08/02/99 IICP Draft 1.00rc3 1394TA II-WG

2

1394 TRADE »

_—

1394TA IICP

Draft Specification for the
Instrument & Industrial Control
Protocol

Draft 1.00RC3 (release candidate 3)
August 2, 1999

Sponsored by:
Instrumentation and Industrial Control Working Group (II-WG) of the 1394 Trade Association

Approved for Release by:
This document has not yet been approved for release by the II-WG or the 1394 Trade Assocation

Abstract:

This document describes a lightweight protocol for efficient asynchronous communication to
electronic instrumentation and industrial control devices using the IEEE-1394 serial bus. This
protocol uses a dual-duplex plug structure for transfer of data and command/control sequences.
A consumer communicates to a connected producer the space available in a consumer segment
buffer, so all communication is flow controlled. This document specifies the establishment, use,
and maintenance of the plugs. This document also specifies the discovery process for nodes
implementing the protocol, and furthermore, specifies the discovery and operation of minimal
memory mapped nodes.

Keywords: protocol, instrument, industrial control, 1394, asynchronous, lightweight, flow control,
discovery, memory mapped

1394 Trade Association
2350 Mission College Blvd. , Suite 350 , Santa Clara, CA, 95054, USA

http://www.1394TA.org

Copyright © 1998-1999 by the 1394 Trade Association. Permission is granted to members of the 1394 Trade Association
to reproduce this document for their own use or the use of other 1394 Trade Association members only, provided this
notice is included. All other rights reserved. Duplication for sale, or for commercial or for-profit use is strictly prohibited
without the prior written consent of the 1394 Trade Association.

2
Al e Copyright © 1998-1999 1394TA Page 1 of 93
- EEEmESs———==——— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

1394 Trade Association Specifications are developed with Working Groups of the 1394 Trade
Association, a non-profit industry association devoted to the promotion of and growth of the market for IEEE
1394 computer products. Participants in working groups serve voluntarily and without compensation from
the Trade Association. Most participants represent member organizations of the 1394 Trade Association.
The specifications developed within the working groups represent a consensus of the expertise represented
by the participants.

Use of a 1394 Trade Association Specification is wholly voluntary. The existence of a 1394 Trade
Association Specification is not meant to imply that there are not other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of the 1394 Trade Association
Specification. Furthermore, the viewpoint expressed at the time a specification is approved and issued is
subject to change, brought about through developments in the state of the art and comments received from
users of the specification. Users are cautioned to check to determine that they have the latest revision of any
1394 Trade Association Specification.

Comments for revision of 1394 Trade Association Specifications are welcome from any interested party,
regardless of membership affiliation with the 1394 Trade Association. Suggestions for changes in
documents should be in the form of a proposed change of a proposed change of text, together with
appropriate supporting comments.

Interpretations: Occasionally, questions may arise about the meaning of specifications in relationship to
specific applications. When the need for interpretations is brought to the attention of the 1394 Trade
Association, the Association initiates action to prepare appropriate responses.

Comments on specifications and requests for interpretations should be addressed to:

Editor, 1394 Trade Association
2350 Mission College Blvd. Suite 350
2350 Mission College Bivd.

Santa Clara, California 95054, USA

1394 Trade Association Specifications are adopted by the 1394 Trade Association without
regard to patents which may exist on articles, materials or processes or to other proprietary
intellectual property which may exist within a specification. Adoption of a specification by the
1394 Trade Association does not assume any liability to any patent owner or any obligation
whatsoever to those parties who rely on the specification documents. Readers of this
document are advised to make an independent determination regarding the existence of
intellectual property rights which may be infringed by conformance to this specification.

2
Al e Copyright © 1998-1999 1394TA Page 2 of 93
- EEEmESs———==——— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Introduction

The 1394TA 1I-WG was formed with the following charter:
Investigate protocols specific to instrumentation and industrial control applications.
Efficiently and robustly transfer data in a standard way between serial bus compliant nodes.
Use enhanced features of the IEEE1394 architecture to encapsulate existing command sets
and protocols, for example GPIB.
Expand into native IEEE1394 usage models to adopt and implement new features now
possible.

The 1I-WG decided in September 1998 to first create a baseline document. Higher level protocol
documents, for example GPIB using IICP (1ICP488), will follow, building on this baseline IICP
document.

Committee Membership

Chairman: Andreas Schloissnik
Company: 3A International
Email: aschloissnik@ 3a.com

Phone:_(602) 437-1751

Secretary: Gary Sakmar
Company: Keithley Instruments
Email: gsakmar@keithley.com

Phone: (440) 542-8016

Editor: Andy Purcell
Company: Hewlett-Packard
Email: andyp@Ivid.hp.com
Phone: (970) 679-5976

II-WG Reflector: '1394-i@1394TA.org'
The following individuals are acknowledged for their contributions to this specification:

Greg Hill

Steve Schink
Dave James
Andrew Thomson

2
g%%gmﬁgg Copyright © 1998-1999 1394TA Page 3 of 93
- EEEmESs———==——— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Table of contents

1. Instrumentation and industrial control protocol (I1ICP) OVEIVIEW..........cceieieieiiieiiee e 8
R RS oo o[T PP OUPRTTR 8

2. REFEIENCES .. 9
3. Document definitionS aNd NOBLIONcoeeiierieeiieriieriie e snees 10
3.1 Word usage— shall, Should, Mal, CAN........coocuiiiiiiiiii et 10
3.2 DEFINITIONS....teeteeiteeit ettt e e r e 10
RGN N [¥ 10 41 £ of oo = 1o o B TP P PP TR UP PR 11
34 StAte MAECHINE NOLALIONeiiieeieieiee e 12

O N RS = (=0 7= e 01T 0 1= o o [oSOV RRURRRI 12

34.2 State machine transitions — teXt AESCHIPLIONoveieiiieiiee e 12

3.5 Packetswith data payl0adceioiiiiiiiiie e 13
36 RESEIVED FIEIOS ... s 13
3.7 Figuresdepicting 1394 a0areSS SPACE.......ceeitiriiei ettt ettt ettt ettt et e saee e s be e 13

4. FUNCHONGI QISCOVEY ...ttt ettt ettt b et ae e e e e et e e st e e e be e e ebee e sabe e smbeesnbeeentes 14
4.1 Configuration ROMooiuiiiiee ittt ettt et e et e e saee e sabe e sabe e sbe e e be e e abee e sabeesabeeanbeeanees 14
4.1.1 Configuration ROM SIIUCIUIEeiiitiieiiiieiiee sttt ettt saae e s e b e sbee e sane s 14
4.1.2 MUItI-ProtOCOl HEVICES. ... ueieieiee ittt ettt ettt sb e e saae e st esbe e bee e saee s 19
4.1.3 Read operations on the configuration ROMccoiiiiiiiiiiiiiniie e 19
4.1.4 Devicealiases (nicknames) in the configuration ROMcccoiiiiiiiiiiicnien e, 19

5. 1CP 1394 memory-mapPed 1/O.......ccuei ittt b e sae e e nes 20
5.1 Interrupt mechanism for [ICP memory mapped deViCES.........ocoveiiaiieeiiee et 20

[l o U o Q= gTe o [T £ o T = SRS 20
INEENTUPE_NANAIT FEOISIEN .ttt e eae e et esate e s b e e ees 20

5.2 1394 memory mapped only [1CP device lIMitations...........cccoveieiiieiie e 21

6. IICP asynchronous Plug CONNECLIONScoiuuieiieriieeeriee et e siee st et et esbe e s sbe e e saee e snbeesnbeeenees 22
6.1 Introduction to IICP CONNECHION PIUGS.oeiutiriieieitie ettt 22

LN 0 1 (O e = 0= TP P PP RPRT PR 22

B.1.2 PlUQ @rChITECIUottt ettt ettt sbe e et e e s be e e be e e sbe e e saeeesabeans 24

6.2 PlUG regiSter QELAIISeeieeiee ettt h et e b e ae e b e e 25
6.2.1 ProduCerLimitS FEgISIENciiiii ettt ettt ettt ettt sae et e st e e s be e sbe e e saeeesareans 25

6.2.2 SmallFramePageTableElement regiSterooouiiiiieiie et 26

6.2.3 SMallFramePrOdUCES FEJISIENieiiieitie ettt ettt s b e sae e e saee e saneeans 26

6.2.4 LargeFramePrOdUCEr FEOISIENieiieeiieieiee ettt ettt ettt e st e e sbe e e saneesareans 27

6.25 LargeFramePageTableElement regiSters........ooouieiiieiieiiie e 27

6.2.6 SMallFrameCONSUMES FEOISIENeiiiiieitiieiee ettt et e ettt esbe e s sbe e e sbe e e saeeesareaans 28

6.2.7 LargeFrameCONSUMEN FEOISIENiiiuiieiiie et et e st et et et e e sae e e sabe e sbe s s be e e sbeeesnneesaneans 28

6.3 1394 operations allowed 0N PlUQ FEJISIENS.......ooiiiiiiie ettt e s 29
6.3.1 Efficient updating Of plug rEQISLErScc.viiiiiiiiei ettt 29

6.4 LargeframetransierS... ... o 29
6.4.1 Sequential and non-sequential writesfor large frametransfers...........coocoviiiiiiiiiens 30

6.5 SMall frame traNSIErS. ... s 31
6.6 Mixing of large frame mode and small frame transfer mode.............coccoeveiiiiiniene e 32
6.7 ConsSUMEr SEJMENT DUFFENS.......eiiiii ettt e e 33
6.8 PlUQ SCNEIMALICS ... ettt ettt ettt ettt e be e she e e sabe e s abe e e be e e saee e sabeesnbeeenees 33
6.9 MUILIPIE EVICES ...ttt ettt bt he e sa e e st e e e be e e saee e sabe e snbeeenees 34
6.10 CONNECLION VAITALIONS......cueeieeeiieerieisiee sttt n e 34
6.11 Creating an HICP CONMNECLION.......coiueiiiiieiiee ettt ettt et e e sbe e e saee e sabe e snbeeeees 35
6.11.1 CONNECLION CIrEBtiON SEOUENCE.eeiuieeutieeieeaateeestteesbeesbeeesteessaeeesabeesbeasbeeaabeeesneeesaneaans 36
6.11.2 Note on dataFrameSize, controlFrameSize and sizing of consumer buffers..................c.... 42

6.12 CONNECLION AEBCLIVALION ...ttt 43
6.13 CONNECLION FEACHIVALION.......cveieeeieeiiiee sttt 43
6.13.1 REACHVALTON SEQUENCE. ... eeiiteieitieeiiee et ee ettt etee e sete e st e sbe e e sbe e e sbee e sabeesabeesbeeeabeeesaeeasareeans 44

6.14 Disconnecting [CP CONMNECLIONS........c.uiiiiiiiiii ettt 46
6.14.1 DiSCONNECION SEQUENCE.ceeuteeeteteiuieeiteaateeaateeesteeasabeesbeeaaseeaaaeeesabeesabessaseeeaseeesssessnsessns 46

6.15 Obtaining conNection INFOrMELIONcouiiiiiieiie et 49
/"A%%O%/ Copyright © 1998-1999 1394TA Page 4 of 93

This is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.15.1 Connection iNfOrMation SEOUENCEccoueiiiiiiiee et siee ettt et e b e e sb e e saee e sane e 49
6.16 Summary of connection packet fIEldSoceiiii i 53
6.16.1 CONNECIPKEIA VAIUES......c.oeiiiiiiieitieitee sttt 53
6.16.2 CONNECIREJUESISEAIUS VAIUES.coeiiieiiiieiee ettt ettt 53
6.17 MiscAlaneoUS MECIO VAIUES........cc.eiiiiiiiiieiiieie sttt 54
6.18 Connection manager State MAaChiNe..........c.eiiiiiiiii e 55
6.18.1 Connection manager state maching: reqUESt SEartUDcoocveeeriereieeeriee e 56
6.18.2 Connection manager state machine: LockRegisters(devicel,device?)........ooovvveienieencnenns 57
6.18.3 Connection manager state machine UnlOCkREGISLENS()......ceerveeeiiiiiiiiiiiiiiie e 59
6.18.4 Connection manager state maching: creating aplug.......coceeereeerererieeriee e 61
6.18.5 Connection manager state machine: reactivating a ConNeCtionccocceeeieeeneeerieeniennns 63
6.18.6 Connection manager state machine: stopping & CONNECLIONc.eeeiveeriieriiee e e e 64
6.18.7 Connection manager state machine: get plug informationcccooceeiieriien e 65
6.18.8 Connection manager state machine: get specific plug informationcccovvieiiiinenns 66
6.18.9 Connection manager state machingl CM_DUSRESEL()cvevviveiiiiiiiiie e 66
6.19 Connection client State MAChINE...........ooiiiiiii e 67
6.19.1 Locking of connection register and waiting for reqQUESE.........ceeeieeeiieeiien i 68
6.19.2 Connection client request == CREQL.........coiiiiiiiiieee et 69
6.19.3 Connection client request == CREQZ.........ceiiiiiiiiieee et 70
6.19.4 Connection client request == REACToooiiiiiiiee ettt 70
6.19.5 Connection client reqUESt == STOPoiiiiiiii et saee e 71
6.19.6 Connection client request == FREEccccoiiiiiiiiee e 71
6.19.7 Connection client request == GETINFOccoiiiiiiiiiiieee e 72
6.19.8 Connection client request == GETPLUGINFO............cccoiiiiiiiiiiiie e 72
6.20 CoNSUMEr STAEE MACKINE.c.ueiiiiiiiiee e 73
6.20.1 Largeframe consumer state machine terminologyoccveieieiiieriee e 73
6.20.2 Largeframe consumer State MaChiNg.........cceiiieieiiieiiee ettt 74
6.20.3 Small frame consumer state machine terminologyocceveieiriiieiiee e 76
6.20.4 Small frame conSUMEr StatE MECHINE.........eoiieieeriieriee e 77
6.21 ProducCer StAE MEBCHINESccueiieiieeerieesie ettt n e 79
6.21.1 Largeframe producer state machine termMinOlOgY..........ccucvererieieiereiiee e esieeesiee e e 79
6.21.2 Largeframe producer state machine, statesSLFPO — LFPA.......cooiiiiiii e, 80
6.21.3 Largeframe producer state machine, stateSLFPA — LFP7.......cooiiiiiiiiiiiieee 81
6.21.4 Small frame producer state machine terminolOgyccoceeeriieiiieiiee e 84
6.21.5 Small frame producer state machine, states SFPO — SFPAoooiiiiiiiiiiiiee e 85
6.21.6 Small frame producer state machine, states SFP4A — SFP7cooiiiiiiiiiieee e 86

7. 1CP SErVICES (INFOMMBLIVE)eeeiieeetii ettt ettt ettt e sae e st e e s be e e be e e sbee e smbe e snbeeenees 88
A R L (O oo gL o I = o (U= RS RR PR 88
7.1 INnitialization Of HHCP AYENcoiiiie ettt saee e sane e 88
7.1.2 ConfigUrethe HICP LAYESooeeieie ettt saee e sane e 88
7.2 1ICP OPEN FEOUESE ...ttt ettt ettt et e e e s a bt e e e s b b e e e e sabe e e e s aabe e e e sbbeeessnbeeeesanneeeeanns 89
7.3 TICP ClOSE FOOUES.....ceitei ettt ettt et sat et e st et bt e ebte e sabe e s abe e e be e e saeeesabeesnbeeenees 90
7.4 TICPWrite dataframe rEUESL.........coo ittt bttt e et saee e st e b e e ees 90
7.5 TICPwrite control frame rEQUESEeiiieie ittt et 90
7.6 1ICPread dataframeraqUESE........c.coo ittt ettt et b e 90
7.7 1CP CREQLINGICAION ...c.veivieiiiiieeitee sttt 90
7.8 11CP connection establiShed iNAICAIIONco.eiieiiiiiiiie e e 90
A I (O = (o o T o [Tor= (oo WA ROV 91
710 HCP T INGICAION.eeiieiiiieeieeeiiee sttt 91
7.11 [1CP control frame recaived iNAICALION.cveiieiieiee e e 91
T = o g (= olo < OO PP OPPR PP 92
8.1 APPlICAON-TEVE FEIITES.......iieii ittt et saee e st e b e e e 92
8.2 L1304 DUS TESELS ...tttk h et a e a et n e e an e 92
8.21 Busreset while connection registersare loCKedcoveeiiiiiiiiiiieiee e 92
8.2.2 Busreset during updates of plug fiEldS.........cooiiiiiiiii e 92
8.2.3 Busreset WhiletransSferring data...........c.eveeiiieiiiieeree et 92
/"A%%O%/ Copyright © 1998-1999 1394TA Page 5 of 93

This is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

8.2.4 DUPIICAIE WIITES. ... eeeieee ettt ettt ettt ettt e et e e sbe e e sab e e s abe e s beeesbeeesaeeesnneaans 93

List of figures

Figure 1 -- State maching NOALIONoooiiiiiii e e e e e 12
Figure 2 -- 1394 block write with header and payload...............ccooeiiiiiiiiiiiiiii e 13
Figure 3 -- 1394 block write (ShOrt fOrm)coouueeii e 13
Figure 4 -- Figures depicting 1394 addreSS SPACEcccuuuuuiiiiieeiiieiiiia et e e 13
Figure 5 -- IICP configuration ROM format (one unit dir€CtOry)uevvieeiiiiiiiiiiieeeeeeeiiii e 14
FIQUIE 6 == ROOL QIFECTONY ettt ettt e e e et ettt e e e e e e e eebbaa e eaas 15
FIgUre 7 — HHCP UNIE AIFECTONY ... ettt e e e e ettt e e e e e e eebaa e e as 16
FIQUIE 8 - TICP _dELAIIS ...ttt e e ettt e e e e e e eaba e 16
Figure 9 -- Connection register IN 1394 SPACE.......coi i ittt 17
Figure 10 -- HICP_CapabilitieS ©NTIYcoooiiiiiiiiii et e e e 17
Figure 11 -- interrupt_enable FEOISTENccoi it 20
Figure 12 -- interrupt_Nandlr FEQISTENcooiiiiii e 20
Figure 13 -- Typical [ICP CONNECTIONiiiiiiiiiiiiie et e et e e e e eeraa e 22
Figure 14 -- [ICP PlUGQ CONTENTS ..ot e e e e ettt e e e e e eebbaa e aas 24
Figure 15 -- ProdUCErLIMITS MEOISTENttt ettt e et e e e e eebba e 25
Figure 16 — PageTableElement regiSter........couuuuuii i 26
Figure 17 -- SmallFrameProduCer rEQISTEN i 26
Figure 18 -- LargeFramePrOodUCEN FEQISTENuuu ettt e e 27
Figure 19 — SmallFrameCoNSUMET FEQISTENu..ii ettt e et e e e e erba e 28
Figure 20 -- LargeFrameCONSUMET FEOISTEYuuuu ettt e et e e e e e ettt e e e e e eerba e 28
Figure 21 — Large frame tranSTerS e 30
Figure 22 -- Small frame tranSTerS. e 32
Figure 23 -- Consumer segment DUFEIS 33
Figure 24 -- [lICP plug SCREMALIC.........uuiiiiii e 33
Figure 25 -- Shorthand [ICP plug SChemMALIC..........cooiiiiiiiiiii e 34
Figure 26 -- Multiple iNStrument CONNECLIONSoiiiiiiiiiii e 34
Figure 27 -- Connection manager with 2 independent deviCes.............coooeeiiiiiiiiiiiiieeiiiieiiiee, 35
Figure 28 -- Connection manager with 1 independent deViCecoiiiiiiiiiiiiiiiiiiee e 35
Figure 29 -- Establishing an HCP CONNECTION.oiiiiiiiiiiiiiii e 36
Figure 30 -- Connection register lock request packet............cooooiiiiiii e 37
Figure 31 -- Connection register lock response packet ..., 37
Figure 32 -- Connection request packet (CREQL)ccooiiiiiiiiiiiiiiiieiiie e 38
Figure 33 -- Connection response packet (CRESP)couuuuiiiiiiiiii e 39
Figure 34 -- Connection request packet (CREQ2)coouuiiuiiiiieiiieeii e 40
Figure 35 -- Connection response packet (STATUS).....oouiiiiiiiiii e 40
Figure 36 - REaCtiVatiON SEOUEBNCE.oi ittt e ettt e e e e e eebbaa e 43
Figure 37 -- Reactivation request packet (REACT) ... 44
Figure 38 -- DISCONNECT SEOUENCE.ttt e et a e e e e et e e e e e e eebana e eaas 46
Figure 39 -- STOP requUESE PACKEL i a7
Figure 40 -- FREE requeSt PACKEL.........cooii i 48
Figure 41 -- Connection information SEQUENCEcoiiiiiiiiiii ettt e e 49
Figure 42 -- GETINFO request PACKELooeuiiiiii e 49
Figure 43 -- INFO reSPONSE PACKELoi it 50
Figure 44 -- GETPLUGINFO reqUEeSt PACKEL.........ciiiiiiiiiiiiiie e 50
Figure 45 -- PLUGINFO reSPONSE PACKELc.uuuuiiiiiaiiieiiiiii ettt 51
Figure 46 -- Connection manager state machine: request Startup...........oocooeeviiiiniieeeeieeiiiieeeenn, 56
Figure 47 -- Connection manager state machine: LOCKREQISIErS().......ooveevvveeriiniiineeeiiieiiiieeeeen, 57
Figure 48 -- Connection manager state machine: UnlockRegiSters()ccouvuvvvuiniiieiiiieiiiinnnnenn. 59
Figure 49 -- Connection manager state machine: creating a plugcccoooeiiiiiiinieiiiiiiiicnnen, 61
Figure 50 -- Connection manager state machine: reactivating a plug..........cccouuviiiniiiiiiiiiiinnnenn. 63

/"A%%O%/ Copyright © 1998-1999 1394TA Page 6 of 93

This is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Figure 51 -- Connection manager state machine: stopping a connectioncccoeeevvvueenennn. 64
Figure 52 -- Connection manager state machine: get plug informationiiinn. 65
Figure 53 -- Connection manager state machine: get specific plug information.............c............. 66
Figure 54 -- Connection manager state machine: CM_DBUSRESEL().......ovvveeiiiiiiiiiiiiiieiiieeiiiiieeee, 66
Figure 55 -- Connection client state machine: locking and waiting for request..............cccceeeeeee. 68
Figure 56 -- Connection client state machine: CREQL ProCeSSING........coveeviieiiiiuiiieeaeieeiiiiiaeeenn 69
Figure 57 -- Connection client state machine: CREQ2 ProCeSSING........coueeiiieiriiniiiiaeaeieeiiiiiaeeenn 70
Figure 58 -- Connection client state machine: REACT ProCeSSINGooveeviieiiiiiiiieeeiieeiiiianeeenns 70
Figure 59 -- Connection client state machine: STOP ProCesSingcoooeeeveeiiiiiiniieeeeieeiiiieneeenn 71
Figure 60 -- Connection client state machine: FREE ProCeSSINg..........oiiveeiiieiiiiiiiiieeeeieeiiiieeeenn 71
Figure 61 -- Connection client state machine: GETINFO ProCesSingcccoeuvuvuniieeeiieeiiiiinnnenn 72
Figure 62 -- Connection client state machine: GETPLUGINFO processing..........ccoeevveeevvvuunnennn. 72
Figure 63 — Large frame consumer state Machingooiiiiiiiiiiiiiii e 74
Figure 64 - Small frame consumer state MaChing ... 77
Figure 65 -- Large frame producer state machine, states LFPO-LFP3...........cccccoiiiiiiiiiiiiiiiinnn, 80
Figure 66 -- Large frame producer state machine, states LFP4-LFP7...........ccoooeiiiiiiiiiiiiiiiiinnn. 81
Figure 67 -- Small frame producer state machine, states SFPO-SFP3..........ccooiiiiiiiiiiiiiiii, 85
Figure 68 -- Small frame producer state machine, states SFP4-SFP7coviiiiiiiiiiiiiii, 86

List of tables

Table 1 -- Configuration ROM CONSTANTSiiiiiiiiiiiiiii ettt e e e e eeaab e e aaeeees 18
Table 2 -- Configuration ROM KEY VAIUES..........ccoiiiiiiiiiii et 18
Table 3 -- maxLoad-payload VAIUESiiiiiiiiii et eaaeeees 25
Table 4 -- LargeFrameConsumer.mode definition ... 29
Table 5 — Consumer segment buffer size and dataFrameSize, controlFrameSize 42
Table 6 -- CONNECIPKLIA VAIUEScoovviiiiiiiiiiii 53
Table 7 -- conNNeCtREQUESTSTAIUS VAIUBS oottt e eeees 54
Table 8 -- Miscellaneous MACIO VAIUESccovviiiiiiiiiiiiiii 54
Table 9 -- Connection manager state machine terminology ... 55
Table 10 -- Suggested UnlockResult bit definitions. ..o 60
Table 11 -- Connection client state machine terminology..............coovv oo 67
Table 12 — Large frame consumer state machine terminology............ccooouuiiiiiiiiiiiiiiiiiii e 73
Table 13 -- Small frame consumer state machine terminology...........cccuueuuiiuiiiiiraiiiiiiiiia e 76
Table 14 -- Large frame producer state machine terminology...........ocoouveiiiiiiiiiniiiiiiii e 79
Table 15 -- Small frame producer state machine terminologyccooeuuiiiiiiiiiiiiiiiii e 84

"394/1?‘&‘35/ Copyright © 1998-1999 1394TA Page 7 of 93

AASSOCIATION o 99 1<)
EmEmSesmS==== This is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

1. Instrumentation and industrial control protocol (IICP) overview

1.1 Scope

The scope of this document is to define a lightweight communication protocol for instrumentation
and industrial devices using the high-speed IEEE1394-1995 serial bus. This document defines
structures and efficient, flow-controlled mechanisms to transfer data and command/control
sequences to devices. This document specifies the discovery of nodes that support the protocol.
It describes the set up and maintenance of the connection.

It further specifies the discovery of memory mapped 1394 devices that serve as instruments or
industrial devices. It defines an interrupt notification mechanism for memory mapped devices.

The scope of the baseline document does not extend to defining the content of data or
command/control sequences.

The following documents are anticipated to make use of this baseline document:

1. 1ICP488. Specifies the use of [ICP to send IEEE488 (GPIB) messages and control
sequences.

2. A document (not named yet) on using [ICP to communicate to a 1394-GPIB bridge device.

2
Al e Copyright © 1998-1999 1394TA Page 8 of 93
- EEEmESs———==——— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

2. References

IEEE Std. 1394-1995, Standard for a High Performance Serial Bus

ANSI/IEEE Std. 1212-1994.

IEEE 1212r Configuration ROM (approved specification or latest draft available)
P1394a (approved specification or latest draft available)

1394 Open Host Controller Interface Specification, Release 1.00, October 20, 1997

2
Al e Copyright © 1998-1999 1394TA Page 9 of 93
- EEEmESs———==——— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

3. Document definitions and notation

3.1 Word usage — shall, should, may, can

The word shall is used to indicate mandatory requirements strictly to be followed in order to
conform to the specification and from which no deviation is permitted.

The word should is used to indicate that among several possibilities one is recommended as
particularly suitable, without mentioning or excluding others; or that a certain course of action is
preferred but not necessarily required; or that (in the negative form) a certain course of action is
deprecated but not prohibited.

The word may is used to indicate a course of action permissible within the limits of the
specification.

The word can is used for statements of possibility and capability, whether material, physical, or
casual.

3.2 Definitions

3.2.1 connection client:
A device capable of instantiating a plug when a connection sequence is received.

3.2.2 connection manager:
A device capable of issuing a connection sequence to a connection client to cause the creation of a plug.
The connection manager is responsible for sending reactivation sequences to the plug after bus resets.

3.2.3 connection register:

A 512-byte memory buffer mapped to contiguous 1394 space used for the connection lock register and
connection requests and responses. The word “register” is a slight misnomer, since the connection register
is much larger than a quadlet. However, this follows the naming conventions in other 1394 documents.

3.24 connection sequence:
A sequence of 1394 packets that cause an IICP plug to be created.

3.25 consumer:
A device that receives data from a producer.

3.2.6 consumer segment buffer:
Consumer memory dedicated to receiving frames from a producer. This memory is mapped to 1394 space.

3.2.7 control path (control port):
A path for control, interrupt, trigger, and commands. Actual use is determined by a higher level protocol.

3.2.8 data path (data port):
A path for data. A high level protocol using [ICP plugs may use the data path for “pure” data, keeping it free
of control, interrupt, trigger, etc. information.

3.29 frame:
A frame is a logically complete sequence of bytes written by a producer to a consumer.

3.2.10 large frame:
A large frame is a frame that is not transmitted as a small frame. A large frame is sent to 1394 space
specified by the LargeFramePageTableElement registers.

3.2.11 LargeFrameConsumer register
A consumer-resident 32-bit register that a producer updates when the large frame space has been filled or
the producer has sent the last content of the large frame.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 10 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

3.2.12 LargeFramePageTableElement[] register array
A producer-resident array of PageTableElement registers describing the size and location of a consumer
segment buffer for receiving large frame content.

3.2.13 LargeFrameProducer register:
A producer-resident 32-bit register that a consumer updates when ready to receive more large frame
content.

3.2.14 node_ID:
The 10-bit bus_ID and automatically assigned 6-bit physical_ID, as defined in IEEE1394-1995, 2.2.51.

3.2.15 OHCI:
Open Host Controller Interface. This interface defines a standard set of 1394 link chip registers and the
operation of a 1394 link chip.

3.2.16 PageTableElement:
A producer-resident 64-bit register containing a 16-bit length and 48-bit address. The length and address
identify the size and location of consumer segment buffer space.

3.2.17 plug:
A data structure and associated software mechanisms for data and control communications between two
nodes.

3.2.18 port:
There are 2 ports in an IICP plug. One port consists of the producer and consumer function for the data
path. The other port consists of the producer-consumer function for the control path.

3.2.19 producer:
A device that writes data to a consumer.

3.2.20 ProducerLimits register:
A producer-resident 32-bit register that enables a consumer to control the maximum size of 1394 write
transactions.

3.2.21 small frame:
A frame of size less than or equal to 512 bytes sent in one write block packet. A small frame is sent to the
small frame space specified by the SmallFramePageTableElement register.

3.2.22 SmallFrameConsumer register
A consumer-resident 32-bit register that a producer updates when the next small frame does not fit in the
remaining small frame buffer space or the producer has sent the maximum number of small frames allowed.

3.2.23 SmallFramePageTableElement
A producer-resident PageTableElement register describing the size and location of a consumer segment
buffer for receiving small frames.

3.2.24 SmallFrameProducer register
A producer-resident 32-bit register that a consumer updates when ready to receive more small
frames.

3.2.25 unique_ID:

A 64-bit concatenation of the node_vendor_id, chip_id_hi, and chp_id_lo values in the bus_info_block. See
|IEEE1394-1995, section 8.3.2.5.4. This is also sometimes referred to as an EUI, EUI-64, or Extended
Unique Identifier.

3.3 Numeric notation
Number formats are as described in IEEE1394-1995, section 1.6.4.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 11 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

3.4 State machine notation
State machines are shown in tabular format rather than the style in IEEE1394-1995.

State Transi- | Condition New state
tion Action
State: [Name] TX#a 1% condition to be tested New state
Actions taken when 1% condition tests true
[Actions taken TX#b 2" condition to be tested New state
upon entry] Actions taken when 2™ condition tests true

Figure 1 -- State machine notation

3.4.1 State machine logic

The logic for many of the conditions and associated actions are written in ‘C’-style syntax. It is
assumed readers of this document are familiar with ‘C’ syntax. The conditions shall be evaluated
from top to bottom as indicated.

3.4.2 State machine transitions — text description

Following each state machine table, there is additional text that further clarifies each transition.
The state machine table and state machine textual descriptions together define the state machine
behavior.

i, .
223 IRADE Copyright © 1998-1999 1394TA Page 12 of 93

This is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

3.5 Packets with data payload

There are figures in the document that show 1394 packet data payload contents. Most figures
that contain a data payload are shown in short form, without the 1394 header and without the
data CRC at the end of the data. To illustrate, the long form of showing a block write is shown
below. Refer to the IEEE1394 specification for a description of the write-block fields.

transmitted first

destination_ID tl rt tcode pri
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
source_ID
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 -
destination_offset
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
data_length extended_tcode
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
header_CRC
byteO bytel byte2 byte3
byted byte5 byte6 byte7
1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
byteN-1 zero-pad bytes (if necessary)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1
data_CRC
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

transmitted last

Figure 2 -- 1394 block write with header and payload

The equivalent short form is shown below.

byteO bytel byte2 byte3
1 1
byte4 byte5 byte6 byte7
1 1
byteN-1 zero-pad bytes (if necessary)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

Figure 3 -- 1394 block write (short form)

3.6 Reserved fields

Some locations in a packet may be marked as reserved, res, or r. These fields are reserved for
future standardization uses and shall be zero-valued. An implementation is not required, and is
not expected to check all reserved fields for zero-values.

3.7 Figures depicting 1394 address space

Any figure depicting 1394 space is depicted with the convention that the 1394 space goes from
lower 1394 address space (top of figure) to higher 1394 address space (bottom of figure).

Figure 4 -- Figures depicting 1394 address space

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 13 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

1394 space Lower 1394 address

Higher 1394 address

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

4. Functional discovery

Functional discovery is the process whereby one node on the 1394 bus discovers the attributes of
another node on the 1394 bus. Node attributes are stored in the node configuration ROM.

4.1 Configuration ROM

This chapter describes and defines a method for querying an IEEE1394 node and determining its
capabilities and available functionality. It is based on the IEEE 1212-1994 specification for
Control and Status Register Architecture and on work currently underway in the IEEE 1212r
working group for unit function discovery. The data structures, key and value types defined in this
document pertain to nodes that are compliant with the IICP specification.

4.1.1 Configuration ROM structure

All lICP nodes shall provide a configuration ROM located at a fixed destination offset of FFFF
FOO00 040046. All lICP nodes shall implement the general ROM format. All IICP nodes shall
include:
- A bus information block

A root directory

At least one unit directory

A text leaf containing a string for the manufacturer

A text leaf containing a string for the unit model.

- First Quadlet
info_length=4 | crc_length | rom_crc_value — @ FFEF FO00 0400,

Bus_info_block

Root directory

Unit directory
Model manufacturer text leaf i
Unit model # text leaf 1«

Figure 5 -- IICP configuration ROM format (one unit directory)

4.1.1.1 First quadlet

The first quadlet in the configuration ROM contains the info_length, crc_length, and
rom_crc_value. This is described in IEEE 1212-1994. Implementations shall adhere to newer
applicable standards when approved. At this time, the IEEE 1212r working group recommends
the crc_length to be the length in quadlets of the Bus_info_block.

4.1.1.2 Bus_info_block

The bus information block for 1394 nodes is defined in IEEE1394-1995, section 8.3.2.5.4.
Implementations shall adhere to newer applicable standards (for example: P1394a) as they are
approved.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 14 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

4.1.1.3 Root directory

The root directory is the top level in a hierarchy of subdirectories, leaves and immediate data
values. Each quadlet entry in the root directory may represent an immediate value (the quadlet
contains the data value) or an indirect offset (the quadlet contains an offset value, used to create
a pointer to the data). The root directory is required by IEEE1394-1995, 8.3.2.5.5, to contain
module_vendor_id, node_capabilities, and node_unique_id entries. However, at this time, the
node_unique_id leaf only contains redundant information, is not used by enumeration software,
and the IEEE 1212r working group is indicating the node_unique_id entry is obsolete. An
example root directory is shown below.

directory_length directory CRC

node_capabilities key

node_capabilities

module_vendor_id key

module_vendor_id

text_leaf key
1 1 1 1 1 1

text_leaf offset

unit_directory ke
1 1 1 1 1 1

unit_directory offset
1 1 1 1 1 1

Figure 6 -- Root directory

All fields are as defined in the referenced documents. The text_leaf offset is the offset in quadlets,
from the current quadlet, to a text leaf that contains a string of human-readable characters for
module_vendor _id.

4.1.1.4 Unit directory

Unit directories contain additional information about a unit. Unit directories are referenced from
the root directory and from any optional instance directories. Information contained in the unit
directory specifies the protocol the unit uses for communications. If a node complies with more
than one protocol specification, there will be multiple unit directories. There shall be at least one
unit directory in an IICP compliant node.

Some IICP units are capable of generating interrupt packets and sending those packets to an
interrupt handler node. The interrupt_enable_reg and interrupt_handIr_reg entries are optional
entries that shall both be present for those IICP units that support this capability. If a unit does not
support this capability, neither of these registers shall be present in the unit directory.

An example unit directory is shown in the figure below. Key values and macros are found in Table
1 and Table 2.

i,)
223 IRADE Copyright © 1998-1999 1394TA

This is an unapproved 1394TA specification, subject to change

Page 15 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

directory_length directory CRC
1 | 1 1 1 1 1 1 1
unit_spec_id key unit_spec_id
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
unit_sw_version key unit_sw_version
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
IICP_details_key IICP_details
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
model_id key model_id
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
text_leaf key text_leaf offset
1 1
command_set_spec_id key command_set_spec_id
1 1
command_set key command_set
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
command_set_details ke command_set_details
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
connection_reg_offset ke connection_reg_offset ke
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
IICP_capabilities key IICP_capabilities
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
interrupt_enable_reg_offset interrupt_enable_reg_offset (optional)
- 1 1 1 key 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
interrupt_handlr_reg_offset interrupt_handlIr_reg_offset (optional)
1 1 1 k‘?y 1

Figure 7 — IICP unit directory
The required unit_spec_id is an immediate entry that identifies the organization that has
specified the protocol for this unit. For IICP, and higher level protocols above IICP developed
within the 1394 Trade Association, this shall be the number assigned to the 1394 Trade
Association, 1394TA_SPEC _ID.

The required unit_sw_version is an immediate entry that identifies the protocol. This value is
determined by the organization specified in the unit_spec_id. The unit_sw_version is
IICP_UNIT_SW_VERSION. This number shall represent the baseline IICP protocol and may,
in some cases, result in a driver for ICP being layered on top of an operating system 1394
driver. Note that the API for an IICP driver is beyond the scope of this specification.

The required IICP_details immediate entry specifies a revision number and details of the
[ICP implemented. The format of the 24 bits is shown below. The revision is interpreted as
AB.CD. Decimal revision 2.39 would have nibbles ABCD valued as 015, 216, 316, and 944
respectively. Each nibble shall be encoded as a binary-coded-decimal value: 0,5 <= nibble
value <= 9;4. The revision following 1.39 would be 1.40. IICP_details shall be set to
[ICP_DETAILS.

nibble A nibble B nibble C nibble D reserved

Figure 8 -- [ICP_details

The required model_id is a 24-bit immediate entry. It is the model designation assigned by
the vendor.

The required text_leaf offset is an immediate entry that specifies the offset to a text leaf that
contains a textual descriptor for the previous model_id entry.

The required command_set_spec_id is an immediate entry in the unit directory that
identifies the organization responsible for the command_set definition for the unit. For this
baseline IICP protocol, and for any protocol developed by a 1394 Trade Association working
group, the 24-bit command_set_spec_id value shall be set to the value assigned to the
1394TA, 1394TA_SPEC_ID.

The required command_set immediate entry that, in combination with the
command_set_spec_id, specifies the command set or higher level protocol implemented by
the unit. For a unit that implements IICP only, and no protocol on top of IICP, command_set
shall be set to ICP_UNIT_SW_VERSION.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 16 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

The required command_set_details immediate entry specifies a revision number and details
of the command_set. The format of the 24 bits is as described for IICP_details above. For a
unit that implements IICP only, and no protocol on top of ICP, command_set_details shall be
set to ICP_DETAILS.

The connection_reg_offset immediate entry specifies a 1394 destination offset for the 512-
byte connection register. All IICP units that are capable of performing as a connection
manager or as a connection client shall have a connection_reg_offset entry. An octlet (8
bytes) is reserved at the beginning of the space for a connection lock register. It is called a
lock register because connection managers must do a successful compare & swap lock
request on the connection lock register before sending a connection request packet. The
remaining space is used for connection requests and connection responses. The 24-bit
connection_reg_offset field shall contain the offset for the connection register, in quadlets,
from the base destination offset of initial register space, FFFF FOO0 00004e.

8 byte connection lock register —— FFFF FO00 0000y + (connection_reg_offset)*4

504 bytes for connection commands and responses d—— FFFF FO00 00006 + (connection_reg_offset+2)*4

Figure 9 -- Connection register In 1394 space

A zero-valued lock register corresponds to an unlocked condition. A non-zero valued lock
register corresponds to a locked condition.

Connection lock registers shall be initialized to 0000 0000 0000 0000,¢ at power-on and after
a bus reset.

Only 16 byte data_length compare & swap lock requests are permitted on the 8 byte
connection lock register. Only write requests are permitted on the 504 byte connection
command/response space.

The connection lock register provides robustness in multi-controller and multi-threaded
environments. It also simplifies device software since the device only needs to handle
connection requests from at most one connection manager.

The format of the required IICP_Capabilities immediate entry is shown below.

reserved for higher level reserved for IICP
1 1 pf0t000|$ 1 1 1 1 1 1 1 1 1 | 1 4 IA

cmgr
ccli

maxintLength
1 1

Figure 10 -- [ICP_Capabilities entry

- Thereserved for higher level protocols field is 0 unless specified in a higher-level
protocol document.

- Thereserved for IICP field is 0.

- The ccli bit (connection client bit) shall be one-valued if the unit is capable of receiving
connection sequences and creating plugs.

- The cmgr bit (connection manager bit) shall be one-valued if the unit is capable of
issuing connection sequences to nodes to create plugs and connection sequences to
maintain those created plugs.

- The 4-bit maxIntLength field specifies the data-payload size limitations for an individual,
single 1394 write block request that may communicate interrupt information. See 5.1 for
further explanation. This field shall be ignored if the unit directory does not contain both

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 17 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

the optional interrupt_enable_reg_offset register and the optional
interrupt_handlr_reg_offset register. The maxintLength value is restricted to a value <=
8, so the maximum sized write block request containing interrupt information is 512
bytes. If the maxintLength value is 0, this node does not support this interrupt
mechanism.

Payl 0adSi zel nByt es = 2mx!ntlength+l

The optional interrupt_enable_reg_offset immediate entry contains the offset for the
interrupt_enable register, in quadlets, from the base destination offset of initial register space,
FFFF FOOO 000046. This entry is required if the interrupt_handIr_reg_offset entry is present.
See section 5.1 for a detailed description of the interrupt_enable register.

The optional interrupt_handIr_reg_offset immediate entry shall contain the offset for the 64-
bit interrupt_handlr register, in quadlets, from the base destination offset of initial register
space, FFFF FOOO0 000046. The interrupt_handlr register contains the nodee_ID and the 1394
destination offset that the interrupter should use when sending an interrupt packet. This entry
is required if the interrupt_enable_reg_offset entry is present. See section 5.1 for a detailed
description of the interrupt_handlr register.

4.1.1.5 Configuration ROM spec_id’s, unit_sw_version, and command_set values

Configuration ROM constant Where used Value (Hex)
1394TA_SPEC_ID - unit_spec_id, 00A02D1¢
- command_set_spec _id

IICP_UNIT_SW_VERSION - unit_sw_version 4B661F16

IICP_DETAILS - lICP_details, This value is the version of IICP
command_set_details (if on the title page of the IICP
device does not implement a | document that correlates to the
protocol on top of IICP) implementation.

Table 1 -- Configuration ROM constants

4.1.1.6 Configuration ROM key values

The unit directory for an IICP compliant node requires several entries and associated key values
not defined in IEEE 1212. The key values for these entries are from the vendor-dependent key
space defined in IEEE 1212. The table below summarizes the IICP entries and key values.

Configuration ROM key Key = (key_type << 6) || key value
IICP_details key 3816
command_set spec _id key 3916
command_set key 3A1s
command_set_details key 3B1s
connection_reg_offset key 3C16
IICP_capabilities key 3D16
interrupt_enable_reg_offset key | 3Eis
interrupt_handIr_reg_offset key 3F16

Table 2 -- Configuration ROM key values

Note that these keys are the vendor-defined keys and that the IEEE 1212r working group is
defining a method to extend the key space.

4.1.1.7 Textleaves

The format for text leaves is shown in IEEE 1212-1994, 8.2.5. Text leaves shall conform to newer
standards as they are approved.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 18 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

4.1.1.8 Instance directories

Instance directories are optional. If instance directories are implemented in an 1ICP node, the II-
WG should be consulted for keywords. The table below shows the keywords the [I-W G has
submitted at this time.

ACTUATOR AMPLIFIER ANALOG_INPUT ANALOG_OUTPUT
ANALYZER COUNTER DIGITAL_INPUT DIGITAL_OUPUT

DMM FUNCTION_GENERATOR LINE_MONITOR LOGIC_ANALYZER
MANOMETER OSCILLOSCOPE PATTERN_GENERATOR POWER_METER
POWER_SUPPLY RECORDER SENSOR SIGNAL_ANALYZER
SPECTRUM_ANALYZER SWITCH THERMOMETER WAVEFORM_GENERATOR

4.1.2 Multi-protocol devices

Some IICP devices may need to implement more than one protocol. For example, a device may
implement IICP and may also implement an Internet protocol 1394 stack and/or an SBP-2 1394
stack.

To do this requires the configuration ROM to implement a unit directory specifically for each
protocol that is supported.

4.1.3 Read operations on the configuration ROM
An implementation shall allow quadlet reads and block reads of the configuration ROM space.

4.1.4 Device aliases (nicknames) in the configuration ROM

At this time, the IEEE 1212r working group is defining a modifiable portion of the configuration
ROM to be used for a device alias or nickname. A device alias can provide a human-readable
description of a device. This mechanism, when implemented in non-volatile memory, offers
convenient identification of devices and it is our recommendation that device aliases be
implemented when the appropriate standards are in place.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 19 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

5. lICP 1394 memory-mapped I/O

Some IICP implementations may support memory mapped I/O in addition to the memory mapped
I/O required by the CSR Architecture, Serial Bus, and configuration ROM. The device provides
some device-dependent memory that is mapped to 1394 space.

Memory mapped 1394 1/O means that the 48-bit destination offset in a 1394 packet is used to
determine the memory that is accessed on the memory mapped device. For example, a digital to
analog converter may define a 48-bit destination offset as the offset that contains the digital value
it will convert to an analog value. The application may issue a 1394 write quadlet request to write
the new digital value to be converted. The destination offset in the write-quadlet request packet is
set by the application to be the understood (device-dependent) destination offset that the memory
mapped device uses for new digital data.

5.1 Interrupt mechanism for IICP memory mapped devices
An interrupt mechanism is defined for memory mapped I[ICP (not plug-capable) implementations.

The unit directory in the configuration ROM has a pair of optional entries:
An interrupt_enable_reg_offset entry.
An interrupt_handlr_reg_offset entry.

If a unit directory does not have both of these entries, then this interrupt mechanism is not
supported. If a unit directory has both of these entries and the configuration ROM unit directory
has a non-zero valued maxintLength field, this interrupt mechanism is supported.

5.1.1 interrupt_enable register
The format for the interrupt_enable register is shown below.

reserved en
1 |

Figure 11 -- interrupt_enable register

The reserved field shall be reserved for future use.

The en-bit (enable) enables the sending of device-dependent interrupt information to the
destination_offset specified in the interrupt_handlr register. The device receiving the interrupt
information must update this register and re-enable the bit (en = 1) to receive more interrupts.
Updating the interrupt_enable register shall be done with a write quadlet request.

The initial value of the interrupt_enable register shall be 0.

After a bus reset, the interrupt_enable register en-bit shall be cleared. A device making use of this
mechanism will need to update this register and set the en-bit to 1.

A read of the interrupt_enable register shall return the current register contents.
A write of this register results in an unconditional update of the contents of the register.

5.1.2 interrupt_handIr register
The format for the interrupt_handlr register is shown below.

node_ID
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

destination_offset
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

Figure 12 -- interrupt_handlr register

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 20 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

The node_ID is as defined in 1394-1995, section 6.2.4.2.1. Any node utilizing this
mechanism shall be responsible for updating this field after a bus reset since the node_ID
may change.

The destination_offset is used as the destination offset for the 1394 write request when
sending the interrupt information to the node specified in node_ID.

The initial value of the interrupt_handIr register shall be 0.

After a bus reset, the content of the interrupt_handlr register remains unchanged. A device
making use of this register may need to update the node_ID field after a bus reset.

A read of the interrupt_handlr register shall return the current register contents.
A write of this register results in an unconditional update of the contents of the register.

When an interrupt condition occurs, and the en-bit in the interrupt_enable register has been
programmed to 1, the interrupting device sends device-dependent interrupt information to the
destination address specified in the “interrupt_handIr register”. The size of the data payload shall
not be larger than that specified in the maxintLength field in the configuration ROM
“lICP_Capabilities” entry. The content of the interrupt information is beyond the scope of this
document.

The interrupt-handling device processes the interrupt and when done, re-enables the interrupting
device to send another interrupt by writing to the interrupt_enable register. To re-enable, the en-
bit shall be one-valued. Devices shall not send any more interrupts until after a one-value is
written to the en-bit.

An implementation is not required to clear the en-bit. If an implementation does clear the en-bit, it
is recommended that the en-bit be cleared prior to sending the interrupt.

5.2 1394 memory mapped only IICP device limitations
Devices equipped with only 1394 memory mapped I/O may lack certain attributes that may be
key in some 1394 applications.
- Memory mapped devices may not be robust in multi-controller or multi-threaded
environments.
Memory mapped devices provide only device-dependent I/O. The memory mapped locations
for I/O must be built into the software drivers.
Memory mapped devices provide no defined data flow control mechanisms.

There is no defined control path. If the data path becomes blocked for some reason, there is
no defined mechanism for recovery.

These limitations provide motivation for the next chapter, “IlCP asynchronous plug connections”.

1224 TRADE - Copyright © 1998-1999 1394TA Page 21 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6. IICP asynchronous plug connections

This chapter explains the creation, use, and maintenance of a communication path for the
transfer of data frames and control frames from one IICP device to another IICP device.

The figure below shows a typical IICP connection between a computer and an instrument.

Computer Data Frames Instrument

B i
Port c c Port

p = producer

Plug — € = consumer — Plug
Control i i Control
Port c c Port
Connection | Control | Connection
register Frames register

Connection requests and responses

Figure 13 -- Typical lICP connection

6.1 Introduction to IICP connection plugs
A plug contains two ports: a data port and a control port.

Each port allows duplex communications with the connected node.

Using the data port, data bytes may be transferred from the computer (acting as a producer) to
the instrument (acting as a consumer). Data bytes may also be transferred from the instrument
(acting as a producer) to the computer (acting as a consumer).

Using the control port, control bytes may be transferred from the computer (acting as a producer
of control bytes) to the instrument (acting as a control byte consumer). Control bytes may also be
transferred from the instrument (acting as a producer of control bytes) to the computer (acting as
a control byte consumer). Control bytes may be control messages, interrupts, triggers, and/or
commands. The actual use of the data port and control ports is determined by higher-level
protocols.

The control port allows the data path to remain a pure data path. This may, in some higher level
protocols, free a device from parsing received packets. The control port also provides the means
to communicate a potential remedy in case the data communication path hangs for some reason.

Although the IICP plug architecture allows duplex communication, simplex operation results if one
of the ports does not produce frames. If an IICP connection is simplex and not duplex, resources
are scaled back appropriately.

6.1.1 IICP frames

Data bytes and control bytes are transferred with one or more 1394 write operations. Data and
control bytes are transferred in a logical group of bytes called a frame.

[ICP plugs provide two methods, or modes, of transferring frames. small frame transfer mode is
used when a frame is 512 bytes or less and fits in one 1394 write transaction. large frame

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 22 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

transfer mode shall be used when a frame requires more than one 1394 write transaction or when
a consumer disallows small frame transfer mode.

Some producers, such as a simple sensor or analog-to-digital converter may not have logical
frames. Such producers are free to produce conveniently sized or optimally sized data frames.
These data frames may be sized for maximum transfer efficiency. A frame should not be too
small, because if transferred as a large frame, there are three 1394 transactions per frame. If
transferred as a small frame, 1394 bus bandwidth is best utilized if the frame size is 512 bytes.
Frames are not required to be of similar size.

Sections 6.4 and 6.5 provide an introduction to how large frame transfers and small frame
transfers are accomplished. Actual producer and consumer state machine details are given later,
in sections 6.20 and 6.21.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 23 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99

6.1.2 Plug architecture

IICP Draft 1.00rc3

1394TA II-WG

A plug is a data structure consisting of “private” memory and “public” memory. The public memory
is mapped to 1394 space and the connected node may update this mapped memory. The plug
data structure is illustrated in the figure below.

PlugState

Not mapped to 1394 space

Connected Node Information

PlugDestinationOffset + 0 —)

reserved

Plug private
memory

i ™~ 512 Byte aligned

PlugDestinationOffset + 4 —)

ProducerLimits

PlugDestinationOffset + 8 —)

SmallFramePageTableElement

PlugDestinationOffset + 16 —»

SmallFrameProducer

PlugDestinationOffset + 20 —»

LargeFrameProducer

PlugDestinationOffset + 24 —)

LargeFramePageTableElement[0]

PlugDestinationOffset + 32 —)

LargeFramePageTableElement[1]

PlugDestinationOffset + 240 —)

LargeFramePageTableElement[27]

PlugDestinationOffset + 248 —)

SmallFrameConsumer

PlugDestinationOffset + 252 —)

LargeFrameConsumer

PlugDestinationOffset + 256 —)

reserved

PlugDestinationOffset + 260 —)

ProducerLimits

PlugDestinationOffset + 264 —)

SmallFramePageTableElement

PlugDestinationOffset + 272 —)

SmallFrameProducer

PlugDestinationOffset + 276 —)

LargeFrameProducer

PlugDestinationOffset + 280 —)

LargeFramePageTableElement[0]

PlugDestinationOffset + 288 —)

LargeFramePageTableElement[1]

PlugDestinationOffset + 496 —)

LargeFramePageTableElement[27]

PlugDestinationOffset + 504 —)

SmallFrameConsumer

p

P

PlugDestinationOffset + 508 —)

LargeFrameConsumer

S

Figure 14 -- lICP plug contents

(PlugDestinationOffset % 512) == 0)

Data
Port
(public)

Control
Port
(public)

The plug private memory contains information needed in setting up and maintaining the
connection. This includes plug state information and information about the connected node. It is
called private because this information is not mapped into 1394 space.

PlugState information may include (but is not limited to):
Producer state machine “state”.
Consumer state machine “state”.

2
13949 TRADE »~
SASSOCIATION]
f e ratiriasoia CotineCiaon |

Copyright © 1998-1999 1394TA

This is an unapproved 1394TA specification, subject to change

Page 24 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

The “Connected Node” information consists of whatever information is necessary to communicate
to the connected node. This information may include (but is not limited to) the following:
The 64-bit 1394 destination address (see IEEE1394-1995, 6.2.4.2) for the plug data port on
the connected node.
The attributes about the connected node plug communicated during the connection
sequence. See section 6.11.

The plug public memory is memory mapped into contiguous 1394 space. This memory contains a
ProducerLimits register, a SmallFramePageTableElement register, a SmallFrameProducer
register, a LargeFrameProducer register, a LargeFramePageTableElement[] register array, a
SmallFrameConsumer register and a LargeFrameConsumer register.

The plug public memory shall be 512 bytes, evenly distributed to the data port and control port.

[ICP implementations shall place plug public memory in 1394 space such that write transactions
to public plug registers result in an interrupt to the controlling software.

Each plug shall be created with the resources shown. Higher level protocols, implemented on top
of IICP, may decide how the data port and control ports are utilized.

6.2 Plug register details

This section describes the definitions of bits in each of the plug registers. The reader should skim
this section first, then refer back to it when necessary.

6.2.1 ProducerLimits register

The ProducerLimits register is a 32-bit register that a consumer updates. The ProducerLimits
register contains a value that limits the size of individual write requests sent by a producer. The
format of the ProducerLimits register is shown below.

reserved maxLoad

Figure 15 -- ProducerLimits register

The 4-bit maxLoad field specifies the data-payload size limitations for individual, single 1394
segment-buffer writes, as specified in Equation 1. The amount of data in the write request
cannot exceed the payloadSizelnBytes value. The maxLoad value shall be equal to or larger
than 1, and is allowed to exceed the size of the node’s ROM-specified max_rec value, as
defined by the Serial Bus in IEEE 1394-1995, section 8.3.2.5.4.

Equation 1: payl 0adSi zel nByt es = 2(MxLoad+l)
MaxLoad PayloadSizelnBytes
1 4
2 8
10 2048 (400 Mbps maximum value)

Table 3 -- maxLoad-payload values

The initial value of the ProducerLimits register shall be all zeros.
After a bus reset, the values remain unchanged.

A read of this register returns the current register contents.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 25 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

A write of this register results in an update of the contents of the register. A consumer shall only
update this register when the producer is expecting both a SmallFrameProducer and
LargeFrameProducer update.

6.2.2 SmallFramePageTableElement register

The SmallFramePageTableElement register uses the PageTableElement format shown below.
There is a 16-bit length and a 48-bit pointer to a consumer segment buffer. A consumer writes the
SmallFramePageTableElement register so that the destination_offset is mapped to non-physical
DMA 1394 space on the consumer. An interrupt will occur when a producer writes to the 1394
space specified in the SmallFramePageTableElement.

length
|

destination_offset
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

Figure 16 — PageTableElement register

The length specifies the number of bytes a producer may write to the consumer segment
buffer, which begins at the specified destination_offset. A value of O specifies 64 KBytes.
The destination_offset is the 48-bit destination offset marking the start of the consumer
buffer.

The initial value of the SmallFramePageTableElement register shall be all zeros.
After a bus reset, the values remain unchanged.
A read of this register returns the current register contents.

A write of this register results in an update of the contents of the register. A consumer is allowed
to write this register prior to, or concurrently with, updating the SmallFrameProducer register.

6.2.3 SmallFrameProducer register

The SmallFrameProducer register is a 32-bit register that a consumer updates when ready to
receive more small frames. The format of the SmallFrameProducer register is shown below.

reserved run|sc reserved maxSmallFrameCount

Figure 17 -- SmallFrameProducer register

A one-valued run bit enables small frame transfers and shall be cleared when a bus reset
occurs. A zero-valued run bit shall inhibit transfer of small frames. The intent is to delay smalll
frame transfers until the consumer’s state has been properly initialized.

The sc-bit is the segment count bit. The consumer, when updating the SmallFrameProducer
register, shall toggle the value in the sc-bit. The first consumer update of the
SmallFrameProducer register shall set the sc-bit to one, the second consumer update of the
SmallFrameProducer register shall set the sc-bit to zero, and so on.

The 16-bit maxSmallFrameCount field specifies the maximum number of small frames that
a producer can send before updating the consumer SmallFrameConsumer register. This
serves to limit the size of data structures the consumer may require for processing small
frames. If the maxSmallFrameCount is 0, the producer shall send all frames using the large
frame transfer mode and the producer shall ignore the SmallFramePageTableElement
register.

The initial value of the SmallFrameProducer register shall be all zeros.

After a bus reset, the run bit is set to 0. The other bits are not changed.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 26 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

A read of this register returns the current register contents.

A write of this register results in an update of the contents of the register, provided the sc-bit is a
different value. The consumer is allowed to update the producer SmallFrameProducer register to
initially start small frame transfers, after a bus reset, and after the producer has written to the
consumer SmallFrameConsumer register and the consumer is ready for more small frames.

6.2.4 LargeFrameProducer register

The LargeFrameProducer register is a 32-bit register that a consumer updates. The consumer
updates the LargeFrameProducer register when the consumer is ready to receive large frame
content. The format of the register is shown below.

reserved run|sc | reserved count

Figure 18 -- LargeFrameProducer register

A one-valued run bit enables the operation of the producer and shall be cleared when a bus
reset occurs. A zero-valued run bit shall inhibit large frame transfers.

The sc-bit is the segment count bit. The consumer, when updating the LargeFrameProducer
register, shall toggle the value in the sc-bit. The first consumer update of the
LargeFrameProducer register shall set the sc-bit to one, the second consumer update of the
LargeFrameProducer register shall set the sc-bit to zero, and so on.

The 21-bit count specifies the total number of bytes in the consumer segment buffer
described in the LargeFramePageTableElement[] registers for receiving large frame content.
The consumer segment buffer space is described beginning with PageTableElement|[0].

The initial value of the LargeFrameProducer register shall be all zeros.
After a bus reset, the run bit is set to 0. The other bits are not changed.
A read of this register returns the current register contents.

A write of this register results in an update of the contents of the register, provided the sc-bit is a
different value. The consumer is allowed to update the LargeFrameProducer register to initially
start large frame transfers, after a bus reset, and after the producer has written to the consumer
LargeFrameConsumer register and the consumer is ready for more data.

6.2.5 LargeFramePageTableElement registers

The LargeFramePageTableElement[] array consists of PageTableElement registers as shown in
Figure 16. The LargeFramePageTableElement][] registers point to consumer segment buffers
mapped to 1394 space on the connected node.

The multiple LargeFramePageTableElement|] registers allow a consumer to program a producer
with a scatter/gather list describing the location of a consumer segment buffer in possibly non-
contiguous 1394 space.

Use of scatter/gather may increase efficiencies by limiting the number of times 1394 data gets
copied. For example, OHCI 1394 link implementations allow physical memory to be directly
mapped to 1394 space. It is normal (at least on the computer side), for an application buffer, or
user-space buffer, to reside in multiple physical memory locations. If a scatter/gather list is
communicated to the producer, the producer can write 1394 data directly to the user-space
buffer, filling up different physical pages in memory.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 27 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

To simplify producer implementations, the consumer shall program the length field of all but the
first and the last relevant LargeFramePageTableElement registers with a length = 2". N shall be
the same value for all but the first and last relevant LargeFramePageTableElement[] registers.

The initial value of the LargeFramePageTableElement][] registers shall be all zeros.
After a bus reset, the values remain unchanged.
A read of any LargeFramePageTableElement][] registers returns the current contents.

A write of LargeFramePageTableElement][] registers results in an update of the contents of the
registers. A consumer is allowed to write this register immediately prior to, or concurrently with,
updating the LargeFrameProducer register.

6.2.6 SmallFrameConsumer register

The SmallFrameConsumer register is a 32-bit register that a producer updates when the small
frame buffer space has been filled such that the next small frame would not fit in the remaining
space or the producer has sent the maximum number of small frames. The format is shown
below.

reserved 1 sc reserved

T
mode

Figure 19 — SmallFrameConsumer register

The producer shall write a one-valued (SFB_FULL) mode-bit when the small frame buffer
space is exhausted or the producer has sent the maximum number of small frames.

The sc-bit is the segment count bit. The producer, when updating the consumer’s
SmallFrameConsumer register, shall set this bit to the most recent sc-bit value that the
consumer wrote into the producer’s SmallFrameProducer sc-bit. This bit distinctively labels
the sequential handshakes between the consumer and the producer.

The initial value of the SmallFrameConsumer register shall be all zeros.
After a bus reset, the values remain unchanged.
A read of this register returns the last successfully written data.

A write of this register results in an update of the contents of the register provided the sc-bit is the
same value the consumer wrote to the SmallFrameProducer register.

6.2.7 LargeFrameConsumer register

The LargeFrameConsumer register is a 32-bit register that a producer updates. Examples of

when the producer updates this register include:

1) The producer has finished the transfer of a large frame.

2) There is no space left in the buffer space described by the LargeFramePageTableElement[]
registers.

reserved mode |sc | reserved count

Figure 20 -- LargeFrameConsumer register

The 2-bit mode field provides frame-completion information, as specified in the table below.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 28 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Mode Name Descriptionf

0 FREE Initial (never written) state. Shall never be written by the producer.
1 MORE Indication for leading (not end of frame, last) content.

2 LAST Indication for last, end of frame content.

3 TRUNC Indication for truncated frame content, end of frame

Table 4 -- LargeFrameConsumer.mode definition

The sc-bit is the segment count bit. The producer, when updating the consumer’s
LargeFrameConsumer register, shall set this bit to the most recent sc-bit value that the
consumer wrote into the producer’s LargeFrameProducer.sc bit. This bit distinctively labels
the sequential handshakes between the consumer and the producer.

The 21-bit count value identifies how many bytes have been written by the producer to the
buffers identified in the LargeFramePageTableElement[] registers since the last
LargeFrameProducer update. Note that this value may be less than the amount of bytes the
consumer allowed the producer to send.

The initial value of the LargeFrameConsumer register shall be all zeros.
After a bus reset, the values remain unchanged.
A read of this register returns the last successfully written data.

A write of this register results in an update of the contents of the register provided the sc-bit is the
same value the consumer wrote to the LargeFrameProducer register.

6.3 1394 operations allowed on plug registers

Plug registers shall be updated with write block or write quadlet transactions. The destination
offset in the 1394 write request shall be quadlet aligned. The length of the write transaction shall
be a multiple of 4.

IEEE 1394 lock request transactions are not permitted on plug registers.

6.3.1 Efficient updating of plug registers

For efficiency, a consumer is allowed to update multiple port registers with one write block
transaction. However, registers may only be updated at the proper times.

If a consumer updates producer port registers with more than one write operation, the consumer
update shall affect the LargeFrameProducer only once, and the write affecting the
LargeFrameProducer shall occur after, or concurrent with, the writing of the
LargeFramePageTableElement[] array. The LargeFramePageTableElement[] array registers shall
not be changed after a LargeFrameProducer update until the producer updates the
LargeFrameConsumer register.

Similarly, the consumer update of the producer port shall affect the SmallFrameProducer only
once, and the write affecting the SmallFrameProducer shall occur after, or concurrent with, the
writing of the SmallFramePageTableElement. The SmallFramePageTableElement register shall
not be changed after a SmallFrameProducer update until the producer updates the
SmallFrameConsumer register.

6.4 Large frame transfers

Frames that do not fit the requirements for small frames are transferred using the large frame
transfer mode. In this mode, LargeFrameConsumer and LargeFrameProducer registers are
updated after each frame transfer.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 29 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

The sequence below illustrates a producer sending large frames to a consumer. The sequence
assumes the ProducerLimits register has been previously updated. Refer to the producer and
consumer state machines in sections 6.20 and 6.21for more detail.

1. The consumer, when ready to receive more frame contents:

a) Sends a write block transaction to update the producer LargeFrameProducer and
LargeFramePageTableElement|[] registers as necessary. After the LargeFrameProducer
register is updated, the consumer is not permitted to change the
LargeFramePageTableElement[] registers until after a LargeFrameConsumer update.

2. The producer:

a) Waits for a request from an application layer to transfer frame content.

b) Waits for a LargeFrameProducer update if necessary. This is necessary if the
LargeFrameProducer register has never been updated or the producer has written to the
consumer LargeFrameConsumer register.

c) Writes the frame content to the consumer segment buffer described by
LargeFramePageTableElement[0]. This may consist of several 1394 packets. If multiple
LargeFramePageTableElement[] registers have been set up, the producer sequences
through PageTableElement[0], PageTableElement[1], and so on.

d) Updates the consumer’s LargeFrameConsumer register. This lets the consumer know
how much data the producer sent.

3. The consumer:
a) Processes the data.

Repeat steps l1a through 3a.

The table below shows the general flow for large frame transfers.

Producer Consumer

€« Update the LargeFrameProducer and
LargeFramePageT ableElement|] registers.

Send data. May be multiple write block requests.

vV

Update the consumer’s LargeFrameConsumer
register.

Read how much data the producer sent.
Process the data.

€« Update the LargeFrameProducer and
LargeFramePageT ableElement]] registers.

Send data. May be multiple write block requests.

vV

Update the consumer’s LargeFrameConsumer
register.

Figure 21 — Large frame transfers

6.4.1 Sequential and non-sequential writes for large frame transfers

Normally, a producer will fill the consumer buffer space sequentially. However, some consumers
may not care about the ordering of writes from the producer. This is determined during the
connection sequence.

If a consumer requires sequential writes, the initial write request is sent with a destination offset
equal to the LargeFramePageTableElement[0] destination_offset value. Subsequent packets are
sent to a destination offset increasingly offset from the first destination_offset value. The
increasing offset value corresponds to the amount of data sent. These writes continue until the
complete frame has been sent or the consumer buffer space specified in the
LargeFramePageTableElement[0] is full. If the buffer specified in
LargeFramePageTableElement[0] is full, and multiple LargeFramePageTableElement][] registers

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 30 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

have been set up, and there is still more frame content to be sent, writes continue in the same
way, beginning with a destination offset equal to the LargeFramePageTableElement[1]
destination_offset value.

If the consumer does not require sequential writes during large frame transfers, the producer is
free to write the data with an unspecified ordering for the destination offsets, eventually filling up
the consumer segment buffers. The result for both sequential and non-sequential writes is the
same — a filled or partially filled consumer buffer space that begins with the consumer buffer
space specified in LargeFramePageTableElement[0].

6.5 Small frame transfers

A small frame is a frame that may be sent in a single write transaction with payload size <= 512
bytes.

There are many situations where a computer may repeatedly send small frames to a device. An
example is when a computer is sending some kind of query to an instrument to get measurement
results.

For small frames, there is no need for flow control updates for every frame. Instead, the flow
control updates only need occur when the next small frame does not fit completely into the small
frame space. This allows frame transfers using just one 1394 transaction per frame. This is more
efficient than the three 1394 transactions used in large frame mode, where
LargeFrameConsumer and LargeFrameProducer registers are updated for each frame. Small
frame transfers rely on 1394 drivers sending the small frame in one 1394 transaction.

The sequence below illustrates a producer sending small frames to a consumer. The sequence
assumes the ProducerLimits register has been previously updated. Refer to the producer and
consumer state machines in sections 6.20 and 6.21for more detail.

1. The consumer, when ready for more small frames:

a) Updates the producer SmallFramePageTableElement and SmallFrameProducer register
as necessary. After the SmallFrameProducer register is updated, the consumer is not
permitted to change the SmallFramePageTableElement register until after a
SmallFrameConsumer update.

2. The producer:

a) Waits for a request from an application layer to transfer a small frame.

b) Waits for a SmallFrameProducer register update if necessary. This is necessary if the
SmallFrameProducer register has never been updated or the producer has written to the
consumer SmallFrameConsumer register.

c) Checks that the frame may be sent as a small frame.

d) Writes the frame to the small frame space specified in the
SmallFramePageTableElement register, offset by an amount equal to the amount of data
transferred to the small frame space since the last SmallFrameProducer register update.

3. The consumer:
a) Receives the small frame and forwards it to the application.

Steps 2 and 3 are repeated until the next small frame will not fit completely into the remaining
small frame space or the producer has sent the maximum allowed number of small frames. When
that happens, the producer shall not send any part of the small frame. The producer shall instead
update the consumer’s SmallFrameConsumer register, indicating the remaining small frame
space is insufficient size. The consumer then updates the producer’s SmallFrameProducer
register when ready for more data.

The table below shows the general flow for small frame transfers.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 31 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Producer Consumer

€« Update the SmallFramePageTableElement and
SmallFrameProducer register as necessary.

Receive transfer request. Perform tests. Send >
the small frame, using one 1394 transaction.

Interrupt occurs when frame received. Send
frame to application.

Receive transfer request. Perform tests and see | =
the small frame will not fit into the small frame
space. Update the SmallFrameConsumer

register.
€« Process the SmallFrameConsumer update.
Update the SmallFramePageTableElement and
SmallFrameProducer register as necessary.
Receive transfer request. Perform tests. Send >

the small frame, using one 1394 transaction.

Figure 22 -- Small frame transfers

The size of small-frames is indicated by the 1394 header and is not replicated in the payload
portion of the packet.

For this reason, implementations are expected to have hardware/software mechanisms for
associating the write-transaction payload size (from the write request packet header) with the
data payload.

After receiving a small frame, a consumer shall not hold off subsequent small frames via
ack_busy’s or any other mechanism while the small frame is being processed. A consumer is
obligated to let the producer send maxSmallFrameCount small frames, so long as the small
frame consumer segment buffer is not filled.

6.6 Mixing of large frame mode and small frame transfer mode

Once a producer has started a large frame transfer, small frame transfers are not permitted until
the LargeFrameConsumer register has been updated with a mode value indicating the end of a
large frame. Once the LargeFrameConsumer register has been updated with a mode value
indicating the end of a large frame, small frame transfers may resume, beginning at an offset
equal to the total size of all of the small frames sent before the large frame transfer commenced.

A producer is allowed to send a small frame and then begin a large frame transfer without
updating the SmallFrameConsumer register.

A producer is allowed to send frames that fit the criteria for small frames using the large frame
transfer mode.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 32 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.7 Consumer segment buffers

A producer writes frame contents to consumer segment buffers on the connected node. A
consumer may utilize one or more consumer segment buffers for receiving large frames. A
consumer may utilize one or more consumer segment buffers for receiving small frames. The use
of multiple segment buffers allows overlap — the consumer may process a filled segment buffer
while the producer is filling up an available segment buffer. The figure below illustrates a
suggested strategy of using 2 large frame consumer segment buffers and 1 small frame

consumer segment buffer.

Producer Consumer
for large ————>| page 0 large
large frame PageTableElement][] frames 1 frame
#1,3,5,... page 1 segment
B paéé N buffer 1
for large —
frames e page 0 large
#2,4.6,... Y frame
\\A' page 1 segment
\A| paéé N buffer 2
small frame PageTableElement P small frame
space

Figure 23 -- Consumer segment buffers

6.8 Plug schematics

For clarity, the schematic view of 2 plugs connected together to form a dual-duplex
communication path is shown below. “p” is short for producer, “c” is short for consumer. Note that
although 2 receive segment buffers are shown in the data paths, only 1 receive segment buffer is

required.
Node A data Node B
5
A ‘ i X 4
Receive lu lu Receive
segment piug P Control P piug Segment
buffers frames buffers

2
13949 TRADE »~
SASSOCIATION]
f e ratiriasoia CotineCiaon |

Copyright © 1998-1999 1394TA

Figure 24 -- lICP plug schematic

This is an unapproved 1394TA specification, subject to change

Page 33 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

This may also be drawn as:

Node IICP Node
A < > B

Figure 25 -- Shorthand IICP plug schematic

6.9 Multiple devices

For a node to communicate to more than one other node, separate and distinct plugs need to be
created for each attached node. In the figure below, there would be N plugs on the computer for
the N devices.

Computer &b Instrument 1

IICP
€4———P Instrument 2

IICP
€4———P Instrument N

Figure 26 -- Multiple instrument connections

6.10 Connection variations

In all cases, a plug is used for data and control communications between two nodes. A plug is not
expandable.

There is no limit in this specification concerning the number of plugs a device may create.

An IICP device that is plug-capable may also implement device-dependent 1394 memory
mapped capabilities.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 34 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.11 Creating an IICP connection

An IICP connection manager establishes an IICP connection by sending connection request
packets to devicel and device2. In the figure below, Devicel and Device2 are attached nodes on
the bus, distinct from the node acting as the IICP connection manager.

Connection Manager

Devicel Connection
Register

Device2
(Connection Client)

(Connection Client)

Connection
Register

Connection

Connection Requests and responses Register

Plu lICP Plu
9 < > 9

Figure 27 -- Connection manager with 2 independent devices

An IICP device may be integrated into the connection manager, as shown below. In this case,
connection requests sent to Devicel and connection responses received from Devicel are not
1394 packets but rather internal software actions. Devicel is both a connection manager and a
connection client.

Devicel
(Connection -
Manager + Device2

Connection Client) (Connection Client)
Connection Requests and responses
Connection Connection
Register < > Register
Plu IICP
g < > Plug

Figure 28 -- Connection manager with 1 independent device

The table below shows the general flow in creating a connection between devicel and device?2.
See section 6.18 for the connection manager state machine and section 6.19 for the connection
client state machine for complete details.

1224 TRADE - Copyright © 1998-1999 1394TA Page 35 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Step Devicel Connection Manager Device?2

1 Lock connection register.

2 € | Lock devicel connection

register.

3 Lock device2 connection 2>

register.

4 € | Send connection request

packet (CREQ1) to devicel.
5 Create plug. Send connection | =
response packet (CRESP).

6 Send connection request >

packet (CREQ1) to device2.

7 € | Create plug. Send connection
response packet. (CRESP1).

8 € | Send connection request

packet (CREQ?2) to devicel.
9 Allocate segment buffers. >
Send connection response
packet (STATUS).

10 Send connection request >

packet (CREQ?2) to device2.

11 € | Allocate segment buffers.
Send connection response
packet (STATUS).

12 Unlock connection register.

13 € | Unlock devicel connection

register.

14 Devicel may now update Unlock device2 connection >

plug registers on device?2. register.

15 Device2 may now update
plug registers on devicel.

Figure 29 -- Establishing an IICP connection

6.11.1 Connection creation sequence
The details for each of the steps in the table are given below.

6.11.1.1 Connection manager locks its connection lock register

The connection manager shall first lock its connection lock register. Locking of its connection lock
register is done with an atomic test and set operation. The need to specify “atomic” is to make the
point that the connection manager must be able to test the state of its own lock register and then
set the lock, without worrying about an external lock request from another device interfering.

6.11.1.2 Connection manager locks devicel connection lock register

The connection manager next locks the devicel connection register. Locking of all non-
connection manager connection registers is accomplished by using a 1394 compare and swap
lock transaction. The connection manager executes a 1394 compare & swap lock operation on
the device connection lock register. Refer to IEEE1394-1995 sections 3.5.2, 6.2.2.3.2, 6.2.2.3.4,
6.2.4.9, and 7.3.4.3 for more details on compare and swap lock requests and responses. A lock
request packet is shown below.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 36 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

destination_ID tl rt tcode=9 pri
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

source_ID
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

destination_offset
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

data_length=16 extended_tcode=2

header_CRC

arg_value (high)

arg_value (low)

data_value (high)

data_value (low)
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

data_ CRC

Figure 30 -- Connection register lock request packet

destination_offset shall be set to the location of the connection register, as specified in the
configuration ROM.

arg_value shall be 64-bits and shall be all 0’'s when attempting to lock the connection
register, since an unlocked connection register is by definition, 0-valued.

data_value shall be 64-bits and shall be the unique_ID of the device attempting to lock the
connection register.

A compare_swap lock request performs the following equivalent “C” code:

if (old_value == arg_value) new val ue = data_val ue;
return ol d_val ue; /1 in the | ock response packet

The device returns a lock response. If the lock response indicates old_value = 0, the lock was
successful. If the lock response indicates non-zero, the lock was unsuccessful. A lock response
packet is shown below.

destination_ID tl rt tcode=0xb pri
1 | 1 1 1 1

source_ID rcode reserved
1 | 1

data_length=8 extended_tcode=2
1 1 1 1 1 1 1 1 1

header_CRC

old_value (high)
1 1 | 1 1

old_value (low)
1 1 1 1 1

data_ CRC

Figure 31 -- Connection register lock response packet

rcode is the appropriate response code.
old_value is the original value of the connection lock register. If 0, the connection register
has been successfully locked.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 37 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.11.1.3 Connection manager locks device2 connection register

The connection manager next locks the device2 connection lock register. This is again done with
a compare and swap lock request operation as described in 6.11.1.2.

If successful at locking the connection manager connection lock register and all other necessary
device connection lock registers, the connection manager temporarily “owns” the connection
services of all the devices it has locked. If unsuccessful, the connection manager shall unlock all
the connection lock registers it was successful in locking, then wait an implementation dependent
period of time before retrying.

The connection manager is allowed to lock the connection registers for only a single operation.
This is to prevent “hogging” of the connection registers by any one connection manager.

Connection clients maintain locks for time = CCLI_LOCK_TIMEOUT. See section 6.17 for the
value. If the connection manager has not unlocked a connection register in
CCLI_LOCK_TIMEOUT, the connection client shall assume some anomalous event occurred and
shall unlock its own connection lock register. Any resources allocated due to received connection
requests may and should be freed. If the CCLI_LOCK_TIMEOUT does occur, any further
transactions (except a valid lock request) to the connection register shall fail. The device shall
send a response packet as shown in Figure 35, with a status indication of
CRS_REG_NOT_LOCKED.

If a bus reset occurs and a device connection register is locked, the connection register is
implicitly unlocked by the device. The connection manager then re-locks connection registers as
necessary.

6.11.1.4 Connection manager sends connection request packet (CREQ1) to devicel

The connection manager next sends a connection request packet (CREQ1) to devicel. The
figure below shows the connection request packet. The destination offset for this connection
request packet is the connection register location + 8 (bytes).

reserved connectPktID=CREQ1
1

connectResponseOffset
1

cmgr_unique_ID (high)
1 1 1 1 1 1 1

cmgr_unique_ID (low)
1 1 1 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1

connectedNode_unique_ID (high)
| 1 1 1 1

connectedNode_unique_ID (low)

node_ID command_set_spec_id (high)
1 1
command_set_spec_id (low) command_set
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
reserved command_set_details
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

connectionParameters (high)
1 1 1 1 1 1

connectionParameters (low)
1 1 1

Figure 32 -- Connection request packet (CREQ1)

connectPktld identifies the connection packet as a connection request. See Table 6 --
ConnectPktld values in section 6.16.1.

connectResponseOffset is the 48-bit destination offset for the connection response packet.
cmgr_unique_ID is the 64-bit unique_ID for the connection manager.
connectedNode_unique_ID is the 64-bit unique_ID for the other device being connected.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 38 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

node_ID is the 16-bit node_ID for the other device being connected.
command_set_spec_id specifies the organization that defines the following command_set
value.

command_set identifies the higher level protocol to be used for the connection. The
command_set value should match a unit directory command_set value in the configuration
ROM.

command_set_details specifies the version of the command_set to be used.
connectionParameters is a 64-bit field that is defined by a higher level protocol.

6.11.1.5 Devicel sends response packet (CRESP)

Devicel stores the information provided in the CREQ1 packet and formulates a connection
response packet to be sent to the connection manager. The destination offset for the response
packet is the connectResponseOffset specified in the connection request packet. The format for
the response packet is shown below.

If connectRequestStatus is not equal to CRS_SUCCESS, the connection manager may then free
any resources associated with this connection. The connection manager shall unlock the
connection registers, and return an error to the application.

reserved connectPktID=CRESP reserved connectRequestStatus
1 1

reserved sfc|se

plugDestinationOffset
1 1 1 1 1 1

reserved dataFrameSize
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

reserved controlFrameSize
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

Figure 33 -- Connection response packet (CRESP)

connectPktld identifies the connection packet as a response to a CREQ1 packet. See Table
6 -- ConnectPktld values in section 6.16.1.

connectRequestStatus is an indication of success or failure. A zero-value indicates
success. See section 6.16.2.

The sfc-bit is one-valued if this node, acting as a producer, is capable of sending frames in
small frame transfer mode.

The se-bit is an indication from this device of its tolerance for non-sequential writes. If se is
one-valued, the connected node producer must write data sequentially to consumer segment
buffers.

plugDestinationOffset specifies the location in the device’s own 1394 space for the newly
created plug.

dataFrameSize is the maximum number of bytes in a data frame sent from this device. If all
1's, the size of data frames is unknown at this time. If all 0’s, there will be no data frames
from this device. This field provides a hint for the connected device for sizing of the data path
consumer segment buffers. See section 6.11.2.

controlFrameSize is the maximum number of bytes in a control frame sent from this device.
If all 1's, the size of control frames is unknown at this time. If all 0’s, there will be no control
frames sent from this device. This field provides a hint for the connected device for sizing of
the control path consumer segment buffers. See section 6.11.2.

6.11.1.6 Connection manager sends connection request packet (CREQ1) to device2

The connection manager next sends a CREQ1 connection request packet to device2. The format
for this packet was shown in Figure 32. In this case, node_ID and connectedNode_unique_ID
pertain to devicel. The destination offset is the connection register offset of device2 + 8 (bytes).

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 39 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.11.1.7 Device2 sends response packet (CRESP)

Device? stores the information provided in the CREQ1 packet and formulates a connection
response packet to be sent to the connection manager. The destination offset for the response
packet is the connectResponseOffset specified in the connection request packet. The format for
the response packet was shown previously in Figure 33.

6.11.1.8 Connection manager sends device2 information to devicel (CREQ2)

The connection manager now sends device2 plug information to devicel. The format for this
packet is shown below. The destination offset is the connection register of devicel + 8 (bytes).

reserved connectPktID=CREQ2
1 1 1 1 1 1 1

connectResponseOffset
1

reserved sfc|se
1 |

plugDestinationOffset
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

reserved dataFrameSize
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

reserved controlFrameSize
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

Figure 34 -- Connection request packet (CREQ?2)

connectPktld identifies the packet as a final connection request. See Table 6 --
ConnectPktld values in section 6.16.1.

connectResponseOffset is the 1394 destination offset for the connection response packet.
The sfc-bit is one-valued if the connected node may utilize small frame transfer mode when
sending small frames. The sfc-bit is O if the connected node will never utilized small frame
transfer mode.

The se-bit is one-valued if the connected node requires frame contents to be written
sequentially.

dataFrameSize is the number of bytes the connected producer will send in a data frame. See
section 6.11.2.

controlFrameSize is the total number of bytes the connected producer will send in a control
frame. See section 6.11.2.

6.11.1.9 Devicel sends response packet (STATUS)

Devicel processes the connection request. It is recommended that devicel allocate segment
buffer(s) for the data and control ports at this time. See section 6.11.2 below. Devicel then
formulates a connection response packet. The destination offset is the connectResponseOffset
specified in the connection request packet. The format of the response packet is shown below.

reserved connectPktID=STATUS reserved connectRequestStatus
1 1 1 1 1 1 1 1

Figure 35 -- Connection response packet (STATUS)

connectPktld identifies the connection packet as a connection response. See Table 6 --
ConnectPktld values in section 6.16.1.

connectRequestStatus is an indication of success or failure. A zero-value indicates
success. See section 6.16.2.

If connectRequestStatus is not equal to CRS_SUCCESS, the connection manager shall unlock
the connection registers and return an error to the application.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 40 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.11.1.10Connection manager sends devicel information to device2 (CREQ2)

The connection manager next sends a second connection request packet to device2, to convey
information about devicel. The format for the connection request packet is shown in Figure 34
(CREQ?2). In this case, se, plugDestinationOffset, dataFrameSize, controlFrameSize are
attributes of the devicel plug. The destination offset for the CREQZ2 packet is the connection
register offset of device2 + 8 (bytes).

6.11.1.11 Device?2 processes request packet, sends connection response

Device2 processes the connection request. Device2 formulates a connection response packet.
The destination offset is the connectionResponseOffset specified in the request packet. The
format of the response packet is shown in Figure 35 (STATUS).

If device2 unsuccessfully processes the request, device? shall free any resources associated with
this plug and return a connectRequestStatus not equal to CRS_SUCCESS. The connection
manager shall send a connection request packet (connectPktID = FREE) to devicel, unlock the
connection registers, and return an error to the application.

6.11.1.12 Connection manager unlocks its connection register

The connection manager next unlocks its connection lock register with a simple write operation,
clearing the 64-bit connection lock register.

6.11.1.13Connection manager unlocks devicel connection register

If devicel is not the same device as the connection manager, unlocking of the devicel
connection lock register is accomplished by using a 1394 compare and swap lock transaction,
similar to the compare and swap lock request issued to lock the devicel connection register, as
shown in Figure 27. For unlocking, the lock request arg_value shall be the 64-bit unique_ID of
the connection manager that acquired the lock, and the lock request data_value shall be 0.

When the devicel connection register is unlocked, devicel may update plug registers on the
connected node.

6.11.1.14Connection manager unlocks device2 connection register

If device2 is not the same device as the connection manager, unlocking of the device2
connection lock register is accomplished by using a 1394 compare and swap lock transaction,
similar to the compare and swap lock request issued to lock the devicel connection register, as
shown in Figure 30. For unlocking, the lock request arg_value shall be the 64-bit unique_ID of
the connection manager that acquired the lock, and the lock request data_value shall be 0.

When the device2 connection register is unlocked, device2 may update plug registers on the
connected node.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 41 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.11.2 Note on dataFrameSize, controlFrameSize and sizing of consumer buffers

The sizing of consumer buffers is highly implementation dependent. However, the table below
illustrates a recommended strategy.

Producer frame size Recommended consumer Recommended consumer

(dataFrameSize or controlFrameSize) large frame small frame
segment buffer size Segment buffer size

frame size == 0 — no buffer needed 0 — no buffer needed

1 <= frame size <= MAX_BUF_SIZE frame size, rounded up to If sfc-bit == 1, the recommended
nearest quadlet size to size is >= 2 Kbytes.
MAX_BUF_SIZE

frame size > MAX_BUF_SIZE MAX_BUF_SIZE If sfc-bit == 0, no buffer needed.

frame size == FF FFFFs (unknown) MAX_BUF_SIZE

Table 5 — Consumer segment buffer size and dataFrameSize, controlFrameSize

MAX_BUF_SIZE is implementation dependent.

Note that the frame size specification is only indicating the maximum possible frame size.
Producers may specify a large frame size and still send small frames. For this reason, consumers
should allocate space for receiving small frames, so long as the producer has indicated that they
are capable of sending small frames.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 42 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.12 Connection deactivation

Generally, a device sets all ICP plug producer and consumer state machines to the deactivated
state after a 1394-bus reset. The reason is to prevent plug communications to an incorrect
node_ID. Node_ID’s may change after a bus reset.

No updates to the public plug 1394 space are allowed, and no frame transfer activity is allowed
until the connection has been reactivated. If deactivated, and a plug access occurs, and the
implementation allows the specification of a response code, the response code shall be
resp_conflict_err.

After a bus reset, all nodes with an IICP connection shall start a reactivation timer. Any further
bus resets will cause the timer to be restarted. The connection manager that created the IICP
connection shall issue a reactivation request as soon as possible after a bus reset. If a
reactivation request is not received within time = REACT_TIMEOUT (see section 6.17 for value),
a node experiencing resource shortages that can be remedied by freeing plug resources may
discard and release plug resources associated with the timed out connection.

6.13 Connection reactivation

When a 1394 connection plug is deactivated, a reactivation sequence is used to reactivate the
connection. It is recommended that connection managers reactivate connections before
instantiating any new connections.

The connection manager that issued the connection sequence to create the plug is responsible
for issuing a reactivation sequence for the plug.

For each of the plugs a connection manager created, the connection manager shall go through a
reactivation sequence. The general flow is shown below. See section 6.18 for the connection
manager state machine and section 6.19 for the connection client state machine for complete
details.

Step Devicel Connection manager Device?2

1 Lock connection register.

2 €« Lock devicel connection

register.

3 Lock device2 connection >

register.

4 €« Send reactivation request

packet to devicel (REACT).
5 Process request. Send >
connection response
packet (STATUS).

6 Send reactivation request >

packet to device2 (REACT).

7 €« Process request. Send
connection response
packet (STATUS).

8 Unlock connection register.

9 €« Unlock devicel connection

register.
10 May now communicate to Unlock device2 connection >
Device2. register.

11 May now communicate to

Devicel.
Figure 36 - Reactivation sequence
/g%%%f}fﬁgﬁ/ Copyright © 1998-1999 1394TA Page 43 of 93

This is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.13.1 Reactivation sequence
The details for each of the steps in the table are given below.

6.13.1.1 Connection manager locks its own connection register

The connection manager shall first lock its own connection register as described in section
6.11.1.1.

6.13.1.2 Connection manager locks the connection register of devicel

The connection manager shall next lock the devicel connection register. This was discussed in
section 6.11.1.2.

6.13.1.3 Connection manager locks the connection register of device2

The connection manager shall next lock the device2 connection register. This was discussed in
section 6.11.1.3.

6.13.1.4 Connection manager sends reactivation request (REACT) to devicel

The connection manager sends a reactivation request packet to the devicel connection register.
The format of the packet is shown below. The destination offset is the connection register of
devicel + 8 (bytes).

reserved connectPktID=REACT
1 1 1 1 1 1 1

connectResponseOffset
1 1 1

plugDestinationOffset
1 1 1 1 1 1 1

unique_ID (high)
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

unique_ID (low)
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

Figure 37 -- Reactivation request packet (REACT)

connectPktld identifies the connection packet as a reactivation request. See Table 6 --
ConnectPktld values in section 6.16.1.

connectResponseOffset is the 48-bit destination offset for the connection response packet.
plugDestinationOffset specifies the destination offset of the deactivated plug on devicel.
node_ID is the possibly new 16-bit node_ID of device2.

unique_ID is the 64-bit unique_ID for the connection manager issuing this request.

6.13.1.5 Devicel processes reactivation request and sends response packet (STATUS)

Devicel determines if it owns a plug with plugDestinationOffset that was created by the
connection manager with the specified unique_ID. If it does, and if the connection has in fact
been deactivated, devicel will reactivate the connection, updating the plug information with the
new node_ID for device2. The producer and consumer state machines are restored to their
previous state prior to the bus reset. However, no plug activity is permitted until the connection
register is unlocked.

Devicel shall return a response packet. The format of the response packet is shown in Figure 35
(STATUS). The destination offset is the connectResponseOffset specified in the connection
request packet.

If the reactivation is not successful, the connection manager shall unlock the connection registers.
Reactivation retries are allowed within the REACT_TIMEOUT limit.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 44 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.13.1.6 Connection manager sends reactivation request (REACT) to device2

The connection manager sends a reactivation request packet to the device2 connection register.
The format of the packet is shown in Figure 37 (REACT). The destination offset is the connection
register of device2 + 8 (bytes). The node_ID is the possibly new node_ID for devicel.

6.13.1.7 Device2 processes reactivation request and sends response packet (STATUS)

Device2 determines if it owns a plug with plugDestinationOffset that was created by the
connection manager with the specified unique_ID. If it does, and if the connection has in fact
been deactivated, device2 will reactivate the connection, updating the plug information with the
new node_ID for devicel. The producer and consumer state machines are restored to their
previous state.

Device2 shall return a response packet. The packet format is shown in Figure 35 (STATUS). The
destination offset is the connectResponseOffset specified in the request packet.

If connectRequestStatus indicates the reactivation is not successful, the connection manager
shall send a FREE request to the devicel plug that was reactivated.

6.13.1.8 Connection manager unlocks its connection register
The connection manager next unlocks its own lock register as described in section 6.11.1.12.

6.13.1.9 Connection manager unlocks devicel connection register

The connection manager next unlocks the devicel connection lock register as described in
section 6.11.1.13.

6.13.1.10 Connection manager unlocks device2 connection register

The connection manager next unlocks the device2 connection lock register as described in
section 6.11.1.14.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 45 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99

IICP Draft 1.00rc3

6.14 Disconnecting IICP connections

An IICP connection may be disconnected when no longer required. For each plug to be
disconnected, the connection manager goes through the general flow shown in the table below. If
devicel or device2 no longer exist, steps involving the non-existent device are skipped. See
section 6.18 for the connection manager state machine and section 6.19 for the connection client

state machine for complete details.

1394TA II-WG

Step Devicel Connection manager Device2

1 Lock connection register

2 Lock devicel connection

register.

3 Lock device2 connection

register.

4 Send connection request

packet (STOP) to devicel.

5 Process request. Outgoing

frame transfer activity
should stop. Send response
packet.

6 Send connection request

packet (STOP) to device2.

7 Process request. Outgoing
frame transfer activity
should stop. Send response
packet.

8 Send connection request

packet (FREE) to devicel.
9 Free plug resources. Send
response packet.

10 Send connection request

packet (FREE) to device2.

11 Free plug resources Send
response packet

12 Unlock connection register

13 Unlock devicel connection

register.
14 Unlock device2 connection

register.

Figure 38 -- Disconnect sequence

The details for each step are shown below.

6.14.1 Disconnection sequence

6.14.1.1 Connection manager locks its own connection register

The connection manager shall first lock its own connection register. This is done as described in
section 6.11.1.1.

6.14.1.2 Connection manager locks devicel connection register.

The connection manager shall next lock the devicel connection register. This was described in
section 6.11.1.2.

2
13949 TRADE »~

/ASSOCI AT IO
f e ratiriasoia CotineCiaon |

Copyright © 1998-1999 1394TA
This is an unapproved 1394TA specification, subject to change

Page 46 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.14.1.3 Connection manager locks device2 connection register

The connection manager shall next lock the device2 connection register. This was described in
section 6.11.1.3.

6.14.1.4 Connection manager sends STOP request packet to devicel

The connection manager next sends a STOP request packet to devicel. The format of the STOP
request packet is shown below. The destination offset is the connection register of devicel + 8

(bytes).

reserved connectPktID=STOP

donnectResponseOffset
1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

reserved

plugDestinationOffset
1 1 1 | 1

unique_ID (high)
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

unique_ID (low)
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

Figure 39 -- STOP request packet

connectPktld identifies the connection packet as a STOP request. See Table 6 --
ConnectPktld values in section 6.16.1.

connectResponseOffset is the 1394 destination offset for the connection response packet,
set to the connection manager lock register offset + 8(bytes).

plugDestinationOffset is the 1394 destination offset for the plug to be stopped.

unique_ID is the 64-bit unique_ID for the connection manager.

6.14.1.5 Devicel processes STOP request and sends response packet

When devicel sees the STOP request packet, devicel should stop frame transfer activity. If any
part of a frame has been transferred, the remaining part of the frame shall not be sent. No
SmallFrameConsumer or LargeFrameConsumer update is done. After devicel has processed the
STOP request and has stopped all producer activity on the plug, devicel sends a response
packet as shown in Figure 35 (STATUS). The 1394 destination offset is the
connectResponseOffset identified in the request packet.

6.14.1.6 Connection manager sends STOP packet to device2

The connection manager next sends a STOP request packet to device2. The format of the
disconnection packet was shown in Figure 39. The destination offset used in sending the request
packet is the connection register of device2 + 8 (bytes).

6.14.1.7 Device2 processes STOP request and sends response packet

When device2 sees the STOP request packet, device2 shall immediately stop frame transfers. If
any part of a frame has been transferred, the remaining part of the frame is not sent. No
SmallFrameConsumer or LargeFrameConsumer update is done. After device2 has processed the
STOP request and has stopped all producer activity on the plug, device2 sends a response
packet as shown in Figure 35 (STATUS). The 1394 destination offset is the
connectResponseOffset identified in the request packet.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 47 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.14.1.8 Connection manager sends FREE request to devicel

The connection manager sends a connection request to devicel, telling devicel it may now free
resources associated with the connection.

reserved connectPktID=FREE

connectResponseOffset
1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

reserved

plugDestinationOffset
1 1 1 1 1

unique_ID (high)
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

unique_ID (low)
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

Figure 40 -- FREE request packet

ConnectPktld identifies the connection packet as a FREE connection request. See Table 6 -
- ConnectPktld values in section 6.16.1.

connectResponseOffset is the 1394 destination offset for the connection response packet.
plugDestinationOffset is the 1394 destination offset for the plug to be stopped.

unique_ID is the 64-bit unique_ID for the connection manager.

6.14.1.9 Devicel sends response packet

Devicel frees the resources associated with the specified plug, and sends a response packet as
shown in Figure 35 (STATUS). The 1394 destination offset is the connectResponseOffset
identified in the request packet.

6.14.1.10 Connection manager sends FREE request to device2

The connection manager next sends a FREE connection request to device2, telling device2 it
may now free resources associated with the connection.

6.14.1.11 Device2 sends response packet

Device? frees the resources associated with the specified plug, and sends a response packet as
shown in Figure 35 (STATUS). The 1394 destination offset is the connectResponseOffset
identified in the request packet.

6.14.1.12Unlock the connection register

The connection manager unlocks its own connection register. This is as described in section
6.14.1.12.

6.14.1.13Unlock the devicel connection register

The connection manager unlocks the devicel connection register. This is as described in section
6.14.1.13.

6.14.1.14Unlock the device2 connection register

The connection manager next unlocks the device2 connection register. This is as described in
section 6.14.1.14.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 48 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.15 Obtaining connection information

A device may wish to query other IICP devices to obtain information about the IICP connections
that exist on a device. This may be useful after a connection manager reset, or for IICP
debugging.

6.15.1 Connection information sequence

The device gathering information goes through the general flow shown in the table below. The
device gathering information is referred to as the connection manager since it is responsible for
locking the connection registers. The device may or may not have actually created the
connection. The device giving the information is referred to as a connection client, since it is
responding to connection register requests. See section 6.18 for the connection manager state
machine and section 6.19 for the connection client state machine for complete details.

Step Connection Manager (obtaining information) Connection Client (providing information)
1 Lock connection manager connection register.
2 Lock connection client connection register. >
3 Sends connect request packet (GETINFO) to >
connection client.
4 € | Process request. Sends connect response
packet (INFO).
5 Save information from INFO packet. Send >
GETPLUGINFO request to get information on plug
#1 of N.
6 € | Process request. Send response packet.
7 Repeat steps 5,6
8 Unlock connection manager connection register
9 Unlock connection client connection register >

Figure 41 -- Connection information sequence

The details for each step are shown below. Note that a connection manager may also lock the
connection registers and then send a GETPLUGINFO for each plug of interest, then unlock the
connection registers.

6.15.1.1 Connection manager locks its own connection register

The connection manager must lock its own connection register. This is discussed in section
6.11.1.1.

6.15.1.2 Connection manager locks the connection client lock register

The connection manager shall next lock the connection client connection register. This is
discussed in section 6.11.1.2.

6.15.1.3 Connection manager sends GETINFO request to connection client

The connection manager next sends a connection request packet (GETINFO) to the connection
client. The format of the request packet is shown below. The destination offset is the connection
register of the connection client + 8 (bytes).

reserved connectPktID=GETINFO

connectResponseOffsel
1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

Figure 42 -- GETINFO request packet

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 49 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

connectPktld identifies the connection packet as a request to get plug information. See
Table 6 -- ConnectPktld values in section 6.16.1.
connectResponseOffset is the 1394 destination offset for the connection response packet.

6.15.1.4 Connection client processes GETINFO and sends response packet

When the connection client sees the GETINFO request packet, the connection client generates a
list of all current plugs. This list shall remain intact until the connection register is unlocked. The
connection client formulates a response packet with the format shown below.

reserved connectPktID=INFO reserved connectRequestStatus
1 1

numberOfConnections
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

reserved

first_plugDestinationOffset
1 1 1 1 1

Figure 43 -- INFO response packet

connectPktld identifies the connection packet as a connection response. See Table 6 --
ConnectPktld values in section 6.16.1.

connectRequestStatus is an indication of success or failure. A zero-value indicates
success. See section 6.16.2.

numberOfConnections specifies the number of IICP connections allocated on the
connection client.

first_plugDestinationOffset specifies a destination offset for the first plug in the list of plugs
generated by the connection client.

If connectRequestStatus is not equal to CRS_SUCCESS, the connection manager shall unlock
the connection registers and return an error to the application.

6.15.1.5 Connection manager sends GETPLUGINFO request to connection client

The connection manager may next obtain information about specific plugs on the connection
client by sending a GETPLUGINFO request packet. The format of the request packet is shown
below. The destination offset is the connection register of the connection client + 8 (bytes).
reserved connectPktID=
R T . BETPLUGINFQ | _

connectResponseOffset
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

reserved

plugDestinationOffset
1 1 1 1 1

Figure 44 -- GETPLUGINFO request packet

connectPktld identifies the connection packet as a request to get plug information. See
Table 6 -- ConnectPktld values in section 6.16.1.

connectResponseOffset is the 1394 destination offset for the connection response packet.
plugDestinationOffset specifies the plug the connection manager wishes to obtain
information about.

6.15.1.6 Connection client processes GETPLUGINFO, sends PLUGINFO response packet

If the specified plug exists, the connection client sends a response packet, with information on the
specified plug, as shown below. The 1394 destination offset is the connectResponseOffset
identified in the request packet. If the specified plug does not exist, the connection client sends a
response packet (STATUS) as shown in Figure 35, with connectRequestStatus = CRS_PARM.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 50 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

reserved connectPktID=PLUGINFO reserved connectRequestStatus

node_ID
1

plugDestinationOffset
1 1 1

1 1

ctrlLFCS ctrlISFCS ctriLFPS ctrlSFPS datalLFCS dataSFCS dataLFPS dataSFPS

1 1

reserved sfc| se command_set_spec_id

1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
reserved command_set

1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
reserved command_set_details

1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

connectionParameters (high)
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

connectionParameters (low)
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

reserved

connectedPlugDestinationOffset

reserved
1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

nextPlugDestinationOffset
1

Figure 45 -- PLUGINFO response packet

connectPktld identifies the connection packet as a connection response. See Table 6 --
ConnectPktld values in section 6.16.1.

connectRequestStatus is an indication of success or failure. A zero-value indicates
success. See section 6.16.2. If the GETPLUGINFO request was for a plug that does not
exist, or there are no plugs on the connection client, the connectRequestStatus shall be set to
CRS_UNKNOWN_PLUG.

node_ID is the node_ID of the connected node.

plugDestinationOffset specifies the destination offset of the plug.

ctrILFCS is the current state of the control port large frame consumer state machine. The
consumer state is the decimal number following the ‘CLF’ in the state label. See section 6.20
for consumer state machine documentation.

ctrISFCS is the current state of the control port small frame consumer state machine. The
consumer state is the decimal number following the ‘CSF’ in the state label. See section 6.20
for consumer state machine documentation.

ctrILFPS is the current state of the control port large frame producer state machine. The
producer state is the decimal number following the ‘LFP’ in the state label. See section 6.21
for producer state machine documentation.

ctrISFPS is the current state of the control port small frame producer state machine. The
producer state is the decimal number following the ‘SFP’ in the state label. See section 6.21
for producer state machine documentation.

dataLFCS is the current state of the data port large frame consumer state machine. The
consumer state is the decimal number following the ‘CLF’ in the state label. See section 6.20
for consumer state machine documentation.

dataSFCS is the current state of the data port small frame consumer state machine. The
consumer state is the decimal number following the ‘CSF’ in the state label. See section 6.20
for consumer state machine documentation.

dataLFPS is the current state of the data port large frame producer state machine. The
producer state is the decimal number following the ‘LFP’ in the state label. See section 6.21
for producer state machine documentation.

dataSFPS is the current state of the data port small frame producer state machine. The
producer state is the decimal number following the ‘'SFP’ in the state label. See section 6.21
for producer state machine documentation.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 51 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

The sfc-bit is one-valued if the connected node producer indicated it is capable of utilizing
small frame transfer mode.

The se-bit is one-valued if the connected node requires sequential writes.
command_set_spec_id indicates the original command_set_spec_id specified when the
connection was established.

command_set indicates the original command_set specified when the connection was
established.

command_set_details indicates the original command_set_details specified when the
connection was established.

connectionParameters indicates the original ConnectionParameters specified when the
connection was established.

connectedPlugDestinationOffset is the destination offset for the plug on the connected
node.

nextPlugDestinationOffset specifies the plugDestinationOffset for the next plug in the list on
the connection client. If this is the last plug in the list generated when the GETINFO request
packet was received, or if no GETINFO request preceded this GETPLUGINFO request,
nextPlugDestinationOffset is set to FFFF FFFF FFFF .

The consumer and producer state values may be in the process of transition and therefore may
be inaccurate. These values should be a best effort attempt to reflect the current state. If
impossible to determine state, an implementation is allowed to return a value of FFys.

If connectRequestStatus is not equal to CRS_SUCCESS, the connection manager shall unlock
the connection registers and return an error to the application.

6.15.1.7 Repeat above 2 steps

The 2 steps above are repeated until the nextPlugDestinationOffset is O or a
connectRequestStatus '= CRS_SUCCESS is returned.

6.15.1.8 Connection manager unlocks its connection register

The connection manager unlocks its connection register. This is as described in section
6.14.1.12.

6.15.1.9 Connection manager unlocks connection client register

The connection manager next unlocks the connection client register. This is as described in
section 6.14.1.14.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 52 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99

IICP Draft 1.00rc3 1394TA II-WG

6.16 Summary of connection packet fields

6.16.1 ConnectPktld values
The table below enumerates the values for the 8-bit ConnectPktld.

ConnectPktld
Macro

ConnectPktld
Value

Definition

(Decimal)

CREQ1 1 Connection request packet sent to begin a connection sequence.

CREQ2 2 Connection request packet sent that includes the connected
node plug information.

REACT 3 Connection request packet issued to reactivate a connection.

STOP 4 Connection request packet issued to stop plug activity.

FREE 5 Free plug resources.

GETINFO 6 Get information about the total number of connections on a
node.

GETPLUGINFO 7 Get information about a specific plug on a node.

CRESP 128 Connection response packet sent after processing a CREQ1.

STATUS 129 General response packet sent after receiving REACT, STOP, or
FREE.

INFO 130 Response packet providing the total number of connections on a
node.

PLUGINFO 131 Response packet providing information on a specific plug on a

node.

0,8-127,132-255

Reserved

Table 6 -- ConnectPktld values

6.16.2 connectRequestStatus values

connectRequestStatus is used in all connection response packets as an indication of success or
failure. The table below summarizes connection response values.

1391

TRADE
/ASSC)CI AT IO
TS TS

L

Copyright © 1998-1999 1394TA
This is an unapproved 1394TA specification, subject to change

Page 53 of 93

08/02/99

IICP Draft 1.00rc3

1394TA II-WG

connectRequestStatus connectRequestStatus Definition

Macro Decimal Value

CRS_SUCCESS 0 Success

CRS_RSRC 1 Rejected- not enough resources

CRS_PARM 2 Rejected-illegal parameter in request

CRS_UNKNOWN_PLUG 3 Rejected-unknown plug

CRS_REG_NOT_LOCKED 4 Connection Register not locked, or not
locked by the sender of the connection
request.

CRS_NOT_IN_DEACTIVATED_STATE 5 Connection received a reactivation request
and was not in the deactivated state.

CRS_NOT_STOPPED 6 Connection received a request to free plug
resources but either the producer or
consumer were not stopped yet.

CRS_BUS RESET 7 A request failed due to a bus reset.

CRS_NO_DEV 8 A request fails because the device no longer
is found on the bus.

CRS_CONNECT_REQ_TIMEOUT 9 Request failed because a connection request
was sent and a connection response was not
received in CONNECT _REQ TIMEOUT.

10-254 Reserved
CRS_FAIL 255 Failure, unspecified reason.

Table 7 -- connectRequestStatus values

6.17 Miscellaneous macro values

Time Macro Decimal Value

Definition

CCLI_LOCK_TIMEOUT 10000

Number of milliseconds a connection client is allowed to
remain locked. If this time expires, the connection client
shall assume something anomalous occurred, and will
unlock its own connection register.

REACT_TIMEOUT 10000

Number of milliseconds a node will wait after a bus reset for
the connections to be reactivated. All connections not
reactivated in this time may then be assumed to be stale,
and the plug resources may be freed when necessary to
complete new connection requests successfully.

CONNECT_REQ_TIMEOUT 1000

Number of milliseconds to wait after sending an
acknowledged connection request packet before the sender
of the packet will time out.

Table 8 -- Miscellaneous macro values

1391

TRADE
e ASSOCIATION -
TS TS

Copyright © 1998-1999 1394TA
This is an unapproved 1394TA specification, subject to change

Page 54 of 93

08/02/99

6.18 Connection

IICP Draft 1.00rc3 1394TA II-WG

manager state machine

The table below explains terms used in the following connection manager state machine.

Term

Explanation

BusReset

A 1394 bus reset occurrence.

CM_busReset()

Called by the connection manager to perform all necessary activities after a bus
reset.

CMGR Shorthand for the connection manager.
CMGR.lock The connection lock register for the connection manager.
F False = 0.

Indication(value)

Sets up a value to be returned to the caller that initiated the request. The full return
value may be made up of more than one indication value, since some requests
communicate to more than one device.

Lock(dev,arg_val,

Sends a 1394 lock request (compare and swap to a device) and waits for the lock

data_val) response packet.
LockRegisters() Locks the specified connection registers. See section 6.18.2.
QueueRequest(req) | Queue a connection request to the connection manager.

Send(dev,PktID)

Send a connection request packet to device=dev with connectPktID=PktID and waits
for a connection response packet. Returns a connectRequestStatus value. If device
fails to send a connection response packet and a connection request timeout occurs,
the returned connectRequestStatus is set to CRS_CONNECT_REQ_ TIMEOUT.

T True = 1.

TestAndSet() An atomic (non-interruptible) operation done on the connection manager lock
register. If the lock register is 0-valued prior to this operation, the TestAndSet() will
be successful and the value is set to CMGR unique_ID. If the lock register is not O-
valued prior to this operation, the TestAndSet() will fail. TestAndSet() may succeed if
for some reason if the lock register value is already equal to the CMGR unique_ID.

UngetRequest() Re-queues the current request so the request will be retried later.

UnlockRegisters() Unlocks the specified connection registers. See section 6.18.3.

Table 9 -- Connection manager state machine terminology

13239 TRADE
/ASSC)CI AT IO
TS TS

L

Copyright © 1998-1999 1394TA
This is an unapproved 1394TA specification, subject to change

Page 55 of 93

08/02/99

IICP Draft 1.00rc3 1394TA II-WG

6.18.1 Connection manager state machine: request startup

State Transi- | Condition New state
tion Action
CMO: idle TX0a BusReset CMO
CM_busReset();
TXO0b valid request received from higher layer CM1
TXO0c Invalid request received from higher layer CMO
Indication(err)
CM1: LockReg TX1la LockRegisters() fails due to previously locked condition CM1
LockRegisters() Sleep(implementation-dependent time);
TX1b LockRegisters() fails due to bus reset CMO
UngetRequest();
TX1c LockRegisters() fails CMO
Indication(err);
TX1d LockRegisters() succeeds && request is to create a plug CM10
TX1le LockRegisters() succeeds && request is to reactivate a plug CM20
TX1f LockRegisters() succeeds && request is to stop a plug CM30
TX1g LockRegisters() succeeds && request is to get plug information. CM40
TX1h LockRegisters() succeeds && request is to get information on a CM50
specific plug only.

Figure 46 -- Connection manager state machine: request startup

State CMO. The connection manager is idle.
Transition TX0a. A bus reset occurs.
Transition TXO0b. A valid request is received from a higher protocol layer or from an application.
Transition TXO0c. An invalid request is received from a higher protocol layer or from an
application. An error indication is returned.

State CML1. The connection manager calls LockRegisters() to lock the connection registers of all
devices to be involved in the connection request.
Transition TX1a. LockRegisters() fails due to a previously locked condition. The connection
manager shall retry after an implementation dependent time.
Transition TX1b. LockRegisters() fails due to a bus reset. UngetRequest() re-queues the original

request.

Transition TX1c. LockRegisters() fails due to some other condition. An error indication is

returned.

Transition TX1d. LockRegisters() succeeds and the request is to create a plug.
Transition TX1e. LockRegisters() succeeds and the request is to reactivate a plug.
Transition TX1f. LockRegisters() succeeds and the request is to stop plug activity.

Transition TX1g. LockRegisters() succeeds and the request is to get plug information.

Transition TX1h. LockRegisters() succeeds and the request is to get information for a specific

plug.

1391

TRADE
/ASSC)CI AT IO
TS TS

L

Copyright © 1998-1999 1394TA

This is an unapproved 1394TA specification, subject to change

Page 56 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG
6.18.2 Connection manager state machine: LockRegisters(devicel,device2)
State Transi- | Condition New state
tion Action
LO: TX0a BusReset Return to caller
TestAndSet() on CMGR.lock = 0; Indication(not locked due to bus reset);
CMGR.lock CM_busReset();
TXO0b TestAndSet() fails Return to caller
Indication(not locked due to previously locked condition);
TX0c devicel = CMGR L1
TX0d Lock2 == L2
TX0e Return to caller
Indication(lock success);
L1: TX1la BusReset Return to caller
Lock(devicel, CMGR.lock = 0; Indication(not locked due to bus reset);
arg_value=0, CM_busReset();
data_value= TX1b Lock response indicates successful lock && Lock2 L2
CMGR uid);
TX1c Lock response indicates devicel not successfully locked Return to caller
CMGR.lock = 0; Indication(not locked due to locked condition);
TX1d Lock response indicates successful lock && !Lock?2 Return to caller
Indication(lock success);
L2: TX2a BusReset Return to caller
Lock (device2, CMGR.lock = 0; Indication(not locked due to bus reset);
arg_value=0, CM_busReset();
data_value= TX2b Lock response indicates successful lock Return to caller
CMGR uid); Indication(lock success);
TX2c Lock response indicates device? not successfully locked Return to caller
CMGR.lock = 0;
UnlockRegisters(Unlock2=F);
Indication(not locked due to locked condition);

Figure 47 -- Connection manager state machine: LockRegisters()

The call to LockRegisters() specifies a device (devicel) or devices (devicel, device2) to be
locked, along with a variable Lock?2 that determines if a second device, device2, is to be locked.
The connection manager may be the same as devicel.

State LO. Upon entry, the connection manager attempts an atomic test-and-set operation on the
connection manager’s connection lock register, abbreviated as CMGR.lock.

Transition TX0a. A bus reset occurs. The connection manager lock register is cleared and an
indication is returned indicating the lock failed due to a bus reset. CM_busReset() is called.
Transition TX0b. The connection manager’s lock register is already locked by another node. An
indication is returned indicating the lock failed due to a locked condition.

Transition TX0c. All preceding conditions tested false, and devicel is not the connection
manager.

Transition TXO0d. All preceding conditions tested false, and there is a second device is to be
locked.

Transition TXO0e. All preceding conditions tested false, and no additional devices are to be
locked. A successful lock indication is returned.

i,)
223 IRADE Copyright © 1998-1999 1394TA

This is an unapproved 1394TA specification, subject to change

Page 57 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

State L1. Upon entry, a lock request is sent to devicel in an attempt to lock the devicel
connection lock register. The connection manager then waits for a lock response.

Transition TX1a. A bus reset occurs. The connection manager’s lock register is cleared. An
“unlocked due to bus reset” indication is returned. CM_busReset() is called.

Transition TX1b. Devicel returns a lock response indicating the lock request succeeded and
there is a second device to be locked.

Transition TX1c. Devicel returns a lock response indicating the lock request failed. The
connection manager’s lock register is cleared. An “unlocked due to previously locked condition”
indication is returned.

Transition TX1d. Devicel returns a lock response indicating the lock request succeeded and
there is not a second device to be locked. A successfully locked indication is returned.

State L2. Upon entry, a lock request is sent to device2 in an attempt to lock the device2
connection lock register. The connection manager then waits for a lock response.

Transition TX2a. A bus reset occurs. The connection manager’s lock register is cleared. An
“unlocked due to bus reset” indication is returned. CM_busReset() is called.

Transition TX2b. Device2 returns a lock response indicating the lock request succeeded. A
successful lock indication is returned.

Transition TX2c. Device2 returns a lock response indicating the lock request failed due to a
previously locked condition. UnlockRegisters(Unlock2=F) is called to unlock all locked connection
registers. An indication of “unlocked due to previously locked condition” is returned.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 58 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG
6.18.3 Connection manager state machine: UnlockRegisters()
State Transi- | Condition New state
tion Action
ULO: TX0a BusReset before CMGR.lock = 0 Return to caller
UnlockResult = 0; Indication(UnlockResult |= 1); CM_busReset();
CMGR.lock = 0; TX0b BusReset after CMGR.lock = 0 Return to caller
Indication(UnlockResult |= 2); CM_busReset();
TXO0c (CMGR == devicel) && !Unlock2 Return to caller
Indication(UnlockResult);
TX0d (CMGR == devicel) && Unlock?2 uL2
TX0e CMGR !=devicel ULl
UL1: TX1la BusReset before lock request sent Return to caller
Lock (devicel, Indication(UnlockResult |= 0x2); CM_busReset();
arg_value = TX1b BusReset after lock request sent && lock response not received Return to caller
CMGR uid, Indication(UnlockResult |= 0x3); CM_busReset();
data_value=0); TX1c BusReset after lock response received Return to caller
Indication(UnlockResult |= 0x4); CM_busReset();
TX1d Lock response indicates successful unlock && Unlock2 uL2
TX1le Lock response indicates successful unlock && !Unlock2 Return to caller
Indication(UnlockResult);
TX1f Lock response indicates unlock failure && Unlock2 uL2
UnlockResult |= 0x10
TX1g Lock response indicates unlock failure && !Unlock2 Return to caller
Indication(UnlockResult |= 0x10);
UL2: TX2a BusReset before lock request sent Return to caller
Lock (device2, Indication(UnlockResult |= 0x4); CM_busReset();
arg_value = TX2b BusReset after lock request sent Return to caller
CMGR uid, Indication(UnlockResult |= 0x5); CM_busReset();
data_value=0); TX2c BusReset after response received Return to caller
Indication(UnlockResult |= 0x6); CM_busReset();
TX2d Lock response indicates unlock failure Return to caller
Indication(UnlockResult |= 0x20) ;
TX2e Lock response indicates successful unlock Return to caller

Indication(UnlockResult);

Figure 48 -- Connection manager state machine: UnlockRegisters()

The call to UnlockRegisters() specifies a device (devicel) or devices (devicel,device2) to be
unlocked. Variable Unlock2 determines if a second device, device2, is to be unlocked. The
connection manager may be the same as devicel. The caller of UnlockRegisters(), in some

cases, needs to know the success or failure of the operation, and may need to know if a bus reset
occurred. For this reason, variable UnlockResult contains information on if and when a bus reset

occurred. Additional information indicates the success or failure of unlocking CMGR, devicel, and
device2. A suggested definition for the UnlockResult bits is shown below.

1391

TRADE
/ASSC)CI AT IO
TS TS

L

Copyright © 1998-1999 1394TA

This is an unapproved 1394TA specification, subject to change

Page 59 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

UnlockResult Bit Meaning

0,1,2 If non-zero, indicates point in the unlock procedure that a bus reset occurred.
0 — no bus reset

1 — bus reset before CMGR unlocked

2 — bus reset after CMGR unlocked and before unlock request sent to devicel.
3 — bus reset after unlock request sent to devicel and before lock response.

4 — bus reset after unlock response from devicel and before unlock request sent to
device2.

5 — bus reset after unlock request sent to device2 and before lock response.
6 — bus reset after unlock response from device2.

3 If non-zero, indicates error in unlocking the connection manager. This should never
occur, but is provided for completeness.

4 If non-zero, indicates an error in unlocking devicel.

5 If non-zero, indicates an error in unlocking device?2.

Table 10 -- Suggested UnlockResult bit definitions

State ULO. Upon entry, UnlockResult is initialized to 0 and the connection manager lock register
is cleared.

Transition TX0a. A bus reset occurs before the connection manager’s lock register is unlocked.
UnlockResult is modified to indicate this condition and is returned to the caller. CM_busReset() is
called.

Transition TXOb. A bus reset occurs after the connection manager’s lock register has been
unlocked. UnlockResult is modified to indicate this condition and is returned to the caller.
CM_busReset() is called.

Transition TXOc. The connection manager is the same as devicel, and Unlock? is false. There
are no more devices to unlock. A successfully unlocked indication is returned to the caller.
Transition TX0d. The connection manager is the same as devicel, and Unlock?2 is true.
Transition TX0e. The connection manager is not the same as devicel.

State UL1. Upon entry, a compare and swap lock request is sent to devicel in an attempt to
unlock the devicel lock register. The connection manager waits for a lock response.

Transition TX1a. A bus reset occurs before the unlock request is sent to devicel. UnlockResult
is modified to indicate this event. UnlockResult is returned to the caller. CM_busReset() is called.
Transition TX1b. A bus reset occurs after the unlock request is sent to devicel and before the
response is received. UnlockResult is modified to indicate this event. UnlockResult is returned to
the caller. CM_busReset() is called.

Transition TX1c. A bus reset occurs after the unlock response returns. UnlockResult is modified
to indicate this event. UnlockResult is returned to the caller. CM_busReset() is called.
Transition TX1d. Devicel successfully unlocked and Unlock?2 indicates device2 needs to be
unlocked.

Transition TX1e. Devicel successfully unlocked and there are no more devices to unlock.
UnlockResult is returned to the caller.

Transition TX1f. Devicel unlock fails. UnlockResult is modified to indicate this condition.
Device2 remains to be unlocked.

Transition TX1g. Devicel unlock fails. There are no more devices to be unlocked. UnlockResult
is modified to indicate this condition. UnlockResult is returned to the caller.

State UL2. Upon entry, a compare-swap lock request is sent to device2 in an attempt to unlock
the device2 lock register. The connection manager waits for a lock response packet.

Transition TX2a. A bus reset occurs before the unlock request is sent to device2. UnlockResult
is modified to indicate this and is returned to the caller. CM_busReset() is called.

Transition TX2b. A bus reset occurs after the unlock request has been sent but before a
response is received. UnlockResult is modified to indicate this and is returned to the caller.
CM_busReset() is called.

Transition TX2c. A bus reset occurs after the response is received. UnlockResult is modified to
indicate this and is returned to the caller. CM_busReset() is called.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 60 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99

IICP Draft 1.00rc3

1394TA II-WG

Transition TX2d. Device2 unlock fails. UnlockResult is modified to indicate this and is returned to

the caller.

Transition TX2e. Device2 unlock succeeds. UnlockResult is returned to the caller.

6.18.4 Connection manager state machine: creating a plug

State Transi- | Condition New state
tion Action
CM10: TX10a BusReset CMO
Err = UngetRequest(); CM_busReset();
Send(devicel, TX10b | Err== CRS_SUCCESS CM11
CREQL);
TX10c Err I= CRS_SUCCESS CMO
UnlockRegisters(Unlock2=T); Indication(Err);
CM11: TX11la BusReset CMO
Err = UngetRequest();CM_busReset();
Send(device2, TX11b | Err == CRS_SUCCESS CM12
CREQ1);
TX11c Err !I= CRS_SUCCESS CMO
UnlockRegisters(Unlock2=T); Indication(Err);
CM12: TX12a BusReset CMO
Err = UngetRequest();CM_busReset();
Send(devicel, TX12b | Err== CRS_SUCCESS CM13
CREQ?2);
TX12c Err I= CRS_SUCCESS CMO
UnlockRegisters(Unlock2=T); Indication(Err);
CM13: TX13a | BusReset before response received CMO
Err = UngetRequest(); CM_busReset();
Send(device2, TX13b | Err == CRS_SUCCESS CM14
CREQ?2);
TX13c Err 1= CRS_SUCCESS CM15
Err2 == Err
CM14: TX14a | UnlockRegisters() fails due to bus reset before devicel unlocked. CMO
UnlockRegisters(UngetRequest();CM_busReset();
Unlock2=T); TX14b | UnlockRegisters() fails due to bus reset before device2 unlocked. CMO
QueueRequest(devicel STOP,FREE); UngetRequest();
CM_busReset();
TX14c UnockRegisters() returns success or fails after device2 unlocked. CMO
Indication(success); QueueRequest(reactivate plug);
CM15: TX15a BusReset CMO
Err = Indication(Err); CM_busReset();
Send(devicel, TX15b | Response received CMO
FREE); Indication(Err2); UnlockRegisters(Unlock2=T);

Figure 49 -- Connection manager state machine: creating a plug

State CM10. This state is entered after the connection registers have been locked and the
connection request involves creating a new plug. Upon entry a CREQ1 connection request

packet is sent to devicel.
Transition TX10a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.
Transition TX10b. Devicel returns a CRESP packet with connectRequestStatus ==

CRS_SUCCESS.

Transition TX10c. Devicel returns a packet with connectRequestStatus != CRS_SUCCESS.
UnlockRegisters() is called to unlock any locked connection registers. An error indication is
returned.

State CM11. Upon entry, a CREQ1 packet is sent to device2.

i,)
223 IRADE Copyright © 1998-1999 1394TA

This is an unapproved 1394TA specification, subject to change

Page 61 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Transition TX11a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.

Transition TX11b. Device2 returns a CRESP packet with connectRequestStatus ==
CRS_SUCCESS.

Transition TX11c. Device?2 returns a packet with connectRequestStatus != CRS_SUCCESS.
UnlockRegisters() is called to unlock any locked connection registers. An error indication is
returned.

State CM12. Upon entry, a CREQ?2 packet is sent to devicel.

Transition TX12a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.

Transition TX12b. Devicel returns a STATUS packet with connectRequestStatus ==
CRS_SUCCESS.

Transition TX12c. Devicel returns a STATUS packet with connectRequestStatus !=
CRS_SUCCESS. UnlockRegisters() is called to unlock any locked connection registers. An error
indication is returned.

State CM13. Upon entry, a CREQ?2 packet is sent to device2.

Transition TX13a. A bus reset occurs before a response is received. UngetRequest() re-queues
the original request. CM_busReset() is called.

Transition TX13b. Device2 returns a STATUS packet with connectRequestStatus ==
CRS_SUCCESS.

Transition TX13c. Device2 returns a STATUS packet with unexpected connectRequestStatus.
Err2 is set to the connectRequestStatus.

State CM14. Upon entry, UnlockRegisters(Unlock2=T) is called to unlock the connection
registers.

Transition TX14a. UnlockRegisters() fails due to a bus reset before devicel is unlocked.
UngetRequest() is called to re-queue the original request.

Transition TX14b. UnlockRegisters() fails due to bus reset after devicel is unlocked but before
device? is unlocked. A request to STOP and FREE the newly created plug on devicel is queued.
UngetRequest() re-queues the original request. CM_busReset() is called.

Transition TX14c. UnlockRegisters() returns success or returns failure, but the failure occurs
after device2 unlocked. The connection remains valid. QueueRequest() is called to queue a
reactivation request for the newly created plug.

State CM15. Upon entry, a FREE request is sent to devicel.

Transition TX15a. A bus reset occurs. The error indication from device2 is returned.
CM_busReset() is called.

Transition TX15b. A response is received. UnlockRegisters() is called. The error indication from
device? is returned.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 62 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.18.5 Connection manager state machine: reactivating a connection

State Transi- | Condition New state
tion Action
CM20 TX20a BusReset CMO
Err = CM_busReset();
Send(devicel, TX20b | (Err == CRS_SUCCESS) || CM21
REACT); (Err == CRS_NOT_IN_DEACTIVATED_STATE)
TX20c CMO

UnlockRegisters(Unlock2=T);
Indication(Err);

CM21 TX21a BusReset CMO
Err = CM_busReset();
Send(device2, TX21b | (Err == CRS_SUCCESS) || CM23
REACT); (Err == CRS_NOT_IN_DEACTIVATED_ STATE)
TX21c CM22
Err2 = Err;
CM22 TX22a BusReset CMO
Err = Indication(Err2); CM_busReset();
Send(devicel, TX22b [Response received CMO
FREE); UnlockRegisters(Unlock2=T); Indication(Err2);
CM23 TX23a | UnlockRegisters() completes CMO
UnlockRegisters(Indication(Err);
Unlock2=T);

Figure 50 -- Connection manager state machine: reactivating a plug

State CM20. This state is entered after the connection registers have been locked and the
connection request involves reactivating a plug. Upon entry, a REACT connection request packet
is sent to devicel.

Transition TX20a. A bus reset occurs. CM_busReset() will reschedule a reactivation request.
Transition TX20b. Devicel returns a STATUS response packet with connectRequestStatus ==
CRS_SUCCESS or CRS_NOT_IN_DEACTIVATED_STATE.

Transition TX20c. Devicel returns a response packet with an unexpected
connectRequestStatus. UnlockRegisters() is called to unlock any locked connection registers. An
error indication is returned.

State CM21. Upon entry, a REACT connection request packet is sent to device2.
Transition TX21a. A bus reset occurs. CM_busReset() is called and will reschedule a
reactivation request.

Transition TX21b. Device2 returns a response packet with connectRequestStatus ==
CRS_SUCCESS or CRS_NOT_IN_DEACTIVATED_STATE.

Transition TX21c. Device2 returns a response packet with an unexpected
connectRequestStatus. Variable Err2 is set to Err to be returned later.

State CM22. Upon entry, a FREE request packet is sent to devicel to free the plug.

Transition TX22a. A bus reset occurs. Error indication Err2 is returned. CM_busReset() is called.
Transition TX22b. Devicel returns a response packet. UnlockRegisters() is called to unlock any
locked connection registers. Error indication Err2 is returned.

State CM23. Upon entry, UnlockRegisters(Unlock2=T) is called to unlock connection registers.
Transition TX23a. UnlockRegisters() completes. An indication made up of Err is returned.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 63 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.18.6 Connection manager state machine: stopping a connection

State Transi- | Condition New state
tion Action
CM30 TX30a BusReset CMO
Err2=no error; UngetRequest(); CM_busReset();
Errl = TX30b | StopDevice2 CMm31
Send(devicel,
STOP); TX30c | (Errl!= CRS_SUCCESS) CMO
UnlockRegisters(Unlock2=F); Indication(Err1,Err2);
TX30d CM32
CM31 TX31a BusReset CMO
Ern2 = UngetRequest(); CM_busReset();
Send(device2, TX31b | ((Err2 == CRS_SUCCESS) || (Err2 == CRS_UNKOWN_PLUG) || CM32
STOP); (Err2 == CRS_NO_DEV)) && (Errl == CRS_SUCCESS)
TX31c | (Err2 == CRS_SUCCESS) && CM33
((Errl == CRS_UNKNOWN_PLUG) || (Errl == CRS_NO_DEV))
TX31d CMO
UnlockRegisters(Unlock2=T); Indication(Errl,Err2);
CM32 TX32a BusReset CMO
Errl = Indication(Errl, Err2); CM_busReset();
Send(devicel, TX32b | IStopDevice2 CMO
FREE); UnlockRegisters(Unlock2=F); Indication(Err1)
TX32c Err2 == CRS_SUCCESS CM33
TX32d CMO
UnlockRegisters(Unlock2=F); Indication(Err1,Err2);
CM33 TX33a BusReset CMO
Err2 = Indication(Errl,Err2); CM_busReset();
Send(device2, TX33b CMO
FREE); UnlockRegisters(Unlock2=T); Indication(Err1,Err2);

Figure 51 -- Connection manager state machine: stopping a connection

A stop plug request specifies a device (devicel) or devices (devicel, device?2) to be stopped.
Variable StopDevice2 determines if a second device is to be stopped. The conditions shall be
evaluated in the order given.

State CM30. This state is entered after the connection registers have been locked and the
request involves stopping plug activity. Upon entry, Err2 is initialized and a STOP connection
request packet is sent to devicel.

Transition TX30a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.

Transition TX30b. There is a second device to be stopped.

Transition TX30c. Devicel returns a connection response packet with connectRequestStatus !=
CRS_SUCCESS. The connection registers are unlocked and an error indication is returned.
Transition TX30d. All of the above conditions evaluate false.

State CM31. Upon entry, a STOP connection request packet is sent to device2.

Transition TX31a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.

Transition TX31b. Err2 == CRS_SUCCESS || Err2 == CRS_UNKNOWN_PLUG || Err2 ==
CRS_NO_DEV and devicel successfully processed its STOP request. It is safe to proceed by
sending a FREE connection request packet to devicel.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 64 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Transition TX31c. Err2 == CRS_SUCCESS and devicel was not successfully stopped, but it is
safe to proceed and send FREE connection request packet to device2.
Transition TX31d. All of the above conditions evaluate false.

State CM32. Upon entry, a FREE request packet is sent to devicel.

Transition TX32a. A bus reset occurs. An indication made up of Errl, Err2 is set up to be
returned. CM_busReset() is called.

Transition TX32b. There is not a second device to be stopped.

Transition TX32c. Err2 == CRS_SUCCESS.

Transition TX32d. All of the above conditions evaluate false.

State CM33. Upon entry, a FREE connection request packet is sent to device2.

Transition TX33a. A bus reset occurs. CM_busReset() is called.

Transition TX33b. UnlockRegisters(Unlock2=T) is called. An indication made up of Errl, Err2 is
returned.

6.18.7 Connection manager state machine: get plug information

State Transi- | Condition New state
tion Action
CM40 TX40a BusReset CMO
Err = Send(UngetRequest(); CM_busReset();
device, TX40b | Err l= CRS_SUCCESS CMO
GETINFO); UnlockRegisters(Unlock2=F); Indication(Err);
TX40c NumberOfConnections == CMO
UnlockRegisters(Unlock2=F); Indication(INFO);
TX40d NumberOfConnections > 0 CM41
Save information
Cm41 TX41la BusReset CMO
Err = Send(UngetRequest(); CM_busReset();
device, TX41b | Errl= CRS_SUCCESS CMO
GETPLUGINFO); UnlockRegisters(Unlock2=F); Indication(Err);
TX41lc More plug information to get Cm41
Save information
TX41d no more plug information to get CMO
Save information; UnlockRegisters(Unlock2=F);
Indication(success,INFO,accumulated plug information);

Figure 52 -- Connection manager state machine: get plug information

State CM40: Upon entry, the connection manager sends a GETINFO request packet to the
device.

Transition TX40a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.

Transition TX40b. A response is received with connectRequestStatus '= CRS_SUCCESS. The
connection registers are unlocked. An error indication is returned.

Transition TX40c. The number of connections, or plugs, is 0. UnlockRegisters() is called. An
indication made up of the INFO response packet is returned.

Transition TX40d. The number of connections, or plugs, is greater than O.

State CM41. Upon entry, a GETPLUGINFO request packet is sent to the device.

Transition TX41a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.

Transition TX41b. A response packet is received with connectRequestStatus !=
CRS_SUCCESS. The connection registers are unlocked and an error is returned.

Transition TX41c. There is more information to get from the device.

Transition TX41d. There is no more information to get from the device. An indication made up of
the INFO response packet and the accumulated PLUGINFO response packets is returned.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 65 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.18.8 Connection manager state machine: get specific plug information

State Transi- | Condition New state
tion Action
CM50 TX50a BusReset CMO
Err = Send(UngetRequest(); CM_busReset();
device, TX50b | Err '= CRS_SUCCESS CMO
GETPLUGINFO); UnlockRegisters(Unlock2=F); Indication(Err);
TX50c Err == CRS_SUCCESS CMO
UnlockRegisters(Unlock2=F); Indication(PLUGINFO);

Figure 53 -- Connection manager state machine: get specific plug information

State CM50: Upon entry, the connection manager sends a GETPLUGINFO request packet to the
device.

Transition TX50a. A bus reset occurs. UngetRequest() re-queues the original request.
CM_busReset() is called.

Transition TX50b. A response packet is received with connectRequestStatus !=
CRS_SUCCESS. The connection registers are unlocked and an error is returned.

Transition TX50c. A response packet is received with connectRequestStatus ==
CRS_SUCCESS. The connection registers are unlocked and the plug information is returned.

6.18.9 Connection manager state machine: CM_busReset()
This state machine documents the connection manager activities required after a bus reset.

State Transi- | Condition New state
tion Action

CMBRO: TXO0a (CMGR.lock == CMGR unique_ID) || CMBR1

De-queue all (CMGR.lock '= 0 && CMGR.lock occurred prior to bus reset)

reactivation CMGR.lock =0;

requests TX0b CMBR1

CMBR1 TXla BusReset CMBRO

Enumerate the

1394 bus. TX1b Enumeration complete CMO

Queue reactivation requests;

Figure 54 -- Connection manager state machine: CM_busReset()

State CM_BRO: Upon entry, all reactivation requests that are queued are de-queued.

Transition TX0a. The connection manager lock register is currently locked by the connection
manager or is locked by another node but the lock occurred prior to the bus reset event. The lock
register is unlocked.

Transition TX0b. The above condition evaluates false.

State CM_BRL1. Upon entry, the bus is enumerated. This involves the connection manager going
through a process of discovery to find what IICP devices exist on the bus.

Transition TX1a. A bus reset occurs.

Transition TX1b. The enumeration is done. The connection manager queues the appropriate
reactivation requests.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 66 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99

6.19 Connection

IICP Draft 1.00rc3 1394TA II-WG

client state machine

The table below explains terms used in the following connection client state machine.

Term

Explanation

BusReset

A 1394 bus reset occurrence.

CC_busReset()

Called by the connection client to perform all necessary activities after a bus reset.
This will deactivate all plugs.

CCLI_UnlockEvent

Event indicating an action to be performed after the connection register is unlocked.

F

False = 0.

LockTimeout()

Returns true if the connection client timer has expired. The timer expires after
CCLI_LOCK_TIMEOUT.

Send(pktID, status)

Sends a connection response packet with connectRequestPktID = pktID and
connectRequestStatus = status. If a bus reset occurs, the send is aborted. If Send()
fails, an error should be logged.

T

True = 1.

UnlockOK

Variable set true if connection client expects an unlock request.

Table 11 -- Connection client state machine terminology

13239 TRADE
/ASSC)CI AT IO
TS TS

- Copyright © 1998-1999 1394TA Page 67 of 93
This is an unapproved 1394TA specification, subject to change

08/02/99

IICP Draft 1.00rc3 1394TA II-WG

6.19.1 Locking of connection register and waiting for request

State Transi- | Condition New state
tion Action
CCO: unlocked TX0a BusReset CCo
UnlockOK=F; CC_busReset();
TXO0b Valid lock request CcC1
Send lock response; initialize LockTimeout() timer;
ValidRequests = CREQL, REACT, STOP,GETINFO,
GETPLUGINFO; UnlockOK=T; CCLI_UnlockEvent = NULL;
TXO0c Invalid lock request CCo
Send lock response
TX0d Connect request packet received CCo
Rcode = resp_type_error; Send(STATUS,CRS NOT_LOCKED);
TXO0e Connect response packet received CCo
Rcode = resp_type_error;
CC1: locked TX1la Bus reset CCo
Wait for a Free any resources allocated since connection register was locked;
connection Unlock connection lock register; CC_busReset();
request or for TX1b Lock request == lock || invalid unlock request CcC1
unlock request Send lock response
TX1c Lock request == valid unlock request && UnlockOK == CCo
Unlock connection lock register; Send lock response;
if (CCLI_UnlockEvent == Reactivation)
Send ReactivationEvent to producer and consumer state machines.
else if (CCLI_UnlockEvent == PlugCreation)
Send CreationEvent to consumer state machines
TX1d Lock request == valid unlock request && UnlockOK == CCo
Unlock connection lock register; Free any resources allocated since
connection register was locked. Send lock response
TX1le LockTimeout() CCo
Free any resources allocated since connection register was locked;
Unlock connection lock register;
TX1f Invalid request received CcC1
Rcode = resp_type_error; Send(STATUS,CRS_PARM);
TX1g Connection response packet received. CcC1
Rcode = resp_type_error;
TX1h Valid request received && request == CREQ1 CC10
UnlockOK=F;
TX1k Valid request received && request == CREQ?2 CCc20
TX1m Valid request received && request == REACT CC30
TX1n Valid request received && request == STOP CC40
TX1p Valid request received && request == FREE CC50
TX1q Valid request received && request == GETINFO CCe60
TX1r Valid request received && request == GETPLUGINFO CC70
Figure 55 -- Connection client state machine: locking and waiting for request
State CCO. The connection client lock register is unlocked.
Transition TX0a. A bus reset occurs. CC_busReset() is called.
22 LANES Copyright © 1998-1999 1394TA Page 68 of 93

This is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Transition TXOb. A valid lock request is received. A lock response is sent. The LockTimeout()
timer is initialized. A variable, ValidRequests, is initialized to the set of connection requests that
will be treated as valid requests. Variable UnlockOK is set true. Variable CCLI_UnlockEvent is set
to NULL, indicating there is not yet an event to be communicated when the connection register is
unlocked.

Transition TXOc. An invalid lock request is received. An appropriate lock response is returned.
Transition TX0d. An unexpected connect request packet is received. A response code =
resp_type_error should be returned. A response packet is sent, with connectPktID = STATUS
and connectRequestStatus = CRS_NOT_LOCKED.

Transition TX0e. An unexpected connect response packet is received. A response code =
resp_type_error should be returned.

State CC1. The connection client’s lock register is locked. The connection client waits for a
connection request or unlock.

Transition TX1a. A bus reset occurs. Any resources allocated in the handling of connection
requests since the connection register was locked shall be freed. The connection client lock
register is unlocked. CC_busReset() is called.

Transition TX1b. A lock request or invalid unlock request is received. An appropriate lock
response is sent.

Transition TX1c. A valid, expected unlock request is received. The connection client lock register
is unlocked. A lock response is sent. If CCLI_UnlockEvent is set, perform the appropriate
communication to the consumer and producer state machines.

Transition TX1d. A valid, but unexpected, unlock request is received. The connection client lock
register is unlocked. A lock response is sent. Any resources allocated in the handling of
connection requests since the connection register was locked should be freed.

Transition TX1e. A LockTimeout() occurs. Any resources allocated in the handling of connection
requests since the connection register was locked should be freed. The connection client lock
register is unlocked.

Transition TX1f. An invalid connection request is received. A response code = resp_type_error
should be returned. A response packet is sent, with connectPktID = STATUS and
connectRequestStatus = CRS_PARM.

Transition TX1g. An invalid connection response packet is received. A response code =
resp_type_error should be returned.

Transition TX1h — Transition TX1r. A valid connection request packet is received and the
connection client state machine moves to the appropriate state to handle the request.

6.19.2 Connection client request == CREQ1

State Transi- | Condition New state
tion Action
CcCio: TX10a BusReset CCo
Process the Free any resources allocated; Unlock connection register;
CREQL1 request CC_busReset();
TX10b Processing of CREQ1 request successful. CcC1
Send(CRESP,CRS_SUCCESS); ValidRequests = CREQ?2
TX10c Processing of CREQ1 request fails CcC1
Send(CRESP,appropriate status); ValidRequests = none;

Figure 56 -- Connection client state machine: CREQ1 processing

State CC10. The connection client processes the CREQ1 packet. This involves creating a new
plug.

Transition TX10a. A bus reset occurs. Any resources allocated for the new plug are freed. The
connection client’s lock register is unlocked. CC_busReset() is called.

Transition TX10b. The plug is successfully created. A response packet is sent. The next valid
request is CREQ2.

Transition TX10c. The plug creation failed or a higher layer is not yet ready to handle connection
requests. A response packet is sent. The set of valid request packets is set to none.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 69 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.19.3 Connection client request == CREQ2

State Transi- | Condition New state
tion Action
CC20: TX20a BusReset CCo
Process the Free any resources allocated; Unlock connection register;
CREQ?2 request CC_busReset();
TX20b Processing of CREQ?2 successful. CcC1

Send(STATUS,CRS_SUCCESS); ValidRequests = FREE;
CCLI_UnlockEvent = CreationEvent;

TX20c Processing of CREQ?2 fails CcC1
Send(STATUS, appropriate status); ValidRequests = none;

Figure 57 -- Connection client state machine: CREQ2 processing

State CC20. The connection client processes the CREQ2 request.

Transition TX20a. A bus reset occurs. Any resources allocated for the new plug are freed. The
connection client’s lock register is unlocked. CC_busReset() is called.

Transition TX20b. The request is processed successfully. A response packet is sent. The only
valid following request is FREE. Variable CCLI_UnlockEvent is set so when the connection
register is unlocked the appropriate event is communicated to the consumer state machines.
Transition TX20c. The processing of the request failed. A response packet is sent. The set of
valid request packets is set to none.

6.19.4 Connection client request == REACT

State Transi- | Condition New state
tion Action

CCa30: TX30a BusReset CCo

Check if plug is Unlock connection register; CC_busReset();

deactivated. TX30b | Plug is deactivated cc1

Notify consumer and producer state machines of REACT received;
Send(STATUS,CRS_SUCCESS); ValidRequests = none;
CCLI_Event = Reactivation;

TX30c Plug not deactivated CcC1
Send(STATUS,CRS_NOT_IN_DEACTIVATED_STATE);
ValidRequests = none;

Figure 58 -- Connection client state machine: REACT processing

State CC30. The connection client checks if the plug is deactivated.

Transition TX30a. A bus reset occurs. The connection client’s lock register is unlocked.
CC_busReset();

Transition TX30b. The plug is deactivated. The connection client notifies the consumer and
producer state machines. The consumer and producer state machines will restore their state to
the state they were in prior to the bus reset. A response packet is sent. The set of valid requests
is set to none. Variable CCLI_UnlockEvent is set so when the connection register is unlocked the
appropriate event is communicated to the consumer and producer state machines.

Transition TX30c. The plug was not in the deactivated state. A response packet is sent. The set
of valid request packets is set to none.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 70 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.19.5 Connection client request == STOP

State Transi- | Condition New state
tion Action
CC4o0: TX40a BusReset CCo
Process STOP Free any resources allocated; Unlock connection register;
request. CC_busReset();
TX40b Processing of STOP successful. CcC1
Send(STATUS,CRS_SUCCESS); ValidRequests = FREE
TX40c Processing of STOP fails CcC1
Send(STATUS, appropriate status); ValidRequests = none;

Figure 59 -- Connection client state machine: STOP processing

State CC40. The connection client processes the STOP request. The producer state machine is
notified and it should stop sending frame content. The consumer state machine is notified of the
STOP request and transitions to the appropriate state.

Transition TX40a. A bus reset occurs. The connection client’s lock register is unlocked.
CC_busReset() is called.

Transition TX40b. The processing of the request was successful. The device shall not send any
more frame contents or perform any other plug activities. A response packet is sent. The set of
valid requests is set to FREE.

Transition TX40c. The processing of the request failed. The device shall not send any more
frame contents or perform any other plug activities. A response packet is sent. The set of valid
request packets is set to none.

6.19.6 Connection client request == FREE

State Transi- | Condition New state
tion Action

CCh0: TX50a BusReset CCo

Notify consumer Free any resources allocated; Unlock connection register;

and producer state CC_busReset();

machines of TX50b | Processing of FREE successful. CC1

FREE. Free plug Send(STATUS,CRS_SUCCESS); ValidRequests = none,

resources. TX50c | Processing of FREE fails cC1
Send(STATUS, appropriate status); ValidRequests = none;

Figure 60 -- Connection client state machine: FREE processing

State CC50. Upon entry, the connection client notifies the consumer and producer state
machines of the FREE packet having been received. Free the plug resources.

Transition TX50a. A bus reset occurs. All plug resources are freed. The connection client’s lock
register is unlocked. CC_busReset() is called.

Transition TX50b. The request was processed successfully. A response packet is sent. The set
of valid requests is set to none.

Transition TX50c. The request was not processed successfully. A response packet is sent. The
set of valid requests is set to none.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 71 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.19.7 Connection client request == GETINFO

State Transi- | Condition New state
tion Action
CC60: TX60a BusReset CCo
Generate Free any resources allocated; Unlock connection register;
information to be CC_busReset();
returned in the TX60b | Processing of GETINFO successfull. cc1
response packet. Send(INFO,CRS_SUCCESS); ValidRequests = GETPLUGINFO;
TX60c Processing of GETINFO fails CcC1
Send(INFO,appropriate status); ValidRequests = none;

Figure 61 -- Connection client state machine: GETINFO processing

State CC60. Upon entry, the connection client generates a list of all known plugs. It also
generates all the information to be returned in the response packet (connectPktID=INFO).
Transition TX60a. A bus reset occurs. All allocated resources for handling this request are freed.
The connection client’s lock register is unlocked. CC_busReset() is called.

Transition TX60b. The information has been gathered. A response packet is sent. The set of
valid requests is set to GETPLUGINFO.

Transition TX60c. The processing of GETINFO failed. A response packet is sent. The set of
valid requests is set to none.

6.19.8 Connection client request == GETPLUGINFO

State Transi- | Condition New state
tion Action

CCr7o: TX70a BusReset CCo

Generate Free any resources allocated; Unlock connection register;

information about CC_busReset();

the specified plug [TX70b | Processing of GETPLUGINFO successful. CC1

and a handle for Send(INFO,CRS_SUCCESS); ValidRequests = GETPLUGINFO;

the next plug in TX70c | Processing of GETPLUGINFO fails CCl

the list. Send(INFO,appropriate status); ValidRequests = none;

Figure 62 -- Connection client state machine: GETPLUGINFO processing

State CC70. Upon entry, the connection client generates information to be returned in the
response packet (connectPktID=PLUGINFO).

Transition TX70a. A bus reset occurs. All allocated resources for handling this request are freed.
The connection client’s lock register is unlocked. CC_busReset() is called.

Transition TX70b. The information has been gathered. A response packet is sent. The set of
valid requests is set to GETPLUGINFO.

Transition TX70c. The processing of GETPLUGINFO failed. A response packet is sent. The set
of valid requests is set to none.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 72 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99

IICP Draft 1.00rc3 1394TA II-WG

6.20 Consumer state machine

The consumer function is broken up into 2 state machines — one for handling large frames and
one for handling small frames.

6.20.1 Large frame consumer state machine terminology

The table below expl

ains terms used by the large frame consumer state machine.

Term Explanation

BusReset A 1394 bus reset occurs.

CreationEvent A CreationEvent occurs after the plug is successfully created and the connection
register is unlocked.

WriteLFPPR Variable set True if the consumer needs to write to the connected node
LargeFrameProducer register.

LFC Consumer’s private copy of LargeFrameConsumer register.

LFC’ The public plug LargeFrameConsumer register that a producer writes to.

LogErr() Should log an error. This is implementation dependent.

Rcode The 1394 transaction response code that should be returned if the implementation
has control over the returned response code.

ReactivationEvent A ReactivationEvent occurs after a REACT connection request is received for the
plug and the connection register has been unlocked.

WriteLF_Producer- | Writes to the LargeFrameProducer register and the LargeFramePageTableElement[]

PortRegisters() registers.

Table 12 — Large frame consumer state machine terminology

13239 TRADE
/ASSC)CI AT IO
TS TS

L

Copyright © 1998-1999 1394TA
This is an unapproved 1394TA specification, subject to change

Page 73 of 93

08/02/99

IICP Draft 1.00rc3

6.20.2 Large frame consumer state machine

Note that the logic for the conditions requires the condition for TX#a to be evaluated before the
condition for TX#b, which is evaluated before the condition for TX#c, and so on.

1394TA II-WG

State Transi- | Condition New state
tion Action
CLFO:new TXO0a BusReset || valid FREE request packet is received for this plug Exit
Initialize consumer Free consumer port resources;
Elgrct—o- TX0b CreationEvent received from connection client state machine. CLF1
WriteLFPPR=T,;
CLF1: TX1la BusReset CLF4
Write RestoreState=CLF1
ProducerLimit TX1b | Write of ProducerLimits register failed. CLF5
register LogErr();
TX1c Write of ProducerLimits register completed successfully. CLF2
CLF2:consume TX2a BusReset CLF4
if (WriteLFPPR) RestoreState=CLF?2
{ TX2b A valid STOP request packet is received for this plug. CLF5
WriteLF_Producer
PortRegisters(LFP. - - -
sc=~LFC.sc); TX2¢c WriteLF_ProducerPortRegisters() fails CLF5
WriteLFPPR=F; LogErr();
} TX2d LFC’ updated && LFC'.sc == LFC.sc CLF2
Wait for Ignore update. Rcode = resp_complete.
LargeFrame- TX2e LFC’ updated && (LFC’.count >= 0) && CLF3
Consumer register ((LFC.mode == LAST) || (LFC’.mode == TRUNC))
update. LFC=LFC’; WriteLFPPR=T;
Frame received indication sent to higher layer.
TX2f LFC’ updated && (LFC'.count > 0) && (LFC'.mode == MORE) CLF3
LFC=LFC’; WriteLFPPR=T;
Frame content received Indication may be sent to higher layer.
TX2g LFC’ updated CLF2
LogErr(); ignore update; Rcode = resp_data_err;
TX2h Large frame content received. CLF2
Frame content received indication may be sent to higher layer
CLF3: TX3a BusReset CLF4
W it for a large RestoreState=CLF3
frame segment TX3b A valid STOP request packet is received for this plug. CLF5
buffer to be
available TX3c | Large frame segment buffer available CLF2
CLF4:deactivated TX4a BusReset CLF4
TX4b A valid STOP request packet is received for this plug. CLF5
TX4c ReactivationEvent received from connection client state machine. RestoreState
TX4d LFC’ updated || (large frame content is received) CLF4
LogErr(); Ignore update; Rcode = resp_conflict_err;
CLF5:waitFREE TX5a BusReset || valid FREE request packet is received for this plug Exit
Free consumer port resources

1391

TRADE
/ASSC)CI AT IO
TS TS

Figure 63 — Large frame consumer state machine

L

Copyright © 1998-1999 1394TA

This is an unapproved 1394TA specification, subject to change

Page 74 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

State CLFO. This is the initial large frame consumer state machine state when a plug is created.
Variable LFC is set to 0 and variable WriteLFPPR is set true.

TransitionTX0a. A bus reset occurs or a valid FREE request packet is received for this plug. Any
resources associated with the consumer port are freed. The state machine terminates.
Transition TX0b. The connection register is unlocked, allowing consumer activity to commence.

State CLF1. Upon entry, the consumer writes to the connected node ProducerLimits register.
Transition TX1a. A bus reset occurs. Variable RestoreState is set to the current state, CLF1.
Transition TX1b. The write of the ProducerLimits register fails. An error should be logged.
Transition TX1c. The write of the ProducerLimits register completes and all of the above
conditions evaluate false. Variable WriteLFPPR is set true.

State CLF2. Upon entry, if WriteLFPPR is true, the consumer writes to the producer’s
LargeFrameProducer and, if necessary, the LargeFramePageTableElement][] registers to allow
the producer to begin a large frame transfer. The consumer writes to the connected node so that
LargeFrameProducer.sc-bit is set to the complement of the consumer’s LargeFrameConsumer.sc
bit. The consumer waits for a LargeFrameConsumer update.

Transition TX2a. A bus reset occurs. Variable RestoreState is set to the current state, CLF2.
Transition TX2b. A valid STOP request is received for this plug.

Transition TX2c. WriteLF_ProducerPortRegisters fails. An error should be logged.

Transition TX2d. A LargeFrameConsumer update occurs, but the sc-value is incorrect. This
update is ignored. A response code resp_complete should be returned.

Transition TX2e. A LargeFrameConsumer update occurs and the producer has completed a
large frame transfer. The consumer copies the new LargeFrameConsumer value. A frame-
received indication shall be sent to a higher layer.

Transition TX2f. A LargeFrameConsumer update occurs and the producer has transferred part
of a frame, but not the end of a frame. The consumer copies the new LargeFrameConsumer
value. A consumer may send an indication to a higher layer so the part of the frame that has been
transferred may be processed.

Transition TX2g. A LargeFrameConsumer update occurs, but all of the above conditions have
tested false. An error should be logged. The update is ignored. A response code = resp_data_err
should be returned.

Transition TX2h. Frame content is received. Some implementations may receive an interrupt on
each transfer of large frame content. A consumer may send an indication to a higher layer so the
part of the frame that has been transferred may be processed.

State CLF3. The consumer waits for an available consumer segment buffer.
Transition TX3a. A bus reset occurs.

Transition TX3b. A valid STOP request packet is received.

Transition TX3c. A large frame consumer segment buffer becomes available.

State CLF4. This is the deactivated state.

Transition TX4a. A bus reset occurs.

Transition TX4b. A valid STOP request packet is received.

Transition TX4c. A ReactivationEvent for this plug is received from the connection client state
machine.

Transition TX4d. A LargeFrameConsumer update occurs or large frame content is received. An
error should be logged. The plug activity should be ignored. A response code = resp_conflict_err
should be returned.

State CLF5. The consumer state machine waits for a FREE packet to be received.
Transition TX5a. A bus reset occurs or a FREE packet is received.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 75 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99

IICP Draft 1.00rc3 1394TA II-WG

6.20.3 Small frame consumer state machine terminology

The table below exp

lains terms used by the small frame consumer state machine.

Term Explanation

BusReset A 1394 bus reset occurs.

CreationEvent A CreationEvent occurs after the plug is successfully created and the connection
register is unlocked.

WriteSFPPR Variable set True if the consumer needs to update the connected node
SmallFrameProducer register.

LogErr() Should log an error. This is implementation dependent.

Rcode The 1394 transaction response code that should be returned if the implementation

has control over the returned response code.

ReactivationEvent

A ReactivationEvent occurs when a REACT connect request packet has been
received for this plug and the connection register has been unlocked.

SFC Consumer’s private copy of the SmallFrameConsumer register.

SFC’ The public plug SmallFrameConsumer register that a producer writes to.
WriteSF_Producer- | Writes to the SmallFramePageTableElement register and the SmallFrameProducer
PortRegisters() register.

Tab

13239 TRADE
/ASSC)CI AT IO
TS TS

le 13 -- Small frame consumer state machine terminology

L

Copyright © 1998-1999 1394TA
This is an unapproved 1394TA specification, subject to change

Page 76 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG
6.20.4 Small frame consumer state machine
Stfate Transi- | Condition New state
tion Action
CSFO: new TXO0a BusReset || valid FREE request packet is received for this plug Exit
Initialize consumer Free consumer port resources;
E%ré o TX0b | CreationEvent received from connection client state machine. CSF1
WriteSFPPR = T;
CSF1:consume TX1la BusReset CSF3
If (WriteSFPPR) RestoreState=CSF1
L TX1b A valid STOP request packet is received for this plug. CSF4
WriteSF_Producer
PortRegisters(SFP. - - -
sc=~SFC.sc); TX1c WriteSF_ProducerPortRegisters() fails CSF4
WriteSFPPR=F; LogErr();
} TX1d SFC’ updated && SFC'.sc == SFC.sc CSF1
Wait for Ignore update; Rcode = resp_complete
SmallErame- TX1le SFC’ updated && SFC’.mode == 1 (SFB_FULL) CSF2
Consumer register SFC=SFC’; WriteSFPPR = T;
update. TX1f SFC’ updated CSF1
LogErr(); ignore update; Rcode = resp_data_err
TX1g Small frame content received. CSF1
Frame received indication sent to higher layer.
CSF2: TX2a BusReset CSF3
Wait for a small RestoreState=CSF2
frame segment TX2b A valid STOP request packet is received for this plug. CSF4
buffer to be
available TX2c | Small frame segment buffer available CSF1
CSF3:deactivated | TX3a BusReset CSF3
TX3b A valid STOP request packet is received for this plug. CSF4
TX3c ReactivationEvent received from connection client state machine RestoreState
TX3d SFC’ updated || (small frame received) CSF3
LogErr(); Ignore update; Rcode = resp_conflict_err;
CSF4:waitFREE | TX4a A FREE request packet is received || BusReset Exit
Free consumer port resources

Figure 64 - Small frame consumer state machine

State CSFO. This is the initial small frame consumer state machine state when a plug is created.
Variable SFC is set to 0 and variable WriteSFPPR is set true.

TransitionTX0a. A FREE request packet is received for this plug, or a bus reset occurs. Any
resources associated with the consumer port are freed. The consumer state machine terminates.
Transition TX0b. The connection register is unlocked, allowing consumer activity to commence.
A consumer may wait for a read request from a higher layer before transitioning to the next state.

State CSF1. Upon entry, if WriteSFPPR is true, the consumer writes to the producer’s
SmallFrameProducer and, if necessary, the SmallFramePageTableElement registers at this time
to allow the producer to begin a small frame transfer. The consumer writes to the connected node
so that SmallFrameProducer.sc-bit is set to the complement of the consumer’s
SmallFrameConsumer.sc bit The consumer waits for small frames and/or a
SmallFrameConsumer register update.

Transition TX1a. A bus reset occurs.

Transition TX1b. A valid STOP request is received for this plug.

i,)
223 IRADE Copyright © 1998-1999 1394TA

This is an unapproved 1394TA specification, subject to change

Page 77 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Transition TX1c. WriteSF_ProducerPortRegisters fails. An error should be logged.
Transition TX1d. A SmallFrameConsumer update occurs, but the sc-value is incorrect. This
update is ignored. A response code = resp_complete should be returned.

Transition TX1e. A SmallFrameConsumer update occurs and the new value of the
SmallFrameConsumer.mode-bit is set to 1 indicate the small frame consumer segment buffer is
exhausted. The consumer copies the new SmallFrameConsumer value. Variable WriteSFPPR is
set true.

Transition TX1f. A SmallFrameConsumer update occurs and all of the above conditions tested
false. An error should be logged. The update is ignored. A response code = resp_data_err should
be returned.

Transition TX1g. A small frame is received. A frame-received indication shall be sent to a higher
layer.

State CSF2. The consumer waits for an available small frame segment buffer.
Transition TX2a. A bus reset occurs.

Transition TX2b. A valid STOP request packet is received.

Transition TX2c. A small frame segment buffer becomes available.

State CSF3. This is the deactivated state. The consumer state machine waits for a REACT
packet to be sent.

Transition TX3a. A bus reset occurs.

Transition TX3b. A valid STOP request packet is received.

Transition TX3c. A ReactivationEvent for this plug is received from the connection client state
machine.

Transition TX3d. A SmallFrameConsumer update occurs or a small frame is received. An error
should be logged. The plug activity should be ignored. A response code = resp_conflict_err
should be returned.

State CSF4. The consumer state machine waits for a FREE packet to be received.
Transition TX4a. A bus reset occurs or a FREE packet is received.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 78 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99

IICP Draft 1.00rc3 1394TA II-WG

6.21 Producer state machines

The producer function is broken up into 2 state machines — one for handling large frames and one
for handling small frames.

6.21.1 Large frame producer state machine terminology

Term Explanation

BusReset A 1394 bus reset occurs.

fp Pointer to application data structure returned from W aitForLargeFrameContent(),

W aitForSmallFrameContent().

fp->data = pointer to data buffer

fp->SF = TRUE if fp->data represents all of a frame and it will fit and be transmitted in a
single 1394 write request.

fp->MODE = LAST if fp->data represents last part of a complete frame

fp->MODE = MORE if fp->data does not represent the last part of a frame.

fp->MODE = TRUNC if fp->data represents the end of a truncated frame.

fp->size = size (in bytes) for fp->data buffer to be sent.

fp->residue = remaining number of bytes to send

FutureLFC A producer variable holding a LargeFrameConsumer value to be written later to the
LargeFrameConsumer register on the connected node.

LF_offset Large frame buffer offset. The producer uses this to keep track of the total number of bytes
sent to the consumer’s large frame buffer space specified in the PageTableElement]]
registers.

LF PTE Current LargeFramePageTableElement]] register in use.

LF_PTE_offset Number of bytes sent to the space in the current LargeFramePageT ableElement.

LFP Producer’s private copy of LargeFrameProducer register.

LFP’ The public LargeFrameProducer register that a consumer writes to.

LogErr() Should log an error. This is implementation dependent.

Rcode The 1394 transaction response code that should be returned if the implementation has

control over the returned response code.

ReactivationEvent

A ReactivationEvent occurs when a REACT connection request is received for the plug and
the connection register has been unlocked.

RestoreState Variable holding the producer state machine state prior to bus reset.
W aitForLargeFrame- W aitForLargeFrameContent() waits for new large frame content to write. The amount of
Content() frame content buffered is implementation dependent. If WaitForLargeFrameContent() is
called and there is still some residual frame content to send (fp->residue != 0)
W aitForLargeFrameContent() returns immediately so the residue is sent.
W aitForLargeFrameContent() returns if a fp->MODE == LAST or fp->MODE == TRUNC
indication is received, even if there is no frame content to be sent.
WriteLargeFrame(fp, Writes large frame content to the space described in the LargeFramePageTableElement[]

PTE, offset, nbytes);

register array. The fp variable points to the frame content. Variable PTE is the
PageTableElement register. Variable offset is the offset from the current
LargeFramePageTableElement destination_offset where writes are to begin. Variable nbytes
specifies the number of bytes to write.

WriteLFC()

Write to the connected node LargeFrameConsumer register.

Tab

13239 TRADE
/ASSC)CI AT IO
TS TS

le 14 -- Large frame producer state machine terminology

L

Copyright © 1998-1999 1394TA
This is an unapproved 1394TA specification, subject to change

Page 79 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG
6.21.2 Large frame producer state machine, states LFPO — LFP4
State Tran- | Condition New state
sition | Action
LFPO: new TXO0a LFP1
LFP =0
LFP1: TXla [BusReset LFP5
W it for RestoreState=LFP1;
LargeFrame- TX1b | A valid STOP request packet is received for this plug. LFP6
Producer update
TX1c | (LFP’ updated && LFP’.sc == LFP.sc) LFP1
Ignore update; Rcode = resp_complete
TX1d | LFP’ updated && (LFP’.run == 1) && (LFP’count > 0) LFP2
LFP = LFP’; LF_offset = 0; LF_PTE = LargeFramePageTableElement[0];
LF_PTE_offset = 0;
Rcode = resp_complete
TXle | LFP’ updated and all above conditions evaluated false LFP1
LogErr(); ignore update; Rcode = resp_type_error
LFP2: TX2a | BusReset LFP5
WaitForLarge- RestoreState=LFP2;
FrameContent() ™51 ™|"A valid STOP request packet is received for this plug. LFP6
TX2c | Large frame write request received LFP3
&& LF_PTE_offset + fp->residue > LF_PTE.length
PTE = LF_PTE, offset = LF_PTE_offset;
nbytes = LF PTE.length — LF PTE_offset
TX2d | Large frame write request received LFP3
PTE=LF_PTE,; offset=LF_PTE_ offset; nbytes=fp->residue
TX2e | LFP’ updated LFP2
LogErr(); Ignore update; Rcode = resp_type_error;
LFP3: TX3a | BusReset LFP5
WriteLarge- RestoreState=LFP3;
zfrfasrgs(nf&,tez;E' TX3b | A valid STOP request packet is received for this plug. LFP6
LF_offset += TX3c | WriteLargeFrame() fails LFP6
nbytes;
LF PTE offset TX3d | fp->END_OF_FRAME && fp->residue == LFP4
+= nbytes; FutureLFC.sc=LFP.sc; FutureLFC.mode=LAST;
FutureLFC.count=LF_offset; Indication(frame sent);
fp->residue -= TX3e | LF_offset == LFP.count && fp->residue LFP4
nbytes; FutureLFC.sc=LFP.sc; FutureLFC.mode=MORE;
FutureLFC.count=LF_offset;
TX3f | fp->residue LFP2
LF_PTE = next LargeFramePageTableElement; LF PTE_offset = O;
TX3g | (LF_offset '= LFP.count) && (LF_PTE_offset == LF_PTE.length) LFP2
LF_PTE = next LargeFramePageTableElement; LF_PTE_offset = 0;
Indication(frame content sent);
TX3h | LF offset!= LFP.count LFP2
Indication(frame content sent);
TX3k | WriteLargeFrame() finished and all above conditions evaluated to false LFP2
FutureLFC.sc=LFP.sc; FutureLFC.mode=MORE;
FutureLFC.count=LF_offset; Indication(frame content sent);
TX3m | LFP’ updated LFP3

LogErr(); Rcode = resp_type_error

Figure 65 -- Large frame producer state machine, states LFPO-LFP3

1391

TRADE
/ASSC)CI AT IO
TS TS

L

Copyright © 1998-1999 1394TA
This is an unapproved 1394TA specification, subject to change

Page 80 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG
6.21.3 Large frame producer state machine, states LFP4 — LFP7
State Tran- | Condition New state
sition | Action
LFP4: TX4a | BusReset LFP5
WriteLFC(RestoreState=LFP4;
FutureLFC); TX4b | A valid STOP request received LFP6
TX4c | WriteLFC succeeds LFP1
TX4d | WriteLFC fails LFP6
LogErr();
TX4e | LFP’ updated (before WriteLFC completes) LFP4
LogErr(); Rcode = resp_type_error;
LFP5:deactivtd TX5a [BusReset LFP5
LFP.run = 0;
TX5b | A valid STOP request received LFP6
TX5c | LFP’ updated LFP5
Ignore update; Rcode = resp_complete
TX5d | ReactivationEvent received RestoreState
LFP.run=1
LFP6: Stop TX6a | BusReset LFP7
TX6b | LFP’ updated LFP6
Ignore update; rcode = resp_complete
TX6c | All large frame transfers have stopped LFP7
LFP7:waitFREE | TX7a | BusReset || Valid FREE packet received Exit
TX7b | LFP’ updated LFP7
Ignore update; rcode = resp_complete

Figure 66 -- Large frame producer state machine, states LFP4-LFP7

State LFPO. The initial large frame producer state machine state.
Transition TX0a. The producer port is initialized. The LargeFrameProducer register is set to
zero.

State LFP1. Producer state machine waits for a LargeFrameProducer register update.
Transition TX1a. A bus reset occurs. Variable RestoreState is set to the current state, LFP1.
Transition TX1b. A valid STOP request is received.

Transition TX1c. An update of the LargeFrameProducer register occurs but the sc-bit value is
the same as the current sc-bit value. A response code = resp_complete should be returned.
Transition TX1d. An update of the LargeFrameProducer register occurs and the run-bit is set
and the count is > 0. The producer’s private copy of the LargeFrameProducer register is set to the
updated value. Variable LF_PTE is set to LargeFramePageTableElement[0] and variables
LF_offset and LF_PTE_offset are set to 0. A response code = resp_complete should be returned.
Transition TX1e. The LargeFrameProducer register has been updated and all above conditions
have tested false. An error should be logged. The update shall be ignored. A response code =
resp_type_error should be returned.

State LFP2. State machine waits for large frame content to transfer.
Transition TX2a. A bus reset occurs. Variable RestoreState is set to the current state, LFP2.
Transition TX2b. A valid STOP request is received.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 81 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Transition TX2c. A request from a higher layer to transfer large frame content is received and
the frame content will not fit into the current LargeFramePageTableElement[] space. Variable
PTE is setto LF_PTE, PTE_offset is set to LF_PTE_offset, and nbytes is set to exactly fill up the
current LargeFramePageTableElement][] register.

Transition TX2d. A request from a higher layer to transfer large frame content is received and
the frame content will fit into the current LargeFramePageTableElement[] space. Variable PTE is
setto LF_PTE, PTE_offset is set to LF_PTE_offset, and nbytes is set so that all of the frame
content is transferred.

Transition TX2e. An unexpected LargeFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.

State LFP3. Upon entry, the state machine writes the frame content. When done, variables
LF_offset and LF_PTE_offset are incremented by the number of bytes sent. Variable fp->residue
is reduced by the number of bytes sent.

Transition TX3a. A bus reset occurs. Variable RestoreState is set to the current state, LFP3.
Transition TX3b. A valid STOP request is received.

Transition TX3c. WriteLargeFrame() fails for some reason. An error should be logged.
Transition TX3d. WriteLargeFrame() completes and the large frame content sent represents the
last of the frame and there is no more frame content to be sent. Variable FutureLFC.sc is set to
LargeFrameProducer.sc. Variable FutureLFC.mode is set to LAST. Variable FutureLFC.count is
set to LF_offset. An indication to the higher layer that the frame has been sent.

Transition TX3e. WriteLargeFrame() completes, all above conditions evaluated false, and there
is more large frame content to be sent, but the space described by the
LargeFramePageTableElement[] registers is exhausted. Variable FutureLFC.sc is set to
LargeFrameProducer.sc. Variable FutureLFC.mode is set to MORE. Variable FutureLFC.count is
set to LF_offset.

Transition TX3f. WriteLargeFrame() completes, all above conditions evaluated false, and there
is more large frame content to be sent. Variable LF_PTE is set to the next adjacent
LargeFramePageTableElement[] register and LF_PTE_offset is set to 0.

Transition TX3g. WriteLargeFrame() completes, all above conditions evaluated false, and there
iSs no space remaining in the space described by the current LargeFramePageTableElement]].
Variable LF_PTE is set to the next adjacent LargeFramePageTableElement[] and variable
LF_PTE_offset is reset to 0. An indication is returned that the frame content was sent.
Transition TX3h. WriteLargeFrame() completes, all above conditions evaluated false, and
variable LF_offset = LF_LFP.count.

Transition TX3k. WriteLargeFrame() completes and all above conditions evaluated false. An
indication is returned that the frame content was sent. Variable FutureLFC.sc is set to
LargeFrameProducer.sc. Variable FutureLFC.mode is set to MORE. Variable FutureLFC.count is
set to LF_offset.

Transition TX3m. An unexpected LargeFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.

State LFP4. Upon entry, the state machine writes to the connected node LargeFrameConsumer
register.

Transition TX4a. A bus reset occurs. Variable RestoreState is set to the current state, LFP4.
Transition TX4b. A valid STOP request is received.

Transition TX4c. WriteLFC() succeeds.

Transition TX4d. WriteLFC() fails. An error should be logged.

Transition TX4e. An unexpected LargeFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.

State LFP5. This is the deactivated state. Upon entry, the LFP.sc and LFP.run bits are cleared.
Transition TX5a. A bus reset occurs.

Transition TX5b. A valid STOP request is received.

Transition TX5c. An unexpected LargeFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 82 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Transition TX5d. A ReactivationEvent for this plug is received from the connection client state
machine.

State LFP6. The producer shall not initiate the sending of any more frame content. The producer
should abort any frame content transfers that are queued.

Transition TX6a. A bus reset occurs.

Transition TX6b. A LargeFrameProducer register update occurs.

Transition TX6c. All frame transfers have stopped.

State P7. The producer state machine waits for a FREE packet to be received.

Transition TX7a. A bus reset occurs or a FREE packet is received. The producer frees producer
port resources. The state machine terminates.

Transition TX7b. An update of the LargeFrameProducer register occurs. The update is ignored.
A response code = resp_complete should be returned.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 83 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99

IICP Draft 1.00rc3 1394TA II-WG

6.21.4 Small frame producer state machine terminology
The table below explains terms used by the small frame producer state machine.

Term Explanation
BusReset A 1394 bus reset occurs.
Fp Pointer to application data structure returned from W aitForLargeFrameContent(),
W aitForSmallFrameContent().
fp->data = pointer to data buffer
fp->SF = TRUE if fp->data represents all of a frame and it will fit and be transmitted in a
single 1394 write request.
fp->MODE = LAST if fp->data represents last part of a complete frame
fp->MODE = MORE if fp->data does not represent the last part of a frame.
fp->MODE = TRUNC if fp->data represents the end of a truncated frame.
fp->size = size (in bytes) for fp->data buffer to be sent.
fp->residue = remaining number of bytes to send
LogErr() Should log an error. This is implementation dependent.
NF Number of small frames sent since last SmallFrameProducer register update
Rcode The response code that should be returned if the implementation has control over the

returned response code.

ReactivationEvent

A ReactivationEvent occurs when a REACT connection request is received for the plug and
the connection register has been unlocked.

RestoreState Variable holding the producer state machine state prior to bus reset.

SF_offset Small frame space offset. The producer uses this to keep track of how many bytes have
been sent to the consumer’s small frame space.

SF PTE SmallFramePageT ableElement register

SFP Producer’s private copy of the SmallFrameProducer register.

SFP’ The public SmallFrameProducer register that a consumer writes to.

W aitForSmallFrame-
Content()

W aitForSmallFrameContent() waits, if necessary, for new small frame content to write. If a
bus reset occurs after WaitForSmallFrameContent() returned with a small frame to send but
before the small frame was sent, WaitForSmallFrameContent() returns immediately so the
small frame is sent.

WriteSFC()

Write to the connected node SmallFrameConsumer register.

WriteSmallFrame(fp,
offset, nbytes)

Writes a small frame to the space described by the SmallFramePageTableElement. The fp
variable points to the frame content. Variable PTE is the PageTableElement register.
Variable offset is the offset from the PageTableElement destination_offset where writes are
to begin. Variable nbytes specifies the number of bytes to write.

1391

TRADE
/ASSC)CI AT IO
TS TS

Table 15 -- Small frame producer state machine terminology

- Copyright © 1998-1999 1394TA Page 84 of 93

This is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG
6.21.5 Small frame producer state machine, states SFP0O — SFP4
State Tran- | Condition New state
sition | Action
SFPO: new TXO0a SFP1
SFP =0
SFP1: TXla | BusReset SFP5
Wait for RestoreState=SFP1,;
SmallFrame- TX1b | A valid STOP request packet is received for this plug. SFP6
Producer update
TX1c | (SFP’ updated && SFP’.sc == SFP.sc) SFP1
Ignore update; Rcode = resp_complete
TX1d | SFP’ updated && (SFP'.run == 1) && (SFP’count > 0) SFP2
SFP = SFP’; SF_offset = 0; SF_PTE = SmallFramePageTableElement;
NF =0;
Rcode = resp_complete
TXle | SFP’ updated and all above conditions evaluated false SFP1
LogErr(); ignore update; Rcode = resp_type_error
SFP2: TX2a | BusReset SFP5
WaitForSmall- RestoreState=SFP2;
FrameContent() ™51 ™|"A valid STOP request packet is received for this plug. SFP6
TX2c | Small frame write request received SFP4
&& SF offset + fp->residue > SF_PTE..length
TX2d | Small frame write request received SFP3
PTE=SF_PTE; offset=SF_offset; nbytes=fp->residue
TX2e | SFP’ updated SFP2
LogErr(); Ignore update; Rcode = resp_type_error;
SFP3: TX3a | BusReset SFP5
\éVfiteS("f‘a”-PTE RestoreState=SFP3;
rame(fp, , - - - -
offset, nbytes): TX3b | A valid STOP request packet is received for this plug. SFP6
SF_offset += TX3c | WriteSmallFrame() fails SFP6
nbytes;
fp->residue -= TX3d | WriteSmallFrame() completes && SFP4
nbytes: (SF_offset == SF_PTE.length) || (NF == SFP.maxSmallFrameCount)
Indication(small frame sent);
NF++; TX3e | WriteSmallFrame() completes SFP2
TX3f SFP’ updated SFP3

LogErr(); Rcode = resp_type_error

Figure 67 -- Small frame producer state machine, states SFP0-SFP3

1391

TRADE
/ASSC)CI AT IO
TS TS

L

Copyright © 1998-1999 1394TA
This is an unapproved 1394TA specification, subject to change

Page 85 of 93

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

6.21.6 Small frame producer state machine, states SFP4 — SFP7

State Tran- | Condition New state
sition | Action
SFP4: TX4a | BusReset SFP5
WriteSFC(RestoreState=SFP4;
SFC.sc=SFP.sC, ['Txah | A valid STOP request received SFP6
SFC.mode=1);
TX4c | WriteSFC succeeds SFP1
TX4d | WriteSFC fails SFP6
LogErr();
TX4e | SFP’ updated (before WriteSFC completes) SFP4
LogErr(); Rcode = resp_type_error;
SFP5:deactivtd | TX5a | BusReset SFP5
SFP.run = 0;
TX5b | A valid STOP request received SFP6
TX5¢c | SFP’ updated SFP5
Ignore update; Rcode = resp_complete
TX5d | ReactivationEvent received RestoreState
SFP.run = 1;
SFP6: Stop TX6a | BusReset SFP7
TX6b | SFP’ updated SFP6
Ignore update; rcode = resp_complete
TX6c | All Small frame transfers have stopped SFP7
SFP7:waitFREE | TX7a | BusReset || valid FREE packet received Exit
TX7b | SFP’ updated SFP7
Ignore update; rcode = resp_complete

Figure 68 -- Small frame producer state machine, states SFP4-SFP7

State SFPO. The initial Small frame producer state machine state.
Transition TX0a. The producer port is initialized. The SmallFrameProducer register is set to
zero.

State SFP1. Producer state machine waits for a SmallFrameProducer register update.
Transition TX1a. A bus reset occurs. Variable RestoreState is set to the current state, SFP1.
Transition TX1b. A valid STOP request is received.

Transition TX1c. An update of the SmallFrameProducer register occurs but the sc-bit value is
the same as the current sc-bit value. A response code = resp_complete should be returned.
Transition TX1d. An update of the SmallFrameProducer register occurs and the run-bit is set
and the count is > 0. The producer’s private copy of the SmallFrameProducer register is set to the
updated value. Variable SF_PTE is set to SmallFramePageTableElement[0] and variables
SF_offset and SF_PTE_offset are set to 0. A response code = resp_complete should be
returned.

Transition TX1e. The SmallFrameProducer register has been updated and all above conditions
have tested false. An error should be logged. The update shall be ignored. A response code =
resp_type_error should be returned.

State SFP2. State machine waits for Small frame content to transfer.

Transition TX2a. A bus reset occurs. Variable RestoreState is set to the current state, SFP2.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 86 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

Transition TX2b. A valid STOP request is received.

Transition TX2c. A request from a higher layer to transfer a small frame is received and the
frame content will not fit into the space described by the SmallFramePageTableElement. None of
the small frame content is transferred.

Transition TX2d. A request from a higher layer to transfer a small frame is received and the
frame content will fit into the space described by the SmallFramePageTableElement. Variable
PTE is setto SF_PTE, PTE_offset is set to SF_offset, and nbytes is set so that all of the frame
content is transferred.

Transition TX2e. An unexpected SmallFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.

State SFP3. Upon entry, the state machine writes the frame content. When done, variables
SF_offset and SF_PTE_offset are incremented by the number of bytes sent. Variable fp->residue
is reduced by the number of bytes sent.

Transition TX3a. A bus reset occurs. Variable RestoreState is set to the current state, SFP3.
Transition TX3b. A valid STOP request is received.

Transition TX3c. WriteSmallFrame() fails for some reason. An error should be logged.
Transition TX3d. WriteSmallFrame() completes and the small frame space is exhausted or the
maximum number of small frames has been sent. An indication to the higher layer that the frame
has been sent.

Transition TX3e. WriteSmallFrame() completes and all above conditions evaluated false.
Transition TX3f. An unexpected SmallFrameProducer register update occurs. An error should be
logged. The update shall be ignored. A response code = resp_type_error should be returned.

State SFP4. Upon entry, the state machine writes to the connected node SmallFrameConsumer
register.

Transition TX4a. A bus reset occurs. Variable RestoreState is set to the current state, SFP4.
Transition TX4b. A valid STOP request is received.

Transition TX4c. WriteSFC() succeeds.

Transition TX4d. WriteSFC() fails. An error should be logged.

Transition TX4e. An unexpected SmallFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.

State SFP5. This is the deactivated state. Upon entry, the SFP.sc and SFP.run bits are cleared.
Transition TX5a. A bus reset occurs.

Transition TX5b. A valid STOP request is received.

Transition TX5c. An unexpected SmallFrameProducer register update occurs. An error should
be logged. The update shall be ignored. A response code = resp_type_error should be returned.
Transition TX5d. A ReactivationEvent for this plug is received from the connection client state
machine.

State SFP6. The producer shall not initiate the sending of any more small frames. The producer
should abort any frame transfers that are queued.

Transition TX6a. A bus reset occurs.

Transition TX6b. A SmallFrameProducer register update occurs.

Transition TX6c. All frame transfers have stopped.

State P7. The producer state machine waits for a FREE packet to be received.

Transition TX7a. A bus reset occurs or a FREE packet is received. The producer frees producer
port resources. The state machine terminates.

Transition TX7b. An update of the SmallFrameProducer register occurs. The update is ignored.
A response code = resp_complete should be returned.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 87 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3

7. lICP services (informative)

1394TA II-WG

IICP layer services are provided at the interface between the IICP layer and higher layers.

Row Service Layer communicated with Purpose of service
1 IICP control request From higher layer This service performs one or more of the
following:
Initialize the IICP layer.
Configure the IICP layer.
2 IICP open request From higher layer Causes a connection sequence to be issued.
3 IICP close request From higher layer Causes a connection to be torn down and freed.
4 IICP write data frame From higher layer Causes a data frame to be sent.
request
5 IICP write control From higher layer Causes a control frame to be sent.
frame request
6 IICP read data frame From higher layer Causes an update of the data port
request ProducerMode register.
7 IICP CREQ1 indication | To higher layer Indicate the reception of a CREQ1 packet from
another node..
8 IICP connection To higher layer Indicate the completion of a connection
established indication sequence initiated by another node.
9 IICP stop indication To higher layer Indicate the reception of a STOP packet
10 IICP error indication To higher layer Indicate an IICP layer error or lower level
protocol error.
11 IICP control frame To higher layer Indicate reception and convey contents of control
received indication frame to higher layer.

7.1 1lICP control request

The higher layer uses this service to perform one or more of the following:

1. Initialize the IICP layer.
2. Configure the IICP layer.

Ever power-on sequence should result in control requests to initialize the layer and to configure

the IICP layer.

7.1.1 Initialization of IICP layer

This operation results in the initialization of the connection manager state machine (if the
implementation can perform as a connection manager) and the connection client state machine.
This operation would also initialize the connection lock register and map the 512-byte connection

register to 1394 space.

7.1.2 Configure the IICP layer

This operation would communicate any tunable parameters to the IICP layer. Examples of

tunable parameters are:
1. Maximum and minimum sizes for buffers.

2. Maximum sizes for scatter/gather page tables.

This would also allow registration of callback functions for certain events that a higher layer would
be interested in knowing about. Suggested callback functions an implementation may provide

are:
1. lIICP_CREQ1_callback (...)

2. lICP_connectionEstablished_callback (...)
3. lICP_STOP_callback (...)

4. |ICP_err_callback (...)

2
13949 TRADE »~
SASSOCIATION]
f e ratiriasoia CotineCiaon |

Copyright © 1998-1999 1394TA Page 88 of 93
This is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

7.1.2.1 1ICP_CREQ1_callback (...)

Notifies higher layer of a new connection. The following parameters from the CREQ1 packet are
communicated to the higher layer.

1. CommandSet

2. ConnectionParameters

The higher layer may return the following information to the IICP layer:
1. Acceptance or rejection of the connection request.

2. Whether the connected node is required to write sequentially.

3. The size of data frames that the higher layer may produce.

4. The size of control frames that the higher layer may produce.

After receiving the information from the higher layer, the IICP layer formulates the connection
response (CRESP1).

If the higher layer has not registered an IICP_CREQ1_callback(...), the IICP layer should proceed
with default parameters.

If the higher layer has registered an IICP_CREQ1_callback(...) but only returns partial
information, the IICP layer should proceed with default parameters as appropriate.

7.1.2.2 1ICP_connectionEstablished_callback (...)

Notifies higher layer of the completion of a connection sequence initiated by another node. This
service communicates to a higher layer that it is now permissible to perform reads and writes
through this new connection. The following parameters from the CREQ?2 packet is communicated
to the higher layer.

The data frame size from the connected node.

The control frame size from the connected node.
Whether the connected node requires sequential writes.
A handle to the newly created connection.

PwbPE

7.1.2.3 1ICP_STOP_callback (...)
Notifies higher layer of the cessation of plug activity.

7.1.2.4 1ICP_err_callback (...)

Notifies higher layer of an IICP error or lower protocol error. A higher layer may log the error to a
file, to an 1/O port for printing, or to a display. An example of the use of IICP_err_callback() is if a
plug fails reactivation after a bus reset.

7.2 1ICP open request

This service, available on nodes that have connection manager capability, issues a connection
sequence and establishes a plug connection between two IICP devices. The higher layer
provides the following information so the IICP layer can perform the request:
command_set_spec_id, command_set, and command_set_details.
connectionParameters.

Some form of node identification for the node to be connected.

The data frame size.

The control frame size.

W hether sequential writes are required.

oukrwhpE

When the connection sequence has completed, the following information is provided to the higher
layer:
1. Success or failure of establishing the connection.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 89 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

2. Whether sequential writes are required when writing to the connected node.
3. The size of data frames from the connected node.
4. The size of control frames from the connected node.

7.3 lICP close request

This service, available on nodes that have connection manager capability, issues a connection
sequence to stop a plug.

7.4 1ICP write data frame request

This service results in a data frame or a part of a data frame being sent to the connected node.
Example, informative, pseudo-code is shown below.

I1CP_write(.., bool END OF FRAME, .)

{
bool sent = fal se;
bool isSmallFrame = true;
if (request size > 512 bytes
| | request does not represent conplete frame) ({
i sSmal | Frane = fal se;
if (small frane producer state == SFP2
&& i sSmal | Frane
&% END_OF_FRAME) {
sent = Smal | FrameWiteRequest(..); // mght not be sent if
/1l not enough space
if (!sent) { // send as large frane
bl ock until large frame producer state == LFP2;
Lar geFranmeWit eRequest (..);
}
}

7.5 1ICP write control frame request

This service results in a control frame or part of a control frame being sent to the connected node.
This service may provide a mechanism for higher layer protocols (for example, ICP488) to send
asynchronous stream trigger packets.

7.6 |lICP read data frame request

This service results in the programming of the data port ProducerMode register on the connected
node. The connected node may then begin sending data frame(s).

The IICP layer blocks until the read request is satisfied. The criteria for returning from a read
request are implementation and higher level protocol dependent.

7.7 1ICP CREQ1 indication

If a callback has been registered (see the IICP control service), the callback function is called with
implementation-dependent parameters.

7.8 1ICP connection established indication

If a callback has been registered (see the IICP control service), the callback function is called with
implementation-dependent parameters.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 90 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

7.9 |ICP stop indication

If a callback has been registered (see the IICP control service), the callback function is called with
implementation-dependent parameters.

7.10 IICP err indication

If a callback has been registered (see the IICP control service), the callback function is called with
implementation-dependent parameters.

7.11 1ICP control frame received indication

This indication occurs when an IICP control frame is received. This indication may be a callback
function that has been set up by the higher layer. A callback may have been set up in either of
the following ways:

1) Via a parameter in the IICP open request.

2) Viathe IICP connection established indication callback parameters.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 91 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

8. Error recovery

This section further enumerates methods and practices to ensure error free IICP
communications.

8.1 Application-level retries

The resources associated with plug-visible addresses are designed to be idempotent, in that the
effects of single and duplicated writes are the same. For this reason, transaction faults observed
by the requester (but not necessarily observed the responder) can be safely retried by the plug-
level application.

1394 transaction-level errors expected to be retried include the following:

- Response timeout. The response does not return within the SPLIT_TIMEOUT specified
timeout.
Response errors. The response returns with either of the following response code (rcode)
values:
1) resp_data_error. This can be indicative of a transient transmission error.
2) resp_conflict_error. This can be indicative of a transient bridge congestion condition.

The same expectations apply to unified transactions completed with ack_data_error or
ack_conflict_error indications (rather than resp_data_error or resp_conflict_error).

If another transaction-level response is returned, or if a reasonable number of retries fail, an error
should be logged. The relevant state machine shows the behavior to follow when an error occurs.

8.2 1394 bus resets

1394 bus resets will occur on busses when devices are powered on and off or when 1394 cabling
is changed. After a bus reset, a node shall deactivate all ICP connections. A reactivation request
from the node that instantiated the connection is required to reactivate the connection. See
section 6.13 above.

8.2.1 Bus reset while connection registers are locked

Any plug and/or plug resources in the process of being created may be freed. After a bus reset,
the connection manager is required to send all connection requests over again.

8.2.2 Bus reset during updates of plug fields

A bus reset may occur while a node is updating the public memory plug fields of another node.
Any bus reset that occurs prior to a final ack complete shall result in the update being re-sent.

8.2.3 Bus reset while transferring data

A 1394 bus reset can occur while transferring data. When this occurs, an IICP plug shall go to the
deactivated state until a reactivation occurs. Following a reactivation (of both nodes involved in
the connection), any data that was being sent that was interrupted shall be resent.

To further clarify, after a reactivation of both sides of a connection, a producer shall retransmit all
outstanding write requests that were in the process of being written to a consumer. A transaction
shall be considered outstanding if a write response has not been received and an ack-complete
successfully sent from the producer to the consumer.

Consumers shall be tolerant of receiving duplicate write packets.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 92 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

08/02/99 IICP Draft 1.00rc3 1394TA II-WG

8.2.4 Duplicate writes

If a consumer receives a write with a destination offset identical to a previous write that was
successfully processed, the consumer shall accept the packet and either discard the redundant
write or process the write.

2
1224 TRADE - Copyright © 1998-1999 1394TA Page 93 of 93
- EEEmESs——===—— Thjs is an unapproved 1394TA specification, subject to change

