but not necessarily observed the responder) can be safely retried by the plug-
level application.

1394 transaction-level errors expected to be retried include the following:
• Response timeout. The response does not return within the SPLIT_TIMEOUT specified

timeout.
• Response errors. The response returns with either of the following response code (rcode)

values:
1) resp_data_error. This can be indicative of a transient transmission error.
2) resp_conflict_error. This can be indicative of a transient bridge congestion condition.

The same expectations apply to unified transactions completed with ack_data_error or
ack_conflict_error indications (rather than resp_data_error or resp_conflict_error).

If another transaction-level response is returned, or if a reasonable number of retries fail, an error
should be logged. The relevant state machine shows the behavior to follow when an error occurs.

8.2 1394 bus resets
1394 bus resets will occur on busses when devices are powered on and off or when 1394 cabling
is changed. After a bus reset, a node shall deactivate all IICP connections. A reactivation request
from the node that instantiated the connection is required to reactivate the connection. See
section 6.13 above.

8.2.1 Bus reset while connection registers are locked
Any plug and/or plug resources in the process of being created may be freed. After a bus reset,
the connection manager is required to send all connection requests over again.

8.2.2 Bus reset during updates of plug fields
A bus reset may occur while a node is updating the public memory plug fields of another node.
Any bus reset that occurs prior to a final ack complete shall result in the update being re-sent.

8.2.3 Bus reset while transferring data
A 1394 bus reset can occur while transferring data. When this occurs, an IICP plug shall go to the
deactivated state until a reactivation occurs. Following a reactivation (of both nodes involved in
the connection), any data that was being sent that was interrupted shall be resent.

To further clarify, after a reactivation of both sides of a connection, a producer shall retransmit all
outstanding write requests that were in the process of being written to a consumer. A transaction
shall be considered outstanding if a write response has not been received and an ack-complete
successfully sent from the producer to the consumer.

Consumers shall be tolerant of receiving duplicate write packets.

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

 Copyright © 1998-1999 1394TA Page 93 of 93
This is an unapproved 1394TA specification, subject to change

8.2.4 Duplicate writes
If a consumer receives a write with a destination offset identical to a previous write that was
successfully processed, the consumer shall accept the packet and either discard the redundant
write or process the write.

