Agilent E1437A

20 MSample/second ADC
with Filters and FIFO

User’s Guide

-:.:- Agilent Technologies
Agilent Part Number E1437-90002

Printed in U.S.A
Print Date: March 2000, Third Edition

©Agilent Technologies, Inc., 1997, 2000. All rights reserved.
8600 Soper Hill Road Everett, Washington 98205-1209 U.S.A.

*+-- Agilent Technologies

NOTICE
The information contained in this document is subject to change without notice.

AGILENT TECHNOLOGIES, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Agilent Technologies
shall not be liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this
material.

WARRANTY

A copy of the specific warranty terms applicable to your Agilent Technologies product and
replacement parts can be obtained from your local Sales and Service Office.

This document contains proprietary information which is protected by copyright.

All rights are reserved. No part of this document may be photocopied, reproduced or
translated to another language without the prior written consent of Agilent Technologies,
Inc.. This information contained in this document is subject to change without notice.

Use of this manual is restricted to this product only.

© Copyright 1983, 1984, 1985, 1986, 1987, 1988, 2000 Agilent Technologies Inc. .
© Copyright 1979 The Regents of the University of Colorado, a body corporate.
© Copyright 1979, 1980, 1983 The Regents of the University of California.

© Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.

© Copyright 1986, 1987 Sun Microsystems, Inc.

© Copyright 1984, 1985 Productivity Products Intl.

TRADEMARKS

FibreXpress™ is a trademark of Systran Corporation.

Tachyon™ is a trademark of Agilent Technologies Inc..

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject restrictions as set forth in

subparagraph (c¢)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013

Agilent Technologies, Inc.
395 Page Mill Road
Palo Alto, CA 94303-0870 USA

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright © 1997, 2000 Agilent Technologies, Inc., All rights Reserved.

i

The E1437A at a Glance

The E1437A 20 Msample/second Analog-to-Digital Converter with Filtering
and Memory provides high precision digitizing for time and frequency
domain applications along with signal conditioning, filtering, and memory.
The module plugs into a single C-size slot in a VXI mainframe.

VX Mainframe

QD E;
-
I
) @
@HQ s Slotted
0 Capfive Screws
o ¢
s LZ
E1437A ADC
Number of Channels 1
Type of Input 50 ohm
Input Bandwidth 40 MHz, 8 MHz alias protected
Sample Rate 20 MSamp/sec
Voltage Range 20 mV to 10.24 Vpeak
Raw ADC resolution 23 hits
VXI Bus Support VME and Local Bus
VXI Device type Register/Message based

Size C-sized, single slot

il

What you get with the E1437A

The following items are included with your E1437A

Hardware:

e E1437A ADC, C-size VXI module
e Software media:

MS-Windows® disks

HP-UX tape

Software:

L MS-Windows disks

e A setup program which installs:
The E1437A VXIplug&play libraries and drivers
The E1437A HP-VEE driver
Soft Front Panel program for the E1437A
Windows online help for the E1437A
HPDSP function library and online help
Example programs
Library and example program source files
Microsoft® Visual Basic header files

O HP-UX tape
e An installation utility which installs:

The E1437A C Interface libraries and drivers
Helpview online help for the E1437A
HPDSP function library and online help
E1485 C library binaries
Example programs
Library and example program source and make files

Documentation:
e K1437A User’s Guide (this book)

e Online manual pages for Windows and HP-UX (Windows Help and Helpview
Help formats)

iv

In This Book

This book documents the E1437A module. It provides:

installion information
verification information
operational information

a programmer’s reference
circuit descriptions
technical specifications

If you plan to use this module with the E1485A/B signal processing module
and the 35635T Programmer’s Toolkit you should also use the
documentation for those products in order to form an application program
development environment.

If you are using your E1437A module in the Windows 3.1®, Windows NT®,
Windows 95®, or HP-UX environment the programmer’s reference and other
programming information are available as online help. The online help may
be more convenient to use while programming. See the “Getting Started”
chapter of this book for information on accessing the online help.

TABLE OF CONTENTS

1 Installing the E1437A
Installing the E1437A 1-2
To inspect the E1437A 1-2
To install the E1437A 1-3
To store the module 1-6
To transport the module 1-6

2 Getting Started with the E1437A
Introduction 2-2

To Install the Programmer’s Libraries 2-3
System Requirements (Microsoft Windows) 2-3
System Requirements (HP-UX) 2-3
To install the Windows VXIplug&play drivers for the E1437A
(for Windows 3.1, Windows 95 and Windows NT) 2-4
To install the HP-UX C-language drivers for the E1437A
(for HP-UX systems): 2-5
The Resource Manager 2-5

To Use the Program Group (Windows) 2-6

To Use the VXIplug and play Soft Front Panel (SPF) 2-7
To Use Online Help in Windows 2-10

To Use the Example Programs 2-11

To View the Visual Basic Example Program 2-14
To Use the HP-VEE Example Program 2-15

3 Using the E1437A

Programming the E1437A 3-2
WIN framework 3-2
HP-UX, Series 700 Environment 3-3
C Programming 3-3
ASCII Programming 3-4
Register Programming 3-4
The Measurement loop 3-5
The Measurement Loop in Multi-module systems 3-6

Frequency and Filtering 3-7

vii

Table of Contents

Managing multiple modules 3-8

Clock distribution 3-8

Managing Multi-module Systems 3-10

Managing Multi-Mainframe Systems 3-11
Synchronizing Changes in Multi-module Systems 3-12
Synchronous Digital Filter Changes 3-12
Synchronous Center Frequency Changes 3-12

Transferring data 3-13

4 E1437A VXIplug&play Programmer’s Reference
Introduction 4-2

Functions Listed by Functional Group 4-3

Analog Setup 4-4

Data Format 4-4

Debugging 4-5

Digital Processing 4-5

Diagnostics 4-5

Initialization 4-5

Interrupts 4-5

Measurement 4-6

Reading data 4-6

Timing 4-6

Trigger 4-6

Synchronization 4-7
Functions Listed alphabetically 4-8
VXIplug&play Programming Reference 4-11
Visual Basic Quick Reference 4-68
Parameter numeric equivalents 4-71
Errors 4-73

Functions Which Abort Measurements 4-75

5 ASCII Overview and Commands
Introduction 5-2

Command Syntax 5-2

Special Syntactic Elements 5-2
Conventions 5-2

Using ASCII Commands in Your Environment 5-3

Using ASCII commands with HP BASIC 5-3
Using ASCII commands with VISA 5-3

ASCII Programming Reference 5-4

viii

Table of Contents

6 Module Description
Front Panel Description 6-2

VXI Backplane Connections 6-3

Power Supplies and Ground 6-3
Data Transfer Bus 6-3

DTB Arbitration Bus 6-3
Priority Interrupt Bus 6-3
Utility Bus 6-3

Local Bus 6-3

Trigger Lines 6-4

Block Diagram and Description 6-5

Clock Generation 6-6

Input Amplifier 6-6

Anti-alias Filter 6-6

Sampling ADC 6-7

Zoom and Decimation Filtering 6-7
Data Formatting and FIFO Memory 6-8
Data Output 6-8

Trigger Detection 6-9

Control Registers 6-9

7 Verifying the E1437A
To verify the E1437A 7-2

8 Replacing Assemblies

Replaceable Parts 8-2

Ordering Information 8-2
Direct Mail Order System 8-3
Code Numbers 8-3
Assemblies 8-4

To remove the top and bottom covers 8-6

To remove the Al, A2, A3 or the A4 assembly 8-7
To remove the front panel 8-8

To remove the A10 main assembly 8-11

9 Backdating
Backdating 9-2

ix

Table of Contents

Glossary
Index
Need Assistance?

About this Edition

Installing the E1437A

1-1

E1437A User's Guide
Installing the E1437A

Installing the E1437A

This chapter contains instruction for installing the E1437A VXI ADC Module
and its drivers. This chapter also includes instruction for transporting and
storing the module.

To inspect the E1437A

The E1437A single channel VXI ADC Module was carefully inspected both
mechanically and electrically before shipment. It should be free of marks or
scratches and it should meet its published specifications upon receipt.

If the module was damaged in transit, do the following:
e Save all packing materials.
o ['ile a claim with the carrier

e Call your Hewlett-Packard sales and service office.

1-2

E1437A User's Guide
Installing the E1437A

Caution

To install the E1437A

To protect circuits from static discharge, observe anit-static techniques
whenever handling the E1437A VXI ADC Module

1 Set up your VXI mainframe. See the installation guide for your mainframe.

Select a slot in the VXI mainframe for the E1437A module

The E1437A module’s local bus receives ECL-level data from the module
immediately to its left and outputs ECL-level data to the module
immediately to its right. Every module using the local bus is keyed to
prevent two modules from fitting next to each other unless they are
compatible. If you will be using the local bus, select adjacent slots
immediately to the left of the data-receiving module. If the VXI bus is
used, maximum data rates will be reduced but the module can be placed
in any available slot.

Using a small screwdriver or similar tool, set the logical address configuration
switch on the E1437A.

(See the illustration on the next page.) Each module in the system must
have a unique logical address. The factory default setting is 1100 0000
(192). If an GPIB command module will be controlling the E1437A module,
select an address that is a multiple of 8.

1-3

E1437A User's Guide
Installing the E1437A

Logical Address

1-4

E1437A User's Guide
Installing the E1437A

4 Set the mainframe’s power switch to off (0).

Caution

Installing or removing the module with power on may damage components in
the module.

5 Place the module’s card edges (top and bottom) into the module guides in the
slot.

6 Slide the module into the mainframe until the module connects firmly with the
backplane connectors. Make sure the module slides in straight.

7 Attach the module’s front panel to the mainframe chassis using the module’s
captive mounting screws.

VX! Mainframe

Slotted
Captive Screws

Power Switch

1-6

E1437A User's Guide
Installing the E1437A

To store the module

Store the module in a clean, dry, and static free environment

For other requirements, see storage and transport restriction in “Technical
Specifications”.

Caution

To transport the module

Package the module using the orignal factory packaging or packaging identical
to the factory packaging.

If returning the module to Hewlett-Packard for service, attach a tag describing
the following;:

e Type of service required
e Return address

e Model number

e Full serial number

In any correspondence, refer to the module by model number and full serial
number.

e Mark the container FRAGILE to ensure careful handling.
e [f necessary to package the module in a container other than original

packaging, observe the following (use of other packaging is not
recommended,):

e Wrap the module in heavy paper of anti-static plastic.

e Protect the front panel with cardboard.

e Use a double-wall carton made of at least 350-pound test material.

e (Cushion the module to prevent damage.

Do not use styrene pellets in any shape as packing material for the module. The
pellets do not adequately cushion the module and do not prevent the module

from shifting in the carton. In addition, the pellets create static electricity which
can damage electronic components.

1-6

Getting Started with the
E1437A

2-1

Getting Started with the E1437A

Introduction

This chapter will help you to get your E1437A running and making simple
measurements without programming. It shows you how to install the
software libraries and how to run the Soft Front Panel program. It also
introduces you to example programs.

Two versions of the Host Interface Library are available. One is the
Windows 3.1, Windows 95, and Windows NT Library which communicates
with the hardware using VISA (Virtual Instrument Software Architecture).
VISA is the input-output standard upon which all the VIXplug&play software
components are based. The second version is the HP-UX 9.x C-language
Host Interface Library which uses SICL (the Standard Instrument Interface
Library) to communicate with the KE1437 hardware.

2-2

Getting Started with the E1437A

To Install the Programmer’s Libraries

System Requirements (Microsoft Windows)

e An IBM-compatible personal computer.

e Microsoft Windows® 3.1, Microsoft Windows 95®, or Microsoft Windows NT®,
e The computer must have a 3 1/2 inch disk drive for the installation media.

System Requirements (HP-UX)
e One of the following workstations
— An HP/Agilent V743 VXI-embedded workstation.

— A stand-alone HP/Agilent Series 700 workstation with an E1489
EISA-to-MXIbus card and an E1483B VXI-MXI Bus Extender.

e The workstation must have a DAT drive for the installation media.
e HP-UX (version 9.x)

e HP SICL for HP-UX (version C.03.08a or later). The SICL product number is HP
E2091C.

2-3

Getting Started with the E1437A

To install the Windows VXIplug &play drivers for the E1437A
(for Windows 3.1, Windows 95 and Windows NT)

This procedure assumes that you have already installed a VISA (Virtual
Instrument Software Architucture) library. If not, you can still install these
drivers but you will receive an error message reminding you to install the
VISA library.

1 Insert the disk labeled: “Agilent E1437A 20 MSample/sec A-to-D Converter”
2 Run the program: drive:\setup.exe

Where drive represents the drive containing the setup disk.

Insert the second disk when prompted

The setup program asks you to confirm or change the directory path. The
default directory path is recommended.

5 A dialog box asks if you want to install startup icons
This creates a program group called “HPE1437” which includes:

=~

An icon to run the Soft Front Panel

An icon for the E1437A Online Help file
An icon for the HPDSP Online Help file
An icon for UNINSTALL

Several icons for example programs

An icon for a readme file

6 A readme file may be displayed. If so, be sure to read it and follow the
instructions.

2-4

NOTE

Getting Started with the E1437A

To install the HP-UX C-language drivers for the E1437A
(for HP-UX systems):

1 Login asroot.

2 Insert the “Agilent E1437A 20 MSample/sec A-to-D Converter” tape into the
tape drive

3 To run the software installation utility interactively type:

/etc/update

See the HP-UX Reference manual for information on the update command.

Be sure to read the README file which contains important information on
installation, viewing online help, and compiling example programs.

The Resource Manager

The Resource Manager is a program from your hardware interface
manufacturer. It looks at the VXI mainframe to determine what modules are
installed. You need to run it every time you power up. If you get the
message: “No HP E1437A can be found in the system.” then run the
Resource Manager.

Before running the E1437A software make sure that your hardware is
configured correctly and that the Resource Manager runs successfully.
Before using your measurement system, you must set up all of its devices,
including setting their addresses and local bus locations. No two devices can
have the same address. Usually addresses 0 and 1 are taken by the
Resource Manager and are not available.

For more information about the Resource Manager, see the documentation
with your hardware interface.

Most Resource Managers will recognize the manufacturer and model number of
the E1437A but if your interface requires that you enter this information

manually, use the following:
Manufacturer number: 4095 (Hex FFF)
Model number: 534 (Hex 216)

2-5

Getting Started with the E1437A

To Use the Program Group (Windows)

If you chose to install the program group during the installation procedure
you will have an icon for a program group similar to one of the two below,
depending on which Windows platform you use.

=| HPE1437 [Common] [~]-
= = B ACVoltmeter example
Intermupt Benchmark. ASCIl example E "I:'"SI:” EHEIITID'E
exanmple example
= = ~ 5 Benchmark example
Resampler AC‘altmeter Multi-channel @ HPDSP HLP
example example example
- P? = HPE1437 Front Parnel
. T =
4, HPE1437 Hel
HPE1437 Readme Uninstal @ P
Fraont Panel HFE1437 j I
nkerrupt example
@ B Muli-channel example
HFE1437 Help HFDSP.HLP ﬁ
Readme

59 Reszampler example

B3 Urirstall HPE1437

This program group contains icons which access the Soft Front Panel
program, online help, and example programs. The following pages provide
an overview of these items.

If you did not choose to install the program group, executable files for each
of the items represented by group icons are available in the drive:\vxipnp
directory and its subdirectories.

2-6

[

HPE1437
Front Patrel

Getting Started with the E1437A

To Use the VXIplug &play Soft Front Panel (SPF)

The the best place to start to explore the capabilities of the E1437A is with
the Soft Front Panel (SFP). The Soft Front Panel can be useful for
checking your system to make sure that is is installed correctly and that all
of its parts are working. It can also be used to make actual measurements,
since it accesses most of the E1437A’s functionality.

Select the E1437 Front Panel icon in your program group to start the SFP.
This assumes you have already installed all required hardware and drivers
(including VISA) and have run the configurator and Resource Manager
required by your hardware interface.

When prompted for the resource descriptor, use the default “VXI::192"
unless the logical address of the FE1437 has been changed from its default
setting of 192. If it has been changed then type the appropriate logical
address instead of 192. Press OK.

You can also run the SFP in a simulation mode without an E1437 by
typing “sim” in place of the resource descriptor.

=| HPE1437 Front Panel — sim -

Edit Control Reset Help

Spect
rMeazurement pectrum

Mode ISpectlum |£I
Averaging I[m :I
Averages |1|:|

window IEauss top :I

|I|.J| TR I 1 e FE T

o H/‘.ﬂltq il MMW e

I M

| Auto Range I | Auto Zero I

| Autozcale Y I | Autoscale X I

|<<|<|Peak|>|»|

X: Left= 0.000000Hz , 1.024000MHz/div
| Start I | Pause I ¥: Top= 0.000000dEm . 10.0000004Bm/div
Marker: X= 0.000000Hz Y= 3.080211dBm

| Single I| Continue I

2-7

Getting Started with the E1437A

The buttons at the lower left of the SFP are always accessible and control
various measurement and control functions.

Sets an appropriate range |_Auto Range || AuoZeo | Corrects DC offset

Adjusts vertical display | Autoscale ¥ | | Autoscale X | Adjusts horizontal display
Moves the marker incrementally —— < < [peak [> [> |

Moves the marker by the step size value
Starts ameasurement —|__Stat |[_Pase | Pauses the measurement
Takes a single measurement ——— | single | [Continue | Continues after a pause

The menu bar at the upper left of the SFP allows you to select pull-down
menus.

=
Displays options which copy [EL“ Control Reset Help | Displays HPE1437A online help
data to the clipboard ‘ (Hint: see the Soft Front Panel Help section
J for links to SFP parameter descriptions)
Allows choice of seven cor_1tro| panels L Displays reset options for the module
(see the next page for choices)

2-8

Getting Started with the E1437A

The left center section of the SFP is an area for which you may select
various panels to control the measurement and display parameters.

panels are available as selections from the Control pull-down menu:

Mode ISpectlum :I
Averaging In" .
Averages Im

Window Iﬁauss top :I

Data lyp
Bandwidth
Center freq Iu—
Sample freq
Block Size
Precision m

[Overload linked to Block

~Input

Range |1I]_24V, (30dBm) :l
Coupling I[)[: :l
Signal IUN :l
Ground ISingIe Ended :l
Alias Filter IBMHZ :l

Display

Y-Ref. dBm |g—
Y-Per Div |1u—
¥-Ref Position

Y-Grids |1u—
¥-Ref. Hz Iu—
X-Per Div W
X-Ref Position m
X-Grids Im—

¥ %-Auto Dn change

~Marker

Mode Inn :I
H-value ||]

Relative

%o [
Cvlo =

Step size [1000000 [

-Clock

Sync Mode Ilndependenl :l
Source I 20.48MHz :l
Master Mode ||]f[:l

[Slow Clock

Ext clock freq |2|]43|]|]l]l]

~Trigger

% Enable generation

Type
Level [*% range] ||]
Level [dBfs) |.59_B3

Slope [Positive

Delay [samples) I [i]

These

Hint: the E1437 online help, available from the SFP Help menu item or
from the program group icon, describes these panels and has links to
functions which control and define many of the parameters.

2-9

Getting Started with the E1437A

To Use Online Help in Windows

The E1437 Help icon accesses the online help file for the E1437A. The
online help includes the programming library as well as general information.

HFE1437 Help

The DSP help icon accesses the online help file for the HPDSP library
functions. These functions may be used to synthesize, resample, or perform

HPDSP.HLF

special computations on data generated by the E1437A.

2-10

Getting Started with the E1437A

To Use the Example Programs

Several example programs are included to perform useful tasks for you and
to serve as a basis for your own programs. When you installed your E1437A
Windows or HP-UX libraries and drivers using the setup program or utility,
you also installed executable and source code files for several useful
example programs. The programs demonstrate programming the module
with “C”, Microsoft Visual Basic, and HP-VEE.

The executables for these examples require E1437A and, for Windows,
VXIplug&play support; in other words they will not run in simulation mode
like the E1437 Soft Front Panel program.

Icons for the executables appear in the E1437 Windows program group if
you chose to add it during setup:

=l T

[nterrupt Benchmark, ASCH example
example example

B s g

Rezampler AC Wolmeter Mulbi-channel
example example example

In Windows environments executable files and source code for the Microsoft
Visual Basic examples are installed in the
drive\vxipnp\win[95INT\hpe1437\wvb40 directory. The VEE examples are in
the ..\hpel437\vee directory, and “C” examples are in the ...\hpel437\msc
directory.

In the HP-UX environment executable files and source code for the
C-language examples are installed in /opt/vxipnp/hpux/hpel437/demo.

The group of programs described here may be supplemented with additional
programs later which will be described in the online help or readme file.

acvolts.exe, acvolts_32.exe, acvolts

This is about the simplest practical complete program using the E1437 and
functions like an AC voltmeter. It is written in Visual Basic and can be run
on Win 3.1 (acvolts.exe), Win95 or WinNT (acvolts_32.exe). It is also
available in C for HP-UX (acvolts).

Getting Started with the E1437A

ascii.exe, ascii_32.exe, ascii

This example shows how to control the E1437 without using the C-function
library. Since all I/O is performed with ASCII commands and the VXI
message protocol, the speed is substantially reduced. This example still uses
the VISA 1/O library to send and receive ASCII commands, however any
environment capable of ASCII I/O to VXI could be used. Users interested in
controlling the E1437 via a command module should look at this example.
The code is written in Visual Basic and can be run on Win 3.1, Win95, or
WinNT.

resamp.exe, resamp_32.exe, resamp

This example shows how to use the resample function included in the
HPDSP library shipped with the E1437. It is written in Visual Basic and
runs on Win 3.1 (resamp.exe), Win95, or WinNT (resamp_32.exe). It is also
available in C for HP-UX (resamp).

multchan.exe, multchan_32.exe, multichan

This example shows how to synchronize two modules to achieve
simultaneous sampling, filter decimation, and matched local oscillator phase.
It is written in Visual Basic and runs on Win 3.1 (multchan.exe), Win95 or
WIinNT (multchan_32.exe). It is also available in C for HP-UX (multichan).

bench.exe, bench_32.exe, bench

This performance benchmarking program is really more of a utility than an
example, although source code is provided. It allows users to measure data
transfer rates and command processing times on their system without
having to write new code. The utility is written in Visual Basic and runs on
Win 3.1 (bench.exe), Win95 or WinNT (bench_32.exe). It is also available in
C for HP-UX (bench).

demo

This is a simple non-interactive oscilloscope display and is written in C for
the HP-UX environment only.

interupt.exe

This example shows how to set up and trap a VXI interrupt to indicate an
error condition in the E1437. It is written as a consol program in Microsoft
Visual C++ and runs only on Win95 or WinNT. Source code is installed on
Win 3.1, but no executable is provided.

2-12

Getting Started with the E1437A

scope.vee

This is a simple one-channel example written in VEE. In order to view or
execute it, the VEE programming environment must be installed on the
system. It is not installed on Win 3.1 or HP-UX.

thruput.vee

This VEE example demonstrates how to set up a Local Bus data transfer
from the E1437 to an E1562 data disk module. To use this example the
VEE programming environment and the E1562 driver must be installed on
the system. It is not installed on Win 3.1 or HP-UX.

2-13

Getting Started with the E1437A

The next few pages show the structure and some details of a few of the
example programs

To View the Visual Basic Example Program

The acvolts.vbp project from which the acvolts.exe example program was
created demonstrates how to communicate with the E1437A module in
Visual Basic. The example below shows the open project with an open form
and an open object.

=] ACYOLTS - Microsoft Visual Basic [design] [

File Edit VYiew Inset Run Tools Add-lns Help

=
- 1920.720 L. 975%375

o = = il e o e =

= AC Voltmeter bl |2
e — ACVOLTS ~H= Properties - Form1 X
......... e measure_CommandButtan I;I
‘% HPE1437.BAS HPE1437 BackColor £HB000000F %
Cancel False
Measure
Default Falze
Draglcon [Mone]
Draghode 0 - Manual
= Form1 | [Enabled Trug
Object: |measure [#] Proc [Click [#] Font M5 5 s Sert
n Height 75
Private Sub measure_Clickl) + HelpContextlD i}
'SCAart measursment Index
Call hpel437 _meas_start(id) Left 1920
'Try reading data block until successful Mouselcon [Mone)
DD.UhllE hpel437? _readiid, =(0), 1024, ovld]: Loop MousePointer 0 - Default
'Display result Mame MEasUre
display Tabindex 0
2ol wan r TabStop True
% e Tag
Top 720
Vizible True
"W hatsThisHelplD 1]
Wfidth 975

2-14

To Use the HP-VEE Example Program

Getting Started with the E1437A

The scope.vee program demonstrates a simple example of how to use the
E1437A in a HP-VEE program. Load HP-VEE and the scope.vee. You may
run the program to measure a signal and may select input parameter

variables in the boxes provided.

¥ name

0.2¢

Tracel

[g
Rl

=[HP VEE - scope.vee =~
Eile
D= & & L [EE =
=] XY Trace
[o=

[o [

300

Auto seale| Xname
Input Setup
~| Blocksize | —| Range | —|Bandwidth
1024 9 0.
[ol e = Nate Pad |

50/

to calibrate time axis.

[o=

simple example to obtain time
domain data from a E1937A 20 Msa/s
De+ Filter + FIFO module.

one needs to build & VEE waveform

You may also view the detail of the HP-VEE program to see how the

program is structured:

%\ HP VEE - scope.vee

File Edit Dobug Flow Device WO Dala Math AdvMath Display Help

D s »lu]se] BE @ el sl slzlal 8

| | =
fac Real Readsd
Get Global

= Mote Pad [4]

[simple example to chtain time
dowain data from a E1437a 20 MSa/s
Do+ Filter + FIFO module.

one needs to build a VEE waveform

= Status -
Start
Meas Start
Until Break Status Get
@ Input Setup
—| Block Size = \ﬂte-ger -
1024 i
HSD_D I Then/Else
—| Range | —| Bandwidt =
= 2 [T El
i race o
g- - = = = =
[ol
¥ name
0.2/
- -

Tracel

-08 '~ & f |,
“ »

osis e ang

lto calibrate time axis.

Aupscale| [Kname | 200/

2-15

Getting Started with the E1437A

The view below shows detail within the input setup, meas start and status
get boxes. These are examples of how HP-VEE communicates with the
E1437A module.

=] HP VEE - scope.vee =B
File Edit Debug Flow Device [0 Data Math AdvMath Display Help

DlElEE] > [« v] Bl6 &) slolnls] wa] ol el
=

Meas Start = j=

; = Status -
f——
£
=]
E] | statuspir
- N
=] Inpuit Setup

—| SetBlocksize |«

—| Block Size | « e Name
[1024 8| ["Blocksize

= To/From E14374

range hpe1437 input rangelinstrHandle, range)

hpe1437_data_blocksize(instrHandle, blocksize)

—| Range |4 — blocksize | | hpe1437_filter_bw(instrHandle, bw)
2 by
|

—|Bandwidth| «

2-16

Using the E1437A

3-1

E1437A User's Guide
Using the E1437A

Programming the E1437A

The E1437A is shipped with software and documentation to support a broad set of
choices of controllers, I/O interfaces, programming languages, and operating
systems. By virtue of its compliance to the VXIplug&play standard, the E1437A is
most easily controlled in an environment conforming to one of the supported
VXIplug&play frameworks. However, support is also supplied for other common
hardware and software environments. The relationship among the various levels of
programming the E1437A is shown in the diagram below.

Windows & Visual Basic
HP-UX
C Programming i

ASCII Programming l ‘ HP-UX H WIN
Register Programming l

C-Function Library

‘ Message Interface

Hardware Registers

WIN framework

The primary development environment supported by the E1437A is the
VXIplug&play WIN, WIN95, and WinNT framework specifications. It requires the
following resources prior to the installation of the E1437A:

e An embedded or a stand-alone IBM compatible PC

e Microsoft Windows 3.1 or higher

e VISA interface library

e VISA compatible hardware interface

® Microsoft Visual C++ and/or Microsoft Visual Basic development system.

Additional details on the WIN framework can be found in the VXIplug&play VPP-2
System Frameworks Specification, Revision 2.0.

In addition to the C source code files, the E1437A includes compiled libraries,

example programs, an interactive soft front panel program, online help files, and an
installation program. The interactive soft front panel program allows the E1437A to
be turned on, verified and used for simple tasks without writing any user programs.

3-2

E1437A User's Guide
Using the E1437A

Compliance with the VXIplug&play WIN framework allows users of the HP-VEE
graphical programming system to control the E1437A from that environment. This is
accomplished by the capability of HP-VEE to call functions in the C-library.
Documentation and support for that capability is included with HP-VEE and is not
addressed further in this document.

HP-UX, Series 700 Environment

Although HP-UX will not support an official VXIplug&play framework before
version 10.2, the HP-UX environment is supported for developers who prefer
programming tools provided on the UNIX operating system. The system
requirements include:

e HP/Agilent series 700 workstation

e HP-UX operating system 9.x

e Standard Instrument Control Library (SICL)
e SICL compatible VXI hardware interface

e (-language programming system.

In addition to the source code files, the E1437A includes compiled libraries, example
programs, online help files, and an installation utility.

C Programming

The E1437A is shipped with a source library of C-functions which can be called from
user programs. This elevates the interface above the register level so the
programmer no longer has to be concerned with such things as register addresses
and packing or splitting parameters into 16-bit register lengths. The library includes
ANSI compliant source code files with all machine dependent code constrained to a
single source file. By re-writing selected portions of the machine.h file, the
programmer can create and compile an E1437A library which is compatible with
virtually any development environment using the C language. The most common
reason for re-writing machine. h is to accommodate I/O libraries other than VISA or
SICL. In some cases the library may need merely to be re-compiled to target a
different processor type for the host computer.

Porting the E1437A library to a different computer environment is likely to be a
fairly straight forward task. However, some of the higher level tools shipped with the
E1437A may not be as easily ported. The interactive soft front panel and some
example programs include human interfaces which depend on certain display and
keyboard support which may be system dependent. Although source code is
included for these applications, porting them to a different environment may
present a greater problem than porting the library itself. The installation and online
help utilities are specifically targeted to operate on the supported development
environments and may not be available in other environments.

3-3

E1437A User's Guide
Using the E1437A

ASCII Programming

For programmers familiar with instrument control using ASCII string commands, the
E1437A hardware implements a message based interface using ASCII commands
compatible with the IEEE-488.2 standard. This standard defines the command
syntax which is used by the Standard Commands for Programmable Instruments
(SCPI) specification. For consistency with the new VXIplug&play function
definitions, the £E1437A ASCII command set does not use the SCPI commands.

Since the ASCII interpreter is built into the E1437A hardware, no host library is
necessary for ASCII programming. Thus, there is no software to install. There is no
need for a separate interpreter in the host computer (CSCPI or ISCPI). There is no
need to download an interpreter to a separate command module. A key advantage of
ASCII programming is that it can be done in virtually any VXI environment which
supports message based I/0. A disadvantage of ASCII programming is the lack of
host-based tools such as diagnostics and demonstration programs. An additional
disadvantage is the reduction in I/O performance due to the character-based serial
message interface and interpreter.

Register Programming

The lowest level of programming supported by the E1437A allows direct writing and
reading to the binary hardware registers. There is no user-level support for register
programming.

3-4

E1437A User's Guide
Using the E1437A

The Measurement loop

The measurement loop progresses through four states. The transition from one state
to the next is tied to the transition of the SYNC signal. The effect of the SYNC signal
is summarized in the following diagram representing the four possible states of an
E1437 module.

No dafa collected Assert New dafa collected
Old data available Old data cleared
Release Rel
(Block Mode) clease
Data collected
Data collected and output Assert Pre-trigger data cleared

In the Idle state the E1437 places no new data into the FIFO output buffer memory
although previously measured data is retained in the buffer memory and is available
for output via the VME or local bus I/O ports. The module stays in the Idle state until
the SYNC line is asserted.

Upon entering the Arm state the E1437 clears old data and starts saving new data
into its FIFO. It remains in the Arm state until the SYNC signal is released. If an
E1437 is programmed with a pre-trigger delay, it collects enough data samples to
satisfy this pre-trigger delay, and then releases the SYNC line. If no pre-trigger delay
has been programmed, the module releases the SYNC line immediately. When all
E1437s in a system have released the SYNC line the module moves to the Trigger
state.

Upon entering the Trigger state an E1437 continues collecting data into the FIFO,
discarding any data prior to the pre-trigger delay. An E1437 remains in the Trigger
state until the SYNC line is asserted. The SYNC line may be asserted by a direct
command or by any E1437 which encounters a trigger condition and is programmed
to assert the SYNC line. When the SYNC signal is asserted, all modules
synchronously move to the Measure state.

In the Measure state the E1437 continues collecting data and sends the data saved
in the FIFO memory to the selected I/O port, starting with the sample indicated by
the trigger arrival, offset by the trigger delay. This data transfer continues until all
data has been transferred or until the module meets the criteria for returning to the
Idle state imposed by block mode or continuous mode operation constraints.

Modules programmed for block mode operation will assert the SYNC line until a
complete block of data, including any pre-programmed pre- or post-trigger delay,
has been collected and is available to the I/O port. The module then releases the
SYNC line and returns to the Idle state.

3-5

E1437A User's Guide
Using the E1437A

In continuous mode a module releases sync immediately but moves to the Idle
state only if explicitly programmed to do so or if the FIFO data buffer overflows
because data cannot be read from the I/O port fast enough.

The Measurement Loop in Multi-module systems

The following rules generally apply to transitions between states when multiple
modules share a SYNC signal:

If any one module asserts the SYNC line a synchronous state transition occurs
for all modules in a system.

All modules in a system must have released the SYNC line in order to bring
about a synchronous transition to Trigger state.

In block mode each module releases the SYNC line after its block of data has
been collected. After each block mode module has released the SYNC line the
individual module moves to the Idle state.

Immediately upon entering the Measure state in continuous mode each module
releases the SYNC line but does not move into the Idle state. It continues to
collect and output data until it is programatically signaled to stop or until the
FIFO overflows. With the SYNC line released it is then possible to change the
center frequency for one or multiple modules without interrupting the
measurement. See the section on Synchronizing Changes in Multi-Module
Systems.

A module may be programmed explicitly to inhibit its transition to the Arm state
despite SYNC transitions.

In addition to controlling the progression through the four module states, the
SYNC signal is used to synchronize the decimation counters and local oscillators
of multiple E1437 modules.

3-6

E1437A User's Guide
Using the E1437A

Frequency and Filtering

The E1437’s center frequency is normally set at zero (baseband measurement).
However, you may set the center frequency to a non-zero value in order to examine
a narrower span away from baseband (zoom measurement). The frequency band of
interest, represented by digitized time data samples from the ADC, is mixed with
the E1437 digital LO, a complex exponential, at the desired center frequency. As a
result the frequency band of interest in the input signal is shifted to a complex
signal centered around DC. See Synchronizing Changes in Multi-module Systems for
special considerations with respect to changing the center frequency in
multi-module systems.

The default filter for E1437 measurements is an analog anti-alias filter. However,
you may further isolate the frequency band of interest for more detailed analysis by
using digital filtering. A decimating digital filter simultaneously decreases the
bandwidth of the signal and decreases the sample rate. The built-in digital filters
conform to the Nyquist sampling theorem which guarantees that the output sample
rate may be reduced by the same factor as the signal bandwidth reduction while still
maintaining a complete representation of the underlying bandlimited signal.

For each octave step in bandwidth reduction (except for the first octave) the E1437
digital filters automatically reduce the data rate by discarding alternate output
samples. This process, called decimation, results in an output sample rate which is
nominally four times the signal bandwidth whenever sigBw=>0. This is still double
the theoretical rate necessary to fully characterize the band limited signal. However,
because the digital filters do not have a perfectly abrupt cutoff, the sample rate
cannot be reduced to the theoretical limit without some aliasing of signals in the
transition frequency band of the filters. In many applications this limited aliasing
potential is not important. For this reason you may optionally choose to apply a final
factor-of-two decimation. See the Technical Specifications for detailed information
on the digital filter shapes.

The decimation process used to reduce the output sample rate is driven from a
“decimation counter” which keeps track of which samples to save and which ones to
discard for each of the octave bandwidth reduction filter stages. In multi-module
systems where synchronous sampling is required, the decimation counters in all the
modules must be synchronous with each other. See Synchronizing Changes in
Multi-module Systems.

3-7

E1437A User's Guide
Using the E1437A

Managing multiple modules

The E1437 supports synchronous operation among multiple E1437s by using a
shared ADC clock and SYNC signal to drive all the modules in a system. The shared
SYNC signal is used to synchronize critical operations including arming, triggering
the beginning of data collection, setting a common phase of the local oscillator for
down conversion, and forcing concurrent output sample times whenever decimation
is used. The SYNC line transitions are constrained to not occur during the critical
(setup and hold) regions of the shared ADC clock. Thus, all modules in the group
can be assured of receiving the SYNC signal on exactly the same ADC clock cycle.
The following topics provide details on sharing clock and SYNC signals:

Clock distribution

When shared, the ADC clock and SYNC lines are distributed among modules either
on the VXI backplane using the ECL Trigger lines, or on the front panel using the
SMB Clock/Sync extender connectors. When VXI backplane distribution is used with
more than one VXI mainframe, the front panel Clock/Sync connectors can be used
to buffer the ADC clock and SYNC lines from one mainframe to another.

Since the SYNC transition timing relative to the ADC clock edges is critical, the
module driving the SYNC line should ideally be the same one identified as the
master. However, when using backplane distribution, any E1437 in the same
mainframe as the master can drive the SYNC line.

3-8

E1437A User's Guide
Using the E1437A

When using the multi-sync mode of operation, the selection of front panel or
backplane distribution of ADC clock and SYNC signals involves the following
considerations:

e Backplane distribution requires the use of the ECL Trigger lines on the
backplane, which are then unavailable to other modules.

e The overall time skew between the arrival of ADC clock edges is smaller when
using backplane distribution, particularly if the master (or buffer) module is
physically located in the center of the mainframe.

e Backplane distribution is more susceptible to pickup of jitter on the ADC clock
from other digital activity on the VXI backplane. The extent of this pickup
depends on the mainframe and on the other modules in the mainframe. One
important step in reducing this pickup is to disable, whenever possible, the 10
MHz VXI clock generated by the slot-0 controller.

e [or backplane distribution make sure that all modules conform to VXI
specification 1.4 or later with regard to their attachment to the ECL Trigger
lines. See the Technical Specifications for the clock jitter (phase noise)
specification degradation using backplane distribution.

e ['ront panel distribution requires the use of two short, relatively well matched
cables with SMB connectors between modules. In addition, unused SMB
connectors on modules being used for front panel distribution must be
terminated in 50 ohms.

3-9

E1437A User's Guide
Using the E1437A

Managing Multi-module Systems

Source: Internal Source: N/A
Master: On Master: Off
SYNC: Rear SYNC: Rear

& sl
o Backplane -
-2, .
— ©
o =
? 3
& =
—
ADC clock and SYNCdistribution

using VXI backplane ECL trigger lines.

Source: Internal Source: N/A
Master: On Master: Off
SYNQ Front SYNQ Front

& i
® ®
[}
o5 |® ®
o =
? 3
& =
—

ADC clock and SYNCdistribution using
front panel SMB clock and SYNC
extender connections.

Source: External/PLL Source: N/A

Master: On Master: Off
SYNC Rear SYNC Rear
& &
° Backplane o
o E @ @
= (e} @ @
5 £
? 3
& ©
- i~
—J
External clock and SYNCdistribution
using VXI backplane ECL trigger lines.
Source: External/PLL Source: N/A
Master: On Master: OFf
SYNG Front SYNC Front
= ‘
® ®
)
S35 ® ®
5 £
? 3
©

U e ©
e

||

External clock and SYNCdistribution using

front panel SMB clock and SYNC
extender connections.

Source: Internal Source: N/A
Master: On Master: Off
SYNC. Front SYNC. Front
Source: N/A Source: N/A
Master: Off ‘ ‘ [[Master: Off
SYNC. Front T F ohF SYNC. Front
%9 ®
[}
) ®
o =
» 3
= & & =
—

Sharing clock and SYNCamong several
modules via front panel distribution.

3-10

E1437A User's Guide

Using the E1437A
Managing Multi-Mainframe Systems
Source: NA Source: Internal Source: N/A Source: N/A
Master: Off Master: On Master: Off Master: Off
SYNC Front SYNC‘Front SYNC Front SYNC Front
th &) % &)
| ® ®
(5]
=51 °
o =
%2} §
O (] (=) O
] B = B
VXI Mainframe A VXI Mainframe B
Clock and SYNCdistribution using front panel
extender connections within and between mainframes.
Source: NA Source: External/PLL Source: N/A Source: N/A
Master: Off Master: On Master: Buffer Master: Off
SYNC. Rear SYNC, Rear SYNC: Rear SYNC: Rear
i & Jail &)
Backplane = > | Backplane ||z
N ® ® e
Q| @
S 3 ® ® °
& £
8
J (O] J
]]
VXI Mainframe A VXl Mainframe B
(ock and SYNCdistribution using VXI backplane lines
within mainframes and using front panel extender
connections between mainframes.
Source: NA Source: External/PLL Source: N/A Source: N/A Source: N/A Source: N/A
Master: OFf Master: On Master: Buffer Master: Off Master: Buffer Master: Off
SYNC: Rear SYNC: Rear SYNC: Rear SYNC. Rear SYNC: Rear SYNC: Rear
& HE & &) &l
s | Backplane |z > | Backplane |= h; Backplane |»
> : e ® ® :
2 Sle ® ®
o =
(%] §
Q
[m) [Em] [m) [w] [mm)
—_ —_ —_

VXI Mainframe A

VXI Mainframe B

VXI Mainframe C
Three or more mainframes with clock and SYNC distribution using VXI
backplane lines within mainframes and using front panel extender
connections between mainframes.

3-11

E1437A User's Guide
Using the E1437A

Synchronizing Changes in Multi-module Systems

Multi-module systems require special treatment with respect to timing of frequency
and filter changes. Center frequency changes may involve synchronizing the local
oscillators of all modules in a system. Digital filters changes in multi-module systems
require that the decimation counters be synchronized.

Synchronous Digital Filter Changes

In multi-module systems where synchronous sampling is required, the decimation
counters in all the modules must be synchronous with each other. This condition
can be forced by preparing each module in the system in advance. Any
measurement in progress is terminated at this time and the module is placed in the
Idle state. After each module is prepared, the next SYNC line transition causes the
digital decimation counter to be reset and started at the same time. Once this is
done the decimation counters will stay synchronized as long as the same ADC clock
is used.

If you also intend to change the center frequency along with the digital filters, you
should synchronize the digitial filters first. Otherwise the center frequency phase
becomes unsynchronized when the digital filters are changed.

Synchronous Center Frequency Changes

In multi-module systems you may prepare each module in advance of a frequency
change, then perform the change synchronously by asserting the SYNC line. This
preserves the phase relationship of the local oscillators for all modules in the
system. Certain special considerations apply to multi-module frequency changes:

e [f all modules in a system are in the Idle state when the SYNC line transition
occurs, the LO frequency will be updated and the next measurement will be
armed.

e [f all modules are in the measurement state in continuous mode when the SYNC
line transition occurs, the LO frequency will be synchronously updated, and the
measurement will continue.

e In continuous mode care must be taken to assure that all modules are in the
same state, either the Idle state or the Measure state, before the SYNC line
transition occurs, otherwise some modules will re-arm while others will continue
the current measurement.

® In block mode the SYNC line transition will be ignored unless all modules are
currently in the Idle state.

e [fyou also intend to change the digital filters along with the center frequency,
you should synchronize the digitial filters first. Otherwise the center frequency
phase becomes unsynchronized when the digital filters are changed.

3-12

E1437A User's Guide
Using the E1437A

Transferring data

You can transfer data from the E1437 two different ways.

e The VMEDus is the universal data bus for VXI architecture. It provides flexibility
and versatility in transferring data. Transfers over the VMEbus are 16 bits wide.

e The Local Bus supports faster transfer rates than the VMEbus. For example, if
you are transferring data from the E1437 to the HP/Agilent E1485A/B, the Local
Bus provides a direct pipeline to the HP/Agilent E1485’s DSPs.

Using the Local Bus, you can transfer data in the background while
processing data in a signal-processing module. All Local Bus data transfers
originate in the E1437 and move towards a signal processing module to the
right of the E1437. If other modules generate data to the left of the input
module, the E1437 will pass the data to its right and insert or append its own
data at the beginning or end of the frame.

3-13

E1437A VXIplug&play
Programmer’s Reference

4-1

E1437A User's Guide
Introduction

Introduction

The programmer’s reference is presented as a set of VXIplug&play functions since
this is the primary targeted environment. However, when you performed the setup
for the E1437A, drivers were installed to support various programming
environments as described in the Programing Overview section in the “Using the
E1437A” chapter.

The function descriptions in the programmer’s reference are valid for all
environments except ASCII, which is treated in a separate chapter. Be sure to follow
the instructions in the “Getting Started” chapter to assure proper installation and to
become aware of the capabilities of your E1437A software in various programming
environments. You will find the example programs particularly helpful for
programming in different environments.

Many of the function descriptions in the programming reference include several
related functions. You may use the primary function to set all related parameters or
you may use the other functions within the group to set or query a single parameter.

Parameter variables are presented as alphanumeric values which are descriptive and
easy to remember. However, for faster programming you may use the numeric
equivalents for the parameter variables listed at the end of this chapter. The
numeric equivalents are available as popups in the online help, a good reason to use
the online help, if it is available in your environment, rather than this printed
document.

Unless noted otherwise, all functions in this library return 0 if they complete
succesfully and a non-zero integer if they fail. Always check the the return value and
take appropriate action. The error descriptions are listed at the end of this chapter
and in the online help.

E1437A User's Guide
Functions Listed by Functional Group

Functions Listed by Functional Group

The following pages have the programming functions grouped by related functions.
The a brief description of each group follows:

Initializing the £1437:
You must first initialize the I/O driver and set up each module.

Configuring the Analog Inputs:
The functions in this group determine how the analog input section is
configured.

Formatting Data:

An E1437 can collect either real or complex data in 16-bit or 32-bit format. It
can collect data into various blocksizes or in a continuous mode. This data can
be transferred either on the VXI backplane of over the Local Bus. You can
append status information to each block of data indicating ADC overloads or
ADC errors during the block.

Configuring Digital Processing;:
The decimation filter provides bandpass filtering and decimation capabilities.
You may also select limited frequency spans away from baseband.

Controlling Measurements:

These functions initiate or terminate the measurement loop.

Timing;:

The clock signals for the ADC sample clock and DSP decimation and zoom can
be set from a variety of sources. One E1437 can be enabled to drive the sample
clock line on the VXI backplane or front panel to enable synchronization of
multiple E1437s.

Triggering:
These functions set all parameters associated with triggering the beginning of
data collection.

Controlling Multiple Modules:
These functions support synchronous operation among multiple E1437s by
using a shared ADC clock and SYNC signal to drive all the modules in a system.

Reading Data:
These functions read data from either the VME or the Local Bus data port. This
data can optionally be scaled and converted to floating point.

Programming Interrupts:
The E1437 can be programmed to interrupt via the VXI backplane whenever
certain status conditions are present.

Debugging your Program:
Error messages allow you to identify program problems.

Diagnostics:
Hardware diagnostic routines verify correct hardware operation of the E1437.

4-3

E1437A User's Guide
Functions Listed by Functional Group

Analog Setup

hpel437_input_setup - sets all the analog input parameters
hpel437_input_alias_filter - include/bypasse the built-in analog anti-alias filter
hpel437_input_alias_filter_get - gets the anti-alias filter state
hpel437_input_autozero - nulls out the input DC offset
hpel437_input_coupling - selects AC or DC input coupling
hpel437_input_coupling_get - get the input coupling type
hpel437_input_float - enables/disables floating the input connector
hpel437_input_float_get - gets the input connector state
hpel437_input_range - sets the full scale range
hpel437_input_range_auto - performs auto-ranging
hpel437_input_range_get - gets the input range
hpel437_input_signal - include/bypass the input buffer amplifier
hpel437_input_signal_get - gets the input buffer amplifier state

Data Format

hpel437_data_ -sets all format and data output flow parameters

hpel437_data_append_status - enables/disables appending status information to a data
block

hpel437_data_append_status_get - gets the append status state
hpel437_data_blocksize - determines the size of the output data block
hpel437_data_blocksize_get - gets the output data block size
hpel437_data_memsize_get - returns module’s memory size
hpel437_data_mode - selects block mode or continuous mode
hpel437_data_mode_get - gets the data mode

hpel437_data_port - selects VME bus or local bus transmission
hpel437_data_port_get - gets the output port designation
hpel437_data_resolution - selects 16 or 32 bits data resolution
hpel437_data_resolution_get - gets the data resolution
hpel437_data_type - selects real or complex output data
hpel437_data_type_get - gets output data type
hpel437_lbus_mode - sets the transmission mode of the local bus
hpel437_lbus_mode_get - gets the local bus mode
hpel437_lbus_reset - resets local bus mode
hpel437_lbus_reset_get - gets the local bus mode reset state

4-4

E1437A User's Guide
Functions Listed by Functional Group

Debugging

hpel437_error_message - returns error information obtained from function calls
hpel437_error_query - queries the module for the most recent error
hpel437_revision_query - returns strings that identify the date of the firmware revision.

hpel437_status_get - retreives module’s status register information

Digital Processing

hpel437_filter_setup - sets the digital filter bandwidth and decimation filter parameters
hpel437_filter_bw - selects a signal filter bandwidth

hpel437_filter_bw_get - gets the signal filter bandwidth

hpel437_filter_decimate - enables/disables and extra factor of 2 decimation
hpel437_filter_decimate_get - gets current state of extra decimation
hpel437_filter_resp_get - returns the module’s complex frequency response.
hpel437_filter_sync - synchronizes the decimation filter counter
hpel437_frequency_setup - sets all center frequency parameters
hpel437_frequency_center - sets the center frequency
hpel437_frequency_center_get - gets the current center frequency
hpel437_frequency_center_raw - A fast way to set the center frequency
hpel437_frequency_cmplxdc - selects a complex baseband measurement
hpel437_frequency_cmplxdc_get - gets the state of the baseband measurement mode
hpel437_frequency_sync - prepares the module for a synchronous frequency change
hpel437_frequency_sync_get - gets the state of the synchronus change mode

Diagnostics

hpel437_self_test - performs a self-test on the module and returns the result

Initialization
hpel437_init - initializes the I/O driver for a module

hpel437_close - closes the module’s software connection

Interrupts

hpel437_attrib_get - allows direct access to the I/O library functions
hpel437_interrupt_setup - sets all interrupt parameters
hpel437_interrupt_mask_get - gets the interrupt event mask
hpel437_interrupt_priority_get - gets the VME interrupt line

hpel437_interrupt_restore - restores the interrupt masks to the most recent setting

Measurement

hpel437_meas_control - initiates and controls measurements in multi-module systems
hpel437_meas_start - initiates measurements in single module systems

hpel437_reset - places the module in a known state

E1437A User's Guide
Functions Listed by Functional Group

Reading data
hpel437_data_scale_get - gets data scale factor
hpel437_read - reads scaled 32-bit float data from FIFO

hpel437_read64 - reads scaled 64-bit float data from FIFO, specifically for VEE
applications

hpel437_read_raw - - reads raw data from FIFO

Timing

hpel437_clock_setup - sets all timing parameters

hpel437_clock_dsp - selects the clock used to drive the decimation/zoom section
hpel437_clock_dsp_get - gets the current decimation clock source
hpel437_clock_fs - provides the frequency of an external sample clock
hpel437_clock_fs_get - gets the current external sample clock frequency

hpel437_clock_master - determines whether a module drives the VXI clock line with its
ADC clock

hpel437_clock_master_get - gets the module’s clock master state
hpel437_clock_multi_sync - specifies whether the module uses a shared clock and sync
hpel437_clock_multi_sync_get - gets the module’s current shared clock and sync state
hpel437_clock_source - selects the source of the ADC clock
hpel437_clock_source_get - gets the ADC clock source

Trigger

hpel437_trigger_setup - sets all parameters associated with triggering the beginning of
data collection

hpel437_trigger_adclevel - specifies the threshold for the ADC trigger
hpel437_trigger_adclevel_get - gets the trigger threshold
hpel437_trigger_delay - specifies a pre- or post-trigger delay time
hpel437_trigger_delay_get - gets the trigger delay time

hpel437_trigger_delay_actual_get - gets the actual delay time from the most recent
trigger event

hpel437_trigger_gen - determines whether a module can generate a trigger
hpel437_trigger_gen_get - gets the trigger generation status
hpel437_trigger_maglevel - specifies the threshold for a magnitude trigger
hpel437_trigger_maglevel_get - gets magnitude trigger threshold

hpel437_trigger_phase_actual_get - gets the actual trigger phase from the most recent
trigger event

hpel437_trigger_phase_capture - Allows LO phase capture in frequency-synchronized,
multi-module zoom measurements.

hpel437_trigger_slope - selects a positive or negative trigger
hpel437_trigger_slope_get - gets trigger slope
hpel437_trigger_type - determines the trigger type
hpel437_trigger_type_get - gets trigger type

4-6

E1437A User's Guide
Functions Listed by Functional Group

Synchronization

hpel437_clock_master - determines whether a module drives the VXI clock line with its
ADC clock

hpel437_clock_master_get - gets the module’s clock master state
hpel437_clock_multi_sync - specifies whether the module uses a shared clock and sync
hpel437_clock_multi_sync_get - gets the module’s current shared clock and sync state
hpel437_clock_source - selects the source of the ADC clock
hpel437_clock_source_get - gets the ADC clock source

hpel437_filter_sync - synchronizes the decimation filter counter
hpel437_frequency_sync - prepares the module for a frequency change
hpel437_meas_control - synchronizes arming and triggering in multi-module systems
hpel437_trigger_gen - determines whether a module can generate a trigger
hpel437_trigger_gen_get - gets the trigger generation status

hpel437_wait - facilitates the synchronization and control of multi-module systems

E1437A User's Guide
Functions Listed alphabetically

Functions Listed alphabetically

hpel437_attrib_get - allows direct access to the I/O library functions
hpel437_clock_dsp - selects the clock used to drive the decimation/zoom section
hpel437_clock_dsp_get - gets the current decimation clock source
hpel437_clock_fs - provides the frequency of an external sample clock
hpel437_clock_fs_get - gets the current external sample clock frequency

hpel437_clock_master - determines whether a module drives the VXI clock line with its
ADC clock

hpel437_clock_master_get - gets the module’s clock master state
hpel437_clock_multi_sync - specifies whether the module uses a shared clock and sync
hpel437_clock_multi_sync_get - gets the module’s current shared clock and sync state
hpel437_clock_setup - sets all timing parameters

hpel437_clock_source - selects the source of the ADC clock
hpel437_clock_source_get - gets the ADC clock source

hpel437_close - closes the module’s software connection

hpel437_data_append_status - enables/disables appending status information to a data
block

hpel437_data_append_status_get - gets the append status state
hpel437_data_blocksize - determines the size of the output data block
hpel437_data_blocksize_get - gets the output data block size
hpel437_data_memsize_get - returns module’s memory size
hpel437_data_mode - selects block mode or continuous mode
hpel437_data_mode_get - gets the data mode

hpel437_data_port - selects VME bus or local bus transmission
hpel437_data_port_get - gets the output port designation
hpel437_data_resolution - selects 16 or 32 bits data resolution
hpel437_data_resolution_get - gets the data resolution
hpel437_data_scale_get - gets data scale factor

hpel437_data_ -sets all format and data output flow parameters
hpel437_data_type - selects real or complex output data
hpel437_data_type_get - gets output data type

hpel437_error_message - returns error information obtained from function calls
hpel437_error_query - queries the module for the most recent error
hpel437_filter_bw - selects a signal filter bandwidth

hpel437_filter_bw_get - gets the signal filter bandwidth
hpel437_filter_decimate - enables/disables and extra factor of 2 decimation
hpel437_filter_decimate_get - gets current state of extra decimation
hpel437_filter_resp_get - returns the module’s complex frequency response.
hpel437_filter_setup - sets the digital filter bandwidth and decimation filter parameters

E1437A User's Guide
Functions Listed alphabetically

hpel437_filter_sync - synchronizes the decimation filter counter
hpel437_frequency_center - sets the center frequency
hpel437_frequency_center_get - gets the current center frequency
hpel437_frequency_center_raw - A fast way to set the center frequency
hpel437_frequency_cmplxdc - selects a complex baseband measurement
hpel437_frequency_cmplxdc_get - gets the state of the baseband measurement mode
hpel437_frequency_setup - sets all center frequency parameters
hpel437_frequency_sync - prepares the module for a synchronous frequency change
hpel437_frequency_sync_get - gets the state of the synchronus change mode
hpel437_init - initializes the I/O driver for a module

hpel437_input_alias_filter - include/bypass the built-in analog anti-alias filter
hpel437_input_alias_filter_get - gets the anti-alias filter state

hpel437_input_ - nulls out the input DC offset

hpel437_input_coupling - selects AC or DC input coupling
hpel437_input_coupling_get - get the input coupling type

hpel437_input_float - enables/disables floating the input connector
hpel437_input_float_get - gets the input connector state

hpel437_input_range - sets the full scale range

hpel437_input_range_auto - performs auto-ranging

hpel437_input_range_get - gets the input range

hpel437_input_setup - sets all the analog input parameters

hpel437_input_signal - include/bypass the input buffer amplifier
hpel437_input_signal_get - gets the input buffer amplifier state
hpel437_interrupt_mask_get - gets the interrupt event mask
hpel437_interrupt_priority_get - gets the VME interrupt line
hpel437_interrupt_restore - restores the interrupt masks to the most recent setting
hpel437_interrupt_setup - sets all interrupt parameters

hpel437_lbus_mode - sets the transmission mode of the local bus
hpel437_lbus_mode_get - gets the local bus mode

hpel437_lbus_reset - resets local bus

hpel437_lbus_reset_get - gets the current local bus reset state
hpel437_meas_control - initiates and controls measurements in multi-module systems
hpel437_meas_start - initiates measurements in single module systems
hpel437_read - reads scaled 32-bit float data from FIFO

hpel437_read64 - reads scaled 64-bit float data from FIFO, specifically for VEE
applications

hpel437_read_raw - - reads raw data from FIFO

hpel437_reset - places the module in a known state

hpel437_revision_query - returns strings that identify the date of the firmware revision
hpel437_self_test - performs a self-test on the module and returns the result
hpel437_status_get - retreives module’s status register information

E1437A User's Guide
Functions Listed alphabetically

hpel437_trigger_adclevel - specifies the threshold for the ADC trigger
hpel437_trigger_adclevel_get - gets the ADC trigger threshold
hpel437_trigger_delay - specifies a pre- or post-trigger delay time
hpel437_trigger_delay_get - gets the trigger delay time

hpel437_trigger_delay_actual_get - gets a representation of the phase value of the LO
at the trigger point

hpel437_trigger_gen - determines whether a module can generate a trigger
hpel437_trigger_gen_get - gets the trigger generation status
hpe1437_trigger_maglevel - specifies the threshold for a magnitude trigger
hpel437_trigger_maglevel_get - gets magnitude trigger threshold

hpel437_trigger_phase_actual_get - gets the actual trigger phase from the most recent
trigger event

hpel437_trigger_phase_capture - Allows LO phase capture in frequency-synchronized,
multi-module zoom measurements.

hpel437_trigger_setup - sets all parameters associated with triggering the beginning of
data collection

hpel437_trigger_slope - selects a positive or negative trigger
hpel437_trigger_slope_get - gets trigger slope

hpel437_trigger_type - determines the trigger type

hpel437_trigger_type_get - gets trigger type

hpel437_wait - facilitates the synchronization and control of multi-module systems

4-10

E1437A User's Guide
VXI plug&play Programming Reference

VXI plug&play Programming Reference

VXlplug&play Syntax

Description

Parameters

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_attrib_get

Allows direct access to the I/O library functions.

#include “hpel437.h”
ViStatus hpe1437_attrib_get(ViSession id, Vilnt16 attrib, ViPint32 value);

hpel437_attrib_get is used primarily to manage the use of interrupts. Since interrupts
are a shared resource across all modules using the VXI interface, it is not possible for
the E1437 library, which governs single modules, to provide the functions to properly
manage interrupts.

This function is used to access either the I/O library handle or the mapped I/O base
address of the module. You should refer to the appropriate VISA or SICL
documentation for descriptions of the I/O library functions.

id is the VXI instrument session pointer returned by the hpe1437_init function.

attrib designates the type of attribute to return. HPE1437_I0_HANDLE accesses the
I/0 library handle. HPE1437_I0O_ADDRESS points to the mapped I/O base address of
the module. HPE1437_RM_HANDLE accesses the I/O library handle of the default
resource manager. HPE1437_DATA_REGISTER points to the mapped address of the
E1437 data register. One or both of these parameters are used when calling I/O library
functions directly.

value is the value of the requested attribute. For a VTL/VISA T/O library the value of the
handle attribute corresponds to the vi parameter used by the majority of the I/O
functions. For the SICL I/O library the handle is equivalent to the session parameter
used by the majority of the I/O functions. In the case of SICL the long handle value
should be cast to a short in order to be type compatible with the SICL session. The
address attribute points to the base of the mapped I/O address space, regardless of
which underlying I/O library is used.

This command does not abort any measurement in progress.

hpel437_init, hpel437_interrupt_setup

4-12

VXlplug&play Syntax

Description

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_clock_setup

hpel437_clock_setup sets all timing parameters. This description also includes
information on the following functions which set or query the timing parameters
individually:

hpel437_clock_dsp selects the clock used to drive the decimation/zoom section.
hpel437_clock_dsp_get gets the current decimation clock source
hpel437_clock_fs provides the frequency of an external sample clock.
hpel437_clock_fs_get gets the current external sample clock frequency
hpel437_clock_master determines whether a module shares its ADC clock.
hpel437_clock_master_get gets the module’s clock master state
hpel437_clock_multi_sync specifies whether the module uses a shared clock and
sync

hpel437_clock_multi_sync_get gets the module’s current shared clock and sync state
hpel437_clock_source selects the source of the ADC clock
hpel437_clock_source_get gets the ADC clock source

#include “hpel437.h”

ViStatus hpe1437_clock_setup(ViSession id, Vilnt16 sync, Vilnt16 source, Vilnt16
dsp, Vilnt16 master, ViReal64 fs);

ViStatus hpe1437_clock_dsp(ViSession id, Vilnt16 dsp);

ViStatus hpe1437_clock_dsp_get(ViSession id, ViPInt16 dspPtr);

ViStatus hpe1437_clock_fs(ViSession id, ViReal64 fs);

ViStatus hpel1437_clock_fs_get(ViSession id, ViPReal64 fsPtr);

ViStatus hpel1437_clock_master(ViSession id, Vilnt16 master);

ViStatus hpe1437_clock_master_get(ViSession id, ViPInt16 masterPtr);
ViStatus hpe1437_clock_multi_sync(ViSession id, Vilnt16 sync);

ViStatus hpe1437_clock_multi_sync_get(ViSession id, ViPInt16 syncPtr);
ViStatus hpe1437_clock_source(ViSession id, Vilnt16 source),

ViStatus hpe1437_clock_source_get(ViSession id, ViPInt16 sourcePtr);

hpel437_clock_setup is used to configure all timing parameters used for sampling
(ADC clock) and decimation/zoom (DSP clock). This function, as well as the other
hpel437_clock_ functions covered in this description, is used to select the source and
distribution of clocking and synchronization signals used by the E1437 module. The
primary clock signal used by the module is the ADC clock, for which the rising edges
indicate the time for each sample of the analog-to-digital converter. Another clock
signal is the DSP clock, which drives the digital signal processing and memory sections
of the module. Normally the DSP clock is the same as the ADC clock, and data is
transferred synchronously from the ADC to the DSP portion of the module. However, in
certain situations the two clocks may be independent, requiring asynchronous data
transfers from the ADC to the DSP. The remaining hpe1437_clock_ functions listed
above set or query the parameters individually.

4-13

Parameters

E1437A User's Guide
VXI plug&play Programming Reference

id is the VXI instrument session pointer returned by the hpe1437_init function.

sync is used to specify whether the module uses a shared ADC clock and SYNC signal.
If the sync parameter is set to HPE1437_OFF the ADC clock and SYNC are generated
locally. If sync is set to HPE1437_REAR the module uses the shared ADC clock and
SYNC signals which are distributed on the VXI backplane using the ECL trigger lines. If
sync is set to HPE1437_FRONT the module uses the shared clock and SYNC provided
on the front panel distribution connectors. Modules in multi-module systems must all
have the same sync parameter setting.

syncPtr contains the current value of the sync parameter.

source selects the clock source that is used to drive the analog to digital converter
(ADQ) for single module operation or when a module is used as the master ADC clock
source for a multi-module system. When set to HPE1437_20000KHZ the clock source
is the internal 20 MHz oscillator. When set to HPE1437_20480KHZ the clock source is
the internal 20.48 MHz oscillator. HPE1437_EXTERNAL selects the TTL, ECL, or sine
signal on the external BNC front panel clock input connector. When using an external
clock the fs parameter is used to provide the module with the frequency of the external
clock. HPE1437 EXT PLL_REF takes a 10 MHz reference from another instrument
on the external BNC front panel clock input connector and uses a PLL to convert it to a
20 MHz reference. In multi-module systems the source parameter is ignored for all but
the master module.

sourcePtr contains the current value of the source parameter.

dsp selects the clock used to drive the decimation/zoom section within the E1437.
Normally, the DSP clock should be coupled to the ADC clock whenever possible since
the spurious performance specification is degraded when the clocks are independent.
However, when a slow or intermittent ADC clock results in greater than 1 us between
clock edges, the DSP clock must be generated from the internal oscillator to avoid data
loss in the dynamic RAM. Setting this parameter to HPE1437_ADC forces the DSP
clock to be driven by the ADC clock. HPE1437_OSCILLATOR will cause the DSP
clock to be the internally generated 20.48 MHz oscillator. Note that the computed
results will be the same in either case.

dspPtr contains the current value of the dsp parameter.

master determines whether an E1437 makes its local ADC clock available to other
modules as a shared clock. Multi-module synchronization requires one and only one of
the modules to be identified as the master, that is, the source of the shared ADC clock.
Setting this parameter to HPE1437_ON when sync = HPE1437_FRONT causes the
E1437 to drive the front panel ADC clock; or if sync = HPE1437_REAR causes the
module to use its ADC clock to drive the VXI backplane in the mainframe in which it
resides. HPE1437_OFF means that the E1437 is driving neither the front panel nor the
backplane and is the correct variable to use for all non-master modules in a
multi-module system. Setting this parameter to HPE1437_BUFFER allows the ADC
clock and SYNC lines from the module’s front panel connectors to drive the backplane
of a mainframe not containing the master. Only one module per mainframe may be set
to ON or to BUFFER. In multi-module and multi-mainframe systems only one module
may be set to ON within the entire system. In multi-mainframe systems using backplane
clock and sync distribution only one module per any mainframe not containing the
master may be set to BUFFER.

masterPtr contains the current value of the master parameter.

4-14

Comments

E1437A User's Guide
VXI plug&play Programming Reference

Js provides the module with the frequency of an external sample clock (from >0 to
20600000) connected to the Ext Clk TTL connector. When using an external clock or
when a module is a non-master in a multi-module group, the frequency of the ADC
clock is unknown by the module. It is the responsibility of the programmer to provide
the correct frequency so that library functions dependent on fs will operate properly.
This value has no effect if the module is set up to use the internal ADC clock.

JsPtr contains the current value of the sample clock frequency. If the E1437 is set to
the internal ADC clock, the value of that clock frequency is returned. If the E1437 is set

to the external clock, the last value entered via the hpel1437_clock_fs function is
returned.

For more details on the interaction among source, master, and sync with multiple
modules and multiple mainframes see Managing multiple modules.

The master, sync, source, and dsp parameters are interdependent with legitimate
combinations being as follows (along with the resultant DSP clock rates):

4-15

Example

Reset Values

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

MASTER SYNC SOURCE DSP DSP CLOCK RATE
N/A OFF 20.x N/A Internal Source
N/A OFF EXT ADC External Source
N/A OFF EXT osc 20.48
N/A OFF EXT PLL N/A 20

OFF|BUFFER FRONT N/A ADC Master ADC
OFF|BUFFER FRONT N/A 0SsC 20.48
OFF REAR N/A ADC Master ADC
OFF REAR N/A osc 20.48
ON FRONT 20.x N/A Internal Source
ON FRONT EXT ADC External Source
ON FRONT EXT 0oscC 20.48
ON FRONT EXT PLL N/A 20
ON REAR 20.x% N/A Internal Source
ON REAR EXT ADC External Source
ON REAR EXT 0oscC 20.48
ON REAR EXT PLL N/A 20
BUFFER REAR N/A ADC Master ADC
BUFFER REAR N/A 0oscC 20.48

The maximum rate at which data may be transferred to memory is determined by
the DSP clock rate: Max bytes/s = 4 x DSP clock rate. In continuous mode the
maximum rate is limited to (4 x DSP clock rate) + 2. However, you may successfully
perform this type of measurement by adding a level of decimation to reduce the
sample rate.

If f5>20480000 then dsp must=ADC.

The program multichan.exe described in Example Programs provides an example of
how to correctly set up a multi-module system with synchronous clocks.

sync OFF
source 20480KHZ
dsp ADC
master OFF

fs 20.48 e6

Commands in this group, other than those ending in _get and HPE1437_clock_fs, abort
any measurement in progress.

hpel437_init, hpel437_filter_setup, hpel437_data_

4-16

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_close

Closes the module’s software connection.

VXlplug&play Syntax #include “hpel437.h”
ViStatus hpe1437_close(ViSession id);
Description hpel437_close terminates the software connection to the module, deallocates system

resources, and places the module in the IDLE state. After this function has been
executed the specified 7d identifier is no longer a valid parameter for function calls.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.
Effect on Active This command does not abort any measurement in progress.

Measurement

See Also hpel437_init

4-17

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_data_memsize_get

Returns the module’s memory size in megabytes.

VXlplug&play Syntax #include “hpel437.h”
ViStatus hpel1437_data_memsize_get(ViSession id, ViPInt16 memSizePtr);

Description This command allows you to determine whether your module contains standard
memory of 8 Mbytes or a larger memory option.

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

memSizePtr contains the memory size in number of Megabytes.

Effect on Active This command does not abort any measurement in progress.
Measurement
See Also hpel437_init , hpel437_data_blocksize

4-18

VXlplug&play Syntax

Description

Parameters

NOTE

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_data_scale_get

Gets data scale factor.

#include “hpel437.h”

ViStatus hpe1437_data_scale_get(ViSession id, ViPReal64 scalePtr);
hpel437_data_scale_get calculates the correct scale factor for raw data using the
current data resolution and range. The factor returned by this function is used to
multiply raw data to get data in volts.

id is the VXI instrument session pointer returned by the hpe1437_init function.

scalePtr contains the calculated scale factor with which to scale raw data to volts.

If hpel437_input_range_auto is pending or in progress this command returns an
error.

This command does not abort any measurement in progress.

hpel437_ -, hpeld37_read_raw -

4-19

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_data_setup

hpel437_data_setup sets all format and data output flow parameters. This
description also includes information on the following functions which set or query
the format and flow parameters individually:

hpel437_data_append_status appends status information to a data block.
hpel437_data_append_status_get gets the append status state
hpel437_data_blocksize determines the size of the output data block.
hpel437_data_blocksize_get gets the output data block size
hpel437_data_mode selects block mode or continuous mode.
hpel437_data_mode_get gets the data mode

hpel437_data_port selects VME bus or local bus output port.
hpel437_data_port_get gets the output port designation
hpel437_data_resolution selects 16 or 32 bits data resolution.
hpel437_data_resolution_get gets the data resolution
hpel437_data_type selects real or complex output data.
hpel437_data_type_get gets output data type

VXlplug&play Syntax #include “hpel1437.h”

ViStatus hpe1437_data_setup(ViSession id, Vilnt16 dType, Viint16 resolution,
Vilnt16 mode, Vilnt32 blocksize, Viint16 appendStatus, Vilnt16 port);

ViStatus hpe1437_data_append_status(ViSession id, Viint16 appendStatus);

ViStatus hpel1437_data_append_status_get(ViSession id, ViPInt16
appendStatusPtr);

ViStatus hpel1437_data_blocksize(ViSession id, Vilnt32 blocksize);

ViStatus hpe1437_data_blocksize_get(ViSession id, ViPint32 blocksizePtr);
ViStatus hpe1437_data_mode(ViSession id, Vilnt16 mode);

ViStatus hpe1437_data_mode_get(ViSession id, ViPInt16 modePtr);

ViStatus hpe1437_data_port(ViSession id, Vilnt16 port);

ViStatus hpe1437_data_port_get(ViSession id, ViPInt16 portPtr);

ViStatus hpe1437_data_resolution(ViSession id, Vilnt16 resolution);

ViStatus hpe1437_data_resolution_get(ViSession id, ViPInt16 resolutionPtr);
ViStatus hpe1437_data_type(ViSession id, Vilnt16 dType);

ViStatus hpel1437_data_type_get(ViSession id, ViPInt16 dTypePtr);

Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

4-20

E1437A User's Guide
VXI plug&play Programming Reference

dType determines whether the E1437 collects and returns real or complex data. Setting
this parameter to HPE1437_REAL causes only the real part of the data to be returned
for each sample. HPE1437_COMPLEX causes the real data followed by the imaginary
data to be returned in each sample. Normally, if the frequency set with the
hpel437_frequency_setup function is zero, the type should be set to
HPE1437_REAL since the imaginary component of each sample is zero anyway. When
non-zero center frequencies are used the type should normally be set to
HPE1437_COMPLEX. Otherwise the imaginary component of the signal will be lost.

dTypePtr points to the current value of the dType parameter.

resolution selects data resolution of either 16 or 32 bits by using resolution values of
HPE1437_16BIT or HPE1437_32BIT respectively. Choosing 16-bit precision allows
for more samples in the FIFO memory. Choosing 32 bits allows more dynamic range.
Because of the broadband white noise present on the input of the analog-to-digital
converter, it is normally sufficient to use 16 bit resolution whenever the
hpel437_filter_setup function specifies a signal bandwidth greater than 250 kHz. For
narrower bandwidths much of the broadband white noise is filtered out, resulting in
lower noise in the output data. To take advantage of this lower noise, the 32-bit data
resolution should be used.

resolutionPtr contains the current value of the resolution parameter.

mode selects whether the E1437’s data collection operates in block mode or
continuous mode. HPE1437_BLOCK selects block transfer mode in which the
measurement is halted after each block of data. To start collection of the next data
block the module must be armed and triggered again. This mode is used whenever each
block of data is to be associated with an individual trigger “event”.
HPE1437_CONTINUOUS means that a single arm and trigger event starts a
measurement which runs continuously with no gaps between output data blocks. As
long as the data is read out fast enough to prevent overflow in the output FIFO, the
measurement will continue. The continuous mode is useful for continuous signal
processing applications where data gaps are unacceptable.

modePtr contains the current value of the mode parameter.continuous mode;selecting

blocksize determines the number of sample points in each output data block. The
range of available block sizes depends on the number of bytes required for each sample.
The command accepts any number between 1 and memory size (in bytes)/2. The actual
number used is the first integer power of 2 equal to or larger than the requested
blocksize. If the requested block size falls outside the range shown in the table the
closest valid value will be used and a status register flag (bit 6) will be set indicating a
setup error. If a subsequent change in another parameter permits a block size closer to
the originally requested value, the module will adjust the block size to that value.

4-21

NOTE

E1437A User's Guide
VXI plug&play Programming Reference

The following table summarizes the available block sizes for each setting of the
dType and resolution parameters.

data data resolution bytes per min block max block size
port type Sample size (with standard
8 MByte memory) *

vme real 16 2 3 4,194,304
vme real 32 4 2 2,097,152
vme complex 16 4 2 2,097,152
vme complex 32 8 1 1,048,576
lbus real 16 2 6 4,194,304
lbus real 32 4 3 2,097,152
lbus complex 16 4 3 2,097,152
lbus complex 32 8 2 1,048,576

* For optional additional memory, multiply by the appropriate
memory size multiplier. For example, for 32 MByte memory option

multiply max block size by 4.

Block size does not need to be a power of two. Considerably more samples may
need to be taken in order to set the block available status bit.

blocksizePtr contains the current value of the blocksize parameter. The returned value
will be closest valid value to the requested blocksize.

appendStatus selects whether or not status information is appended to a data block.
Specifying HPE1437_ON means that an extra byte of status information is appended to
the end of each data block to indicate whether an ADC overload or error occurred
during the collection of that block of data. In this status byte, Bit 0 will be set if an ADC
overload occurred and bit 1 will be set for an ADC error. The other bits are undefined.
When the appended byte is transferred via the VME backplane, the byte is located in the
lower 8 bits of the 16 bit word after the end of the sampled data block. The upper 8 bits
are undefined. When the appended byte is output via the local bus (as a 32-bit word), it
is marked as the last byte of a transfer block. This status byte should be read separately
from any block read operations in order to not affect the alignment of subsequent
elements. HPE1437 OFF disables this feature.

appendStatusPtr contains the current value of the status parameter.

4-22

Comments

E1437A User's Guide
VXI plug&play Programming Reference

port determines which output port is used to take data from the E1437 module. Setting
port to HPE1437_VME means the data is to be output using standard VME register
reads. Setting port to HPE1437_LBUS means the data is to be output as a byte-serial
data stream via the VXI local bus. When using the local bus port the module
immediately to the right of the E1437 must be capable of receiving the local bus byte
sequence. The following table summarizes the output word or byte sequence for each
combination of dType, resolution, and port parameters:

type resolution port sequence
real 16BIT VME RO[15:0],R1[15:01,...
complex 16BIT VME RO0[15:0],Q0[15:0],R1[15:0],Q1[15:0], ...
real 32BIT VME RO[31:16],R0[15:0],R1[31:16],R1[15:0]1, ...
complex 32BIT VME RO[31:16],R0[15:0],Q0[31:16]1,0Q0[15:01,
R1[31:16]...
real 16BIT LBUS RO[15:8],R0[7:0] ,R1[15:8],R1[7:0], ...
complex 16BIT LBUS RO[15:8],R0[7:0],Q0[15:8],Q0[7:0],
R1[15:8]..
real 32BIT LBUS RO[31:24],R0[23:16],R0[15:8],R0O[7:01,
R1[31:24],...
complex 32BIT LBUS RO[31:24],R0[23:16],R0[15:8],R0[7:0],
Q0[31:24],Q0[23:16],Q0([15:8],Q0([7:01,
R1[31:24], ...

portPtr contains the current value of the port parameter.

The maximum rate at which data may be transferred to memory is determined by the
DSP clock rate: Max bytes/s. = 4 x DSP clock rate. In continuous mode the maximum
rate is limited to (4 x DSP clock rate) + 2. However, you may successfully perform this
type of measurement by adding a level of decimation to reduce the sample rate.

A limitation also applies to 32-bit, complex data transfers. Because this type of transfer
cannot be made at the full sample rate, a level of decimation must be added in order to
reduce the sample rate.

4-23

E1437A User's Guide
VXI plug&play Programming Reference

The following table summarizes the relationship between data parameter combinations,
decimation, filter bandwidth, and whether the combination permits block or continuous
measurements:

Resolution Type Decimation Filter BW Block Continuous Sample

rate
(MBytes)
16 Complex False 0 or 1 Yes No 40
32 Real False 0 or 1 Yes No 80
32 Complex False 0 or 1 No No 40
32 Complex True 0 or 1 Yes No 40
32 Complex False 2 Yes No 40
All other combinations Yes Yes <40
Reset Values
dType REAL
resolution 32BIT
mode BLOCK
blocksize 1024
appendStatus OFF
port VME
Effect on Active With the exception of the commands ending in _get, all commands in the group abort
Measurement any measurement in progress when any parameter value is changed.
See Also hpel437_init, hpel437_frequency_setup, hpel437_filter_decimate,

hpel437_meas_control, hpel437_clock_dsp

4-24

VXlplug&play Syntax

Description

Parameters

NOTE

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_error_message

Returns error information obtained from function calls.

#include “hpel437.h”

ViStatus hpe1437_error_message(ViSession id, ViStatus errNum, ViPString
errMessage);

hpel437_error_message takes an error return value generated by a function and
translates it to a readable string. This function includes host errors as well as firmware
erTors.

id is the VXI instrument session pointer returned by the hpe1437_init function.
errNum represents the instrument numeric error code.

errMessage represents the error message string up to 80 characters long.

If you are using this function in Visual Basic you should allocate memory for the
return string. For example:
DIM VarName as String *80

This command does not abort any measurement in progress.

hpel437_init, hpel437_error_queryPAGE 26

4-25

VXlplug&play Syntax

Description

Parameters

NOTE

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_error_query

Queries the module for the first error in the queue.

#include “hpel437.h”

ViStatus hpe1437_error_query(ViSession id, ViPint32 errNumPtr, ViPString
errMessage);

hpel437_error_query queries the module for the oldest error and returns the
corresponding error message. This function does not trap host errors.

id is the VXI instrument session pointer returned by the hpe1437_init function.
errNumPtr contains the instrument numeric error code.

errMessagePtr contains the error message string up to 80 characters long. This
message also indicates what function call generated the error.

If you are using this function in Visual Basic you should allocate memory for the
return string. For example:
DIM VarName as String *80

This command does not abort any measurement in progress.

hpel437_init, hpel437_error_message

4-26

VXlplug&play Syntax

Description

Parameters

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_filter_resp_get

Returns the module’s complex frequency response.

#include “hpel437.h”

ViStatus hpe1437_filter_resp_get(ViSession id, ViReal64 resp]| |, Vilnt32 n, ViReal64
Jmin, ViReal64 fimmax);

This function uses the current filter and center frequency settings to return the complex
frequency response. The requested number of samples are equally spaced from the
requested minimum frequency to the requested maximum frequency.

id is the VXI instrument session pointer returned by the hpe1437_init function.

resp returns the response in the format:
resp (re0, im0, rel, iml,..., re(n-1), im(n-1)

n is the number of samples desired.
JSmin is the minimum frequency in Hertz.

Jmax is the maximum frequency in Hertz.

This command does not abort any measurement in progress.

hpel437_init, hpel437_filter_setup, hpel437_frequency_setup

4-27

VXlIplug&play Syntax

Parameters

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_filter_setup

hpel437_filter_setup sets the digital filter bandwidth and decimation filter
parameters. This description also includes information on the following functions
which set or query the decimation filter parameters individually

hpel437_filter_decimate selects an extra factor of 2 decimation.
hpel437_filter_decimate_get gets current state of extra decimation
hpel437_filter_bw selects a signal filter bandwidth.
hpel437_filter_bw_get gets the signal filter bandwidth

#include “hpel437.h”

ViStatus hpe1437_filter_setup(ViSession id, Vilnt16 sigBw, Vilnt16 decimate);
ViStatus hpe1437_filter_decimate (ViSession id, Vilnt16 decimate);

ViStatus hpe1437_filter_decimate_get(ViSession id, ViPInt16 decimatePtr);
ViStatus hpe1437_filter_bw (ViSession id, Vilnt16 sigBw)),

ViStatus hpe1437_filter_bw_get(ViSession id, ViPInt16 sigBwPtr);

id is the VXI instrument session pointer returned by the hpe1437_init function.

sigBw selects an alias protected signal filter bandwidth that is roughly fs/(2.56 *

2/ (sigBw)) where fs is the ADC sample frequency. In zoom applications, where the
center frequency is generally not zero, the zoom filter bandwidth is centered on the
frequency programmed with the hpel1437_frequency_setup function. For baseband
measurements the filter may equivalently be considered as a low pass filter of
approximately bandwidth f5/(2.566 * 2 (sigBw)) since the negative frequencies are
generally of no interest. The valid range of sigBw is 0 through 24. When sigBw = 0, no
digital filtering is applied to the signal and the module relies on the analog anti-alias
filter to limit the signal bandwidth to fs/2.56.

To more accurately calculate the bandwidth use the calculation fs * k/2” (sigBw) where:
k=.36 for .25 dB bandwidth

k=.44 for 3 dB bandwidth

k=.5 for 15 dB bandwidth

k=.62 for 110 dB bandwidth

For even more accuracy use the hpel437_filter_resp_get function.

sigBwPtr contains the current value of the sigBw parameter.

decimate selects the data output sample rate. When this parameter is set to
HPE1437_OFF the output sample rate is: fs when sigBw=0 or fs/2"(sigBw-1) when
stgBw>0. When decimate is set to HPE1437_ON the output sample rate is reduced by
an additional factor of two by discarding alternate samples. You would normally want
to add the extra level of decimation in order to increase the displayed span.

4-28

CAUTION

Comments

E1437A User's Guide
VXI plug&play Programming Reference

Turning decimation ON when sigBw=0 results in aliasing (garbage data) due to
upper limit of the sampling frequency.

To ensure full alias-free operation the analog anti-alias filter (set by the
hpel437_input_alias_filter function) should be ON unless the application inherently
bandlimits the input signal to less than fs/2. The analog anti-alias filter has a fixed
bandwidth and thus is fully effective only when fs>20 MHz. If a slower external ADC
clock is used, an additional analog filter of the appropriate bandwidth may be required
for full alias protection.

The decimation process used to reduce the output sample rate is driven from a
“decimation counter” which keeps track of which samples to save and which ones to
discard for each of the octave bandwidth reduction filter stages. In multi-module
systems where synchronous sampling is required, the decimation counters in all the
modules must be synchronous with each other. This condition can be forced by using
the hpel437_filter_sync function.

The following table summarizes the relationship between data parameter combinations,
decimation, filter bandwidth, and whether the particular combination permits block
and/or continuous measurements:

Resolution Type Decimation Filter BW Block Continuous Sample

rate

(MBytes)
16 Complex False 0 or 1 Yes No 40
32 Real False 0 or 1 Yes No 80
32 Complex False 0 or 1 No No 40
32 Complex True 0 or 1 Yes No 40
32 Complex False 2 Yes No 40
All other combinations Yes Yes <40

4-29

E1437A User's Guide
VXI plug&play Programming Reference

Example Here are some bandwidth and sample rate results using the “k” calculation for
bandwidth:

Fs = 20.48 MHz default internal ADC clock
(all data in MHz)

Sample rate

| |
sigBw | .25 dB | 15 dB | Decimate OFF | Decimate ON
| | | |
0 | 7.37 | 10.24 | 20.48 | 10.24 (see Caution)
1 | 3.69 | 5.12 | 20.48 | 10.24
2 | 1.84 | 2.56 | 10.24 | 5.12
3 | 0.92 | 1.28 | 5.12 | 2.56
4 | 0.46 | 0.64 | 2.56 | 1.28
. Continue to decrease by factors of two ...
Reset Values
stgBw 0
decimate OFF
Effect on Active With the exception of the commands ending in _get, all commands in the group abort
Measurement any measurement in progress when any parameter value is changed.
See Also hpel437_init, hpel437_clock_fs_get, hpel1437_filter_resp_get,

hpel437_frequency_setup, hpel437_filter_sync,hpel437_input_alias_filter,
hpel437_data_mode

4-30

VXlplug&play Syntax

Description

Parameters

Comment

Example

NOTE

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_filter_sync

Synchronizes the decimation counter.

#include “hpel437.h”
ViStatus hpe1437_filter_sync(ViSession id);

This function causes the digital decimation counter to be reset by the next SYNC line
rising transition. Any measurement in progress is terminated and the module is placed
in the idle state. By calling hpe1437_filter_sync for every E1437 module using a
shared ADC clock, and then calling hpe1437_meas_control to cause a SYNC
transition, the decimation counters will be started at the same time. Once this is done
the decimation counters will stay synchronized as long as the same ADC clock is used.
It is not necessary to resynchronize the decimation counters when the digital filter
bandwidths are changed.

id is the VXI instrument session pointer returned by the hpe1437_init function.

If you also want to synchronize frequency or phase, see hpel437_frequency_sync and
multi module information.

The program multichan.exe described in Example Programs provides an example of
how to correctly set up a multi-module system with synchronous filters.

Resetting the decimation counter causes a transient in the digital filters. The
transient takes about 30 output sample periods to decay 120 dB. See the
impulse response graphs in the specification section for more detail.

This command aborts any measurement in progress when any parameter value is
changed.

hpel437_init, hpel437_filter_setup, hpel437_frequency_setup , hpel437_meas_control

4-31

VXlplug&play Syntax

Description

Parameters

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_frequency_center_raw

Provides a fast way to set the center frequency.

#include “hpel437.h”
ViStatus hpel1437_frequency_center_raw(ViSession id, Vilnt16 coarse, Vilnt32 fine);

hpel437_frequency_raw sets the center frequency without relying on the internal
E1437 microprocessor to do any floating point computations, since the internal
microprocessor does not have a floating point co-processor. The resulting center
frequency is approximately:

f5*((coarse/2048)+(fine/1.024*¥10"12)) where fs is the ADC clock frequency.
id is the VXI instrument session pointer returned by the hpe1437_init function.

coarse is used to set high frequencies or a low resolution frequency component.

Jfine is used to set very low frequencies or a high resolution frequency component.

These commands do not abort any measurement in progress

hpel437_init, hpel437_frequency_setup, hpel437_clock_fs_get, hpel437_data_type,
hpel437_meas_control

4-32

VXlplug&play Syntax

Description

Parameters

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_frequency_setup

hpel437_frequency_setup sets all the zoom center frequency parameters. This
description also includes information on the following functions which set or query
frequency parameters individually:

hpeld37_frequency_cmplxdc selects a complex baseband measurement
hpel437_frequency_cmplxdc_get gets the state of the baseband measurement mode
hpel437_frequency_sync prepares the module for a synchronous frequency change
hpel437_frequency_sync_get gets the state of the synchronous change mode
hpel437_frequency_center sets the center frequency
hpel437_frequency_center_get gets the current center frequency

#include “hpel437.h”

ViStatus hpe1437_frequency_setup(ViSession id, Vilnt16 cmplxDc, Vilnt16 sync,
ViReal64 freq);

ViStatus hpel1437_frequency_cmplxdc(ViSession id, Vilnt16 cmplxDc);

ViStatus hpel1437_frequency_cmplxdc_get(ViSession id, ViPInt16 cmplxDcPtr);
ViStatus hpel1437_frequency_sync(ViSession id, Vilnt16 sync);

ViStatus hpe1437_frequency_sync_get(ViSession id, ViPInt16 syncPtr);
ViStatus hpe1437_frequency_center(ViSession id, ViReal64 freq);

ViStatus hpe1437_frequency_center_get(ViSession id, ViPReal64 freqPtr);

hpel437_frequency_setup sets the center frequency of a zoomed measurement. The
center of a frequency band of interest is converted to DC with this function. The
frequency transition is phase continuous unless the center frequency is set to zero in
which case the transition may be selected either to be phase continuous or phase reset.
This function may also be used to synchronously change frequency in multiple-module
systems.

id is the VXI instrument session pointer returned by the hpe1437_init function.

cmplxDc selects either a phase continuous or phase reset transition when the freq = 0.
HPE1437_OFF, combined with a frequency change to zero, causes phase to be reset to
zero. HPE1437_ON, combined with a frequency change to zero, does not reset the
phase, thereby generating a complex DC measurement at baseband. The state of this
parameter does not affect any transition where freq# 0. Whether the real or complex
data is saved and ultimately sent to the output port is determined by the
hpel437_data_type function.

cmplxDcPtr contains the value of the cmplxDc parameter.

4-33

Comments

Example

Reset Values

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

sync when set to HPE1437_OFF allows an immediate frequency change. In
multiple-module systems, setting this parameter to HPE1437_ON prepares the
modules for a frequency change, but does not actually bring about the change until the
next ADC clock corresponding to the next assertion of the shared SYNC signal. The
SYNC transition is generated by calling the hpe1437_meas_control function. Note
that returning sync to OFF before the SYNC signal transition has occurred forces an
immediate asynchronous frequency change.

syncPtr returns the value of the sync parameter.

Jreq is a number between —0.5 and +0.5, which will be interpreted as a fraction of the
sample frequency. freq is the desired center frequency divided by the ADC sample
frequency. For example, selecting .25 with a sample clock frequency of 20 MHz will
yield a center frequency of 5.0 MHz. The ADC sample frequency is returned by the
hpel437_clock_fs_get function. Negative frequencies select the negative image of the
signal, which is spectrally inverted from the input signal.

JreqPtr contains the current actual value of the center frequency (as a fraction of the
sample clock frequency).

Although the freq parameter is a double floating point number, its effective resolution is
1/(1024*1079) or 20 uHz when fs=20.48 MHz. The actual frequency will be set to the
nearest available value. This value is returned by the hpe1437_frequency_center_get
function. In multi-module systems this value represents the pending value rather than
the current value when a frequency change is incomplete due to a pending SYNC signal
transition,.

In multiple-module systems it is often desirable to force the frequency change to occur
synchronously in order to preserve the phase relationship of the LOs. This is
accomplished by setting the sync parameter to ON for all the modules which are to be
changed. See the first example below.

In configurations involving synchronous operation of multiple E1437 modules, the

hpel437_frequency_setup function provides a mechanism to force all LOs to the
same phase. This can be done by first setting the frequency to zero. See the second
example below.

The program multichan.exe described in Example Programs provides an example of
how to correctly perform synchronous frequency changes in a multi-module system.

cmpleDe OFF
sync OFF
freq 0

These commands do not abort any measurement in progress

hpel437_init, hpel437_clock_fs_get, hpel437_data_type , hpel437_clock_multi_sync,
hpel437_meas_control

4-34

VXlplug&play Syntax

Description

Parameters

Comments

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_init

Initializes the I/O driver for a module.

#include “hpel437.h”

ViStatus hpe1437_init(ViRsrc instrDesc, ViBoolean idQuery, ViBoolean rst,
ViPSession id);

hpel1437_init must be the first routine called when using the E1437 library. It
establishes communication with the module and returns a module identification which
is used with all subsequent functions involving this module. This function performs
whatever initialization the I/O driver needs for the environment in which this library is
running.

instrDesc specifies the interface and logical address. This descriptor varies depending
on your I/O library.

An example of the descriptor form for a VTL I/O library is:
VXI[Board]::VXIlogical address [::INSTR]

An example of the descriptor form for a SICL I/O library is:
vxi,logical address

idQuery set to HPE1437_ON verifies the identity of the instrument by checking the
manufacturer ID and model number in the module’s VXI register set. If set to
HPE1437_OFF the function does not verify the module’s identity. It is helpful to
disable the ID query if you want to use the driver with a similar module but do not need
to modify the driver source code.

rst places the module in the reset state when set to HPE1437_ON. If set to
HPE1437_OFF, the function disables the reset. Disabling the reset is useful for
debugging in cases where resetting would take the instrument out of the state you want
to test.

id is a pointer to the VXI instrument Session identifier returned by this function for the
module. This identifier is then used with all other functions which address this module.

If you receive a resource descriptor error, see your I/O library documentation to
determine the correct descriptor form.

This command aborts any measurement in progress.

hpel437_close

4-35

VXlplug&play Syntax

Description

NOTE

Parameters

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_input_autozero

Nulls out the input DC offset voltage

#include “hpel437.h”
ViStatus hpel1437_input_autozero(ViSession id);

hpel437_input_autozero updates a table of DC offset corrections to be used with
each input setup condition. The applicable correction from this table is automatically
added to the input offset parameter to achieve the correct DC offset value. Because of
the length of time needed to execute this function, it is not automatically called when
the module is reset. Thus, the user program is responsible for explicitly initiating the
autozero. This function should be called at least once after the temperature of the
module has stabilized. The interval between calls after that depends on the importance
of DC accuracy in the user application. It is not necessary to call the autozero function
for every change of input setup parameters since the correction table maintains values
for all setup conditions.

Calling hpe1437_input_autozero aborts any measurement already in progress
and eliminates LO phase coherence and filter synchronization in a synchronous
multi-module system. See the hpel437_frequency_sync and
hpel437_frequency_sync functions for details on how to re-establish LO phase
coherence and filter synchronization.

id is the VXI instrument session pointer returned by the hpe1437_init function.

This command aborts any measurement in progress.

hpel437_init, hpel437_input_setup, hpel437_filter_sync , hpel437_frequency_sync

4-36

VXlplug&play Syntax

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_input_setup

hpel437_input_setup sets all the analog input parameters. This description also
includes information on the following functions which set or query the input
parameters individually:

hpel437_input_alias_filter selects the built-in analog anti-alias filter
hpel437_input_alias_filter_get gets the anti-alias filter state
hpel437_input_coupling selects AC or DC input coupling
hpel437_input_coupling_get get the input coupling type
hpel437_input_float selects floating the input connector
hpel437_input_float_get gets the input connector state
hpel437_input_range sets the full scale range
hpel437_input_range_get gets the input range
hpel437_input_signal selects the input buffer amplifier
hpel437_input_signal_get gets the input buffer amplifier state

#include “hpel437.h”

ViStatus hpel1437_input_setup(ViSession id, Vilntl6 range, Vilnt16 coupling,
Vilnt16 antiAlias, Vilnt16 signal, Vilnt16 floatIn),

ViStatus hpe1437_input_alias_filter(ViSession id, Vilnt16 antiAlias);

ViStatus hpe1437_input_alias_filter_get(ViSession id, ViPInt16 antiAliasPtr);
ViStatus hpe1437_input_coupling(ViSession id, Vilnt16 coupling);

ViStatus hpe1437_input_coupling_get(ViSession id, ViPInt16 couplingPtr);
ViStatus hpe1437_input_float(ViSession id, Vilnt16 floatIn);

ViStatus hpe1437_input_float_get(ViSession id, ViPInt16 floatInPtr);

ViStatus hpe1437_input_range(ViSession id, Vilnt16 range);

ViStatus hpe1437_input_range_get(ViSession id, ViPInt16 rangePtr);

ViStatus hpe1437_input_signal(ViSession id, Vilnt16 signal);

ViStatus hpe1437_input_signal_get(ViSession id, ViPInt16 signalPtr);

4-37

Parameters

NOTE

E1437A User's Guide
VXI plug&play Programming Reference

id is the VXI instrument session pointer returned by the hpe1437_init function.

range is a range index number between 0 and 9 which is transformed to a full scale
voltage value. The corresponding discrete legal values of full scale vary from 0.02 volt
to 10.24 volts with factor-of-two steps (.02 x 2 range). If range is greater than 9 the full
scale value used is 10.24 volts. Signal inputs with an absolute value larger than full scale
generate an ADC overflow error.

Range Full scale voltage Full Scale dBm
0 .02 -24
1 .04 -18
2 .08 -12
3 .16 -6
4 .32 0
5 .64 6
6 1.28 12
7 2.56 18
8 5.12 24
9 10.24 30

rangePtr contains the current value of the range parameter.

If a hpel1437_input_range_auto command is pending or in progress it is aborted
when an hpel437_input_range or hpel437_input_range_get command is
received. hpel437_input_range_get also returns an error if an autorange is
pending or in progress.

coupling specifies the AC or DC coupling mode of the input. Using HPE1437_DC will
connect the input directly to the 50 Ohm buffer amplifier. HPE1437_AC inserts a 0.2
UF capacitor between the input connector and the 50 Ohm buffer amplifier.

couplingPtr contains the current value of the coupling parameter for an E1437 or
group of E1437s.

antiAlias determines whether or not to use the built-in analog anti-alias filter.
HPE1437_ON inserts a sharp-cutoff (11-pole) 8 MHz lowpass filter ahead of the
analog-to-digital converter. Using HPE1437_OFF disables this filter. It is
recommended that you leave the filter on at all times to insure bandlimited, anti-aliased
data.

antiAliasPtr contains the current value of the state parameter.

signal determines whether or not the input signal is sent to the buffer amplifier.
HPE1437_ON attaches the input signal to the 50 Ohm buffer amplifier.
HPE1437_OFF redirects the input signal to a dummy 50 Ohm load, and feeds the
buffer amplifier from an internally grounded 50 Ohm source resistance. The signal OFF
setting is useful for making reference measurements without the signal applied. When
using AC coupling the 0.2 uF capacitor remains between the input connector and its 50
Ohm termination.

signalPtr contains the current value of the signal parameter.

SloatIn determines whether or not to allow the outer shield of the input connector to
float relative to chassis ground. Using HPE1437_ON allows the connector to float in
order to reduce potential ground loop induced pick-up at low frequencies. Using
HPE1437_OFF disables floating by attaching the outer shield of the input connector
directly to chassis ground. See the specifications section for more details.

4-38

Comments

Reset Values

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

SfloatInPtr contains the current value of the floatin parameter.

To ensure full alias-free operation the analog anti-alias filter should be ON unless the
application inherently bandlimits the input signal to less than fs/2. The analog anti-alias
filter has a fixed bandwidth and thus is fully effective only when fs>20 MHz. If a slower
external ADC clock is used, an additional analog filter of the appropriate bandwidth
may be required for full alias protection.

When using the analog anti-alias filter, the range parameter may need to be set higher
than the actual range of the input signal. The reason for this is that step changes of
input voltage cause an overshoot and ringing response at the output of the anti-alias
filter. The peak overshoot will actually exceed the input voltage step by about 20%. The
range setting must accommodate this overshoot to avoid an ADC overflow.

range 10.24
coupling DC
antialias ON
signal ON
Sfloatin OFF

Commands in the group do not abort any measurement in progress when parameter
values are changed.

hpel437_init, hpel437_input_range_auto

4-39

VXlplug&play Syntax

Description

Parameters

NOTE

Reset Values

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_input_range_auto

Performs auto-ranging.

#include “hpel437.h”
ViStatus hpe1437_input_range_auto(ViSession id, ViReal64 sec);

hpel437_input_range_auto sets the range of a E1437 to the lowest value that will not
cause an ADC overload to occur. The algorithm will start at the lowest range and move
up until there is no ADC overload.

id is the VXI instrument session pointer returned by the hpe1437_init function.

sec is the time in seconds to take data at each range to insure that an overload is
detected. Setting this parameter to 0.0 will result in this time being set automatically
according to an algorithm that depends on block size and filter bandwidth.

An autorange that is pending or in progress will be aborted if a input_range or
another input_range_auto command is received.

sec 0

This command does not aborts any measurement in progress.

hpel437_init, hpel437_input_setup

4-40

VXlplug&play Syntax

Description

Parameters

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_interrupt_restore

Restores the interrupt masks to the setting last programmed with
hpel437_interrupt_setup.

#include “hpel437.h”
ViStatus hpe1437_interrupt_restore(ViSession id);

The interrupt masks set by the hpel1437_interrupt_setup function are cleared during
the interrupt acknowledge cycle. This function restores the cleared interrupt masks.

id is the VXI instrument session pointer returned by the hpe1437_init function.

This command does not abort any measurement in progress.

hpel437_init, hpel437_interrupt_setup

4-41

VXlplug&play Syntax

Description

Parameters

Comments

Example

Reset Values

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_interrupt_setup

hpel437_interrupt_setup sets both interrupt parameters. This description also
includes information on the following functions which query the interrupt
parameters individually:

hpel437_interrupt_mask_get gets the interrupt event mask
hpel437_interrupt_priority_get gets the VME interrupt line

#include “hpel437.h”

ViStatus hpe1437_interrupt_setup(ViSession id, Vilnt16 intrNum, Vilnt16 priority,
Vilnt16 mask);

ViStatus hpe1437_interrupt_mask_get(ViSession id, Vilnt16 intrNum, ViPInt16
maskPtr);

ViStatus hpel1437_interrupt_priority_get(ViSession id, Vilnt16 intrNum, ViPInt16
priorityPtr);

An E1437 has two independent interrupt generators, each capable of interrupting on
one of the seven VME interrupt lines when a status condition specified by a mask
occurs.

hpel437_interrupt_setup sets the interrupt mask, priority and which of the two
interrupt generators on the E1437 is to be used. The remaining hpe1437_interrupt_
functions query the mask and priority individually:

id is the VXI instrument session pointer returned by the hpe1437_init function.

intrNum is the number of the interrupt generator. The only values accepted are 0 and 1.

mask specifies the mask of events on which to interrupt. This mask is created by
ORing together the bits defined in bits 8 through 15 of the status register. The mask
parameter format is 0OxMMO00O where MM represents the maskable upper 8 bits. The
lower 8 bits cannot be used for generating interrupts, and therefore must be set to zero
in this function call.

priority specifies which of the seven VME interrupt lines to use. The only legal values
are 0 through 7. Specifying 0 turns the interrupt off, while 7 is the highest priority.

maskPtr and priorityPtr contain the current value of the either the interrupt mask or
priority parameter.

The mask is cleared during the interrupt acknowledge cycle. Therefore, the command
must be sent again or restored with hpe1437_interrupt_restore in order to generate
further interrupts.

The program interupt.exe described in Example Programs provides an example of
how to use interrupts correctly.

priovity 0

4-42

E1437A User's Guide
VXI plug&play Programming Reference

mask 0
Effect on Active The commands in this group do not abort any measurement in progress.
Measurement
See Also hpel437_init, hpel437_status_getPAGE 56 hpel437_attrib_get

4-43

VXlIplug&play Syntax

Description

Parameters

Reset Values

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_lbus_mode

Sets the local bus mode. This description also includes the query:
hpel437_lbus_mode_get gets the current local bus mode.

#include “hpel437.h”
ViStatus hpe1437_lbus_mode(ViSession id, Vilnt16 lbusMode);,
ViStatus hpe1437_lbus_mode_get(ViSession id, ViPInt16 lbusModePtr);

hpel437_lbus_mode sets the local bus to either generate, append, insert or pipeline
data. The data port must be set to the local bus with the hpe1437_data_port function
before these modes take effect.

id is the VXI instrument session pointer returned by the hpe1437_init function.

lbusMode selects the transmission mode of the local bus when it is enabled by the
hpel437_data_port function. HPE1437_GENERATE forces the module at id to
generate data only, not passing through data from other modules on the local bus.
HPE1437_APPEND causes the E1437 to pass data through from modules on its left
and append its data to the end. HPE1437_INSERT causes the E1437 to place its data
on the local bus and then pass data through from modules on its left.
HPE1437_PIPELINE causes the E1437 to pipe data through from modules on its left
without appending or inserting its own data. The state of this parameter is unaffected
by switching back and forth between the local bus and the VME backplane with the
hpel437_data_port function.

Module(s) to Left HP E1437 Module to Right

A
GENERATE 4

INSERT APPEND

PIPELINE

lbusModePtr contains the current value of the lbusMode parameter.

lbusMode PIPELINE

This command aborts any measurement in progress when any parameter value is
changed.

hpel437_init, hpel437_data_port

4-44

VXlIplug&play Syntax

Description

Parameters

Example

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_lbus_reset

Resets the local bus. This description also includes the query:

hpel437_lbus_reset_get - gets the current local bus reset state

#include “hpel437.h”

ViStatus hpe1437_lbus_reset(ViSession id, Vilnt16 lbusReset);
ViStatus hpe1437_lbus_reset_get(ViSession id, ViPInt16 lbusResetPtr),

In order to avoid glitches in the local bus data, the local bus interface has strict
requirements as to the order in which modules in a VXI mainframe have their local bus
interface reset. Upon powerup or whenever any single module in the mainframe is put
into a reset state, all modules should be placed into the reset state from left to right.
Then all modules can be take out of reset from left to right.

lbusReset puts the E1437’s local bus into reset or takes it out of reset. HPE1437_ON
puts the E1437’s local bus into reset while HPE1437_OFF takes the E1437 out of reset.

id is the VXI instrument session pointer returned by the hpe1437_init function.

lbusResetPtr contains the current value of the lbusReset parameter.

When E1437s are used with the E1485 measurement controller, the E1485 must be reset
while all of the E1437s are being held in reset to avoid initial glitches in the local bus
data. The E1437s should be taken out of reset only after the first
hpel437_meas_control release is issued. The correct way to reset the local bus is as
follows:

lbus control (LBUS CTL RESET, 0); /* reset the E1485 lbus */
for all id{
hpel437 lbus reset (id, HPE1437 ON); /* hold HP E1437s in reset x/
1
/*Set LBUS mode for all modules....{
%/}

for all id{
hpel437 meas control (id, HPE1437_ RELEASE, HPE1437 ASSERT) ;
/* first arming */
hpel437 lbus reset (id, HPE1437_ OFF) ;

/* remove reset from HP E1437s, has no effect after first time */

}

lbus control (LBUS CTL RESET, 1); /* unreset the E1485 lbus */

4-45

E1437A User's Guide
VXI plug&play Programming Reference

Reset Values
lbusReset ON

Effect on Active This command does not abort any measurement in progress .
Measurement
See Also hpel437_init

4-46

VXlplug&play Syntax

Description

Parameters

NOTE

Comments

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_meas_control

Initiates and controls measurements in multi-module systems.

#include “hpel437.h”
ViStatus hpel1437_meas_control(ViSession id, Vilnt16 idle, Vilnt16 sync);

hpel437_meas_control explicitly controls the measurement state.

id is the VXI instrument session pointer returned by the hpe1437_init function.

idle selects the condition of the IDLE state. HPE1437 _ASSERT holds the module in
the IDLE state. HPE1437_RELEASE reverses a previous HPE1437_ASSERT or
ensures that no forced IDLE is active.

hpel437_meas_control also changes the state of the SYNC signal, which is used to
arm or trigger an E1437 module. In systems containing multiple E1437 modules the
SYNC signal is used to arm or trigger all modules simultaneously, and also to
synchronize decimation counters and local oscillators among the E1437 modules.

sync selects the state of the sync signal. HPE1437_ASSERT causes the module to
assert the SYNC signal. HPE1437_RELEASE causes the module to release the SYNC
signal. When the sync parameter of the hpe1437_clock_setup function is set to
HPE1437_FRONT or HPE1437_REAR, the SYNC signal is shared with other E1437
modules. If any one of these modules asserts this shared SYNC signal then it becomes
asserted for all of them. All modules must release it before the shared SYNC signal is
released. Asserting then releasing the SYNC line is used to start a measurement, load
local oscillator values, or take a digital filter out of reset. These situations require a
SYNC line transition but do not require that the SYNC line be held in a asserted state.

When the SYNC line is asserted, it will remain asserted for an adequate number
of ADC clock cycles to ensure that the signal effect will have propagated to all
the modules in the system. You can determine when the command is completed
by looking as the Sync/Idle Complete bit in the Status Register.

See The Measurement Loop section for details on how a measurement progresses
through the four states.

Special conditions prevail during the Measure state. If programmed for block mode
operation in the Measure state, the module will assert the SYNC signal (regardless of
the hpel1437_meas_control sync parameter setting) until a complete block of data has
been collected and is available to the I/O port. When the shared SYNC signal is released,
indicating that all block mode data collection is finished, all block mode modules move
synchronously to the idle state. In continuous mode the module releases the SYNC
signal immediately after moving into the measure state. This allows the
hpel437_meas_control function to manipulate the SYNC signal to cause synchronous
changes to LO frequency while a continuous measurement is in progress. In continuous
mode a module moves to the idle state only if explicitly programmed to do so or
whenever the FIFO data buffer overflows.

4-47

Example

Reset Values

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

In addition to controlling the progression through the four module states, the SYNC
signal is used to allow for synchronizing the decimation counters and local oscillators
of multiple E1437 modules. This is done by calling hpe1437_filter_sync and/or
hpel437_frequency_sync prior to asserting SYNC with hpe1437_meas_control. This
is normally done with the module in the Idle state; however, the center frequency can
also be changed in the Measure state with hpe1437_frequency_sync if the modules
are all programmed for continuous (non-block mode) data collection.

If all modules in a multi-module system are in the Idle state when the
hpel437_meas_control sync parameter is asserted, the LO frequency will be updated
and the next measurement will be armed. If all modules are in the measurement state in
continuous mode, the LO frequency will be synchronously updated, and the
measurement will continue. In continuous mode you should ensure that all modules are
in the same state, either the Idle state or the Measure state, before using
hpel437_meas_control to assert SYNC. Otherwise some modules will re-arm while
others will continue the current measurement. In block mode the sync assertion will be
ignored unless all modules are in the Idle state.

The hpel1437_meas_control function assures that a single module is in a valid state by
checking that the hardware complete and sync valid bits in the status register are both
true. In synchronous multi-module systems you should use the hpe1437_wait function
for each module to assure a valid state in non-master modules within a synchronous
group.

In the case of systems made up of multiple mainframes you must be aware that only
modules in mainframe A may assert sync. Any sync asserted in other mainframes is
ignored.

The program multichan.exe described in Example Programs provides an example of
how to correctly set up a multi-module measurement using hpe1437_meas_control to
initiate state transitions.

idle RELEASE
sync RELEASE

This command may or may not abort any measurement in progress when any
parameter value is changed, depending on the write value.

hpel437_init, hpel437_status_getPAGE 56 hpel437_data_, hpel437_filter_sync,
hpel437_frequency_sync, hpel437_clock_setup, hpel437_waitPAGE 64

4-48

VXlplug&play Syntax

Parameters

Comments

Example

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_meas_start

Initiates a measurement in single-module systems.

#include “hpel437.h”
ViStatus hpel1437_meas_start(ViSession id);

id is the VXI instrument session pointer returned by the hpe1437_init function.

hpel437_meas_start provides an easy way to initiate a measurement in a single
module system. This command moves the module through the IDLE state and the SYNC
state while checking the status to assure a valid state.

See The Measurement Loop section for details on how a measurement progresses
through the four states.

The hpel437_meas_start function assures that the module is in a valid state by
checking that the hardware set and idle/sync complete bits in the status register are
both true.

The program acvolts.exe described in Example Programs provides an example of how
to initiate a very simple measurement using hpel1437_meas_start.

This command aborts any measurement in progress when any parameter value is
changed.

hpel437_init, hpel437_status_getPAGE 56 hpel437_clock_setup, hpel437_waitPAGE 64

4-49

VXlplug&play Syntax

Description

Parameters

E1437A User's Guide
VXI plug&play Programming Reference

hpel437 _read

Reads scaled 32-bit float data from FIFO . This description also includes the
following function:

hpel437_read64 reads scaled 64-bit float data, implemented specifically for VEE
applications.

#include “hpel437.h”

ViStatus hpel1437_read(ViSession id, ViReal32 rec| |, Vilnt32 sampleCount, ViPInt16
overloadPtr);

ViStatus hpe1437_read64(ViSession id, ViReal64 rec|], Vilnt32 sampleCount,
ViPInt16 overloadPtr);

hpel437_read returns a block of floating point data from the E1437 that has been
scaled to be in volts. The function waits for a block of data to be ready before
attempting to read the block.

These function can only read data from the VME backplane register. The data port of
the E1437 must be set to HPE1437_VME by the hpe1437_data_port function for
these functions to be effective.

id is the VXI instrument session pointer returned by the hpe1437_init function.

rec is a pointer to the array into which the floating point data is to be placed. Be sure to
allocate sufficient storage space at this location to hold the full data record as
determined by the samplecount parameter. Note that when the module is set to
complex data type, the output data record contains 2 xsamplecount floating point
values. For real data the record contains samplecount floating point values.

sampleCount determines the number of sample points to read into the data array. This
should never be set larger than the blocksize parameter set in the
hpel437_data_blocksize function. In continuous data collection mode or when
append status is turned on, samplecount should be set equal to blocksize to ensure that
the entire data block is read out and that the last word corresponds to appendStatus.

4-50

Return Value

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

overloadPtr is a pointer to a short integer which is set to 1 if an ADC overload was
encountered during the collection of the data record and if appendStatus is turned on.
The value is set to 0 with no overload.

Returns the following:

0

= W DN

the read is complete

aread is still in progress and data is not yet available
measurement is aborted

the module is waiting for a trigger

the module is still acquiring pre-trigger data.

These commands do not abort any measurement in progress when any parameter value

is changed.

hpel437_init, hpel437_data_port, hpel437_data_blocksize ,
hpel437_data_scale_getPAGE 19

4-51

VXlplug&play Syntax

Description

Parameters

NOTE

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_read_raw

Reads raw, unscaled data from FIFO

#include “hpel437.h”
ViStatus hpe1437_read_raw(ViSession id, Vilnt16 rec|], Vilnt32 wordCount);

hpel437_read_raw returns a block of raw, unscaled data from the FIFO.

This function can only read data from the VME backplane register. The data port of the
E1437 must be set to HPE1437_VME by the hpel1437_data_port function for this
function to be effective.

id is the VXI instrument session pointer returned by the hpe1437_init function.

rec is a pointer to the array into which the raw data record is to be place. Be sure to
allocate sufficient storage space to hold the full data record as determined by the
wordcount parameter.

wordCount is the number of short data values to read into the data array from the
E1437 output FIFO. The maximum wordcount depends on the blocksize, data type, data
resolution, and appendStatus parameter settings according to the following formula:

maxwordcount= W X blocksize + A

where W-=1 for 16-bit real data, W=2 for 32-bit real data, W=2 for 16-bit complex data,
W=4 for 32-bit complex data. A=1 if append ADC status is turned on, or A=0 if append
ADC status is off. In continuous data collection mode or when append ADC status is
turned on, wordcount should be set equal to maxwordcount to ensure that the entire
data block is read out and that the last word corresponds to appendStatus.

The primary purpose of the hpel437_read_raw function is to provide the fastest
possible way to read blocks of data from the module. It reads data regardless of
the instrument state, whether a block of data is available or not. The resulting
data ordering is dependent on the data type and resolution. The array may be
cast as a long before reading the data to provide whole words.

This command does not abort any measurement in progress when any parameter value
is changed.

hpel437_ -, hpel437_data_scale_getPAGE 19

4-52

VXlplug&play Syntax

Description

Parameters

Comments

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_reset

Places the module in a known state.

#include “hpel437.h”
ViStatus hpel1437_reset(ViSession id);

hpel437_reset returns the module and its internal data structures to the power-up
state. This function can be called separately by this function, or may be selected in
conjunction with the hpe1437_init function.

id is the VXI instrument session pointer returned by the hpe1437_init function.

The reset values are listed with each command description.

The following are not affected by this command:

e (Calibration constants

This command aborts any measurement in progress.

hpel437_init

4-53

VXlplug&play Syntax

Parameters

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_revision_query

Returns strings that identify the date of the firmware revision.

#include “hpel437.h”

ViStatus hpe1437_revision_query(ViSession id, ViString driverRev, ViString
instRev);

id is the VXI instrument session pointer returned by the hpe1437_init function.
driverRev returns the date and time of the module’s driver revision in the form:
mm-dd-yyyy hh:mm

instRev returns the date, time, and board number of the module’s firmware revision in
the form:

mm-dd-yyyy hh:mm board#

This command does not abort any measurement in progress.

hpel437_init

4-b4

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_self test

Performs a self-test and returns the result of that self test.

VXlplug&play Syntax #include “hpel437.h”
ViStatus hpe1437_self_test(ViSession id, ViPInt16 testResultPtr, ViString
testMessage);

Description The E1437 self test includes the following tests:

e Digital: rails the front end to a full scale value then turns on zooming, filtering,
and the final decimation to quickly verify those operations.

e Noise: does a quick baseband measurement with the input signal disconnected,
and verifies that the front-end noise is within specification.

e Bump: Verifies some front-end levels associated with the analog-to-digital
converter.

e Memory: fills the entire DRAM then verifies that all the data is correct.

® Analog: verifies that autozero adjust is working and that the input is triggering.
Parameters id is the VXI instrument session pointer returned by the hpe1437_init function.

testResult contains the instrument numeric error code.

testMessage contains the self test status message string up to 80 characters long.

NOTE The self-test takes about the following amount of time to complete:
Memory size Time
(MBytes) (min.)
8 1.0
16 1.5
32 2.5
64 4.5
Effect on Active This command does not abort any measurement in progress.
Measurement
See Also hpel437_init

4-55

VXlplug&play Syntax

Parameters

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_status_get

Reads Status Register information for the module.

#include “hpel437.h”
ViStatus hpe1437_status_get(ViSession id, ViPInt16 statusPtr);

id is the VXI instrument session pointer returned by the hpe1437_init function.

statusPtr contains the status word. The bits are defined below:

1-0 State: These two bits indicate the current state of the measurement loop as shown
in the table below. See the Measurement Loop section for more information about the
states.

Bits State
11 Trigger
10 Measure
01 Arm
00 Idle

2 Passed: This bit is always set to 1.

3 Ready: This bit is set whenever the module is operating as a message-based device
and is set for Normal operation. See the VXIbus Specifications for more information on
the Normal configuration sub-state.

4 ADC Error: This bit is set whenever a hardware error is detected in the ADC. The bit
is cleared when the Status register is read.

5 Ext Clk Speed: This bit is set when a measurement has been aborted because the
external clock is too fast (over 20.48 MHz) with respect to the DSP clock. This situation
only occurs when a fast external ADC clock is used with an internal oscillator DSP clock.
This bit is cleared with the first subsequent read.

6 Setup error: An invalid parameter value was requested. If an invalid block size was
requested, the closest valid block size is used until a change to an interrelated parameter
makes the requested block size valid. If a data resolution, data type, filter bandwidth, or
filter decimation parameter was requested which would result in an inability to make a
measurement, the previous valid parameter is used until a change to an interrelated
parameter makes the requested parameter valid.

7 Sync/Idle Complete: This bit is set when the most recent user-initiated SYNC or
IDLE change has propagated through to all modules in a system. The change is a result
of asserting SYNC or forcing IDLE via the Control Register or issuing a meas_control
command or function.

8 Read Valid: This flag is set whenever there is at least one valid 16-bit data word
available to be read via the Data register.

4-56

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

9 Measure Done: This bit is set in continuous mode whenever the size of the data in
the FIFO is equal to or greater than the block size register. Check this bit before reading
data to insure that a block of data may be transferred without fear of running out of data,
thereby holding up the Local bus or VME bus. This bit is set in block mode whenever the
module has successfully taken a block size number of samples since the most recent
trigger

10 Armed: This bit is set whenever the module is in the Trigger state, or is in the Arm
state and has satisfied its pre-trigger requirements. When this bit is set, the module
releases the VXI SYNC line. Once all modules release the SYNC line, then all modules go
to the Trigger state.

11 FIFO Overflow: This bit set when the FIFO buffer overflows in continuous mode.

12 Overload: This bit is set whenever the ADC converts a sample that exceeds the
range of the ADC. The bit is cleared when the Status register is read. Repeated ADC
errors may indicate that the module should be recalibrated.

13 Error: This bit is set whenever there is an error in the error queue. It is cleared
when the error queue is empty.

14 ModID*: A (1) in this field indicates that the module is not selected via the P2
MODID line. A (0) indicates that the module is selected by a high state on the P2
MODID line.

15 Hardware Set: This bit is set when all commands are complete and the hardware has
been set.

This command does not abort any measurement in progress.

hpel437_init

4-57

VXlplug&play Syntax

Parameters

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_trigger delay_actual_get

Returns the actual trigger delay from the most recent trigger event.

#include “hpel437.h”

ViStatus hpel1437_trigger_delay_actual_get(ViSession id, ViPReal64
actualDelayPtr);

id is the VXI instrument session pointer returned by the hpe1437_init function.

actualDelayPtr contains the returned actual delay from the most recent trigger event
and the resulting first output sample time. This delay value provides more accuracy
than the delay parameter alone since it includes a measurement of the fractional part of
the output sample period between the actual trigger event and the next available output
sample. The trigger delay accuracy improves to one ADC sample clock period rather
than one output sample period. This can result in a substantial improvement in
accuracy when narrow bandwidth decimation filtering is used. The
hpel437_trigger_delay_actual_get function must be called for each new trigger
event that requires precise delay measurement. The actual delay is still expressed in
output sample periods, however, it can take on non-integer values.

This command does not abort any measurement in progress.

hpel437_init, hpel437_trigger_setup

4-58

VXlplug&play Syntax

Parameters

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_trigger_phase_actual_get

Returns a representation of the phase value of the LO at the trigger point.

#include “hpel437.h”
ViStatus hpe1437_trigger_phase_actual_get(ViSession id, ViPReal64
actualPhasePtr);

id is the VXI instrument session pointer returned by the hpe1437_init function.

actualPhasePtr contains the returned value interpreted as follows:
0 <=value < 1.0

where 0 => 0 degrees
.25 => 90 degrees
.5 => 180 degrees

This command does not abort any measurement in progress.

hpel437_init, hpel437_trigger_setup, hpel437_trigger_phase_capturePAGE 60

4-59

VXlplug&play Syntax

Description

Parameters

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_trigger phase_capture

Prepares for LO phase capture in frequency-synchronized, multiple-module zoom
measurements.

#include “hpel437.h”
ViStatus hpel1437_trigger_phase_capture(ViSession id);

Use this function if you intend to subsequently use
hpel437_trigger_phase_actual_get to capture the LO phase on the next SYNC
assertion. You should send hpe1437_trigger_phase_capture to only one module in
the system (typically the master) after you have completed all frequency and filter setup
functions since those functions take the module out of the phase_capture mode.
Therefore, you should call this function just prior to starting the measurement.

When the hpel437_frequency_sync mode is turned off, the
hpel437_trigger_phase_capture function is not needed because the module will
revert to the phase_capture mode by default.

id is the VXI instrument session pointer returned by the hpe1437_init function.

This command does not abort any measurement in progress.

hpel437_init, hpel437_trigger_setup, hpel437_trigger_phase_actual_getPAGE 59
hpel437_frequency_sync, hpeld37_trigger_delay_actual_get

4-60

VXlIplug&play Syntax

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_trigger_setup

hpel437_trigger_setup sets all triggering parameters. This description also
includes information on the following functions which set or query the trigger
parameters individually:

hpel437_trigger_adclevel specifies the trigger threshold for an ADC trigger
hpel437_trigger_adclevel_get gets the ADC trigger threshold
hpel437_trigger_delay specifies a pre- or post-trigger delay time
hpel437_trigger_delay_get gets the trigger delay time
hpel437_trigger_gen determines whether a module can generate a trigger
hpel437_trigger_gen_get gets the trigger generation status
hpel437_trigger_maglevel specifies the trigger threshold for a magnitude trigger
hpel437_trigger_maglevel_get gets magnitude trigger threshold
hpel437_trigger_slope selects a positive or negative trigger
hpel437_trigger_slope_get gets trigger slope

hpel437_trigger_type determines the trigger type
hpel437_trigger_type_get gets trigger type

#include “hpel437.h”

ViStatus hpe1437_trigger_setup(ViSession id, Vilnt16 tType, Vilnt32 delay, Vilnt16
adcLevel, Vilnt16 magLevel, Vilnt16 slope, Vilnt16 gen);

ViStatus hpe1437_trigger_adclevel(ViSession id, Vilnt16 adcLevel);

ViStatus hpe1437_trigger_adclevel_get(ViSession id, ViPInt16 adcLevelPtr);
ViStatus hpel1437_trigger_delay(ViSession id, Vilnt32 delay);

ViStatus hpe1437_trigger_delay_get(ViSession id, ViPint32 delayPtr);
ViStatus hpe1437_trigger_gen(ViSession id, Vilnt16 gen);

ViStatus hpe1437_trigger_gen_get(ViSession id, ViPInt16 genPtr);

ViStatus hpe1437_trigger_maglevel(ViSession id, Vilnt16 magLevel),
ViStatus hpe1437_trigger_maglevel_get(ViSession id, ViPInt16 magLevelPtr);
ViStatus hpe1437_trigger_slope(ViSession id, Vilnt16 slope);

ViStatus hpe1437_trigger_slope_get(ViSession id, ViPInt16 slopePtr);
ViStatus hpe1437_trigger_type(ViSession id, Vilnt16 tType);

ViStatus hpe1437_trigger_type_get(ViSession id, ViPInt16 tTypePtr);

4-61

Description

Parameters

NOTE

E1437A User's Guide
VXI plug&play Programming Reference

An E1437 can be triggered to collect data in a variety of ways. The trigger can be
internally generated or can come from an external source. Multiple modules can be
triggered synchronously. A variable pre- and post-trigger delay can be programmed for
data collection. The slope and level of the trigger point on a signal can be selected. The
source of the internal trigger can be either the output of the ADC or the magnitude of
the complex output of the decimation filter.

hpel437_trigger_setup is the function that sets all trigger parameters at once. An
E1437 will generate a trigger only when it is in the TRIGGER state and the SYNC line on
the VXI backplane is released. When a trigger is generated, the E1437 will release the
SYNC line.

id is the VXI instrument session pointer returned by the hpe1437_init function.

tType determines the trigger source. HPE1437_ADC generates a trigger based on the
raw data samples from the ADC. HPE1437_MAG generates a trigger based on the log
magnitude of the signal after it has been filtered to a selectable bandwidth around the
center frequency established by the hpe1437_frequency_setup function.
HPE1437_EXTERNAL uses transitions on the signal applied to the BNC external
trigger connector on the front panel. HPE1437_USER disables the module from any
event-driven trigger generation though it is still possible to force the module to trigger a
measurement by pulling the SYNC line once the module is in the trigger state. You may
do this by calling the hpe1437_meas_start function, waiting for the module to reach
the trigger state, then triggering the measurement by using hpe1437_meas_control to
pull the SYNC line. HPE1437_IMMEDIATE triggers a measurement immediately upon
entering the trigger state.

In multi-module systems all modules should be of the same type in order to have
the same actual delay.

tTypePtr contains the current value of tType.

delay is the time delay, in units of output samples, between when a trigger is received
and the first data point in the output data. Negative values indicate a pre-trigger
condition, where samples prior to the trigger event are included in the output data. The
amount of pre-trigger delay is limited to the number of samples which can be saved in
the 8 Mbyte buffer memory. See the hpe1437_data_setup function description for the
number of bytes used per sample. The delay limits depend on the data type as follows:

Trigger Delay
(DRAM size in bytes)

| | 32 bit real |

| 32 bit complex | 16 bit complex | 16 bit real
Post-trigger | 16,777,116 | 33,554,332 | 67,108,764
Pre-trigger | 132-DRAMsize/8 | 164-DRAMsize/4 | 228-DRAMsize/2

If delay is <132-DRAMsize/8 or >16,777,116 a bad parameter

error will be set. However, the delay is still programmed in order to
accommodate the valid setups generated by other data types.

delayPtr contains the current value of the of delay.

4-62

Reset Values

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

adcLevel is used to set the triggering signal threshold when using the ADC trigger
source. This threshold is (full scale xadclevel/256), where —256 < adclevel < 255. There is
hysteresis around the threshold in order to prevent multiple triggers from a single
threshold crossing.

adcLevelPtr contains the current value of the of the adclevel parameter.

magLevel is used to set the triggering threshold when using the mag trigger source.
The threshold is (+0.3762874 xmaglevel)dB relative to full scale signal, where —349 <
maglevel < 19.

magLevelPtr contains the current value of the maglevel parameter.

slope selects the edge of the trigger source on which a trigger occurs.
HPE1437_POSITIVE sets triggering on the positive slope and HPE1437_NEGATIVE
on the negative slope.

slopePtr contains the current value of the of the trigger slope.

gen determines whether a module may generate a trigger. HPE1437_ON enables
triggering. HPE1437_OFF disables triggering. This is useful in multi-module systems
with the same trigger type where you want only certain module(s) to generate a trigger.

genPtr contains the current value of the of the gen parameter.

tType IMMEDIATE
delay 0

adcLevel 0

magLevel —128

slope POSITIVE
gen ON

The commands in this group do not abort any measurement in progress.

hpel437_init, hpel437_frequency_setup, hpel437_data_, hpel437_filter_decimate,
hpel437_meas_start hpel437_meas_control, hpel437_trigger_delay_actual_get

4-63

VXlplug&play Syntax

Description

CAUTION

Parameters

Effect on Active
Measurement

See Also

E1437A User's Guide
VXI plug&play Programming Reference

hpel437_wait

Facilitates the synchronization and control of multi-module systems.

#include “hpel437.h”
ViStatus hpe1437_wait(ViSession id);

This function assures that all slave modules are completely set up before issuing
measurement control commands to the master module. Prior to calling
hpel437_meas_control for the master module in multi-module systems, you should
call hpel437_wait for each other module within the related synchronous group to
which you have previously sent commands. The function performs a continuous loop
which polls the status register of the indicated module until the kardware complete and
sync/idle complete bits are both true.

This an endless loop which assumes that the firmware will eventually set both
bits.

You do not need to call hpel1437_wait for single modules or non-synchronous groups
since the hpel437_meas_control and hpel437_meas_start functions perform an
implicit wait.

id is the VXI instrument session pointer returned by the hpe1437_init function.

This command does not abort any measurement in progress.

hpel437_init, hpel437_meas_start hpe1437_meas_controlPAGE 47

4-64

E1437A User's Guide
VXI plug&play Programming Reference

VXIplug &play Quick Reference
ViStatus hpe1437_attrib_get(ViSession id, Vilnt16 attrib, ViPint32 value)

ViStatus hpe1437_clock_setup(ViSession id, Vilnt16 sync, Vilnt16 source, Vilnt16
dsp, Vilnt16 master, ViReal64 fs);

ViStatus hpe1437_clock_dsp(ViSession id, Vilnt16 dsp);

ViStatus hpe1437_clock_dsp_get(ViSession id, ViPInt16 dspPtr);

ViStatus hpe1437_clock_fs(ViSession id, ViReal64 fs);

ViStatus hpe1437_clock_fs_get(ViSession id, ViPReal64 fsPtr),

ViStatus hpe1437_clock_master(ViSession id, Vilnt16 master),

ViStatus hpe1437_clock_master_get(ViSession id, ViPInt16 masterPtr);
ViStatus hpe1437_clock_multi_sync(ViSession id, Vilnt16 sync);

ViStatus hpe1437_clock_multi_sync_get(ViSession id, ViPInt16 syncPtr);
ViStatus hpe1437_clock_source(ViSession id, Vilnt16 source);

ViStatus hpel1437_clock_source_get(ViSession id, ViPInt16 sourcePtr);
ViStatus hpe1437_close(ViSession id);

ViStatus hpe1437_data_memsize_get(ViSession id, ViPInt16 memSizePtr);
ViStatus hpe1437_data_scale_get(ViSession id, ViPReal64 scalePtr);

ViStatus hpe1437_data_setup(ViSession id, Vilnt16 dType, Vilnt16 resolution,
Vilnt16 mode, Vilnt32 blocksize, Vilnt16 appendStatus, Vilnt16 port);

ViStatus hpe1437_data_append_status(ViSession id, Viint16 appendStatus);

ViStatus hpel1437_data_append_status_get(ViSession id, ViPInt16
appendStatusPtr);

ViStatus hpe1437_data_blocksize(ViSession id, Vilnt32 blocksize);

ViStatus hpe1437_data_blocksize_get(ViSession id, ViPint32 blocksizePtr);
ViStatus hpe1437_data_mode(ViSession id, Vilnt16 mode);

ViStatus hpe1437_data_mode_get(ViSession id, ViPInt16 modePtr),

ViStatus hpe1437_data_port(ViSession id, Vilnt16 port);

ViStatus hpe1437_data_port_get(ViSession id, ViPInt16 portPtr);

ViStatus hpel1437_data_resolution(ViSession id, Vilnt16 resolution);

ViStatus hpel1437_data_resolution_get(ViSession id, ViPInt16 resolutionPtr);
ViStatus hpe1437_data_type(ViSession id, Vilnt16 dType);

ViStatus hpe1437_data_type_get(ViSession id, ViPInt16 dTypePtr);

ViStatus hpe1437_error_message(ViSession id, ViStatus errNum, ViPString
errMessage);

ViStatus hpel1437_error_query(ViSession id, ViPint32 errNumPtr, ViPString
errMessage);

ViStatus hpe1437_filter_resp_get(ViSession id, ViReal64 resp|], Vilnt32 n, ViReal64
Jmin, ViReal64 fmax);

ViStatus hpe1437_filter_setup(ViSession id, Vilnt16 sigBw, Vilnt16 decimate);
ViStatus hpe1437_filter_decimate (ViSession id, Vilnt16 decimate);
ViStatus hpe1437_filter_decimate_get(ViSession id, ViPInt16 decimatePtr);

4-65

E1437A User's Guide
VXI plug&play Programming Reference

ViStatus hpe1437_filter_bw (ViSession id, Vilnt16 sigBw)),

ViStatus hpe1437_filter_bw_get(ViSession id, ViPInt16 sigBwPtr),

ViStatus hpe1437_filter_sync(ViSession id);

ViStatus hpel1437_frequency_center_raw(ViSession id, Vilnt16 coarse, Vilnt32 fine);

ViStatus hpel1437_frequency_setup(ViSession id, Vilnt16 cmplxDc, Vilnt16 sync,
ViReal64 freq);

ViStatus hpe1437_frequency_cmplxdc(ViSession id, Vilnt16 cmplxDc);,

ViStatus hpe1437_frequency_cmplxdc_get(ViSession id, ViPInt16 cmplxDcPtr);
ViStatus hpel1437_frequency_sync(ViSession id, Vilnt16 sync);

ViStatus hpe1437_frequency_sync_get(ViSession id, ViPInt16 syncPtr);
ViStatus hpe1437_frequency_center(ViSession id, ViReal64 freq);

ViStatus hpel1437_frequency_center_get(ViSession id, ViPReal64 freqPtr);

ViStatus hpe1437_init(ViRsrc instrDesc, ViBoolean idQuery, ViBoolean rst,
ViPSession id);

ViStatus hpe1437_input_autozero(ViSession id);

ViStatus hpe1437_input_setup(ViSession id, Vilnt16 range, Vilnt16 coupling,
Vilnt16 antiAlias, Viint16 signal, Viint16 floatIn);

ViStatus hpel1437_input_alias_filter(ViSession id, Vilnt16 antiAlias);
ViStatus hpe1437_input_alias_filter_get(ViSession id, ViPInt16 antiAliasPtr);
ViStatus hpe1437_input_coupling(ViSession id, Vilnt16 coupling);

ViStatus hpe1437_input_coupling_get(ViSession id, ViPInt16 couplingPtr);
ViStatus hpe1437_input_float(ViSession id, Vilnt16 floatIn);

ViStatus hpe1437_input_float_get(ViSession id, ViPInt16 floatInPtr);
ViStatus hpe1437_input_range(ViSession id, Vilnt16 range);

ViStatus hpe1437_input_range_get(ViSession id, ViPInt16 rangePtr);
ViStatus hpe1437_input_signal(ViSession id, Vilnt16 signal);

ViStatus hpel1437_input_signal_get(ViSession id, ViPInt16 signalPtr);
ViStatus hpel1437_input_range_auto(ViSession id, ViReal64 sec);

ViStatus hpe1437_interrupt_restore(ViSession id);

ViStatus hpe1437_interrupt_setup(ViSession id, Vilnt16 intrNum, Vilnt16 priority,
Vilnt16 mask);

ViStatus hpe1437_interrupt_mask_get(ViSession id, Vilnt16 intrNum, ViPInt16
maskPtr);

ViStatus hpe1437_interrupt_priority_get(ViSession id, Vilnt16 intrNum, ViPInt16
priorityPtr);

ViStatus hpe1437_lbus_mode(ViSession id, Vilnt16 lbusMode);,

ViStatus hpe1437_lbus_mode_get(ViSession id, ViPInt16 lbusModePtr);
ViStatus hpe1437_lbus_reset(ViSession id, Vilnt16 IbusReset);

ViStatus hpe1437_lbus_reset_get(ViSession id, ViPInt16 lbusResetPtr),
ViStatus hpe1437_meas_control(ViSession id, Vilnt16 idle, Vilnt16 sync);
ViStatus hpel1437_meas_start(ViSession id);

4-66

E1437A User's Guide
VXI plug&play Programming Reference

ViStatus hpe1437_read(ViSession id, ViReal32 rec|], Vilnt32 sampleCount, ViPInt16
overloadPtr);

ViStatus hpe1437_read64(ViSession id, ViReal64 rec|], Vilnt32 sampleCount,
ViPInt16 overloadPtr),

ViStatus hpe1437_read_raw(ViSession id, Vilnt16 rec| |, Vilnt32 wordCount),
ViStatus hpe1437_reset(ViSession id);

ViStatus hpe1437_revision_query(ViSession id, ViString driverRev, ViString
instRev);

ViStatus hpe1437_self_test(ViSession id, ViPInt16 testResultPtr, ViString
testMessage);

ViStatus hpe1437_status_get(ViSession id, ViPInt16 statusPtr);

ViStatus hpe1437_trigger_delay_actual_get(ViSession id, ViPReal64
actualDelayPtr);

ViStatus hpel1437_trigger_phase_actual_get(ViSession id, ViPReal64
actualPhasePtr);

ViStatus hpe1437_trigger_phase_capture(ViSession id);

ViStatus hpe1437_trigger_setup(ViSession id, Vilnt16 tType, Vilnt32 delay, Vilnt16
adcLevel, Viint16 magLevel, Viint16 slope, Vilnt16 gen);

ViStatus hpe1437_trigger_adclevel(ViSession id, Vilnt16 adcLevel);

ViStatus hpel1437_trigger_adclevel_get(ViSession id, ViPInt16 adcLevelPtr);
ViStatus hpe1437_trigger_delay(ViSession id, Vilnt32 delay);

ViStatus hpe1437_trigger_delay_get(ViSession id, ViPint32 delayPtr);
ViStatus hpe1437_trigger_gen(ViSession id, Vilnt16 gen);

ViStatus hpe1437_trigger_gen_get(ViSession id, ViPInt16 genPtr);

ViStatus hpe1437_trigger_maglevel(ViSession id, Vilnt16 magLevel),
ViStatus hpe1437_trigger_maglevel_get(ViSession id, ViPInt16 magLevelPtr);
ViStatus hpe1437_trigger_slope(ViSession id, Vilnt16 slope);

ViStatus hpe1437_trigger_slope_get(ViSession id, ViPInt16 slopePtr),
ViStatus hpe1437_trigger_type(ViSession id, Vilnt16 tType);

ViStatus hpe1437_trigger_type_get(ViSession id, ViPInt16 tTypePtr);
ViStatus hpe1437_wait(ViSession id);

4-67

E1437A User's Guide
Visual Basic Quick Reference

Visual Basic Quick Reference

Return& = hpel437_attrib_get(id&, attrib%, value&)
Return& = hpel437_clock_setup(id&, sync%, source%, dsp%, master%, fs#)
Return& = hpel437_clock_dsp(id&, dsp%)

Return& = hpel437_clock_dsp_get(id&, dspPtr%)

Return& = hpel437_clock_fs(id&, fs#)

Return& = hpel437_clock_fs_get(id&, fsPtr)

Return& = hpel437_clock_master(id&, master%)

Return& = hpel437_clock_master_get(id&, masterPtr%)
Return& = hpel437_clock_multi_sync(id&, sync%)

Return& = hpel437_clock_multi_sync_get(id&, syncPtr%)
Return& = hpel437_clock_source(id&, source%)

Return& = hpel437_clock_source_get(id&, sourcePtr%)
Return& = hpel437_close(id&)

Return& = hpel437_data_memsize_get(id&, memSizePtr%)
Return& = hpel437_data_scale_get(id&, scalePtr#)

Return& = hpel437_data_setup(id&, dType%, resolution%, mode%, blocksize&,
appendStatus%, port%)

Return& = hpel437_data_append_status(id&, appendStatus%)
Return& = hpel437_data_append_status_get(id&, appendStatusPtr%)
Return& = hpel437_data_blocksize(id&, blocksize&)

Return& = hpel437_data_blocksize_get(id&, blocksizePtr&)
Return& = hpel437_data_mode(id&, mode%)

Return& = hpel437_data_mode_get(id&, modePtr%)

Return& = hpel437_data_port(id&, port%)

Return& = hpel437_data_port_get(id&, portPtr%)

Return& = hpel437_data_resolution(id&, resolution%)

Return& = hpel437_data_resolution_get(id&, resolutionPtr%)
Return& = hpel437_data_type(id&, dType%)

Return& = hpel437_data_type_get(id&, dTypePtr%)

Return& = hpel437_error_message(id&, errNum&, errMessage$)
Return& = hpel437_error_query(id&, errNumPtr&, errMessage$)
Return& = hpel437_filter_resp_get(id&, resp#| |, n&, fmin#, fmax#)
Return& = hpel437_filter_setup(id&, sigBw%, decimate%)

Return& = hpel437_filter_decimate (id&, decimate%)

Return& = hpel437_filter_decimate_get(id&, decimatePtr%)
Return& = hpel437_filter_bw (id&, sigBw%)

Return& = hpel437_filter_bw_get(id&, sigBwPtr%)

4-68

E1437A User's Guide
Visual Basic Quick Reference

Return& = hpel437_filter_sync(id&)

Return& = hpel437_frequency_center_raw(id&, coarse%, fine&)
Return& = hpel437_frequency_setup(id&, cmplxDc%, sync%, freq#)
Return& = hpel437_frequency_cmplxdce(id&, cmplxDc%)

Return& = hpel437_frequency_cmplxdc_get(id&, cmplxDcPtr%)
Return& = hpel437_frequency_sync(id&, sync%)

Return& = hpel437_frequency_sync_get(id&, syncPtr%)

Return& = hpel437_frequency_center(id&, freq#)

Return& = hpel437_frequency_center_get(id&, freqPtr#)

Return& = hpel437_init(instrDesc$, idQuery%, rst%, ViPSession id)
Return& = hpel437_input_autozero(id&)

Return& = hpel437_input_setup(id&, range%, coupling%, antiAlias%, signal%,
SloatIn%)

Return& = hpel437_input_alias_filter(id&, antiAlias%)

Return& = hpel437_input_alias_filter_get(id&, antiAliasPtr%)
Return& = hpel437_input_coupling(id&, coupling%)

Return& = hpel437_input_coupling_get(id&, coupling Ptr%)

Return& = hpel437_input_float(id&, floatIn%)

Return& = hpel437_input_float_get(id&, floatInPtr%)

Return& = hpel437_input_range(id&, range%)

Return& = hpel437_input_range_get(id&, rangePtr%)

Return& = hpel437_input_signal(id&, signal%)

Return& = hpel437_input_signal_get(id&, signalPtr%)

Return& = hpel437_input_range_auto(id&, sec#)

Return& = hpel437_interrupt_restore(id&)

Return& = hpel437_interrupt_setup(id&, intrNum%, priority%, mask%)
Return& = hpel437_interrupt_mask_get(id&, intrNum%, maskPtr%)
Return& = hpel437_interrupt_priority_get(id&, intrNum%, priorityPtr%)
Return& = hpel437_lbus_mode(id&, lbusMode%)

Return& = hpel437_lbus_mode_get(id&, IbusModePtr%)

Return& = hpel437_lbus_reset(id&, IbusReset%)

Return& = hpel437_lbus_reset_get(id&, IbusResetPtr%)

Return& = hpel437_meas_control(id&, idle%, sync%)

Return& = hpel437_meas_start(id&)

Return& = hpel437_read(id&, rec&| |, sampleCount&, overloadPtr%)
Return& = hpel437_read64(id&, rec#| |, sampleCount&, overloadPtr%)
Return& = hpel437_read_raw(id&, rec%| |, wordCount&)

Return& = hpel437_reset(id&)

Return& = hpel437_revision_query(id&, driverRev$, instRev$)
Return& = hpel437_self test(id&, testResultPtr%, testMessage$)
Return& = hpel437_status_get(id&, statusPtr%)

4-69

E1437A User's Guide
Visual Basic Quick Reference

Return& = hpel437_trigger_delay_actual_get(id&, actualDelayPtr#)
Return& = hpel437_trigger_phase_actual_get(id&, actualPhasePtr#)
Return& = hpel437_trigger_phase_capture(id&)

Return& = hpel437_trigger_setup(id&, tType%, delay&, adcLevel%, magLevel%,
slope%, gen%)

Return& = hpel437_trigger_adclevel(id&, adcLevel%)

Return& = hpel437_trigger_adclevel_get(id&, adcLevel Ptr%)
Return& = hpel437_trigger_delay(id&, delay &)

Return& = hpel437_trigger_delay_get(id&, delayPtr&)

Return& = hpel437_trigger_gen(id&, gen%)

Return& = hpel437_trigger_gen_get(id&, genPtr%)

Return& = hpel437_trigger_maglevel(id&, magLevel%)

Return& = hpel437_trigger_maglevel_get(id&, magLevel Ptr%)
Return& = hpel437_trigger_slope(id&, slope%)

Return& = hpel437_trigger_slope_get(id&, slopePtr%)

Return& = hpel437_trigger_type(id&, tType%)

Return& = hpel437_trigger_type_get(id&, tTypePtr%)

Return& = hpel437_wait(id&)

4-70

E1437A User's Guide
Parameter numeric equivalents

Parameter numeric equivalents

Numeric equivalents may be used in place of alphanumeric variables in function
calls. These numeric equivalents are also available as popups within online function
parameter descriptions.

HPE1437_16BIT
HPE1437_32BIT
HPE1437_20000KHZ
HPE1437_20480KHZ
HPE1437_AC
HPE1437_ADC
HPE1437_APPEND
HPE1437_ASSERT
HPE1437_BLOCK
HPE1437_BUFFER
HPE1437_COMPLEX
HPE1437_CONTINUOUS
HPE1437_DATA_REGISTER
HPE1437_DC
HPE1437_EXT_PLL REF
HPE1437_EXTEND
HPE1437_EXTERNAL
HPE1437_FRONT
HPE1437_GENERATE
HPE1437_IMMEDIATE
HPE1437_INSERT
HPE1437_INTEL
HPE1437_I0_ADDRESS
HPE1437_I0_HANDLE
HPE1437_LBUS
HPE1437_MAG
HPE1437_MOTOROLA
HPE1437_NEGATIVE

—_ O W O =W R DD WWO W DN O DN O O

4-71

E1437A User's Guide
Parameter numeric equivalents

HPE1437_OFF
HPE1437_ON
HPE1437_OSCILLATOR
HPE1437_PIPELINE
HPE1437_POSITIVE
HPE1437_REAL
HPE1437_REAR
HPE1437_RELEASE
HPE1437_RM_HANDLE
HPE1437_USER
HPE1437_VME

SO O N O N O O O O = O

4-72

E1437A User's Guide
Errors

Errors

The following errors are generated by library calls:
0000 HPE1437_SUCCESS “No error.”

0001 HPE1437_NO_DATA_MEASUREMENT_IN_PROGRESS “No data available, a
measurement is in progress.”

0002 HPE1437_NO_DATA_MEASUREMENT_PAUSED “No data available, the
measurement is paused.”

0003 HPE1437_NO_DATA_WAITING_FOR_TRIGGER “No data available, trigger has
not occurred.”

0004 HPE1437_NO_DATA_WAITING_FOR_ARM “No data available, acquiring
pre-trigger data.”

0005 HPE1437_BAD_RESOURCE_DESCRIPTOR “The resource descriptor string is
not valid.”

0006 HPE1437_NO_E1437_FOUND “No E1437 found at specified logical address.”

0007 HPE1437_PROC_READY_TIMEOUT “Timeout is waiting for E1437 command
processor.”

0008 HPE1437_MEMORY_ALLOCATION_ERROR “Memory allocation error.”
0009 HPE1437_CAPABILITY_NOT_SUPPORTED “Capability not supported.”
0010 HPE1437 BAD_ERR_NO “The returned error number does not exist.”

0011 HPE1437_UNSUPPORTED_HARDWARE_CONFIG “Unsupported hardware
configuration.”

0012 HPE1437 _CAN'T START “Unable to start measurement.”
0013 HPE1437_NULL_ID “Hardware addressed does not exist.”

0014 HPE1437_RESOURCE_MANAGER_ERROR “Resource Manager could not be
executed successfully; possible installation error.”

4-73

E1437A User's Guide
Errors

The following errors are generated by firmware:
0097 HPE1437_BAD_COMMAND “Invalid command code.”

0098 HPE1437_PARM_ERROR “Invalid command parameter.”
0100 HPE1437_CAL_SAVE_ERROR “Error in saving calibration constants.”
0101 HPE1437_DOWNLOAD_ERROR “Error while downloading new firmware.”

0102 HPE1437_DSPCLOCK_TOO_SLOW_ERROR “DSP clock slower than minimum
specification.”

0103 HPE1437_AUTOZERO_ERROR “Autozero error, hardware problem.”
0104 HPE1437_MODE_ERROR “Invalid mode requested.”

0105 HPE1437_START ERROR “Unable to start measurement.”

0106 HPE1437_SELFTEST_ERROR “Error occurred during self test.”
0107 HPE1437_INTERNAL_ERROR “Internal software error occurred.”

0108 HPE1437_AUTORANGE_ERROR “Error occurred during autoranging, hardware
problem.”

0127 HPE1437_BYTE_SWAP_ERROR “Invalid command code, possible byte order
error.”

4-74

E1437A User's Guide
Functions Which Abort Measurements

Functions Which Abort Measurements

The following functions abort any measurement in progress:
hpel437_clock_dsp

hpel437_clock_master.
hpel437_clock_multi_sync

hpel437_clock_source
hpel437_data_append_status
hpel437_data_blocksize

hpel437_data_mode

hpel437_data_port

hpel437_data_resolution

hpel437_data_type

hpel437_filter_decimate

hpel437_filter_bw

hpel437_filter_sync

hpel437_init

hpel437_input_autozero

hpel437_lbus_mode

hpel437_meas_control (depending on write value)
hpel437_meas_start

hpel437_reset

4-75

ASCII Overview and
Commands

5-1

E1437A
ASCII Overview and Commands

Introduction

ASCII commands allow you to communicate with the E1437A without using
the libraries, although most users will find it easier and faster to use
libraries than these ASCII commands. The ASCII commands in this chapter
are provided mainly to accommodate users who have previously used SCPI
(Standard Commands for Programming Instruments) with the HP/Agilent
E1406 Command Module. You will note the similarities in command
structure between these ASCII commands and SCPIL.

5-2

E1437A
ASCII Overview and Commands

Command Syntax

This section describes the syntax elements used in the ASCII command
reference.

Special Syntactic Elements
Some syntactic elements have special meanings:

e colon (:) — The colon is a part of the program header (command or query) and
does not imply a heirarchy such as that which exists with SCPI commands for
other instruments.

e comma (,) — A comma separates the data sent with a command or returned with
a response. For example the FILTER:SETUP command requires two values: one to
select the filter signal bandwidth and one to select extra decimation. A message to
select 460 kHz bandwidth and a decreased sample rate of 1.28 MHz would be:

FILTER:SETUP 4,1

o <WSP>— One white space is required to separate a program headers (the
command or query) from its parameters. For example the command
“FILTER:SETUP 4,1" contains a white space between the program header
(FILTER:SETUP) and the parameters (4,1). White space characters are not
allowed within the program header.

Conventions

Syntax and return format description use the following conventions:

e < > Angle brackets enclose the names of items that need further definition. The
definition will be included in accompanying text.

e ::= “is defined as” When two items are separated by this synbol, the second item
replaces the first in any statement that contains the first item. For example, A::=B
indicates that B replaces A in any statment that contains A.

° | “or” When items in a list are separated by this symbol one and only one of the
items can be chosen from the list For example, A | B indicates that A or B can be
chosen, but not both.

e ... an ellipsis (trailing dots) is used to indicate that the preceding element may be
repeated one or more time.

The command interpreter is not case sensitive. No short forms for keywords
are allowed

5-3

E1437A
ASCII Overview and Commands

Using ASCII Commands in Your Environment

ASCII commands require no drivers or other special downloadable files.
They may be sent from the host computer through an GPIB/HPIB interface
to a HP/Agilent E1406 Command Module in a VXI mainframe containing the
E1437A.

Using ASCII commands with HP BASIC

In order to address the module you must know the addressing information
about your GPIB/HPIB interface, your command module, and the E1437A.
The addressing format is as follows:

HCCMM

where H=the HP-IB interface select code
CC=the command module’s HP-IB address
MM=the E1437A module’s logical address divided by 8.

For example if your HPIB/GPIB interface is at select code 7, the HP/Agilent
E1406 command module is at HPIB/GPIB address 9, and the E1437A’s
logical address is 192, the address you use for ASCII commands is 70924.

Example statements in the ASCII Command Reference represent this
environment.

Using ASCII commands with VISA

It is possible to send ASCII commands through the VISA interface, although
using the C function library provides more capability and greater ease of use.

Before using ASCII in this environment be sure that all standard VISA files
are installed and that the interface is properly configured.

The following is an example of sending ASCII commands to the E1437A
through the VISA interface:

Declare Function viReadbin Lib “VISA32.DLL” Alias “#256" (ByVal vi
As Long, Buffer As Any, ByVal count As Long, retCount As Long)

As Long

Dim rec(1024) As Long

er viOpenDefaultRM (rm)

er = viOpen(rm, “VXI::192", 0, 0, id) output id, ”MEAS:START"
output id, “READ 32"

er = viReadbin(id, rec(0), 4096, retCounté&)

REM <The data in rec() is available for use here.> er = viClose(id)
er = viClose (rm)

Sub output (id, a$)
er = viWrite(id, a$, Len(a$), retCounté&)
End Sub

5-4

E1437A
ASCII Overview and Commands

ASCII Programming Reference

5-5

E1437A *IDN?
ASCII Overview and Commands query

Query syntax:

Example Statement:

Return Format:

Description:

*IDN? query

Returns a string that identifies the E1437A.
*IDN?

OUTPUT 70924;"*Idn?"
ENTER 70924;identity$

HEWLETT-PACKARD, E1437A, <serial number>, <swrev0:swrevl:hwrev3>

The response to this query uniquely identifies your module and the version of the
module’s firmware and hardware.

5-6

E1437A *RST
ASCII Overview and Commands command

Command syntax:

Example Statement:

Description:

*RST command

Executes a device reset..
*RST
OUTPUT 70924;"*rst"

This command returns the module to a reset state.
The following are not affected by this command:

e Calibration constants

5-7

E1437A *TST?
ASCII Overview and Commands query

Query syntax:

Example Statement:

Description:

*TST? query

Tests the module’s hardware and returns the result..
*TST?
OUTPUT 70924;"*TST?"

The module’s selt-test performs the E1437A diagnostic tests. If the results are
within specified limits, the module returns 0. If the results exceed the secified limits,
the module returns 1 and an error message is placed in the error queue. The length
of the self-test is approximately as follows:

Memory Slze | Time
(MBytes) (min)

8 1
16 1.5
32 2.5
48 4.5

The query accesses the error queue.

The following tests are performed:

e Digital: rails the front end to a full scale value then turns on zooming, filtering, and
the final decimation to quickly verify those operations.

e Noise: does a quick baseband measurement with the input signal disconnected,
and verifies that the front-end noise is within specification.

e Bump: Verifies some front-end levels associated with the analog-to-digital
converter.

e Memory: fills the entire DRAM then verifies that all the data is correct.
e Analog: verifies that autozero adjust is working and that the input is triggering.

5-8

Command syntax:

Query syntax:

Example Statement:

E1437A CLOCK:SETUP
ASCII Overview and Commands command/query

CLOCK:SETUP command/query

Sets all timing parameters. This description also includes information on the
following commands which set or query the timing parameters individually:

CLOCK:DSP selects the clock used to drive the decimation/zoom section.
CLOCK:FS provides the frequency of an external sample clock.
CLOCK:MASTER determines whether a module shares its ADC clock.
CLOCK:MULTI:SYNC specifies whether the module uses a shared clock and sync.
CLOCK:SOURCE selects the source of the ADC clock.

CLOCK:SETUP <multisync>,<source>,<dsp>,<master>,<fs>
multisync::= 0 | 1 |2
source:=0]1]2(3
dsp:=0 l1
master::= 0 | 1 |2
fs <numeric>

numeric::=>0-20600000

CLOCK:MULTLSYNC 0 1|2

CLOCK:SOURCE 0|1(2]3

CLOCK:DSP 0|1

CLOCK:MASTER 012

CLOCK:FS <numeric>

numeric::=100000-20600000

CLOCK:DSP?

CLOCK:FS?
CLOCK:MASTER?
CLOCK:MULTI:SYNC?
CLOCK:SOURCE?

OUTPUT 70924;"Clock:setup 1,2,0,2,10000000"
OUTPUT 70924;"Clock:Multi:Sync 2"

5-9

E1437A CLOCK:SETUP
ASCII Overview and Commands command/query

Description: CLOCK:SETUP is used to configure all timing parameters used for sampling (ADC
clock) and decimation/zoom (DSP clock). This command, as well as the other
CLOCK commands covered in this description, is used to select the source and
distribution of clocking and synchronization signals used by the E1437 module. The
primary clock signal used by the module is the ADC clock, for which the rising edges
indicate the time for each sample of the analog-to-digital converter. Another clock
signal is the DSP clock, which drives the digital signal processing and memory
sections of the module. Normally the DSP clock is the same as the ADC clock, and
data is transferred synchronously from the ADC to the DSP portion of the module.
However, in certain situations the two clocks may be independent, requiring
asynchronous data transfers from the ADC to the DSP. The remaining CLOCK
commands and queries listed above set or query the parameters individually.

Parameter definitions: is used to specify whether the module uses a shared ADC clock and
SYNC signal. Modules in multi-module systems must all have the same sync
parameter setting.

pa‘:gll':(;ter multisyne parameter definition
0 OFF. The ADC clock and SYNC are generated locally
1 FRONT. The module uses the shared clock and SYNC provided on the front panel
distribution connectors
9 REAR. The module uses the shared ADC clock and SYNC signals which are distributed on
the VXI backplane using the ECL trigger lines

selects the clock source that is used to drive the analog to digital converter
(ADC) for single module operation or when a module is used as the master ADC
clock source for a multi-module system. In multi-module systems the source
parameter is ignored for all but the master module.

parameter source parameter definition
value
0 20.48 MHz internal oscillator
1 20 MHz internal oscillator
2 EXT. TTL, ECL, or sine signal on the external, BNC, front panel clock input connector
3 EXT:PLL. Takes a 10 MHz reference from another instrument on the external, BNC, front
panel clock input connector and uses a PLL to convert it to a 20 MHz reference

5-10

E1437A CLOCK:SETUP
ASCII Overview and Commands command/query

selects the clock used to drive the decimation/zoom section within the E£1437.
Normally, the DSP clock should be coupled to the ADC clock whenever possible
since the spurious performance specification is degraded when the clocks are
independent. However, when a slow or intermittent ADC clock results in greater
than 1 ps between clock edges, the DSP clock must be generated from the internal
oscillator to avoid data loss in the dynamic RAM.

parameter dsp parameter definition
value
0 0SC. Causes the DSP clock to be the internally generated 20.48 MHz oscillator.
1 ADC. Forces the DSP clock to be driven by the ADC clock

determines whether an 1437 makes its local ADC clock available to other
modules as a shared clock. Multi-module synchronization requires that one and only
one of the modules to be identified as the master, the source of the shared ADC
clock.

pa;:::zter master parameter definition
0 OFF. The module is driving neither the front panel nor the back plane. This is the correct

variable to use for all non-master modules in a system.

ON. When muftisync="1 (front panel) the E1437 drives the front panel ADC clock.
1 It multisync=2 (back plane) the module uses its ADC clock to drive the VXI backplane in
the mainframe in which it resides.

9% BUFFER. Allows the ADC clock and SYNC lines from the module’s front panel connectors
to drive the backplane of a mainframe not containing the master.

* Only one module per mainframe may be set to 1 or to 2. In multi-mainframe systems using backplane
clock and sync distribution only one module per any mainframe not containing the master may be set to 2.

provides the module with the frequency of an external sample clock connected to
the Ext Clk TTL connector. When using an external clock or when a module is a
non-master in a multi-module group, the frequency of the ADC clock is unknown by
the module. It is the responsibility of the programmer to provide the correct
frequency so that commands dependent on fs will operate properly. This value has
no effect if the module is set up to use the internal ADC clock.

5-11

E1437A CLOCK:SETUP
ASCII Overview and Commands command/query

Comments: For more details on the interaction among source, master and sync with multiple
modules and multiple mainframes see Managing multiple modules.

The master, multisync, source, and dsp parameters are interdependent with
legitimate combinations being as follows (along with the resultant DSP clock rates):

DSP CLOCK
MASTER SYNC SOURCE DSP RATE
N/A OFF 20.x (internal) N/A Internal source
N/A OFF EXT ADC External source
N/A OFF EXT 0SC 20.48
N/A OFF EXT:PLL N/A 20
OFF | BUFFER FRONT N/A ADC Master ADC
OFF | BUFFER FRONT N/A 0SC 20.48
OFF REAR N/A ADC Master ADC
OFF REAR N/A 0SC 20.48
ON FRONT 20.x N/A Source
ON FRONT EXT ADC External
ON FRONT EXT 0SC 20.48
ON FRONT EXT:PLL N/A 20
ON REAR 20.x N/A Source
ON REAR EXT ADC External
ON REAR EXT 0SC 20.48
ON REAR EXT:PLL N/A 20
BUFFER REAR N/A ADC Master ADC
BUFFER REAR N/A 0SC 20.48

If f5>20,480,000 then dsp must = ADC

The maximum rate at which data may be transferred to memory is determined by
the DSP clock rate: Max bytes/s. = 4 * DSP clock rate. In continuous mode the
maximum rate is limited to (4 * DSP clock rate)/2. However, you may successfully
perform this type of measurement by adding a level of decimation to reduce the
sample rate.

Example: The correct method to set up a synchronous multi-module group that insures that
all modules share the same ADC clock is:

! First, insure that one module is putting its clock on the backplane

OUTPUT <addrMasters>;" CLOCK:Master 1"

! Put each module into multi-sync mode with internal clock! (unless external
clock is connected to

! master HP E1437 through Ext Clk TTL connector).

! For each module address (except master) :

OUTPUT <addrAlls;"Clock:Setup 2,0,1,0,20480000"

Reset State: multisync=0FF, source=20480000, dsp=ADC, master=0FF, fs=20480000

See Also: FILTER:SETUP, DATA:SETUP

5-12

E1437A DATA:SETUP
ASCII Overview and Commands command/query

Command syntax:

Query syntax:

DATA:SETUP command/query

Sets all format and data output flow parameters. This description also
includes information on the following commands which set or query the
format and flow parameters individually:

DATA:APPEND:STATUS appends status information to a data block.
DATA:APPEND:STATUS? gets the append status state
DATA:BLOCKSIZE determines the size of the output data block.
DATA:BLOCKSIZE? gets the output data block size
DATA:MODE selects block mode or continuous mode.
DATA:MODE? gets the data mode

DATA:PORT selects VME bus or local bus output port.
DATA:PORT? gets the output port designation
DATA:RESOLUTION selects 16 or 32 bits data resolution.
DATA:RESOLUTION? gets the data resolution

DATA:TYPE selects real or complex output data.

DATA:TYPE? gets output data type

DATA:SETUP <type>,<resolution>,<mode>,<blocksize>,<append>,<port>
type::=0 | 1
resolution::=0 | 1
mode::=0 | 1
blocksize <numeric>
numeric::= 1 to memorysize/2
append::=0 | 1
port::=0 | 1
DATA:APPEND:STATUS 0
DATA:BLOCKSIZE <numeric>
numeric::= 1 to memorysize/2
DATA:MODE 0|1
DATA:PORT 01
DATA:RESOLUTION 0| 1
DATA:TYPE 01

DATA:APPEND:STATUS?
DATA:BLOCKSIZE?
DATA:MODE?
DATA:PORT?
DATA:RESOLUTION?

5-13

Example Statement:

Parameter definitions:

E1437A DATA:SETUP
ASCII Overview and Commands command/query

DATA:TYPE?

OUTPUT 70924;"DATA:setup 1,1000000,0,2,0,1"
OUTPUT 70924;"Data:mode 2"

determines whether the E1437 collects and returns real or complex data.
Normally, if the frequency set with the FREQUENCY:SETUP command is zero, the
type should be set to real since the imaginary component of each sample is zero
anyway. When non-zero center frequencies are used the type should normally be set
to complex. Otherwise the imaginary component of the signal will be lost.

parameter type parameter definition
value Ype par r et
0 REAL. Causes only the real part of the data to be returned for each sample.
1 COMPLEX. Causes the real data followed by the imaginary data to be returned in each
sample.

selects the data resolution. Choosing 16-bit precision allows for more
samples in the FIFO memory. Choosing 32 bits allows more dynamic range. Because
of the broadband white noise present on the input of the analog-to-digital converter,
it is normally sufficient to use 16 bit resolution whenever the FILTER:SETUP
command specifies a signal bandwidth greater than 250 kHz. For narrower
bandwidths much of the broadband white noise is filtered out, resulting in lower
noise in the output data. To take advantage of this lower noise, the 32-bit data
resolution should be used.

parameter . .
resoultion parameter definition
value
0 32 BIT. Selects data resolution of 32 bits.
1 16 BIT. Selects data resolution of 16 bits.

selects whether the E1437’s data collection operates in block mode or
continuous mode. Block mode is used whenever each block of data is to be
associated with an individual trigger “event”. The continuous mode is useful for
continuous signal processing applications where data gaps are unacceptable.As long
as the data is read out fast enough to prevent overflow in the output FIFO, the
measurement will continue.

parameter mode parameter definition
value
BLOCK. Selects block transfer mode in which the measurement is halted after each block
0 of data. To start collection of the next data block the module must be armed and triggered

again

CONTINUQUS. Means that a single arm and trigger event starts a measurement which
runs continuously with no gaps between output data blocks.

5-14

Note

E1437A DATA:SETUP
ASCII Overview and Commands command/query

determines the number of sample points in each output data block. The
range of available block sizes depends on the number of bytes required for each
sample. The command accepts any number between 1 and memory size (in bytes)/2.
The actual number used is the first integer power of 2 equal to or larger than the
requested blocksize. If the requested block size falls outside the range shown in the
table the closest valid value will be used and a status register flag (bit 6) will be set
indicating a setup error. If a subsequent change in another parameter permits a
block size closer to the originally requested value, the module will adjust the block
size to that value.

The following table summarizes the available block sizes for each setting of the
dType and resolution parameters.

Block size
Data port Data type Resolution Bytes per (with standard 8 Bytes
sample memory) *
Min Max
VME REAL 16 2 3 4,194,304
VME REAL 32 4 2 2,097,152
VME COMPLEX 16 4 2 2,097,152
VME COMPLEX 32 8 1 1,048,576
LBUS REAL 16 2 6 4,194,304
LBUS REAL 32 4 3 2,097,152
LBUS COMPLEX 16 4 3 2,097,152
LBUS COMPLEX 32 8 2 1,048,576

*For optional additional memory, multiply by the appropriate memory size multiplier. For example, for 32 MByte memory
option multiply max block size by 4.

Block size does not need to be a power of two. Considerably more samples may
need to be taken in order to set the block available status bit.

selects whether or not status information is appended to a data block. In
this status byte, Bit 0 will be set if an ADC overload occurred and bit 1 will be set for
an ADC error. The other bits are undefined. When the appended byte is transferred
via the VME backplane, the byte is located in the lower 8 bits of the 16 bit word after
the end of the sampled data block. The upper 8 bits are undefined. When the
appended byte is output via the local bus (as a 32-bit word), it is marked as the last
byte of a transfer block. This status byte should be read separately from any block
read operations in order to not affect the alignment of subsequent elements.

parameter _—
value append parameter definition
0 OFF. Disables the status append feature.
ON. Means that an extra byte of status information is appended to the end of each data
1 block to indicate whether an ADC overload or error occurred during the collection of that
block of data.

5-15

Comments

E1437A DATA:SETUP
ASCII Overview and Commands command/query

determines which output port is used to take data from the E1437 module.

parameter -
port parameter definition
value
0 VME. Means the data is to be output using standard VME register reads
LBUS. Means the data is to be output as a byte-serial data stream via the VXI local bus.
1 When using the local bus port the module immediately to the right of the E1437 must be
capable of receiving the local bus byte sequence.

The following table summarizes the output word or byte sequence for each
combination of type, resolution, and port parameters:

Type Resolution Port Sequence
REAL 16BIT VME RO[15:0],R1[15:01,...
COMPLEX 16BIT VME RO[15:01,Q0[15:01,R1{15:01,Q1[15:01,...
REAL 32BIT VME RO[31:16],R0[15:0],R1[31:16],R1[15:01,...
COMPLEX 32BIT VME RO[31:16],R0[15:0],Q0[31:161,Q0[15:0],R1(31:16]...
REAL 16BIT LBUS RO[15:8],R0[7:01,R1[15:8],R1[7:0]....
COMPLEX 16BIT LBUS RO[15:8],R0(7:01,Q0(15:8],Q0(7:0],R1[15:8]...
REAL 32BIT LBUS RO[31:24],R0[23:161,R0[15:8],R0[7:01,R1[31:24],...
COMPLEX 9BIT LBUS RO[31:24],R0[23:16],R0[15:8],R0[7:0],00(31:24],00{23:16],00[15

:81,00[7:0], R1[31:24]....

The maximum rate at which data may be transferred to memory is determined by
the DSP clock rate: Max bytes/s. = 4 * DSP clock rate. In continuous mode the
maximum rate is limited to (4 * DSP clock rate) / 2. However, you may successfully
perform this type of measurement by adding a level of decimation to reduce the
sample rate.

A limitation also applies to 32-bit, complex data transfers. Because this type of
transfer cannot be made at the full sample rate, a level of decimation must be added
in order to reduce the sample rate

5-16

E1437A

ASCII Overview and Commands

The following table summarizes under what data parameter combinations
decimation must be used:

Resolution

16
32
32
32
32

Reset Values

See Also

Type

Complex
Real
Complex
Complex
Complex

All other combinations

False
False
True
False
False

Decimation Filter BW

Oor1
Oor1
Oor1
2
Oor1

Block

Yes
Yes
Yes
Yes
No
Yes

Continuous

No
No
No
No
No
Yes

DATA:SETUP

80
40
40
40
40

<40

type=REAL, resolution=32BIT, mode=BLOCK, blocksize=1024, append=0FF,
port=VME

FREQUENCY:SETUP, FILTER:DECIMATE, MEAS:CONTROL, CLOCK:DSP

command/query

Sample Rate
(MBytes/sec)

5-17

E1437A DATA:VME:ORDER
ASCII Overview and Commands command/query

Command syntax;

Query syntax:

Example Statement:

Parameters:

Reset Values

DATA:VME:ORDER command/query

Selects the 16-bit word ordering out of the VME port when the data
resolution is 32 bits.

DATA:VME:ORDER <order>

order::=0 | 1
DATA:VME:ORDER?

OUTPUT 70924;"DATA:VME:Order 1"

parameter order parameter definition
value
0 MOTOROLA. High word is output first
1 INTEL. Low word is output first

WordOrder=MOTOROLA

5-18

Query syntax:

Example Statement:

E1437A ERROR
ASCII Overview and Commands query
ERROR query

Returns the error number for the oldest error in the queue.
ERROR?

OUTPUT 70924;"ERROR?"

5-19

Command Syntax:

Query Syntax:

Example Statements:

Parameter Definitions:

E1437A FILTER:SETUP
ASCII Overview and Commands command/query

FILTER:SETUP command/query

Sets the digital filter bandwidth and decimation filter parameters. This
description also includes information on the following commands which set
or query the decimation filter parameters individually:

FILTER:DECIMATE selects an extra factor of 2 decimation.
FILTER:DECIMATE? gets current state of extra decimation
FILTER:BW selects a signal filter bandwidth.
FILTER:BW? gets the signal filter bandwidth

FILTER:SETUP <sigBw>,<decimate>
sigBbw::=<numeric>
numeric::=0 to 24
decimate::=0| 1
FILTER:BW <numeric>
<numeric>::=0 to 24
FILTER:DECIMATE::=0| 1

FILTER:BW?
FILTER:DECIMATE?

OUTPUT 70924;"FILTER:SETUP 12,0"

OUTPUT 70924;"FILTER:BW?"
ENTER 70924;Response$

selects an alias protected signal filter bandwidth that is roughly +fs/(2.56 *
2" (sigBw)) where fs is the ADC sample frequency. In zoom applications, where the
center frequency is generally not zero, the zoom filter bandwidth is centered on the
frequency programmed with the frequency:setup command. For baseband
measurements the filter may equivalently be considered as a low pass filter of
approximately bandwidth fs/(2.56 * 2/ (sigBw)) since the negative frequencies are
generally of no interest.The valid range of sigBw is 0 through 24. When sigBw = 0,
no digital filtering is applied to the signal and the module relies on the analog
anti-alias filter to limit the signal bandwidth to fs/2.56.

To more accurately calculate the bandwidth use the calculation +fs * k/2” (sigBw)
where:

k=.36 for .25 dB bandwidth
k=.44 for 3 dB bandwidth
k=.5 for 15 dB bandwidth
k=.62 for 110 dB bandwidth

5-20

Comments

E1437A FILTER:SETUP
ASCII Overview and Commands command/query

selects the data output sample rate. You would normally want to add the
extra level of decimation in order to increase the displayed span.

parameter decimate parameter definition
value
0 OFF. The output sample rate is: /s when sw=0 or fs/ 2*(6w-1) when bw > 0.
1 ON. The output sample rate is reduced by an additional factor of two by discarding
alternate samples

To ensure full alias-free operation the analog anti-alias filter (set by the
INPUT:ALIAS:FILTER command) should be ON unless the application inherently
bandlimits the input signal to less than fs/2. The analog anti-alias filter has a fixed
bandwidth and thus is fully effective only when fs>=20 MHz. If a slower external
ADC clock is used, an additional analog filter of the appropriate bandwidth may be
required for full alias protection.

The decimation process used to reduce the output sample rate is driven from a
“decimation counter” which keeps track of which samples to save and which ones to
discard for each of the octave bandwidth reduction filter stages. In multi-module
systems where synchronous sampling is required, the decimation counters in all the
modules must be synchronous with each other. This condition can be forced by
using the FILTER:SYNC command.

The following table summarizes the relationship between data parameter
combinations, decimation, filter bandwidth, and whether the particular combination
permits block or continuous measurements:

Resolution Type Decimation Filter BW Block Continuous (s“;l:ﬂ:s::t;
16 Complex False Oor1 Yes No 80
32 Real False Oor1 Yes No 40
32 Complex True Oor1 Yes No 40
32 Complex False 2 Yes No 40
32 Complex False Oor1 No No 40
All other combinations Yes Yes <40

5-21

Example:

CAUTION

Reset Values

See Also

E1437A

ASCII Overview and Commands

FILTER:SETUP
command/query

Here are some bandwidth and sample rate results using the “k” calculation for

bandwidth:
Fs = 20.48 MHz default internal ADC clock
Signal Bandwidth Sample Rate

sigBw 25 Db 15 Db Decimation OFF Decimation ON

10.24
0 +/.37 +10.24 20.48 (see CAUTION|

1 +3.69 +5.12 20.48 10.24

2 +1.84 +7.56 10.24 5.12

3 +0.92 +1.28 5.12 2.56

4 +0.46 +(0.64 2.56 1.28

... Continue to decrease hy factors of two ...

Turning decimation ON when bw=0 results in aliasing (garbage data) due to
upper limit of the sampling frequency.

sigBbw=0, decimate=0OFF

CLOCK:FS?, FREQUENCY.SETUP, FILTER:SYNC, INPUT:ALIAS:FILTER,

DATA:MODE

5-22

Command Syntax:

Description:

Comments:

Example:

E1437A FILTER:SYNC
ASCII Overview and Commands command

FILTER:SYNC command

Synchronizes the decimation counter.

FILTER:SYNC

This command causes the digital decimation counter to be reset by the next SYNC
line rising transition. Any measurement in progress is terminated and the module is
placed in the idle state. By calling FILTER:SYNC for every E1437 module using a
shared ADC clock, and then calling MEAS:CONTROL to cause a SYNC transition,
the decimation counters will be started at the same time. Once this is done the
decimation counters will stay synchronized as long as the same ADC clock is used. It
is not necessary to resynchronize the decimation counters when the digital filter
bandwidths are changed.

If you also want to synchronize frequency or phase, see FREQUENCY:SETUP and
multi-module information .

The following example shows how to use this command while avoiding potential
conflicts and undefined conditions.

! Force all modules to Idle state
OUTPUT <addrAlls; “MEAS:CONTROL 1,0"
! Hold in IDLE to avoid undesired SYNC release */
! Release forced idle on all modules
OUTPUT <addrAlls; "MEAS:CONTROL 0,0"
!
! Wait for last module Sync/Idle Complete bit 7
REPEAT
OUTPUT <addrAlls;"STATUS?"
ENTER <addrAll>;Oper_status
UNTIL BIT (Oper_status,7)

! Put all modules into filter Sync mode

OUTPUT <addrAlls;"FILTER:SYNC"

|

|Assert & release sync to syncronize all modules
OUTPUT <addrMasters>; "MEAS:CONTROL 0, 1"

OUTPUT <addrMasters>; "MEAS:CONTROL 0,0"

IVerify Sync Valid on Master
REPEAT

OUTPUT <addrMasters; "STATUS?"

ENTER <addrMaster>;Oper_status
UNTIL BIT (Oper status,7)
!
! Toggle SYNC line to arm all modules
OUTPUT <addrMasters>; "MEAS:CONTROL 0, 1"
OUTPUT <addrMasters>; "MEAS:CONTROL 0,0"
!
!Allow trigger

5-23

NOTE

See Also:

E1437A FILTER:SYNC
ASCII Overview and Commands command

Resetting the decimation counter causes a transient in the digital filters. The
transient takes about 30 output sample periods to decay 120 dB. See the
impulse response graphs in the specification section for more detail.

FILTER:SETUP, MEAS:CONTROL, FREQUENCY:CMPLXDC

5-24

E1437A FREQUENCY:CENTER:RAW
ASCII Overview and Commands command/query

Command Syntax:

Query Syntax:

Example Statements:

Description:

Parameter Definitions:

See Also:

FREQUENCY:CENTER:RAW command/query

Provides a fast way to set the center frequency.

FREQUENCY:CENTER:RAW <coarse>, <fine>
coarse::=0 to 2047
fine::=0 to 499999999

FREQUENCY:CENTER:RAW?
OUTPUT 70924;'"FREQUENCY:CENTER:RAW 1024,1000000

This command sets the center frequency without relying on the internal E1437
microprocessor to do any floating point computations, since the internal
microprocessor does not have a floating point co-processor. The resulting center
frequency is:

fs*((coarse/2048)+(fine/1.024*10712))

sets high frequencies or a low resolution frequency component.

sets very low frequencies or a high resolution frequency component.

FREQUENCY:SETUP, CLOCK:FS:GET, DATA:TYPE, MEAS:CONTROL

5-25

Command Syntax:

Query Syntax:

Example statements:

Description:

E1437A FREQUENCY:SETUP
ASCII Overview and Commands command/query

FREQUENCY:SETUP command/query

Sets all the zoom center frequency parameters. This description also
includes information on the following commands which set or get frequency
parameters individually:

FREQUENCY:CMPLXDC selects a complex baseband measurement
FREQUENCY:CMPLXDC? gets the state of the baseband measurement mode
FREQUENCY:SYNC prepares the module for a synchronous frequency change
FREQUENCY:SYNC? gets the state of the synchronous change mode
FREQUENCY:CENTER sets the center frequency

FREQUENCY:CENTER? gets the current center frequency

FREQUENCY:SETUP <cmplxdc>,<sync>,<frequency>
cmplxdc:=0 | 1
sync::=0 | 1
frequency <numeric>
numeric::= —0.5 - +0.5
FREQUENCY:CMPLXDC 01
FREQUENCY:SYNC 0| 1
FREQUENCY:CENTER <numeric>

<numeric>:=—0.6 - +0.5

FREQUENCY:CMPLXDC?

FREQUENCY:SYNC?
FREQUENCY:CENTER?

OUTPUT 70924;"FREQUENCY:SETUP 1,0, 0.25"

OUTPUT 70924;"FREQUENCY:CENTER?"
ENTER 70924;Response$

FREQUENCY:SETUP sets the center frequency of a zoomed measurement. The
center of a frequency band of interest is converted to DC with this command. The
frequency transition is phase continuous unless the center frequency is set to zero
in which case the transition may be selected either to be phase continuous or phase
reset. This command may also be used to synchronously change frequency in
multiple-module systems.

5-26

Parameter Definitions:

Comments:

E1437A FREQUENCY:SETUP
ASCII Overview and Commands command/query

selects either a phase continuous or phase reset transition when the freq =
0. . The state of this parameter does not affect any transition where freq #0.
Whether the real or complex data is saved and ultimately sent to the output port is
determined by the DATA:TYPE command.

arameter
P cmplxde parameter definition
value
0 OFF causes phase to be reset to zero when combined with a frequency change to zero

ON combined with a frequency change to zero does not reset the phase, thereby

1 generating a complex DC measurement at baseband.

controls when a frequency transition is implemented.

parameter L
sync parameter definition
value
0 OFF allows an immediate frequency change.

ON. In multiple-module systems, setting this parameter ON prepares the modules for a
frequency change, but does not actually bring about the change until the next ADC clock
corresponding to the next assertion of the shared SYNC signal. The SYNC transition is
generated by calling the MEAS:CONTROL command. Note that returning sync to OFF
before the SYNC signal transition has occurred forces an immediate asynchronous
frequency change.

is a number between -0.5 and +0.5, which will be interpreted as a fraction of the
sample frequency. freq is the desired center frequency divided by the ADC sample
frequency. For example, selecting .25 with a sample clock frequency of 20 MHz will
yield a center frequency of 5.0 MHz. The ADC sample frequency is returned by the
CLOCK:FS? command. Negative frequencies select the negative image of the signal,
which is spectrally inverted from the input signal.

Although the freq parameter is a double floating point number, its effective
resolution is 1/(1024*1079) or 20 pHz when f5=20.48 MHz. The actual frequency will
be set to the nearest available value. This value is returned by the
FREQUENCY:CENTER? command. In multi-module systems this value represents
the pending value rather than the current value when a frequency change is
incomplete due to a pending SYNC signal transition.

In multiple-module systems it is often desirable to force the frequency change to
occur synchronously in order to preserve the phase relationship of the LOs. This is
accomplished by setting the sync parameter to ON for all the modules which are to
be changed. See the first example below.

In configurations involving synchronous operation of multiple E1437 modules, the
FREQUENCY:SETUP command provides a mechanism to force all LOs to the same
phase. This can be done by first setting the frequency to zero. See the second
example below.

5-27

Example:

Reset Values:

See Also

E1437A FREQUENCY:SETUP
ASCII Overview and Commands command/query

The following example shows how to synchronously change the center frequency
and maintain the phase relationship between modules in a multi-module system
without stopping a measurement in progress.

! For all ids, check status bits 0 and 1 to assure that all modules are in
MEASURE or IDLE

! state. Changing frequency on modules in TRIGGER or ARM states may risk
unintended

! frequency changes.

|

OUTPUT <addrAlls>;"status?"

ENTER <addrAlls;Responses

|

Ifor all ids, prepare all modules for a frequency change.

OUTPUT <addrAlls; "FREQUENCY:SETUP 0,1,0.25"

| Master module asserts and releases SYNC line to move all modules to the new
! center frequency

OUTPUT <addrMasters>; "MEAS:CONTROL 0, 1"

OUTPUT <addrMasters>; "MEAS:CONTROL 0,0"

The following example shows how to synchronously change the center frequency
and reset the phase for all modules in a multi-module system without stopping a
measurement in progress.

! For all ids, check status bits 0 and 1lto assure that all modules are in
MEASURE or IDLE
! state. Changing frequency on modules in TRIGGER or ARM states is invalid.
!
OUTPUT <addrAlls>;"status?"
ENTER <addrAlls;Response$
! .
! Prepare all modules to change to zero frequency and phase.
OUTPUT <addrAlls>; "FREQUENCY:SETUP 0,1,0.0"
! Master module asserts SYNC line to move all modules to the zero center
frequency and phase */
OUTPUT <addrMasters>; "MEAS:CONTROL 0, 1"
OUTPUT <addrMasters>; "MEAS:CONTROL 0,0"
! C.
IMaster module asserts SYNC line to move all modules to the zero center
frequency and phase */

! Prepare all modules for a frequency change
OUTPUT <addrAlls>; "FREQUENCY:SETUP 0,1,0.25"
! Master module asserts and releases SYNC line to move all modules to the new
center frequency
! while maintaining the phase
!
!Verify Sync Valid on Master
REPEAT

OUTPUT <addrMasters; "STATUS?"

ENTER <addrMasters>;Oper_status
UNTIL BIT (Oper_status,7)
|
OUTPUT <addrMasters>; "MEAS:CONTROL 0, 1"
OUTPUT <addrMasters>; "MEAS:CONTROL 0,0"

cmplaxdc=0FF, sync=0FF, freq=0

CLOCK:FS?, DATA:TYPE, CLOCK:MULTIL:SYNC, MEAS:CONTROL

5-28

Command Syntax:

Description:

NOTE

See Also

E1437A INPUT:AUTOZERO
ASCII Overview and Commands command

INPUT:AUTOZERO command

Nulls out the input DC offset voltage.

INPUT:AUTOZERO

INPUT:AUTOZERO updates a table of DC offset corrections to be used with each
input setup condition. The applicable correction from this table is automatically
added to the input offset parameter to achieve the correct DC offset value. Because
of the length of time needed to execute this command, it is not automatically called
when the module is reset. Thus, the user program is responsible for explicitly
initiating the autozero. This command should be called at least once after the
temperature of the module has stabilized. The interval between calls after that
depends on the importance of DC accuracy in the user application. It is not
necessary to call the autozero command for every change of input setup parameters
since the correction table maintains values for all setup conditions.

Calling INPUT:AUTOZERO aborts any measurement already in progress and
eliminates LO phase coherence and filter synchronization in a synchronous
multi-module system. See the FREQUENCY:SYNC and FILTER:SYNC
commands for details on how to re-establish LO phase and filter synchronization.

INPUT:SETUP, FREQUENCY:SYNC, FILTER:SYNC

5-29

E1437A INPUT:RANGE:AUTO
ASCII Overview and Commands command

Command Syntax:

Description:

Parameter definitions:

NOTE

See Also

INPUT:RANGE:AUTO command

Performs auto-ranging.

INPUT:RANGE:AUTO <sec>
sec::=<numeric>

numeric::=>0 seconds

This command sets the range of a E1437 to the lowest value that will not cause an
ADC overload to occur. The algorithm will start at the lowest range and move up
until there is no ADC overload.

is the time in seconds to take data at each range to insure that an overload is
detected. Setting this parameter to 0.0 will result in this time being set automatically
according to an algorithm that depends on block size and filter bandwidth.

An autorange that is pending or in progress will be aborted if an INPUT:RANGE
or another INPUT:RANGE:AUTO command is received.

INPUT:SETUP

5-30

Command Syntax:

Query Syntax:

Example Statements:

E1437A INPUT:SETUP
ASCII Overview and Commands command/query

INPUT:SETUP command/query

Sets all the analog input parameters. This description also includes
information on the following commands which set or query the input
parameters individually:

INPUT:ALIAS:FILTER selects the built-in analog anti-alias filter.
INPUT:ALIAS:FILTER? gets the anti-alias filter state
INPUT:COUPLING selects AC or DC input coupling.
INPUT:COUPLING? get the input coupling type

INPUT:FLOAT selects floating the input connector.
INPUT:FLOAT? gets the input connector state

INPUT:RANGE sets the full scale range.

INPUT:RANGE? gets the input range

INPUT:SIGNAL selects the input buffer amplifier.
INPUT:SIGNAL? gets the input buffer amplifier state

INPUT:SETUP <range>,<coupling>,<alias>,<signal>,<float>
range::=<numeric>
numeric::= INTEGERS 0 to 9
coupling::=0 | 1
alias:=0| 1
signal::=0 | 1
float::=0 | 1
INPUT:ALIAS 0 | 1
INPUT:COUPLING 0] 1
INPUT:FLOAT 0 1
INPUT:RANGE <numeric>
<numeric>::=0to 9 (integer)
INPUT:SIGNAL 0| 1

INPUT:ALIAS?

INPUT:COUPLING?
INPUT:FLOAT?
INPUT:RANGE?
INPUT:SIGNAL?

OUTPUT 70924;"Input:setup 5,1,1,1,0"
OUTPUT 70924;"input:signal?"

5-31

E1437A INPUT:SETUP
ASCII Overview and Commands command/query

Parameter Definitions: determines whether or not to use the built-in analog anti-alias filter. It is
recommended that the filter is always on to insure bandlimited, anti-aliased data.

parameter

alias parameter definition
value

0 OFF disables the anti-alias filter

1 ON inserts a sharp-cutoff (11-pole) 8 MHz lowpass filter ahead of the analog-to-digital
converter.

specifies the AC or DC coupling mode of the input. Using DC will connect
the input directly to the 50 Ohm buffer amplifier. AC inserts a 0.2 mF capacitor
between the input connector and the 50 Ohm buffer amplifier.

parameter . .
value coupling parameter definition
0 DC connects the input directly to the 50 Ohm buffer amplifier.
1 AC inserts a 0.2 uF capacitor between the input connector and the 50 Ohm buffer
amplifier.

determines whether or not to allow the outer shield of the input connector to
float relative to chassis ground. Using ON allows the connector to float in order to
reduce potential ground loop induced pick-up at low frequencies. Using OFF
disables floating by attaching the outer shield of the input connector directly to
chassis ground. See the specifications section for more details.

arameter
P value float parameter definition
0 OFF disables floating by attaching the outer shield of the input connector directly to
chassis ground. See the specifications section for more details.
1 ON allows the connector to float in order to reduce potential ground loop induced pick-up
at low frequencies.

is a range index number between 0 and 9 which is transformed to a full scale
voltage value. The corresponding discrete legal values of full scale vary from 0.02
volt to 10.24 volts with factor-of-two steps (.02 * 2”range). If range is greater than 9
the full scale value used is 10.24 volts. Non-integer values result in the next higher
range. Signal inputs with an absolute value larger than full scale generate an ADC
overflow error.

5-32

NOTE

Comments:

Reset Values:

See Also

E1437A INPUT:SETUP

ASCII Overview and Commands command/query
Range Full scale Full Scale dBm
voltage
0 .02 =24
1 .04 —18
2 .08 —12
3 16 —6
4 .32 0
) .64 4
6 1.28 12
7 2.56 18
8 5.12 24
9 10.24 30

If an INPUT:RANGE:AUTO command is pending or in progress it is aborted
when an INPUT:RANGE or INPUT_RANGE? command is received.
INPUT_RANGE? also returns an error if an autorange is pending or in progress.

determines whether or not the input signal is sent to the buffer amplifier.

parameter

signal parameter definition
value

OFF redirects the input signal to a dummy 50 Ohm load, and feeds the buffer amplifier

0 from an internally grounded 50 Ohm source resistance. The signal OFF setting is useful for
making reference measurements without the signal applied. When using AC coupling the

0.2 uF capacitor remains between the input connector and its 50 Ohm termination.

1 ON attaches the input signal to the 50 Ohm buffer amplifier.

To ensure full alias-free operation the analog anti-alias filter should be ON unless
the application inherently bandlimits the input signal to less than fs/2. The analog
anti-alias filter has a fixed bandwidth and thus is fully effective only when fs>20
MHz. If a slower external ADC clock is used, an additional analog filter of the
appropriate bandwidth may be required for full alias protection.

When using the analog anti-alias filter, the range parameter may need to be set
higher than the actual range of the input signal. The reason for this is that step
changes of input voltage cause an overshoot and ringing response at the output of
the anti-alias filter. The peak overshoot will actually exceed the input voltage step
by about 20%. The range setting must accommodate this overshoot to avoid an ADC
overflow.

range=10.24, coupling=DC, alitas=0N, signal=0N, float=0OFF

INPUT:RANGE:AUTO

5-33

E1437A INTERRUPT:RESTORE
ASCII Overview and Commands command

Command Syntax:

Example Statements:

Description:

See Also:

INTERRUPT:RESTORE command

Restores the interrupt masks to the setting last programmed with
INTERRUPT:SETUP.

INTERRUPT:RESTORE
OUTPUT 70924;"Interrupt:restore”"

The interrupt masks set by the INTERRUPT:SETUP function are cleared during the
interrupt acknowledge cycle. This function restores the cleared interrupt masks.

INTERRUPT:SETUP

5-34

Command Syntax:

Query Syntax:

Example Statements:

Description:

Parameter Definitions:

Comments:

Reset Values

See Also:

E1437A INTERRUPT:SETUP
ASCII Overview and Commands command/query

INTERRUPT:SETUP command/query

Sets all interrupt parameters. This description also includes information on
the following commands which query the interrupt parameters individually:

INTERRUPT:MASK? gets the interrupt event mask.
INTERRUPT:PRIORITY? gets the VME interrupt line.

INTERRUPT:SETUP <intrNum>,<priority>,<mask>
IntrNum::=0 | 1
priority::=0to 7
mask::=0 to 255

INTERRUPT:MASK?
INTERRUPT:PRIORITY?

OUTPUT 70924;"Interrupt:setup 0,5,24"
OUTPUT 70924;"INTERRUPT:MASK?"

An E1437 has two independent interrupt generators, each capable of interrupting
on one of the seven VME interrupt lines when a status condition specified by a mask
occurs.

INTERRUPT:SETUP sets the interrupt mask, priority and which of the two interrupt
generators on the £E1437 is to be used. The remaining INTERRUPT commands set or
query the mask and priority individually.

is the number of the interrupt generator. The only values accepted are 0
and 1.

specifies the mask of events on which to interrupt. This mask is created by
ORing together the bits defined in bits 8 through 15 of the status register. The mask
parameter format is 0xMMOO where MM represents the maskable upper 8 bits. The
lower 8 bits cannot be used for generating interrupts, and therefore must be set to
zero in the function call.

specifies which of the seven VME interrupt lines to use. The only legal
values are 0 through 7. Specifying 0 turns the interrupt off, while 7 is the highest
priority.

The mask is cleared during the interrupt acknowledge cycle. Therefore, the
command must be sent again in order to generate further interrupts.

priority=0, mask=0

STATUS?

5-35

Command Syntax:

Query Syntax:

Example Statements:

Description:

Parameter Definitions:

Reset Values:

See Also:

E1437A LBUS:MODE
ASCII Overview and Commands command/query
LBUS:MODE command/query

Set and query local bus mode.

LBUS:MODE <mode>
mode::=0 | 1 | 2 | 3

LBUS:MODE?

OUTPUT 70924;"Lbus:Mode 2"

LBUS:MODE sets the local bus to either generate, append, insert or pipeline data.
The data port must be set to the local bus with the DATA:PORT command before

these modes take effect.

selects the transmission mode of the local bus when it is enabled by the
DATA:PORT command. The state of this parameter is unaffected by switching back
and forth between the local bus and the VME backplane with the DATA:PORT

command.
pa‘l;zll:(;ter mode parameter definition

0 PIPELINE causes the E1437 to pipe data through from modules on its left without
appending or inserting its own data.

1 GENERATE forces the module addressed to generate data only, not passing through data
from other modules on the local bus

9 APPEND causes the E1437 to pass through data from modules on its left and append its
data to the end

3 INSERT causes the E1437 to place its data on the local bus and then pass through data
from modules on its left.

Module(s) to Left

HP E1437

Module to Right

INSERT APPEND

GENERATE f A

PIPELINE

lbusMode=PIPELINE

DATA:PORT

5-36

Command Syntax:

Query Syntax:

Example Statements:

Description:

Parameter Definitions:

Example:

Reset Values

E1437A LBUS:RESET
ASCII Overview and Commands command/query

LBUS:RESET command/query

Resets local bus. Gets the current local bus reset state.

LBUS:RESET <reset>

reset::=0 | 1
LBUS:RESET ?
OUTPUT 70924;"Lbus:reset 1"

In order to avoid glitches in the local bus data, the local bus interface has strict
requirements as to the order in which modules in a VXI mainframe have their local
bus interface reset. Upon powerup or whenever any single module in the mainframe
is put into a reset state, all modules should be placed into the reset state from left to
right. Then all modules can be take out of reset from left to right.

puts the E1437’s local bus into reset or takes it out of reset.

parameter L
reset parameter definition
value
0 OFF takes the E1437 out of reset
1 ON puts the E1437's local bus into reset.

When E1437s are used with the E1485 measurement controller, the E1485 must be
reset while all of the E1437s are being held in reset to avoid initial glitches in the
local bus data. The E1437s should be taken out of reset only after the first
MEAS:CONTROL release is issued. The correct way to reset the local bus is as
follows:
! For all modules hold HP E1437s in reset

OUTPUT <addrAlls>;"Lbus:Reset 1"
! Reset the E1485 lbus

OUTPUT <id1485>; "LBUS:CONTROL 1,0"
! Set desired LBUS mode for all modules

!
e aaeee.,
!
! For all id first arming
OUTPUT <addrAlls>; "Meas:control 0,1"

! Remove reset from HP E1437s, has no effect after first time
OUTPUT <addrAlls>;"Lbus:Reset 0"

reset=0ON

5-37

E1437A MEAS:CONTROL
ASCII Overview and Commands command

Command Syntax:

Example Statements:

Description:

Parameter Definitions:

MEAS:CONTROL command

Initiates and controls measurements in a multi-module system.

MEAS:CONTROL <idle>,<sync>
idle:=0]1
sync::=0 | 1

OUTPUT 70924;"Meas:Control 1,0"
MEAS:CONTROL explicitly controls the measurement state.

selects the condition of the IDLE state.

parameter idle parameter definition
value
0 RELEASE reverses a previous HPE1437 ASSERT or ensures that no forced IDLE is active.
1 ASSERT holds the module in the IDLE state.

MEAS:CONTROL also changes the state of the SYNC signal, which is used to arm or
trigger an E1437 module. In systems containing multiple E1437 modules the SYNC
signal is used to arm or trigger all modules simultaneously, and also to synchronize
decimation counters and local oscillators among the E1437 modules.

selects the state of the sync signal. ASSERT causes the module to assert the
SYNC signal. RELEASE causes the module to release the SYNC signal. When the
sync parameter of the CLOCK:SETUP command is set to FRONT or REAR, the
SYNC signal is shared with other E1437 modules. If any one of these modules
asserts this shared SYNC signal then it becomes asserted for all of them. All modules
must release it before the shared SYNC signal is released. Asserting then releasing
the SYNC line is used to start a measurement, load local oscillator values, or take a
digital filter out of reset. These situations require a SYNC line transition but do not
require that the SYNC line be held in a asserted state.

parameter -
sync parameter definition
value
0 RELEASE causes the module to release the SYNC signal.
1 ASSERT causes the module to assert the SYNC signal.

5-38

NOTE

Comments:

E1437A MEAS:CONTROL
ASCII Overview and Commands command

When the SYNC line is asserted, it will remain asserted for an adequate number
of ADC clock cycles to ensure that the signal effect will have propagated to all
the modules in the system. You can determine when the command is completed
by looking as the Sync/Idle Complete bit in the Status Register.

See The Measurement Loop section for details on how a measurement progresses
through the four states.

Special conditions prevail during the Measure state. If programmed for block mode
operation in the Measure state, the module will assert the SYNC signal (regardless of
the MEAS:CONTROL sync parameter setting) until a complete block of data has
been collected and is available to the I/0 port. When the shared SYNC signal is
released, indicating that all block mode data collection is finished, all block mode
modules move synchronously to the idle state. In continuous mode the module
releases the SYNC signal immediately after moving into the measure state. This
allows the MEAS:CONTROL command to manipulate the SYNC signal to cause
synchronous changes to LO frequency while a continuous measurement is in
progress. In continuous mode a module moves to the idle state only if explicitly
programmed to do so or whenever the FIFO data buffer overflows.

In addition to controlling the progression through the four module states, the SYNC
signal is used to allow for synchronizing the decimation counters and local
oscillators of multiple E1437 modules. This is done by calling FILTER:SYNC and/or
FREQUENCY:SYNC prior to asserting SYNC with MEAS:CONTROL. This is normally
done with the module in the IDLE state; however, the center frequency can also be
changed in the Measure state with FREQUENCY:SYNC if the modules are all
programmed for continuous (non-block mode) data collection.

If all modules in a multi-module system are in the idle state when the
MEAS:CONTROL sync parameter is asserted, the LO frequency will be updated and
the next measurement will be armed. If all modules are in the measurement state in
continuous mode, the LO frequency will be synchronously updated, and the
measurement will continue. In continuous mode care must be taken to ensure that
all modules are in the same state, either the idle state or the measure state, before
using MEAS:CONTROL to assert SYNC. Otherwise some modules will re-arm while
others will continue the current measurement. In block mode the sync assertion will
be ignored unless all modules are currently in the idle state.

In the case of systems made up of multiple mainframes you must be aware that only
modules in mainframe A may assert sync. Any sync asserted in other mainframes is
ignored.

5-39

Example:

Reset Values:

See Also:

E1437A MEAS:CONTROL
ASCII Overview and Commands command

The following example shows how to initiate a measurement in a typical
multi-module system

! Place all HP E1437s in IDLE
OUTPUT <addrAlls; "MEAS:CONTROL 1,0"

! Take all HP E1437s out of IDLE
OUTPUT <addrAlls; "MEAS:CONTROL 0,0"

! Check for Sync/Idle complete on last module (if decimation is synchronous) ;
! Check all modules if decimation is not synchronous.
OUTPUT <addrAlls;"Status?
ENTER <addrAll> Result$
! Assert SYNC on master module to arm all modules
OUTPUT <addrMasters>; "MEAS:CONTROL 0, 1"
!
IRelease SYNC to allow triggering by any module
OUTPUT <addrMasters>; "MEAS:CONTROL 0,0"

1dle=RELEASE, sync=RELEASE

STATUS?, DATA:SETUP, FILTER:SYNC, FREQUENCY:SYNC, CLOCK:SETUP

5-40

E1437A MEAS:START
ASCII Overview and Commands command

Command Syntax:

Example Statements:

Description:

Comments:

Example:

See Also:

MEAS:START command

Initiates a measurement in single-module systems.

MEAS:START
OUTPUT 70924;"meas:start"

MEAS:START provides an easy way to initiate a measurement in a single module
system. This command moves the module through the IDLE state and the SYNC
state while checking the status to assure a valid state.

See The Measurement Loop section for details on how a measurement progresses
through the four states.

The meas:start command also checks status to assure that the module is in a valid
state

This example illustrates a simple measurement in a single module system

! Start a measurement
OUTPUT <addr>; "MEAS:START"
! Read data
OUTPUT <addr>; "READ"
ENTER <addr>;Result$

STATUS?, CLOCK:SETUP

5-41

E1437A READ?
ASCII Overview and Commands query

Query Syntax:

Example Statements:

Description:

See Also:

READ? query

Reads scaled data from FIFO

READ?<samples>

samples::=1to 8
OUTPUT 70924;"READ? 4"

This command returns a block of floating point data from the E1437 that has been
scaled to be in volts. The number of samples designated to be read must account for
variations in blocksize, data type and resolution.

Data is returned as an ASCII string with points separated by commas. You can read
up to 4 complex points or 8 real points per read command.

This command can only read data from the VME backplane register. The data port
of the E1437 must be set to VME by the DATA:PORT command for this command to
be effective. To read data using the local bus in an E1485 environment, see the
documentation for local bus data transfers in the E1485 documentation package.

DATA:PORT, DATA:BLOCKSIZE

5-42

E1437A RESET
ASCII Overview and Commands command

Command Syntax:

Example Statements:

Description:

RESET command

Places the module in a known state.
RESET

OUTPUT 70924;"Reset"

This command returns the module and its internal data structures to the power-up
state.

The reset values are listed with each command description.

The following are not affected by this command:

e Calibration constants

5-43

E1437A REVISION?
ASCII Overview and Commands query

Query Syntax:

Example Statements:

Parameter Definitions:

Return Format:

See Also

REVISION? query

Returns strings that identify the date of the firmware revision

REVISION?

OUTPUT 70924;"revision?"
ENTER 70924;rev$

This command returns the date, time, and board number of the module’s firmware
revision

<swrev(O:swrevl:board#>

*IDN?

5-44

Query Syntax:

Example Statements:

Parameter Definitions:

E1437A STATUS?
ASCII Overview and Commands query

STATUS? query

Reads Status Register information for the module.

STATUS?

OUTPUT 70924;"Status?
ENTER 70924;Result$

Result$ contains the status word. The bits are defined below:

1-0 State: These two bits indicate the current state of the measurement loop as shown
in the table below. See the Measurement Loop section for more information about the
states

Bits State

11 Trigger
10 Measure
01 Arm

00 Idle

2 Passed: This bit is always set to 1.

3 Ready: This bit is set whenever the module is operating as a message-based device
and is set for Normal operation. See the VXIbus Specifications for more information on
the Normal configuration sub-state.

4 ADC Error: This bit is set whenever a hardware error is detected in the ADC. The bit
is cleared when the Status register is read.

5 Ext Clk Speed: This bit is set when a measurement has been aborted because the
external clock is too fast (over 20.48 MHz) with respect to the DSP clock. This situation
only occurs when a fast external ADC clock is used with an internal oscillator DSP clock.
This bit is cleared with the first subsequent read.

6 Setup error: An invalid parameter value was requested. If an invalid block size was
requested, the closest valid block size is used until a change to an interrelated parameter
makes the requested block size valid. If a data resolution, data type, filter bandwidth, or
filter decimation parameter was requested which would result in an inability to make a
measurement, the previous valid parameter is used until a change to an interrelated
parameter makes the requested parameter valid.

7 Sync/Idle Complete: This bit is set when the most recent user-initiated SYNC or IDLE
change has propagated through to all modules in a system. The change is a result of
asserting SYNC or forcing IDLE via the Control Register or issuing a MEAS:CONTROL
command.

5-45

E1437A STATUS?
ASCII Overview and Commands query

8 Read Valid: This flag is set whenever there is at least one valid 16-bit data word
available to be read via the Data register.

9 Measure Done: This bit is set in continuous mode whenever the size of the data in the
FIFO is equal to or greater than the block size register. Check this bit before reading
data to insure that a block of data may be transferred without fear of running out of data,
thereby holding up the Local bus or VME bus. This bit is set in block mode whenever the
module has successfully taken a block size number of samples since the most recent
trigger

10 Armed: This bit is set whenever the module is in the Trigger state, or is in the Arm
state and has satisfied its pre-trigger requirements. When this bit is set, the module
releases the VXI SYNC line. Once all modules release the SYNC line, then all modules go
to the Trigger state.

11 FIFO Overflow: This bit set when the FIFO buffer overflows in continuous mode.

12 Overload: This bit is set whenever the ADC converts a sample that exceeds the
range of the ADC. The bit is cleared when the Status register is read. Repeated ADC
errors may indicate that the module should be recalibrated.

13 Error: This bit is set whenever there is an error in the error queue. It is cleared when
the error queue is empty.

14 ModID*: A (1) in this field indicates that the module is not selected via the P2
MODID line. A (0) indicates that the module is selected by a high state on the P2
MODID line.

15 Hardware Set: This bit is set when all commands are complete and the hardware has
been set.

5-46

Query Syntax:

Example Statements:

Parameter Definitions:

See Also:

E1437A TRIGGER:DELAY:ACTUAL?
ASCII Overview and Commands query

TRIGGER:DELAY:ACTUAL? query

Returns the actual trigger delay from the most recent trigger event.

TRIGGER:DELAY:ACTUAL?

OUTPUT 70924;"trigger:delay:actual?
ENTER 70924;Result$

Result$ contains the returned actual delay from the most recent trigger event and
the resulting first output sample time. This delay value provides more accuracy than
the delay parameter alone since it includes a measurement of the fractional part of
the output sample period between the actual trigger event and the next available
output sample. The trigger delay accuracy improves to one ADC sample clock period
rather than one output sample period. This can result in a substantial improvement
in accuracy when narrow bandwidth decimation filtering is used. The this command
must be sent for each new trigger event that requires precise delay measurement.
The actual delay is still expressed in output sample periods, however, it can take on
non-integer values.

TRIGGER:SETUP

5-47

E1437A TRIGGER:PHASE:ACTUAL?
ASCII Overview and Commands query

Query Syntax:

Example Statements:

Parameter Definitions:

See Also:

TRIGGER:PHASE:ACTUAL? query

Returns a representation of the phase value of the LO at the trigger point.
TRIGGER:PHASE:ACTUAL?

OUTPUT 70924;"trigger:phase:actual?
ENTER 70924;Result$

Result$ contains the returned value interpreted as follows:

0<=value< 1.0

where 0 => 0 degrees
.25 => 90 degrees
.5 => 180 degrees

TRIGGER:SETUP, TRIGGER:PHASE:CAPTURE

5-48

E1437A TRIGGER:PHASE:CAPTURE
ASCII Overview and Commands command

Command Syntax:

Example Statements:

Description:

See Also:

TRIGGER:PHASE:CAPTURE command

Prepares for LO phase capture in frequency-synchronized, multiple-module
Z0OoIn measurements.

TRIGGER:PHASE:CAPTURE
OUTPUT 70924;"trigger:phase:Capture

Use this function if you intend to subsequently use TRIGGER:DELAY:ACTUAL? to
capture the LO phase on the next SYNC assertion. You should send
TRIGGER:DELAY:CAPTURE to only one module in the system (typically the
master) after you have completed all frequency and filter setup functions, since
those functions take the module out of the phase_capture mode. Therefore, you
should call TRIGGER:DELAY:CAPTURE just prior to starting the measurement.

When the FREQUENCY:SYNC mode is turned off, the TRIGGER:DELAY:CAPTURE
function is not needed because the module will revert to the phase:capture mode by
default.

TRIGGER:PHASE:ACTUAL?, TRIGGER_SETUP

5-49

E1437A TRIGGER:SETUP
ASCII Overview and Commands command/query

Command syntax:

TRIGGER:SETUP command/query

Sets all trigger parameters. This description also includes information on the
following commands which set or query the trigger parameters individually:

TRIGGER:ADCLEVEL specifies the trigger threshold for an ADC trigger.
TRIGGER:ADCLEVEL? gets the ADC trigger threshold
TRIGGER:DELAY specifies a pre- or post-trigger delay time.
TRIGGER:DELAY? gets the trigger delay time

TRIGGER:GEN determines whether a module can generate a trigger.
TRIGGER:GEN? gets the trigger generation status
TRIGGER:MAGLEVEL specifies the trigger threshold for a magnitude trigger.
TRIGGER:MAGLEVEL? gets magnitude trigger threshold
TRIGGER:SLOPE selects a positive or negative trigger.
TRIGGER:SLOPE? gets trigger slope

TRIGGER:TYPE determines the trigger type.

TRIGGER:TYPE? gets trigger type

TRIGGER:SETUP <type>,<delay>,<adclevel> <maglevel> <slope>,<gen>
type:=0[1]2(3]4
delay <numeric>
numeric::=0 to 6,777,216 sample periods
adclevel <numeric>
numeric::= —256 to +255
maglevel <numeric>
numeric::= —349 to 19
slope::=0 | 1
gen::=0 |1
TRIGGER:ADCLEVEL <numeric>
numeric::= —256 to +255
TRIGGER:DELAY <numeric>
numeric::=0 to 6,777,216 sample periods
TRIGGER:GEN 01
TRIGGER:MAGLEVEL <numeric>
numeric::= —349 to 19
TRIGGER:SLOPE 0| 1
TRIGGER:TYPE 0]1(2(3(4

5-50

Query syntax:

Example Statement:

Description:

Parameter Definitions:

E1437A TRIGGER:SETUP
ASCII Overview and Commands command/query

TRIGGER:ADCLEVEL?

TRIGGER:DELAY?
TRIGGER:GEN?
TRIGGER:MAGLEVEL?
TRIGGER:SLOPE?
TRIGGER:TYPE?

OUTPUT 70924;"Trigger:setup 1,256,25.6,0,0,1"
OUTPUT 70924;"trigger:type?"

An E1437 can be triggered to collect data in a variety of ways. The trigger can be
internally generated or can come from an external source. Multiple modules can be
triggered synchronously. A variable pre- and post-trigger delay can be programmed
for data collection. The slope and level of the trigger point on a signal can be
selected. The source of the internal trigger can be either the output of the ADC or
the magnitude of the complex output of the decimation filter.

TRIGGER:SETUP is the command that sets all trigger parameters at once. An E1437
will generate a trigger only when it is in the TRIGGER state and the SYNC line on
the VXI backplane is released. When a trigger is generated, the E1437 will release
the SYNC line.

determines the trigger source.

parameter

t ter definiti
value ype parameter definition

USER disables the module from any event-driven trigger generation though it is still
possible to force the module to trigger a measurement by pulling the SYNC line once the
0 module is in the trigger state. You may do this by calling the MEAS:START function,
waiting for the module to reach the trigger state, then triggering the measurement by
using MEAS:CONTROL to pull the SYNC line.

1 ADC generates a trigger based on the raw data samples from the ADC

9 EXTERNAL uses transitions on the signal applied to the BNC external trigger connector on
the front panel.

MAG generates a trigger based on the log magnitude of the signal after it has been

3 filtered to a selectable bandwidth around the center frequency established by the
FREQUENCY:SETUP function.
4 IMMEDIATE triggers a measurement immediately upon entering the trigger state.

5-51

NOTE

E1437A TRIGGER:SETUP
ASCII Overview and Commands command/query

In multi-module systems all modules should be of the same type in order to have
the same actual delay.

is the time delay, in units of output samples, between when a trigger is
received and the first data point in the output data. Negative values indicate a
pre-trigger condition, where samples prior to the trigger event are included in the
output data. The amount of pre-trigger delay is limited to the number of samples
which can be saved in the 8 Mbyte buffer memory. See the DATA:SETUP command
description for the number of bytes used per sample. Valid values depend on
data type as follows:

Trigger Delay
(DRAM size in bytes)
. 32 bit real .
32 bit complex 16 bit complex 16 bit real
Post-trigger 16,777,116 33,554,332 67,108,764
Pre-trigger 132 — DRAMsize/8 164 — DRAMSsize/4 228 — DRAMsize/2

If delay is <132 — DRAMsize/8 or > 16777116 the software will set a bad parameter error. However,
the delay is still programmed in order to accommodate valid setups for other data types for which larger
values are valid..

adclevel is used to set the triggering signal threshold when using the ADC trigger
source. This threshold is (full scale * adclevel/256), where -256 < adclevel < 255.

There is hysteresis around the threshold in order to prevent multiple triggers from a
single threshold crossing.

is used to set the triggering threshold when using the mag trigger source.
The threshold is (+0.3762874 * maglevel)dB relative to full scale signal, where -349
<maglevel < 19.

selects the edge of the trigger source on which a trigger occurs.

parameter slope parameter definition
value
0 POSITIVE sets triggering on the positive slope
1 NEGATIVE sets triggering on the negative slope

5-52

E1437A TRIGGER:SETUP
ASCII Overview and Commands command/query

determines whether a module may generate a trigger.

parameter -
gen parameter definition
value
0 OFF disables triggering. This is useful in multi-module systems with the same trigger type
where you want only certain module(s) to generate a trigger.
1 ON enables triggering
Reset Values: type=IMMEDIATE, delay=0, adclevel=0, maglevel=—128, slope=POSITIVE,
gen=0N
See Also: FREQUENCY:SETUP, DATA:SETUP, FILTER:DECIMATE, MEAS:START,

MEAS:CONTROL, TRIGGER:DELAY:ACTUAL?

5-53

Module Description

6-1

E1437A User's Guide
Module Description

Front Panel Description

LED lights when the module is
being accessed via the VXI backplane

Sync extenders are used to extend the
sync line from one mainframe or

module to another. It is an SMB connector
for ECL levels and must terminated in

50 ohms at each end of the chain

This is BNCinput for voltage steps
which can be used to trigger the
acquisition of a block of data

ek

20MSa/s ADC+
FILTER + FIFO

Access Overload

(o))

LED lights whenever the input range is

Sync

[
8
H
g
<
S
&
L
g
k5
1

Ext Clock

—

Ext Trigger

BVrms Max

E1437A

exceeded, producing an overload in the ADC

Clock Extenders are used to extend the
sample clock from one mainframe or
module to another. It is an SMB connector
for ECL levels and must terminated in

50 ohms at each end of the chain

This is a BNCinput for TTL, ECL, or sine
wave signals which can be used as the
ADC sample clock

This is the main input to the ADC. Itis a
psuedo-floating single-ended input
terminated into 50 ohms

6-2

E1437A User's Guide
Module Description

VXI Backplane Connections

Power Supplies and Ground

The E1437A conforms to the VME and VXI specifications for pin assignment. The
current drawn from each supply is given in Technical Specifications.

Data Transfer Bus

The E1437A conforms to the VME and VXI specifications for pin assignment and
protocol. Only A16/D16 data transfers are supported. Thus the upper address and
data bits are ignored.

DTB Arbitration Bus

The E1437A module is not capable of requesting bus control. Thus it does not use
the Arbitration bus. To conform to the VME and VXI specifications, it passes the bus
lines through.

Priority Interrupt Bus

The E1437A generates interrupts by applying a programmable mask to its status
bits. The priority of the interrupt is determined by the interrupt priority setting in
the control register.

Utility Bus

The VME specification provides a set of lines collectively called the utility bus. Of
these lines, the E1437A only uses the SYSRESET* line.

Pulling the SYSRESET* line low (a hardware reset) has the same effect as setting
the reset bit in the Control Register (a software reset), with two exceptions. The
exceptions are:

e The Control Register is also reset.

e All logic arrays are reloaded.

Reloading the logic arrays enables the hardware reset to recover from power
dropouts which may invalidate the logic setup.

Local Bus

The VXI specification includes a 12-wire local bus between adjacent module slots.
Using the local bus, Hewlett-Packard has defined a standard byte-wide ECL protocol
that transfers data from left to right at up to 100 Mbyte/s. The E1437A can be
programmed to output its data using this high speed port instead of the VME data
output register. The Data Port Control register determines which output port is
used.

6-3

E1437A User's Guide
Module Description

Trigger Lines

The VXI specification provides 8 TTL and 2 ECL trigger lines which can be used for
module-specific signaling. When programmed in a multi-input configuration, the
E1437A uses the ECL trigger lines, designating ECLTRGO as the SYNC line and
ECLTRG1 as the ADC sample clock (CLOCK). These lines can be extended to other
mainframes using the SMB connectors on the front panel. The SMB connectors can
also be used for intermodule synchonization within a mainframe, leaving the ECL
trigger lines free for other purposes.

The CLOCK line is the master ADC clock for a synchronous system of multiple
E1437A modules. Only one E1437A module in each mainframe is allowed to drive
this line.

The SYNC line is used to send timing signals among E1437A modules in a
multi-input system. Any module which drives this line must do so synchronously
with CLOCK so that transitions on SYNC do not occur near the rising edge of
CLOCK. This ensures that all modules with a synchronous state machine clocked on
CLOCK will interpret SYNC in a consistent manner for each cycle of the state
machine. SYNC is used for synchronizing, arming, and triggering signals between
E1437A modules. The interpretation of the SYNC line is dependent on the states of
the module described in the Measurement Loop section. The E1437A module is also
capable of controlling the SYNC line synchronously via the control register.

6-4

E1437A User's Guide

Module Description

Block Diagram and Description

Descriptions of sections in the diagram below appear on the following pages.

HP E1437 Block Diagram
In Clock to/from A
Clock other modules
Extender A -
Out
v
External Clock
Clock Generation
A
Analog > AnIll;) I])j}liter/ il > Anti-Alias > Sampling Control
Input Attenuators Filter ADC Register J ’
<
Local Bus ad
g
v/ d E
00m and
P Decimation > B Datti. R 4 MeFIFO » O?I:ta t %
Filtering 'ormatting mory pu
A
Send Data o
Register
A 4
External p| Trigger
Trigger Detection Trigger
In
¢ A
Sync < >
Extender Sync to/from
Oult other modules v

6-5

E1437A User's Guide
Module Description

Clock Generation

The usual source for a clock signal is the 20 MHz or the 20.48 MHz crystal oscillator
inside the E1437A. However, the E1437A can also accept an external clock signal
through a front-panel BNC (“Ext Clock”). This signal can be TTL, ECL, or sine wave.

In a system using more than one E1437A, the ADCs can be synchronized by
programming them to use a common ECL line on the backplane. One of the modules
can be the clock master that drives this line. This master clock can be extended to
other mainframes by connecting a “Clock” SMB connector to a “Clock” SMB
connector on an E1437A in the second mainframe.

HP E1437A Clock Generation

; Zoom,
_ Agallg?é;‘) Filters,
ster Converter FIFO
SMB
Extenders 0o |4 Multi- A 4
Module
Sync
ON DSP
»—o /D Clock
So
ADCCock |yl o "o e
Source A
—O
o
20.0 MHz
or Internal Clock
20.48 Mhz
.
Input Amplifier

The input amplifier provides an input termination which maintains good flatness to
8 MHz. The gain/attenuation of the input amplifier is programmable.

Under program control, the input signal can be ac coupled. This allows the system to
measure low level ac signals in the presence of a large dc offset. .

Anti-alias Filter

Since the normal ADC sample rate is 20 MHz, a complete representation of the input
signal can be achieved only for bandwidths up to 10 MHz. Frequency components
above 10 MHz can cause ambiguous results (aliasing).

The anti-alias filter attenuates these high frequency components to reduce aliasing.
The anti-alias filter in the E1437A is flat to 8 MHz and rejects signals above 12 MHz
by at least 100 dB. Thus the 0-8 MHz frequency range of the sampled signal will be

alias free. The filter’s transition band from 8 MHz to 12 MHz will affect flatness and
allow some aliasing in the sampled signal frequency range of 8 MHz-10 MHz.

6-6

E1437A User's Guide
Module Description

In cases where alias filtering is not necessary the E1437A can be programmed to
bypass the anti-alias filter. This allows the system to take advantage of the full 40
MHz sampler bandwidth. To avoid incorrect results, the alias filter bypass mode
should be used with caution; it is not recommended for normal operation.

Sampling ADC

The heart of the E1437A is a precision Analog-to-Digital Converter (ADC). The ADC
generates 23 bit outputs at a sample rate up to 20.48 MHz. It has very low noise
density and very low distortion levels.

Zoom and Decimation Filtering

This section uses digital circuitry to allow programmable changes in the center
frequency and signal bandwidth of the E1437A (zoom). This is done at high speed
for real-time operation.

Bandwidth is controlled by a chain of digital low-pass filters (see the diagram
below). Each of the filters reduces the bandwidth by a factor of two (decimation).
With the ADC sample rate (F's) set to the standard internal 20.48 MHz rate, the
bandwidth choices are 10 MHz, 5 MHz, 2.5 MHz,...0.289 Hz around the programmed
local-oscillator (LO) frequency.

Real and imaginary components of the signal are each computed to 32-bit precision,
so the complex output of the decimation filtering block contains 64 bits. Whether or
not all of these bits are stored in memory is programmable.

Zoom and Decimation Filtering

> @ + p = Fs/8 » = | pee
Pl Fsi4 Decimate s Decimate | FS/2
Local
Oscillator ‘ ‘
32
Input —— Real
from B DATA OUTPUT SELECTION AND MULTTPLEXING »
—+— Imag
90° ‘ k
Phase Shift|
- i 26 > 2x 2x o
L P Fsia Decimate Fs/8 R Decimate s/

6-7

E1437A User's Guide
Module Description

Data Formatting and FIFO Memory

The E1437A can be programmed to save the real component of the signal or to save
the complete complex signal. The data precision can be set to 16 bits or 32 bits.
Thus, each sample will occupy from two to eight bytes of memory in the FIFO. The
data formatting block packs the selected data into 64-bit words which are stored in
the FIFO memory. Since the standard FIFO depth is 1-Mword (8 MByte), it is
possible to hold up to 4-Msamples in memory at one time.

The memory may be configured either in block mode or in continuous mode. In
block mode, data collection initiated by a trigger will proceed until a specified block
length is captured. The measurement is then paused so that the data can be read
out. Before a new block can be collected, the module must be re-armed and
triggered again. This mode is useful in capturing single transient events or whenever
the output data rate is too high to be read and processed in real time.

In continuous mode, data collection is initiated by a trigger and will continue as long
as the FIFO does not overflow. Data may be read out of the memory while the
measurement is in progress. If the reading of data is sufficiently fast, the FIFO will
never overflow and the measurement will continue indefinitely. If the FIFO should
ever overflow then the measurement will stop and wait for data to be read out, the
measurement to be re-armed, and a new trigger. This mode of operation is useful for
real-time applications that employ a high speed signal processor to continuously
read and operate on each sample of data. Data can be read from the FIFO in bursts
to accommodate pauses for such things as disk access times or block mode
computations.

The effective trigger time may be offset from the actual trigger event by
programming a trigger timing offset. See the Technical Specifications for the limits
of the pre-trigger and post-trigger offset.

Data Output

There are two ways to output data from the E1437A: by way of the VXI backplane or
by way of the local bus.

To use the VXI backplane, the E1437A can be programmed so that the output of the
FIFO is sent to the Send Data register. Each 64-bit portion of the FIFO memory is
sent to the 16-bit register as four separate words. The register can then be read by
any controller compatible with the VME standard. Maximum data flow is about 2
MB/s.

The local bus allows data transfers over a high speed 8-bit ECL bus to an adjacent
module (to the right) in the VXI mainframe. Multiple adjacent E1437A modules can
send data to one signal processor module. The signal processor must be one which
supports the Hewlett-Packard ECL local bus protocol, such as the E1485A/B. In
addition to higher speed (up to 40 MB/s), the local bus has the advantage that data
can be output at the same time that control signals are being sent over the VXI
backplane.

In both of the data output modes, the samples must be read out sequentially, offset
by the trigger delay.

6-8

E1437A User's Guide
Module Description

Trigger Detection

The trigger event used to start a measurement can be generated in five different
ways:

e Software trigger
e [External

e ADC threshold
® [og-magnitude
e Immediate

All triggering modes support slope selection. In ADC or log-magnitude mode the
trigger threshold can be specified with hysteresis to prevent noise-generated
triggers of the wrong slope. Log-magnitude triggering is based on the magnitude of
the complex signal after zooming and filtering.

For external mode, a trigger signal must be supplied at the “Ext Trigger” connector
on the front panel. Any signal with a sharp rising or falling transition greater than
100 mV (i.e. TTL or ECL) can be used as an external trigger source.

Any E1437A module can trigger other E1437A modules using a shared sync line on
the VXI backplane. This SYNC line can be extended to other mainframes by
connecting a “Sync” SMB connector to a “Sync” SMB connector on a E1437A in the
second mainframe. All modules in a synchronous system are triggered on the same
ADC sample.

The E1437A hardware samples the trigger source once every sample clock, so the
trigger condition must be present for at least one sample clock in order to be
recognized.

Control Registers

The E1437A module is controlled by firmware using registers mapped into the 16-bit
VXTI address space. There are 24 writable and 18 readable registers, each has 16 bits.
The control registers are not user accessible.

6-9

Verifying the E1437A

7-1

E1437A User's Guide
To verify the E1437A

To verify the E1437A

You may perform a quick verification of the basic functions of the E1437A by
performing the built-in self-test function. The self-test verifies the following;:

e Digital filtering, zooming, and decimation at full scale voltage range
e Front-end noise specification

e Front-end levels associated with the analog-to-digital converter

e Integrity of the installed memory including all memory options

e Autozero and input triggering
The test is available as:

e the hpel437_self_test function for Windows VXIplug&play and HP-UX C
language programmers

e the *TST? command for ASCII programmers
e a Soft Front Panel selection from the Control menu

See the online help, “E1437A VXIplug&play Programmer’s Reference” or
“ASCII Overview and Commands” for syntax and details.

7-2

Replacing Assemblies

8-1

E1437A User's Guide
Replacing Assemblies

Caution

Replaceable Parts

For information on upgrading your module or replacing parts, contact

your local Agilent Technologies sales and service office. See the

Technical Specifications or the Agilent Technologies web site
(http://www.agilent.com/find/tmdir) for a list of office locations and addresses.

Ordering Information

To order Agilent Technologies, Inc. parts in the U.S., call Agilent
Technologies, Inc. Parts Direct Ordering at (800) 798-5487. Outside the
U.S., please contact your local Agfilent Technologies, Inc. parts center.

The module is static sensitive. Use the appropriate precautions when removing,
handling, and installing to avoid unnecessary damage.

8-2

E1437A User's Guide
Replacing Assemblies

Code Numbers

The following table provides the name and location for the manufacturers’
code numbers (Mfr Code) listed in the replaceable parts tables.

Mfr No. Mfr Name Location

28480 Agilent Technologies, Inc. Palo Alto, CA U.S.A.
30817 Instrument Specialties Co. Inc. Placentia, CA U.S.A.
13940 Smart Modular Technologies Fremont, CA U.S.A.
02788 M/A-Com Inc. Burlington, MA U.S.A.
04637 Phelps Dodge Corp. New York, NY U.S.A.

8-3

E1437A User's Guide
Replacing Assemblies

Assemblies

MP024
SMB Terminator
(accessory)

|
**éiﬁpmr\;mm
\ = MPO19 0\F
1 o : MPo20 MPO16
<SIMPO14
M%%G 1f§.,g{'P016
MPO1
&= weot7 O
MP009

8-4

E1437A User's Guide
Replacing Assemblies

Ref Part CD |Qty Description Mfr Mfr Part

Des Number Code Number
A1 1818-6722 |1 |2 |ICM DRAM, 4MB 13940 |SM5361000-6
A2 1818-6828 |8 |2 |ICM DRAM, 8MB Opt. UFC {13940 |SM536023101P4S6
A3 1818-6728 |7 |2 |ICM DRAM, 16MB Opt. ANC (13940 |SM536044002P3S6
A4 1818-6649 |1 |2 |ICM DRAM, 32MB Opt. ANE (13940 |SM53608400203S6
A10 E1437-69510 |3 |1 |PC ASSEM. EXCHANGE BRD. [28480 |E1437-66510
MPOO1 |E1437-00203 |7 |1 |SHTFCVR-BTTM 28480 |E1437-00203
MP002 |E1437-00202 |6 |1 |SHTFCVR-TOP 28480 |E1437-00202
MP003 |0515-1135 |7 |8 |SCR-MCH M3.0 25M 28480 |0515-1135
MP004 |E1485-40602 |2 |2 |GSKT RFI-FRONT PANEL 28480 |E1485-40602
MP005 |E1485-40601 |1 |2 |GSKT-RFI, BOTTOM COVER |28480 | E1485-40601
MP006 |8160-0686 |6 |2 |STMP FINGERS-RFI 30817 |786-185
MP0O7 |E1450-01202 |5 |4 |STMP SHLD-RFI GRND 28480 |E1450-01202
MP008 |E1437-00204 |8 |1 |PANEL-FRONT, “E1437A" 28480 |E1437-00204
MPO09 |7121-7964 |6 |1 |LABEL-HP, LOGO 28480 |E1400-84308
MPO10 |7121-7893 |5 |1 |LABEL-VXI, LOGO 28480 |E1400-84307
MPO11 |E1400-45102 |6 |1 |MOLD, HANDLE RIGHT 28480 |E1400-45102
MP012 |E1400-45101 |5 |1 |MOLD, HANDLE LEFT 28480 |E1400-45101
MP013 |E1400-00610 |7 |2 |SCR-ASM SHLDR 28480 |E1400-00610
MP014 |E1400-45011 |6 |1 MOLD LBUT-ECL 28480 |E1400-45011
MPO15 |E1400-45008 |1 |1 |MOLD BOTTOM-LOGO 28480 |E1400-45008
MP016 |0515-0664 |5 |2 |SCR-MCHM3.012M 28480 |0515-0664
MP017 |0515-2733 |3 |2 |SCR-MCHM2.517 28480 |0515-2733
MP018 |E1400-40104 |8 |2 |CAST 28480 |E1400-40104
MPO19 [2190-0068 |5 |3 |WSHR-LK.50 NTT 28480 |2190-0068
MP020 |2950-0154 |2 |3 |NUT-HXP.50-28.0 28480 |2950-0154
MP021 {2190-0124 |4 |4 |WSHR-LK #10 NTT 02788 500222
MP022 |2950-0078 |9 |4 |NUT-HXP 10-32.0 04637 |500220
MP023 |0515-1946 |8 |4 |SCR-MCH M3.0 6MM 28480 |0515-1946
MP024 |1250-0676 |8 TERMN-COAX CONN: 50 Q 28480 1250-0676

8-5

E1437A User's Guide
Replacing Assemblies

To remove the top and bottom covers

1 Remove the four short and eight long screws using a T-10 torx driver and remove the covers.

8-6

E1437A User's Guide
Replacing Assemblies

To remove the Al, A2, A3 or the A4 assembly

1 Remove top cover, see “To remove the top and bottom covers.” Gently push the silver tabs
outward and tilt the assembly forward releasing it from the connector.

8-7

E1437A User's Guide
Replacing Assemblies

To remove the front panel

1 Remove covers, see “To remove the top and bottom covers”. Using a T-8 torx driver, remove
the two screws that attach the handles to the assembly. NOTE: be sure to label the two handles,
which are different from each other. This will ard you in reassembling the module.

8-8

E1437A User's Guide
Replacing Assemblies

3 Remove the 3 nuts and washers from the BNC connectors as shown, using a 9/16" nut driver.
Slide the front panel off the main assembly.

4 Note: steps 4, 5, and 6 are only necessary if you need to replace the front panel or any of
it’s components. Using an X-acto knife, gently pry the labels from the two keys.

8-9

E1437A User's Guide
Replacing Assemblies

5 Using your hand, remove the two captive screws.

6 Using a T-10 torx driver, remove the two screws that attach the two logo bases and the
two L-blocks to the front panel. Note: there is a left and a right logo base. Also notice the
orientation of the two L-blocks. This will be important when you reassemble the front panel.

L-block

Right logo base %

8-10

E1437A User's Guide
Replacing Assemblies

To remove the A10 main assembly

1 Remove covers, see “To remove the top and bottom covers”. Remove the SIMMS, see “To
remove the Al, A2, A3, or the A4 assembly”. Remove the front panel, see steps 1, 2 and 3 of the
“To remove the front panel” section.

W

>

Backdating

9-1

HP E1437A User's Guide
Backdating

Backdating

This chapter documents modules that differ from those currently being
produced. With the information provided in this chapter, this guide can be
modified so that it applies to any earlier version or configuration of the
module.

9-2

Glossary

ADC
Analog to Digital Converter

ASCII

American Standard Code for Information Interchange, a standard format for
data or commands.

backplane
A set of lines that connects all the modules in a VXI system.

baseband

A band in the frequency spectrum that begins at zero. In contrast a zoomed
band is centered on a specific center frequency.

block mode

A mode in which the HP E1437A stops taking data as soon as a block of
data has been collected.

block size
The number of sample points in a block of data.

continuous mode

A mode in which the HP 1437A collects data continuously. It does not stop
taking data unless the FIFOFIFO overflows.

decimation filter

A digital filter that simultaneously decreases the bandwidth of the signal
and decreases the sample rate. The digital filter provides alias protection
and increases frequency resolution. For more information, see Spectrum and
Network Measurements available through your Hewlett-Packard Sales Office.

DSP
Digital Signal Processing

FIFO
A First In, First Out buffer and controller used to transmit data.

Fs
Sample Frequency or sample rate

HP-VEE
A Hewlett-Packard program for graphical programming

Local Bus

A high-speed port that Hewlett-Packard has defined as a standard byte-wide
ECL protocol which can transfer measurement data from left to right at up
to 2.62 Msamples per second on the VXI backplane.

logical address

The VXI logical address identifies where each module is located in the
memory map of the VXI system.

VXI

VME Extensions for Instrumentation, a standard specification for instrument
systems

VXIplug &play
A set of standards which provides VXI users with a level of standardization

across different vendors beyond what the VXI standard specifications spell
out.

Zoom
Selects a frequency span around a specified center frequency. Also known

as band selectable operation, this allows you to focus on a specific
frequency band.

Need Assistance?

If you need assistance, contact your nearest Agilent Technologies
Service Office listed in the Agilent Catalog, or visit our web site:

http:// www.agilent.com/find/tmdir for a current sale office listing. If you
are contacting Agilent Technologies about a problem with your E1437A 20
MSample/second ADC, please provide the following information:

e Model number: E1437A

e Software version:

e Serial number:

e Options:

e Date the problem was first encountered:

e Circumstances in which the problem was encountered:

e Can you reproduce the problem?

e What effect does this problem have on you?

About this edition

January 1997: First Edition
June 1997: Second Edition.

April 2000: Third Edition - Rebranding, Hewlett-Packard to Agilent
Technologies, Inc.

INDEX

A

ac coupling, selecting 4-37
ADC clock

SEE clock, source
ADC, circuit description 6-6
addressing, instrument 4-35
alias filter

SEE anit-alias filter
analog filter

SEE alias filter
analog setup functions 4-4
anti-alias filter

analog 4-37

circuit description 6-6

SEE ALSO decimation filter

default 3-7

described 3-7
appending data on local bus 4-44
Arm state 3-5
arming measurements 4-47
ASCII commands 5-2
ASCII programming overview 3-2
assistance (rear of manual) 1-i
auto range 4-40
auto zero 4-36

B
backdating 10-2
backplane connections 6-3
bandwidth control, circuit description
6-7
bandwidth, filter selection 4-28
baseband measurements 3-7
SEE ALSO zoom
BASIC programming 5-3
block diagram 6-5
block mode
explained 3-5
selecting 4-21
block size, determining 4-20
buffer amplifier, selecting 4-37

C
C programming overview 3-2
center frequency

SEE frequency, center
circuit descriptions 6-5
clock

distribution 3-8

extenders 6-2

external 4-13

external input 6-2

generation 6-6

sharing 3-8, 4-13, 6-6

source 4-13

timing 4-13
clock synchronization

SEE multiple modules, managing
closing an instrument session 4-17
complex data output, specifying 4-20
configuring VXI system 2-5
conformity, declaration of (rear of
manual) 4-23
connectors, front panel 6-2
control registers, circuit description 6-9
corrections, dc offset 4-36
coupling, input 4-37

D

data format functions 4-4
data formatting 4-20
circuit description 6-8
data on local bus 4-44
data output, circuit description 6-8
data port, selecting 4-20
data transfer bus 6-3
data type, specifying 4-20
dc coupling, selecting 4-37
dc measurements, selecting complex
4-33
dc offset correction 4-36
debugging functions 4-5

decimation filter
SEE ALSO anti-alias filter
bandwidth, setting 4-28
changes 3-12
circuit description 6-7
described 3-7
selecting 4-28
diagnostics functions 4-5
digital filter
SEE decimation filter
digital processing functions 4-5
disassembly 8-6
drivers
installing HP-UX 2-5
installing Windows 2-4
DSP clock
SEE clock, source
DSP functions 2-10
DTB arbitration bus 6-3

E

ending an instrument session 4-17
errors

in status register 4-56

messages listed 4-73

reading 4-25

reading firmware 4-26
example programs

HP-VEE 2-15

using 2-11

Visual Basic 2-14
extenders

clock and SYNC 6-2
external clock

SEE clock, source
external trigger

SEE trigger, type

F
FIFO

SEE memory
filtering

SEE anti-alias filter

SEE decimation filters
firmware revision, determining 4-54
floating input, selecting 4-37
formatting data

SEE data formatting

frequency
center, changing 3-7, 3-12, 4-33

synchronizing changes 4-33
frequency response, determining 4-27
front panel description 6-2
functions, by functional group 4-3
functions, listed alphabetically 4-8

G

generating data on local bus 4-44
generating interrupts 4-42
ground 6-3

H
help

HP-UX 2-5
Windows 2-10
HP-UX
example programs 2-12
installing libraries 2-5
online help 2-5
programming environment 3-3
programming overview 3-2
HP-VEE
example program 2-15
reading data in 4-50
HPE1485 environment 1-v

I
IDLE state

described 3-5

forcing 4-17, 4-47
initialization functions 4-5
initializing the I/O driver 4-35
initiating an instrument session 4-35
initiating measurements 4-47, 4-49
input

circuit description 6-6

coupling 4-37

range 4-37

setup 4-37
inserting data on local bus 4-44
installing

hardware 1-3

module 1-3

software 2-4
installing libraries

HP-UX 2-5

Windows 2-4

interrupt
functions 4-5
generation 4-42

mask, setting 4-42
priority, setting 4-42
using 4-12

L

local bus
backplane connections 6-3
described 6-3
generating data 4-44
mode, setting 4-44
resetting 4-45
selecting 4-20
transfers 3-13, 6-8
logical address
default 1-3
selecting 1-3

M

measurement functions 4-6
measurement loop 3-5
measurement states, described 3-5
memory

data block size 4-20

circuit description 6-8

size, determining 4-18
mode, output 4-20
multiple modules, managing 3-6, 3-8,
3-10 - 3-12, 4-13, 4-31, 4-33, 4-47, 4-61,
4-64, 6-4

o)

offset correction, dc 4-36
online help

HP-UX 2-5

Windows 2-10
output formatting 4-20
output mode 4-20
overload status, reporting 4-20
overview, programming 3-2

P

parameters
numeric equivalents 4-2, 4-71
programming reference 4-2
parts, ordering 8-2

phase
and frequency 4-33
at trigger 4-59
capturing trigger 4-60
continuous 4-33
preserving 4-34
phone assistance (rear of manual) 1-i
pipelining data on local bus 4-44
port selection, data 4-20
power supplies 6-3
power-up state, forcing 4-53
priority interrupt bus 6-3
programming overview 3-2

quick reference
Visual Basic 4-68
VXIplug&play 4-65

R

range, input 4-37

raw data, scaling 4-19

read data functions 4-6

reading data 4-50, 4-52

real data output, specifying 4-20
register programming 3-2, 3-4
resetting the local bus 4-45
resetting the module 4-35, 4-53
resolution selection, data 4-20
revision, determining firmware 4-54

S
sample output rate, selecting 4-28
scale factor 4-19
scaled data, reading 4-50
scaling raw data 4-19
SCPI programming

SEE ASCII commands
self test, performing 4-55, 7-2
service assistance (rear of manual) 1-i
setting the range automatically 4-40
sharing clock and SYNC 3-8
shipping module 1-6
signal

input connector 6-2
span

SEE zoom measurements
states, measurement 3-5
status information 4-20
status register and interrupts 4-42
status register, bits defined 4-56
storing 1-6

SYNC

and measurement state 3-5

extenders 6-2

sharing 3-8, 6-9

signal, asserting and releasing 4-47
synchronization functions 4-7
synchronizing clocks

SEE multiple modules, managing
synchronizing decimation filters

SEE multiple modules, managing
synchronizing measurements

SEE multiple modules, managing
syntax

Visual Basic 4-68

VXIplug&play 4-65
system requirements 2-3, 3-2 - 3-3

T

telephone assistance (rear of manual) 1-i
terminating an instrument session 4-17

terminators, on connectors 6-2, 8-4
timing functions
SEE clock
transmission mode, local bus 4-44
transporting 1-6
trigger
backplane lines 6-3
delay, setting 4-61
detection, circuit description 6-9
external connector 6-2
generation, selecting 4-61
level, setting 4-61
phase, actual 4-59
slope, selecting 4-61
state 3-5, 4-61
type, selecting 4-61
trigger functions 4-6

U
UNIX

SEE HP-UX
unscaled data, reading 4-52
utility bus 6-3

\"
verifying operation 2-7, 4-55, 7-2
Visual Basic
example program 2-14
syntax 4-68
VME port, selecting 4-20
VXI backplane connection 6-3

VXI bus transfers 3-13, 6-8
VXI interface, configuring 2-5

\\%

Windows
example programs 2-7
installing libraries 2-4
online help 2-10
programming overview 3-2

Z

zoom measurements
circuit description 6-7
selecting 4-33
using 3-7

	TABLE OF CONTENTS
	1
	Installing the E1437A
	Installing the E1437A 1-2
	To
inspect the E1437A 1-2
	To install the E1437A 1-3
	To store the
module 1-6
	To transport the module 1-6

	2
	Getting Started with the E1437A
	Introduction 2-2
	To Install the Programmer™s Libraries 2-3
	System Requirements (Microsoft Windows) 2-3
	System Requirements (HP-UX) 2-3
	To install the Windows VXIplug&play
drivers for the E1437A
	(for Windows 3.1, Windows 95 and Windows NT) 2-4
	To install the HP-UX C-language drivers for the E1437A
	(for HP-UX systems): 2-5
	The Resource Manager 2-5

	To Use the Program Group (Windows) 2-6
	To Use the VXIplug and play Soft Front Panel (SPF) 2-7
	To Use Online Help in Windows 2-10

	To Use the Example Programs 2-11
	To View the Visual Basic Example
Program 2-14
	To Use the HP-VEE Example Program 2-15

	3
	Using the E1437A
	Programming the E1437A 3-2
	WIN framework 3-2
	HP-UX, Series 700 Environment 3-3
	C Programming 3-3
	ASCII Programming 3-4
	Register Programming 3-4

	The Measurement loop 3-5
	The
Measurement Loop in Multi-module systems 3-6

	Frequency and Filtering 3-7

	INDEX
	A
	ac coupling, selecting 4-37
	ADC clock
	 SEE clock, source
	ADC, circuit description 6-6
	addressing, instrument 4-35
	alias filter
	 SEE anit-alias filter
	analog filter
	 SEE alias filter
	analog setup functions 4-4
	anti-alias filter
	 analog
4-37
	 circuit description 6-6
	 SEE ALSO decimation filter
	 default 3-7
	 described 3-7
	appending data on local bus 4-44
	Arm state 3-5
	arming measurements 4-47
	ASCII commands 5-2
	ASCII programming overview 3-2
	assistance (rear of manual) 1-i
	auto range 4-40
	auto zero 4-36

	B
	backdating 10-2
	backplane connections 6-3
	bandwidth control, circuit description 6-7
	6-7
	bandwidth, filter selection 4-28
	baseband measurements 3-7
	 SEE ALSO zoom
	BASIC programming 5-3
	block diagram 6-5
	block mode
	 explained 3-5
	 selecting 4-21
	block size, determining 4-20
	buffer amplifier, selecting 4-37

	C
	C programming overview 3-2
	center frequency
	
SEE frequency, center
	circuit descriptions 6-5
	clock
	 distribution 3-8
	 extenders 6-2
	 external 4-13
	 external input 6-2
	 generation 6-6
	 sharing 3-8, 4-13, 6-6
	 source 4-13
	 timing 4-13
	clock synchronization
	 SEE multiple modules, managing
	closing an instrument session 4-17
	complex data output, specifying 4-20
	configuring VXI system 2-5
	conformity, declaration of (rear of manual) 4-23
	manual) 4-23
	connectors, front panel 6-2
	control registers, circuit description
6-9
	corrections, dc offset 4-36
	coupling, input 4-37

	D
	data format functions 4-4
	data formatting 4-20
	 circuit description 6-8
	data on local bus 4-44
	data output, circuit description 6-8
	data port, selecting 4-20
	data transfer bus 6-3
	data type, specifying 4-20
	dc coupling, selecting 4-37
	dc measurements, selecting complex 4-33
	4-33
	dc offset
correction 4-36
	debugging functions 4-5
	
	decimation filter
	 SEE ALSO anti-alias filter
	 bandwidth, setting 4-28
	 changes 3-12
	 circuit description 6-7
	 described 3-7
	
selecting 4-28
	diagnostics functions 4-5
	digital filter
	 SEE decimation filter
	digital processing functions 4-5
	disassembly 8-6
	drivers
	 installing HP-UX 2-5
	 installing Windows 2-4
	DSP clock
	 SEE clock, source
	DSP functions 2-10
	DTB arbitration bus 6-3

	E
	ending an instrument session 4-17
	errors
	 in status register 4-56
	 messages listed 4-73
	
reading 4-25
	 reading firmware 4-26
	example programs
	 HP-VEE 2-15
	 using 2-11
	 Visual Basic 2-14
	extenders
	 clock
and SYNC 6-2
	external clock
	 SEE clock, source
	external trigger
	 SEE trigger, type

	F
	FIFO
	 SEE memory
	filtering
	 SEE anti-alias filter
	 SEE decimation filters
	firmware revision, determining 4-54
	floating input, selecting 4-37
	formatting data
	 SEE data formatting
	
	frequency
	 center, changing 3-7, 3-12, 4-33
	 synchronizing changes 4-33
	frequency response, determining 4-27
	front panel description 6-2
	functions, by functional group 4-3
	functions, listed
alphabetically 4-8

	G
	generating data on local bus 4-44
	generating interrupts 4-42
	ground 6-3

	H
	help
	 HP-UX 2-5
	 Windows 2-10
	HP-UX
	 example programs 2-12
	 installing libraries 2-5
	 online help 2-5
	 programming environment 3-3
	
programming overview 3-2
	HP-VEE
	 example program 2-15
	 reading data in 4-50
	HPE1485 environment 1-v

	I
	IDLE state
	
described 3-5
	 forcing 4-17, 4-47
	initialization functions
4-5
	initializing the I/O driver 4-35
	initiating an instrument
session 4-35
	initiating measurements 4-47, 4-49
	input
	 circuit description 6-6
	 coupling 4-37
	 range 4-37
	 setup 4-37
	inserting data on local bus 4-44
	installing
	 hardware 1-3
	 module 1-3
	 software 2-4
	installing libraries
	 HP-UX 2-5
	
Windows 2-4
	
	interrupt
	 functions 4-5
	 generation 4-42
	
mask, setting 4-42
	 priority, setting 4-42
	 using 4-12

	L
	local bus
	 backplane connections 6-3
	 described 6-3
	
generating data 4-44
	 mode, setting 4-44
	 resetting 4-45
	 selecting 4-20
	 transfers 3-13, 6-8
	logical address
	 default 1-3
	
selecting 1-3

	M
	measurement functions 4-6
	measurement loop 3-5
	measurement states, described 3-5
	memory
	 data block size 4-20
	 circuit description 6-8
	 size, determining 4-18
	mode, output 4-20
	multiple modules, managing 3-6, 3-8, 3-10 - 3-12, 4-13, 4-31, 4-33, 4-47, 4-61, 4-64, 6-4
	3-10 - 3-12, 4-13, 4-31, 4-33, 4-47, 4-61, 4-64, 6-4
	4-64, 6-4

	O
	offset correction, dc 4-36
	online help
	 HP-UX 2-5
	 Windows
2-10
	output formatting 4-20
	output mode 4-20
	overload status, reporting 4-20
	overview, programming 3-2

	P
	parameters
	 numeric equivalents 4-2, 4-71
	 programming reference 4-2
	parts, ordering 8-2
	

