HP 75000 Model D20
Programming Note

Overview

Test vectors and fault diction-
aries generated by logic simu-
lators can be used with the HP
75000 Model D20 to provide a
powerful test system, and a
fast, convenient way to enter
test vectors into the test

HEWLETT
PACKARD

(D

Using Simulator
Vectors and Fault
Dictionaries

TIMING

OPTIONAL FAULT
DICTIONARY LINK

INFORMATION GRAPHICAL
ENTRY
L N TEST SYSTEM
LP75000 D20
LASAR V6 PCE FILE
LSRTAP FILES POST- DEVELOPMENT | SCPI FILE
SIMULATOR PATTERNS
/| processor |) /| SOFTWARE
b
A o -
| \ FAULT ! ™ Faur !
DIAGNOSTIC LSRTAP FILES) LOOKUP +— 3 SET |
oo e | PROGRAM | [UsT

Figure 1. LASAR simulator link overview

system. This programming note
describes this process using the
LASAR Version 6 simulator;
the process is similar for other
simulators. An example circuit
is simulated on the LASAR
system generating LSRTAP
files which are processed by the
LP75000 post processor from
Lewis Systems!. The post
processor insures compatibility

4 JA2rx

’

{ e e

1 For more information, contact: Lewis
Systems, Inc. 1915 Peters Road, Suite
113, Irving Texas, 75061. Phone:
(214)438-2177

with the Model D20 and creates
an output file in the standard
HP VCL/PCF format. Vector
Control Language (VCL) and
Pattern Capture Format (PCF)
were developed by HP’s Manu-
facturing Test Division (Love-
land, Colorado) to provide a
standard for importing test
vectors into a tester. After the
VCL/PCEF file is imported into
the Model D20 development
software, the test is debugged
and a SCPI (Standard Com-
mands for Programmable
Instruments) file, used in the
run time environment, is

generated. A test executive,
constructed using HP VEE,
then loads the SCPI file, runs
the test, and invokes a fault
dictionary lookup program to
perform the fault diagnosis.
Figure 1 shows an overview of
the entire process. Each of
these above steps will now be
examined in more detail.

AIT
LATZH

)

BIT
LATCH

/4

bR
e Tt ? ‘
- — 11 !
REG 12 REG REG
1 2 3
OuT
| LK 5 11 I |
LOGIC QUTPUT BIT
| ENABLE REQ [|1 |
I—_ I l | I | I
~ \\53 \.\:’2
DATA
Figure 2. Example circuit to be simulated.
. .
LASAR Simulation

The simulation process runs in
the LASAR environment and
will not be discussed in detail
here other than to illustrate
some of the key points as they
pertain to the example circuit.
The example circuit consists of
three data registers connected
to a 32-bit data bus, a 32-bit
address bus, address decoding,
and timing circuitry. Figure 2 is
a diagram of the circuit which
was entered into the LASAR
simulation system.

Once the circuit was entered,
the source program to generate
the simulation vectors on the
LASAR system was written, as
shown in Table 1 at the end of
this note (page 8). From this
listing it can be seen that
LASAR is compatible with
cycle-based testers since it
allows tsets (timing sets)
consisting of one or more
phases to be defined. Phases
are timing specifications that

can be assigned to a group of
nodes. A node is any signal such
as an address line. All address
lines can be grouped together
and assigned to a phase.
Similarly, all data lines can be
grouped together and assigned
to another phase. This allows
the address and data lines to
have different timing. In this
example the address group is
assigned to phase 1 and the
data lines to phase 3; therefore,
within tset 1, these lines can
change at different times.
LASAR also allows subroutines
to be defined which can emulate
different bus cycles. Write_data and
read_short are two subroutines
shown in Table 1 and are used
to generate vectors easily when
called in the LASAR source
program.

Using the LASAR Rules ((RUL)
and Environment (.ENV) files
provided with the LP75000
Postprocessor, the example
circuit was simulated. These
files define the hardware and
software boundaries for the
target Model D20 system and
help ensure that the resulting
vectors are compatible with the
tester. After a successful
simulation run, the .TAP files
needed by the postprocessor
were created by executing the
POSTPROCESS LSRTAP command on
the LASAR system. The
following files were created:

HEADER.TAP TIMESETS.TAP
STIMULUS.TAP TIMPERPAT.TAP
RESPONSE.TAP PHASECONN.TAP
PINAMES.TAP PIFORMATS.TAP
PONAMES.TAP FORMATTRS.TAP

Since fault dictionaries are being
used in this example, a LASAR
JUDGE run on the simulator must
be completed. This will create
the additional files used by the
LP75000 lookup program to
generate the fault diagnosis. The
additional output files from the
LASAR JUDGE run are as follows:

FDPOPATS.TAP
FDPRINT.TAP

FDFLTSIG.TAP

At this point all of the LSRTAP
files needed by the
postprocessor and the fault
dictionary lookup program were
available. These files are the
.TAP files listed above. The
LP75000 LASAR to HP 75000
Model D20 Postprocessor Users
Manual contains additional
suggestions on making the
simulation compatible with the
Model D20.

Post Processor

In general, the post processing
operation is performed for three
main reasons:

1. To verify that tester rules
are not violated by the
simulation vectors.

2. To efficiently use the tester
resources.

3. To translate the simulator
output into VCL/PCF format
so that it can be input into
the tester.

The options file is useful to
control the post processor and
should be set up prior to
invoking the LP75000. The
options file allows you to
change the names of groups
that were created by LASAR to
make them more meaningful to
your test. In addition, the lines
that are to be assigned to the
timing module as control lines
can be specified. In general, any
single line that has its own
timing should be assigned to a
control line. Typical control
type lines are clocks and
handshaking lines. Finally, the
option file can specify that a
software compare will be
performed. This allows
individual nodes in a group to
be set to the ‘don’t care’ state,
which is necessary when using
the fault dictionary option.

When software compare is not
specified, the post processor
will set all nodes in a group to
‘don’t care’ if one or more nodes
in the group are set to ‘don’t
care’ by the simulator. This
allows real-time compare in the
tester.

The LP75000 post processor
was run on the same system
that the LASAR simulator was
installed on, in this case a DEC
VAX machine. Before running
the post processor, the options
file HP_TESTC.OPT was
created. The options file was
used to specify that the
following lines were to be
assigned to control lines on the
Model D20 — BUSSER_L, ADDVH_L,
RESET_L, GCLK, WRITE, and DSYNCH_L.
This was done to use the tester
resources efficiently. If this
were not specified in the
options file, the postprocessor
may assign them to pattern I/0
lines and, depending upon the
timing, could use up one 8-bit
port for each line. The other
item specified in the options file
was to change the name of
phasel to addr since that was
more meaningful to the DUT.
Finally, software compare was
specified since the fault
dictionary option was used.
Table 2 shows a listing of the
options file.

phase 1 = addr
control = BUSSER_L
control = ADDVH_L
control = RESET_L
control = GCLK
control = WRITE
control = DSYNCH_L

software compare

Table 2. LP75000 Options File

The post processor was run with
the following command:

Ip75000

The output file is called
HPTIME and is in standard
VCL/PCF format, as shown in
Table 3 (starting on page 9).
There are three sections of the
output file — definition section,
timing section, and vector
execution. The first two sections
are used to set up the Model
D20 development software prior
to importing the file. This will
be discussed in the next section.

Model D20
Development System

Up to this point, all processing
was done on the LASAR system
using a DEC VAX machine. The
VCL/PCF and .TAP files will
need to be transferred to other
systems via a LAN or other
means prior to running the
tests. In this example the
VCL/PCF file was stored on a
flexible disc and then entered
into the UNIX workstation
running the Model D20
Development Software. Prior to
importing vectors into the
Model D20 Development
System, the software must be
configured by creating the
pingroups and timing cycles
specified in the VCL/PCF file.

In this example the Model D20
Development Software was
configured for four pattern I/O
modules and one timing module
using the Hardware Config-
uration menu. The number of
modules required is determined
from the Definition Section of
the VCL/PCF file. In this case,
there are 32 address lines, 32
data in lines, 32 data out lines
and four BE lines. This requires
four pattern I/O modules. The
remaining lines are control
lines and will be assigned to the
timing module.

The next step was to define the
following pin groups: addr, phase2,
phase3, FMT4, FMT5, FMT6, FMT7, FMT8,
fMT9 and window10. These names
must be exactly as specified in
the VCL/PCF file. The types of
pingroups (stimulus, response
and control) are also specified
in the VCL/PCF file definition
section. Groups designated as
“inputs formatted” in the
VCL/PCF file are configured as
control in the Model D20 devel-
opment software. Similarly,
“outputs” are configured as
response groups, and “inputs”
are configured as stimulus
groups. In order to determine
which timing generator to
assign to each group, the tim-
ing sets must be examined.

It can be seen from looking at
TSET1, in Table 3, that the addr,
phase2 and phase 3 groups are all
driven together on the same
line. This will be consistent in

all tsets. These groups all can
be assigned the same timing
generator to conserve tester
resources. Each drive and
receive line in the tset should
be assigned to a different tim-
ing generator. In this case the
only other line is the receive win-
dow10 line which was assigned to
response generator 0. The final
consideration is whether to set
the response groups to record or
compare. This is determined by
the option used in the options
file. In this case software com-
pare was specified in the
options file, indicating that the
response groups should be set
to record so that the data can
be read into the test executive
for software comparison.

Figure 3 shows the pin group
definitions which were input
into the development software.

=] Define Pin_Groups
Pin Group Name Type Mode Stirmulus Timing Response Timing
“,; < Pattern 1/0 & Stimulus & Ext + & Bxt +
Number of Pins { % Contol Output & Compare Q@ Ext - & Ext —
& Record @0 &
Lo S
Q2 &2
O3 &3
Q4 ¢
&5 @5
addr{32] Pattern 1/0 Stimulus Stimulus Timing 0
phase2[4] Pattern 1/0 Stimulus Stimulus Timing O
phase3(32] Pattern 1/0 Stimulus Stimulus Timing 0
window 10[37] Pattern 1/0) Record Response Timing 0
GCLK Control Qutput
BUSSER_L Cantrol Output
RESET_L Control Qutput
ADDVH_L Control Output
WRITE Control Qutput
DSYNCH_ L Control Output
T T —
I DK | [AbD | I oecere] I CLeAR] I cancer]

Figure 3. Defining Pin Groups

4 —_
JL Timing Cycle Spreadsheet
Fesslition 75 nTec Current subcycle is: 1875 to 37.5 nSec
~ o 3
Cycles | TEETI JAN
. [| ' | [| [) _ | 1
Cin b i VR 45 g 7 &9 0 vl '3
~) T T T T T T T T ' ; '
[ddr‘[i I tiree (0 — \X | ! | | | | | i) '
L S P S LI, | p——— LS LU L ——— LA LU IS QU ([(SN R
Cphasel[] tire G X : ; 1 . . . | ; 1
LE S IR sy i = — g g P g rpmpnesy SN S e
) X ‘
phasel[7] trm O — X ! ! ‘ ! ! ‘ ! ! j
T - - [t 1= === | = IR Uil Bt Rl St Aa-===-R- "~ - Rl R q- -
. x F] " . ! I I I 1 b I i 1 1 1
cwindow T S ifesp U ! ‘{\& | ' ! X X ! : ! ! k
T - ST T - I ST T T T T T T 1 et i e tasuiiniiadior Dufuiinie ity Sy S TR
GrLs Cnll =2 ' : : : S : : : L :
S el | P { R — e e b = - 7 [l (S [B e e [[P (R
; \ ‘ ; ‘ | ‘ ‘ . | ! ‘
ntl —> X ; ; . : : . : : | . |
ittt it 1= - === tm == 1=~ = 1= == e R it Eefiiidie Bttt Rt Bl Tashadbgindi B -
. : . | . | X ‘ X . \ . ‘
it —> 1 ' | I | ' | ! 1 | ' I
- B T 1] 1
T - R 1T T T [[[1T T P T T 1T T T T (i T R Tt B
il - | . l ; l | | 1 ; : i i
PR - - — - - — = - lo = = = - [J— | | N | | [S U - a4 - - - - [Y - Y -
‘ ! i | | i ' : \ i '
ntl P . : ; . : . : ; ; . . i
- el it S Ry g = i e e e Tl 4----f- - il
I 1 1 ¥ I I 1 ¢ I H 1 1
’jr-,ﬂ - > 1 i 1 ' | 1 i i 1 [1 |
: : i
- c I [[(A 17T T T [[el Sttt Hitl T [S F
I ' I 1 I 1 1 I 1 1 I
| 1 | 1 | t | i | 1 1 I
,,,,, R P | Y DALY SR SRS GRS SIS R L SR PO —— [N | U U U S —
|]) | | | g | 1 | \ |
’ ; ; ‘ - " " " ‘ . - '
I 1 1l I 1] 1 I 1 1 1 1
I 1 1 I 1 ’ I ! 1 1 1 1
[S N — L 1 i 1 i L 1 " 1 1 1 L
S

Figure 4. Tsetl timing cycle

At this point the timing cycles
can be graphically entered by
the user. Figure 4 indicates
how TSET1 was entered.

The names of the timing cycles
defined in the development
software are the same as in the
VCL/PCF file (Table 3). The
number of subcycles for the
timing set is the same as the
number of events specified for
that tset in the TIMING SEC-
TION of the VCL/PCF file. For
each group, the event indicated
in the drive statement in the
VCL/PCF file corresponds to a
change data entry in the timing
spread sheet. Similarly, receive
indicates a sample data in the

timing spread sheet. The control
lines use to 0 or to 1 as specified
in the tset definition. After all of
the timing sets were defined, the
VCL/PCF file was imported
from the File Import menu of
the development software.

The breakpoint and vector sin-
gle-stepping features of the
development software were
used to ensure that the test ran
properly on the Model D20 with
the example circuit hardware.
Once the test was completely
debugged, a SCPI file that can
be used by the test executive
was generated from the File
SCPI menu. This file was
named LASAR2.ASC in this
example.

Test Executive

At this point all of the neces-
sary files have been created to
allow the test executive to uti-
lize the diagnostic features of
LASAR. The following files
were transferred to the system
running the test executive:
LASAR2.ASC,
FDFLTSIG.TAP,
FDPOPATS.TAP,
FDPRINT.TAP, HEADER.TAP,
and PONAMES.TAP. In addi-
tion, the WEIGHTS.FAU file
was created to determine how
to weight the fault dictionary
matches and mismatches to
determine the most likely fault
set. The LP75000 manual
describes the weightings and
how they are used.

(U) LM ‘ Test Executive ||Emﬂ'StoplCont| HStepI
File Eddit Flow Device /0 Data Math AdvMath Display Help
- 3 ﬁ
- —f {{ if Error/Else
Load Test Filed
_
Rep: IGOte Error Msdll
Read
! Ih—-——-:g [Error Display |
Sl Resull] I Error.qu] rror Display §
[Run Fault Dict Lookupll
Read Fault List |
Riagnostic Outeutﬂ
=
oo] o
= >H

Figure 5. Test executive built with HP VEE

The test executive in this
example was developed using
the HP Visual Engineering
Environment (HP VEE), a
powerful tool for controlling
and analyzing the test flow.
Figure 5 is a diagram of the HP
VEE model used.

The HP VEE model makes
extensive use of the Model D20
state drivers to control the
instrument during the test. For
example in the “Load Test File”
block, the Model D20 driver
takes the SCPI file generated
by the development software
and loads it into the Model D20
hardware so that it can be run
by the “Run Test/Wait” block.
The “Read Test Result” and
“Store Result” blocks read data

out of the Model D20 and load it
into a result file for use by the
fault dictionary lookup program.
The format of the result file is a
series of IEEE 488.2 block
definite binary blocks. This is
one of the formats available to
output data from the Model
D20. The job of the test
executive is to read out each
response group in the order that
it is specified in the VCL/PCF
file “pet orderis” statement (Table
3) and store them in block
definite format in the result file.
The fault dictionary lookup
program called fd, expects the
result file to be named hpfd.

[Foneif Detail |

e HEWLETT
(4w) Bfeiro

Test Executive

[RunfStopfCont] [Step]

File

Diaggnostic Qutput

ILATAZ S @1

ey 721
} LT 2@
ST 4@

L3l LASAR Fault Dictionary Frocessor

Version 1.0
‘i PRIORITY SET NUMBER DEFINITE POSSIBLE MISMATCH
o 9 7 0 0
Z 161 0 1 1
187 0 1 1
< 256 2 4 1
356 0 2 1
i 351 O 1 2
255 0 1 3
& 273 0 1 3
e 162 2 i 4
1o 163 2 1 4
HFAL_T DESCRIPTION(S) FOR SET NUMBER 9
1-Utd - 18@1
Ul4-1z@1
<iod s 1a@
T~ L DATAZS@

FAULT DESCRIPTION(S) FOR SET NUMBER 161

frun again

=2

e |

=

>

Figure 6. Diagnostic output

Table 4 (page 14) is a descrip-
tion of the result file created
by the test executive. The fd
program used the result file
just created, along with the
LSRTAP files to create the
FAULTS.LIS file. Finally, the
test executive can display the
diagnostic output contained in
the FAULTS.LIS file and ask
the operator if the test should
be run again.

Figure 6 contains an example
of the diagnostic output
resulting from a fault placed
in the example circuit.

In this case the priority 1 fault
set is fault set 9 which consists
of three devices U14, U24, and
U34, and one primary input
line DATAZ23. These are the
most likely causes for the
failure. For more information
on using the fault dictionary
features the LP75000 LASAR
to HP 75000 Model D20
Postprocessor Users Manual
can be consulted.

GROUPNAME addr FOR

addr31, addr30, addr29, addr28, addr27 addr26,

addr25, addr24, addr23, addr22, addr21, addr20, addr19, addri8,
addr17, addr16, addr15, addri4, addr13, addr12, addrii, addr10,

SET TSET 1 CLOCK = 187500 PS

PHASE 1 ASSERT = 18750 PS RETURN = 168750 PS
PHASE 2 ASSERT = 18750 PS RETURN = 168750 PS
PHASE 3 ASSERT = 18750 PS RETURN = 168750 PS

PHASE 4 ASSERT =0 PS RETURN = 93750 PS addr9, addr8, addr7, addrb, addr5, addrd4, addr3, addr2,

PHASE 5 ASSERT = 18750 PS RETURN = 168750 PS
PHASE 6 ASSERT = 18750 PS RETURN = 168750 PS
PHASE 7 ASSERT = 18750 PS RETURN = 168750 PS
PHASE 8 ASSERT = 18750 PS RETURN = 168750 PS
PHASE 9 ASSERT = 18750 PS RETURN = 168750 PS
WINDOW 10 OPEN =0 NS CLOSE = 27500 PS ;

SET PHASE 1 TRIGGER = $TOPAT ;
SET PHASE 2 TRIGGER = STOPAT ;
SET PHASE 3 TRIGGER = $STOPAT ;
SET PHASE 4 TRIGGER = $TOPAT ;
SET PHASE 5 TRIGGER = STOPAT ;
SET PHASE 6 TRIGGER = $STOPAT;
SET PHASE 7 TRIGGER = $TOPAT ;
SET PHASE 8 TRIGGER = $TOPAT;
SET PHASE 9 TRIGGER = STOPAT;
!

!
SET DIGITAL
(ADDR31,ADDR30,ADDR29,ADDR28,ADDR27,ADDR26,ADDR25,

ADDR24,ADDR23,ADDR22,ADDR21,ADDR20,ADDRR19,ADDR18,

ADDR17,ADDRIS,
ADDR15,ADDR14,ADDR13,ADDR12,ADDR11,ADDR10,ADDRG,
ADDR8,ADDR7,ADDRS,
ADDRS5,ADDR4,ADDR3,ADDR2,ADDR1,ADDRO)

PHASE=1

FORMAT=$NRET ;

SET DIGITAL (

BEC ,BE! ,BE2 ,BE3)
PHASE=2
FORMAT=$NRET ;

SET DIGITAL
{DATA31,DATA30,DATE29,DATA28,DATA27,DATA26,DATAZS,
DATA24,DATA23,DATA22,DATA21,DATA20,DATA19,DATA1S,
DATA17,DATA1S,

DATA15DATTA14,DATA13 DATA12,DATA11,DATA10,DATAS,
DATAB8,DATA7,DATAS,
DATA5,DATA4,DATA3,DATA2,DATA1,DATAQ)

PHASE=3
FORMAT=$NRET
WINDOW = 10;

SET DIGITIAL (GDLK)
PHASE = 4
FORMAT = SRONE ;

SET DIGITAL (BUSSER_L)
PHASE=5
FORMAT=$NRET ;

SET DIGITAL {RESET_L)
PHASE=6
FORMAT=$NRET ,

SETE DIGITAL {ADDVH_L)
PHASE=7
FORMAT=$NRET ;

SET DIGITAL {WRITE}
PHASE=8
FORMAT=8NRET ;

SET DIGITAL (DSYNCH_L)
PHASE=9
FORMAT=$NRET ;

DECLARATIONS

addr1, addr0

GROUPNAME data FOR

data31, data30, data29, data28, data2?, data26, data25, data24
data23, data22, data21, data20, datal9, datal8, datal7, datal6,
data15, datal4, datal3, datal2, datall, datal0, datad, data8,
data?, datab, datab, data4, data3, data2, datal, data0,

GROUPNAME BE FOR be3, be2, bel, be0
ENDDECLS

SUBROUNTINE WRITE_DATA (ADDRESS, DATIN, BEIN)

INTEGER ADDRESS

INTEGER DATAIN

INTEGER BEIN

BEGIN
LO ADDVH_L HI WRITE
DRIVE ADDR TO ADDRESS
drive date to datain
DRIVE BE TO BEIN ;
HIADDVH_L ;
LO WRITE;

RETURN

END

SUBROUTINE READ-SHORT (ADDRESS, BEIN)
INTEGER ADDRESS
INTEGER BEIN
BEGIN
off data
lo addvh_| write
drive addr to address
DRIVE BE TO BEIN ;
HIADDVH_L;
RETURN
END

START:
I

| FIRST DOING INIT
|

HIGHSPEED

USE TEST1

CPP=1

LO GCLK

HI ADDVH_L BUSSER_L RESET_L DSYNCH_L

LO WRITE

OFF ADDR BE DATA ;

LO DSYNCH_L;

CALL WRITE_DATA (%HF4100800,%H00000000,%HC)
CALL WRITE_DATA (%HF4100800,%H00000000, % H3)
CALL WRITE_DATA (%HF4100804,%H05000000,%HC)
CALL WRITE_DATA (%HF4100804,%H00000080,%H3)
CALL WRITE_DATA (%HF4100820,%H00000000,%HC)
CALL WRITE_DATA (%HF4100820,%H00000008,%H3)

CALLREAD_SHORT {%HF4100800,%HC)
CALLREAD_SHORT (%HF4100800,%H3)
CALLREAD_SHORT (%HF4100804,%HC)
CALL READ_SHORT (%HF4100804,%H3)
CALL READ_SHORT (%HF4100820,%HC)
CALL READ_SHORT (%HF4100820,%H3)

END

Table 1. LASAR Source Listing

8

ILS! LASAR - HP75000 Postprocessor Version 1.0 6-FEB-1992 09:27
! Timing file for “hp_testcase”

I— DEFINITION SECTION —

I*assign addr to nodes “ADDR31", “ADDR30", "ADDR29", “ADDR28", “ADDR27"
I*assign addr to nodes “ADDR26", “ADDR25", “ADDR24", “ADDR23", “ADDR22"
I*assign addr to nodes “ADDR21", “ADDR20", “ADDR19", “ADDR18", “ADDR17"
I*assign addr to nodes “ADDR16”, “ADDR15", “ADDR14", “ADDR13", “ADDR12"
I*assign addr to nodes “ADDR11”, “ADDR10", “ADDR9", “ADDR8", “ADDR7", “ADDR6"
I*assign addr to nodes “ADDR5", "ADDR4", “ADDR3", “ADDR2", “ADDR1", “ADDR0”

I*assign phase2 to nodes “BE3”, "BE2”, “BE1", “BEQ”

1*assign phase3 to nodes “DATA31_in", “DATA30_in", “DATA29_in", “DATA28_in"
f*assign phase3 to nodes “DATA27_in", “DATA26_in", “DATA25_in", “DATA24_in"
I*assign phase3 to nodes “DATA23_in", “DATA22_in", "DATA21_in", “DATA20_in"
1*assign phase3 to nodes “DATA19_in", “DATA18_in", “DATA17_in", “DATA16_in"
*assign phase3 to nodes “DATA15_in", “DATA14_in", "DATA13_in", “DATA12_in"
I*assign phase3 to nodes "DATA11_in", “DATA10_in", “DATAZ_in", “DATA8_in"
Massign phase3 to nodes “DATA7_in", “DATAG_in", “DATAS5_in", “"DATA4_in"
1*assign phase3 to nodes “DATA3_in", “DATA2_in", “DATA1_in", "DATAD_in"

I*assign FMT4 to nodes “GCLK”
1*assign FMT5 to nodes “BUSSER_L”
I*assign FMT6 to nodes "RESET_L"
I*assign FMT7 to nodes “ADDVH_L"
*assign FMT8 to nodes “WRITE”
*assign FMT9 to nodes “DSYNCH_L”

*assign window10 to nodes “DATA31_out”, “DATA30_out", “DATA29_out”
I*assign window10 to nodes “DATA28_out”, “DATA27 out”, “DATA26_out”
I*assign window10 to nodes “DATA25_out”, “DATA24_out”, “DATA23_out”
I*assign window10 to nodes “DATA22_out”, "DATA21_out”, “DATA20_out”
1*assign window10 to nodes “DATA19_out”, “DATA18_out”, “DATA17_out”
*assign window10 to nodes “DATA16_out”, “DATA15_out”, “DATA14_out”
*assign window10 to nodes "DATA13_out”, "DATA12_out”, “DATA11 out”
I*assign window10 to nodes “DATA10_out”, "DATA9_out”, “DATA8_out”,
“"DATA7 _out”

*assign window10 to nodes “DATA6_out”, “DATA5_out”, “DATA4_out”, "DATA3_out”
I*assign window10 to nodes “DATAZ2_out”, “DATA1_out”, “DATAO_out”

*inputs formatted FMT4
*inputs formatted FMT5
*inputs formatted FMT6
*inputs formatted FMT7
*inputs formatted FMT8
*inputs formatted FMT9

™inputs addr

*inputs phase2

*inputs phase3

*outputs window10

pcf order is addr , phase2, phase3, window10

l— TIMING SECTION —

*events every 18750p internal

Table 3. VCL/PCF Postprocessor Output File...Continued on page 10

Table 3. VCL/PCF Postprocessor Output File...Continued from page 9

*timing set default TSET1is 10 events
* drive addr ,phase2 ,phase3 at event 1
1> receive window10 at event 1

¥ at event 0 set FMT4 to "0”

I* at event 5 set FMT4 to “1”

1* at event 0 set FMT5 to “0”

1* at event 0 set FMT6 to “0”

1* at event 0 set FMT7 to “0”

1 atevent 0 set FMT8to “0”

1* at event 0 set FMT9to “0”
I*end timing set

I*timing set TSET2 is 10 events
* drive addr ,phase2 ,phase3 at event 1
* receive window10 at event 1

1™ atevent 0 set FMT4 to “0

1= atevent 5 set FMT4 to "1
1* atevent 0 set FMT5to 1"
1> atevent0 set FMT6 to “1”
1* atevent0 set FMT7 to 1"
* at event 0 set FMT8 to “0”
1* atevent 0 set FMT9to “1”

I*end timing set

I*timing set TSET3is 10 events

* drive addr ,phase2 ,phase3 at event 1
I* receive window10 at event 1
1> at event 0 set FMT4 to “0”
I* at event § set FMT4 10 “1”
1* at event0 set FMT5to “1”
I* atevent0 set FMT6to “1”
I* atevent 0 set FMT7to “1"
1% at event 0 set FMT8to “0”
I* at event 0 set FMT9to “1”
* atevent 1 set FMT9to “0”
*end timing set

*timing set TSET4 is 10 events

I* drive addr ,phase2 ,phase3 at event 1
I* receive window10 at event 1
1* at event 0 set FMT4 to “0”
I* at event 5 set FMT4 to “1”
™ atevent 0 set FMT5to “1”
1* at event 0 set FMT6to “1”
1* at event 0 set FMT7 to “1”
™ at event 1 set FMT7 to “0”
> at event 0 set FMT8 to “0”
* atevent 1 set FMT81t0 “1”
1* at event 0 set FMT9 to "0”
I*end timing set

*timing set TSET5 is 10 events

I* drive addr ,phase2 ,phase3 at event 1
I* receive window10 at event 1

1* at event 0 set FMT4 to “0”

1> at event 5 set FMT4 to “1”
> at event 0 set FMT5to “1”
1* atevent 0 set FMT61t0 “1”
™ at event 0 set FMT7 to “0”

* atevent 1 set FMT7 to “1”
* atevent 0 set FMT8to “1”
1> atevent 0 set FMT9to “0”
*end timing set

*timing set TSET6 is 10 events

I* drive addr ,phase2 ,phase3 at event 1
1* receive window10 at event 1
* at event 0 set FMT4 to “0”
I* atevent § set FMT4 to “1”
* atevent 0 set FMTS to “1”
* at event 0 set FMT6 to “1”
1* atevent 0 set FMT7 to “1”
* at event 0 set FMT8to “1”
I* at event 1 set FMT8 to “0”
1* at event 0 set FMT9 to “0”
*end timing set

*timing set TSET7 is 10 events
1* drive addr ,phase2 ,phase3 atevent 1
1* receive window10 at event 1
1* at event 0 set FMT4 to 0"

1* atevent 5 set FMT4 to “1”

1* at event 0 set FMT5t0 “1”
1* at event 0 set FMT6 to “1”

1* at event 0 set FMT7to “1”

1* at event 1 set FMT7 to “0”

1* at event 0 set FMT8 to "0”

I* at event 0 set FMT9 to “0”
*end timing set

*timing set TSET8 is 10 events
I* drive addr ,phase2 ,phase3 at event 1
1* receive window10 at event 1
1* at event 0 set FMT4 to “0”

I* atevent 5 set FMT4 to “1”

1* at event 0 set FMT510 "1

1* at event 0 set FMT6 to “1”

1* at event 0 set FMT7 to “0”

1* atevent 1 set FMT7to 1"

I* at event 0 set FMT8 to “0”

1* at event 0 set FMT9 to “0”
*end timing set

*timing set TSET9 is 10 events
1* drive addr ,phase2 ,phase3 at event 1
1* receive window10 at event 1
i* at event 0 set FMT4 to “0”

1* at event 5 set FMT4 to “1”

I* atevent 0 set FMT5t0 "1”

I* atevent 0 set FMT6to “1”

* atevent 0 set FMT7 to “1”

1* at event 0 set FMT8 to “0”

I* at event 0 set FMT9 to “0"
*end timing set

1 VECTOR EXECUTION

*unit “PCF blocks”
pcf use timing set TSET2

ISTART:

77777777727722777227777277727777772777777777777777777727777777777777
“XXXXXOOOEKIXXXXXXXXXXKXXXX
| PATTERN 1 BURST 0

use timing set TSET3

“XXOOOCOOKKXXXXKXXXXNKXXXXX
| PATTERN 2 BURST 0

10

Table 3. VCL/PCF Postprocessor Output File...Continued on page 11

Table 3. VCL/PCF Postprocessor Output File...Continued from page 10

use timing set TSET4
*11110100000100000000106000000000110000000000000000000000000000000000"
“XXOXKXXXXKHIXXXXKKXXXXXXKKXXX

I PATTERN 3 BURST 0

use timing set TSETS
LLLLLLLCOLLLUULL UL L LLLLLL L
| PATTERN 4 BURST 0

use timing set TSET6

! PATT RN 5 BURSTO

use timing set TSET4

! PATTERN 6 BURST 0

use timing set TSETS

! PATTERN 7 BURST 0

use timing set TSET6

! PATTERN 8 BURSTO
use timing set TSET4

e XX K “
! PATTERN 9 BURST 0

use timing set TSETS

| PATTERN 10 BURST 0

use timing set TSET6

! PATTERN 11 BURST 0

use timing set TSET4
............................... 0011001
XX X
! PATTERN 12 BURST 0

use timing set TSETS

| PATTERN 13 BURST 0

use timing set TSET6

! PATTERN 14 BURST 0

use timing set TSET4

! PATTERN 158URST 0

Table 3. VCL/PCF Postprocessor Output File...Continued on page 12

11

Table 3. VCL/PCF Postprocessor Qutput File...Continued on page 11

use timing set TSETS

! PATTERN 16 BURSTO

use timing set TSET6

| PATTERN 17 BURST 0

use timing set TSET4
e 0011 1.7

! PAmRN'm BURST 0

use timing set TSETS

I PATTERN 19 BURSTO

use timing set TSET6

{ PATTERN 20 BURST 0

use timing set TSET7

......................... 0...11002272227277777727 2772727777227 LL
“XXXXXXXXXXXKKXXXKXXXXXXKKXXXKRXX
| PATTERN 21 BURST0

USe timING SEL TSET8 "ot sessensneeas "
XXX
1 PATTERN 22 BURST 0

use timing set TSET9
“LLLLLLLLLLLLLLLLLLLLLL UL L
1 PATTERN 23 BURST 0

RSO0 0 00909000909 000090909 00909 0.6
I PATTERN 24 BURST 0

| PATTERN 26 BURST 0

use timing set TSET7

! PATTERN 27 BURST 0

use timing set TSET8
“LCLLLLLLLLLLLCLLLLLLLL CLLLLLL L
| PATTERN 28 BURST 0

use timing set TSET9
KRN
1 PATTERN 29 BURST 0

| PATTERN 32 BURST 0

use trmmg set TSET7

! PATTERN 33 BURST 0

use timing set TSET8

I PATTERN 34 BURST 0

use timing set TSETY

“LLLLLH LHLLLLLLLLLLLLLLLLHLLLLLLL
{ PATTERN 35 BURST 0

‘XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
I PATTERN 36 BURST 0

! PATTERN 38 BURST 0

use timing set TSET7
[10]] "

! PATTERN 39 BURST 0

use timing set TSET8

“LLLCLHUHULLLLLLLCLLLLC L HELLLLE L
| PATTERN 40 BURST 0

use timing set TSET9

XXXKXRXX KKK IKIOKKXXXKKXXKKXX
! PATTERN 41 BURST 0

i PATTERN 44 BURST 0

Table 3. VCL/PCF Postprocessor Output File...Continued on page 13

12

Table 3. VCL/PCF Postprocessor Output File...Continued from page 12

use timing set TSET7

I'PATTERN 45 BURST 0

use timing set TSET8

I PATTERN 46 BURST 0

use timing set TSET9

“LLLLELLLLLLECLLL L L L L LU LLHLLL™
I PATTERN 47 BURST 0

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX"
'PATTERN 48 BURST0

I'PATTERN 50 BURST 0

use timing set TSET7

'PATTERN 51 BURST0

use timing set TSET8

"LLLIIlIlIIIIllIlll[lIIlIllllHLLL"
! PATTERN 52 BURST 0

use timing set TSET9

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX”

I'PATTERN 53 BURST 0

I PATTERN 56 BURST 0
end pcf
™end unit

'END OF TEST

13

14

The format of the HP 75000 Result file will be in biock definite form. The groups will be in
the same order as in the pcf order is statement with all vectors for the first output group
followed by all vectors of the second output group, etc.

Block definite form consists of an ASCII header followed by binary bytes. The header is
defined as a # character followed by digits. The first digit indicates the number of
remaining digits in the header; the remaining digits indicate the number of binary bytes
in the block definite data.

The binary bytes in the block definite data will represent each bit in the output group
with the most significant byte first. The number of bytes will depend upan the number of
bits defined in the group. There can be one, two, three or four bytes per vector. If a
group is defined to be other than a multiple of eight, the upper bits of the most
significant byte will be meaningless and should be ignored.

Example: Assume window1 is 32 bits long and window?2 is 20 bits long, and there are 5
vectors.
pcf orderis phasel, phase2, phase3, window1, window2

#

2 {Number of remaining digits in header)
2

0(20 bytes of binary data to follow)

B41 (Most significant byte, byte 4, of the first vector window?1)
B31

B21

B11

B42

B32

B22

B12

B43

B33

B23

B13

Ba4

B34

B24

B14

B45

B35

B25

B15 (Least significant byte of vector5 of window 1)
#2

1

5{15 bytes of binary data to follow)

B31 (Most significant byte of vector1 of window 2)
B21

B11

B32

B22

B12

B33

B23

B13

B34

B24

B14

B35

B25

B15 (Least significant byte of vector5 of window 2

Table 4. HP 75000 Result File

For more information, call your local HP

sales office listed in your telephone
directory or an HP regional office listed
at right for the location of your nearest
sales office.United States:

ﬁﬁ HEWLETT

PACKARD

United States
Hewlett-Packard Company
4 Choke Cherry Road
Rockville, MD 20850

(301) 670 4300

Hewlett-Packard Company
5201 Tollview Drive
Rolling Meadows, [L 60008
(708) 255 9800

Hewlett-Packard Company
5651 W. Manchester

Los Angeles, CA 90045
(213) 337 8035
Hewlett-Packard Company
2000 South Park Place
Atlanta, GA 30339

(404) 980 7351

Canada:

Hewlett-Packard Ltd.

6877 Goreway Drive
Mississauga, Ontario L4V 1M8
(416) 678 9430

Japarn:
Yokogawa-Hewlett-Packard Ltd.
15-7, Nishi Shinjuku 4 Chome
Shinjuku-ku

Tokyo 160, Japan

(03) 5371 1351

Mexico:

Hewlett-Packard

Latin American Region Headquarters
Monte Pelvoux No. 111

Lomas de Chapultepec

11000 Mexico, D.F.

(525) 202 0155

Brazil:
(65 11) 709 - 1444

For other Latin American cities
consult local telephone directory
or call:

(525) 202 0155

Australia/New Zealand:
Hewlett-Packard Australia Ltd.
31-41 Joseph Street

Blackburn, Victoria 3130
Australia (A.C.N. 004 394 763)
(03) 895 2895

Far East:

Hewlett-Packard Asia Ltd.
22/F Bond Centre, West Tower
89 Queensway

Central, Hong Kong

(852) 848 7777

Korea:
(82 2)769-0114

Taiwan:
(886 2) 712 - 0404

Peoples’ Republic of China:
(86 1) 505 - 3888

Singapore:
(65) 271 - 9444

Malaysa:
(60 3) 298 - 6555

For other Asian cities consult
local telephone directory or call:
(852) 848 7777

In Europe, please call your local
HP sales office or representative:

Austria:
(0222) 2500-0

Central Europe, USSR,
and Yugoslavia:

Vienna — Austria

(0222) 2500-0

Belgium and Luxembourg:
(02) 761 31 11

Denmark:

(42) 81 66 40
Finland:

(90) 88 721
France:

(1) 69 82 65 00
Germany:
(06172) 16 0
Greece:

(01) 68 28 811

Iceland:
(91) 67 10 00

Ireland:
(01) 88 33 99

Israel:

Computation and

Measurement Systems (CMS) Ltd.
(03) 5380 333

Italy:

(02) 95 300 134

Netherlands:

(020) 547 6669

Norway:

(02) 87 97 00

Portugal:

(11) 301 73 30

Spain:

900 123 123

Sweden:

(08) 750 20 00

Switzerland:

(057) 31 21 11 (Headoffice)
(022) 780 41 11 (Suisse Romande)
(046) 05 15 05 (Customer Information

Center)
South Africa:
HiPerformance Systems
(011) 802 5111
Turkey:
175 29 70
U.K.:
(0344) 369 369
Europe/Africa/Middle East:
Hewlett-Packard S.A.
Marcom Operations Europe
P.O. Box 529
1180 AM Amstelveen
The Netherlands

Copyright © 1992
Hewlett-Packard Company
Printed in USA 4/92

5091-4018E

