

Be Ready for Tomorrow -- Today

M9381A PXIe Vector Signal Generator & M9391A PXIe Vector Signal Analyzer

Software & Modular Solutions Division

July 1, 2013

Agenda

Introductions

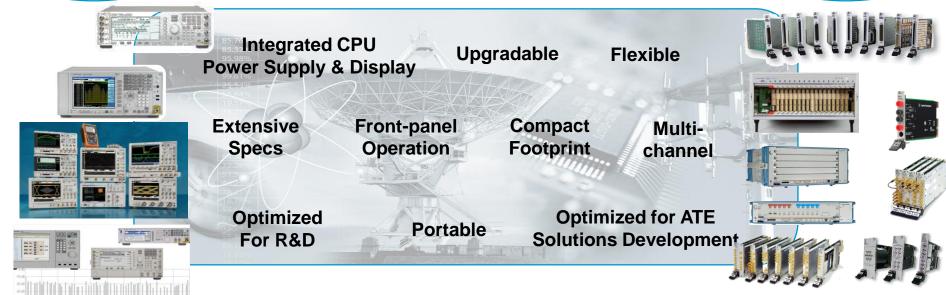
Agilent Modular Objectives

Agilent's New PXIe Vector Signal Analyzer

Agilent's PXIe Vector Signal Generator

Application Challenges

Wrap-up and Summary


High Level Positioning: Benchtop vs. Modular

Agilent Message: we have both!

Benchtop Instruments

Customer Considerations

PXI/AXIe Modules

General Purpose, highly integrated "systems" with optimized price/performance

Can be used in a test system (e.g. PXA in "Rack and Stack" ATE)

Standardized modules can be configured to create application-focused automated test solutions

Can be used as a single/general function instrument (M9391A VSA)

Why Modular?

Small footprint

- No duplicate displays and front panels
- Support multiple channels in compact space

High throughput

 Direct backplane speed

Flexibility and scalability

Assemble custom solutions – one to many

Latest technology

New technologies available early

Combining these to drive down the cost of test

Software and Modular Solutions Division

Delivering Agilent Measurement Technology and Quality in Software & PXI/AXIe/PCIe

- World-wide development in US (CA, CO, WA), Switzerland, China, and India
- Home of Agilent design and simulation technologies and products
- Founding member of AXIe Consortium

Signal Studio

89600B VSA

RF / Microwave

M9381A

New M9381A VSG plus 26 GHz

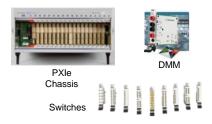
Leveraging Agilent RF Designs

Signal Generation & Analysis

Vector Signal Analyzer

M9392A Signal

Software


Strong partnership with internal and external solution partners

High Speed Digital, AWGs and Digitizers

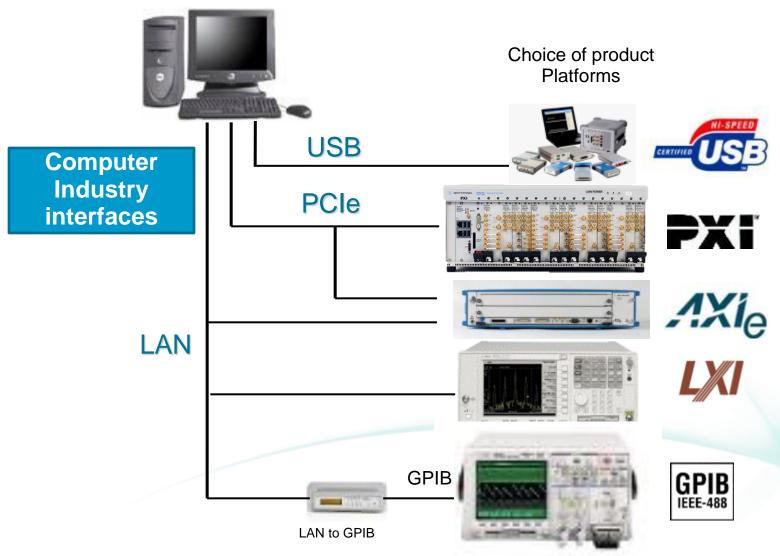
- Highest Performance ADCs & DACs
- Next Generation Digital Bus Analyzers

Chassis, Switching and Basic Instruments

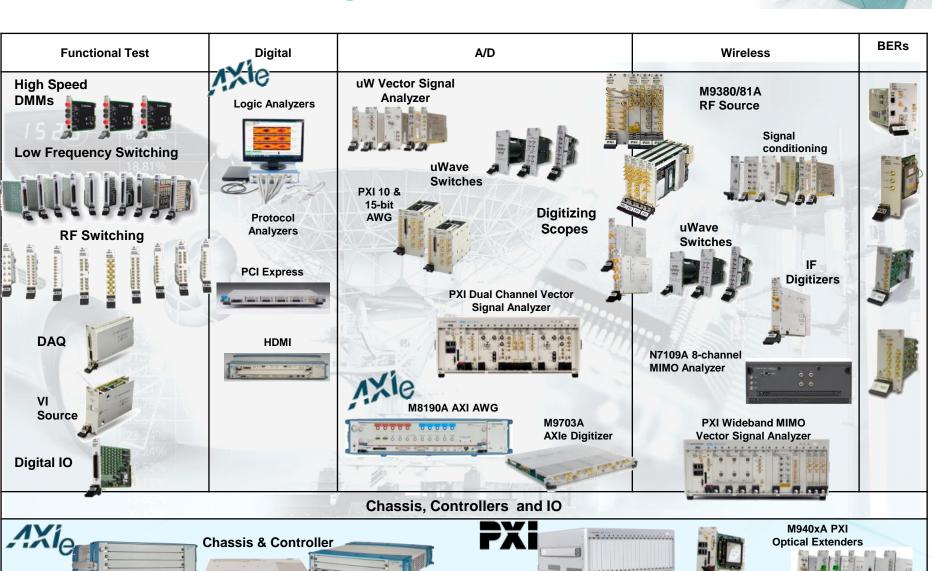
- Highest Throughput PXIe Chassis
- Fastest DMM
- Switches from DC to Microwave
- + many more

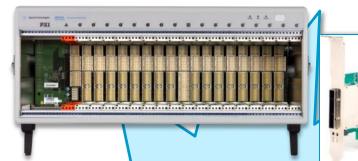
Software and Hardware to take you from Design to Manufacturing

Design Simulation Save money **R&D**Time to Market


Design Validation Flexibility, Configurability

Manufacturing Lowest cost per test


Modular Solutions

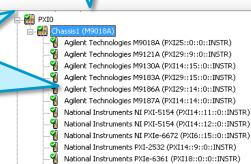

Modular: A Growing Portfolio

Chassis & Controller

Agilent PXI Interoperability Advantages

HW Designed for Compatibility:

- M9018A all hybrid chassis
- New M9048A PCIe interface

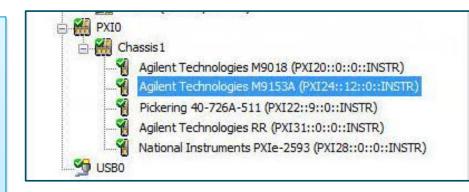

Interoperability Testing:

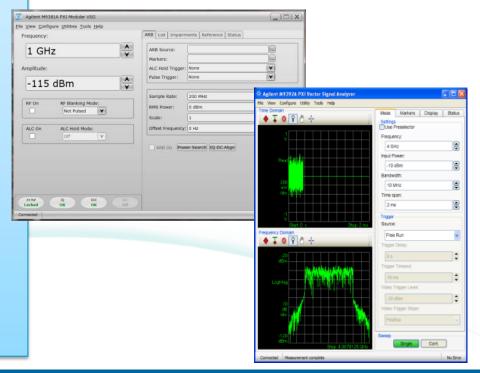
- SMS Inter-op labs
 - e.g. Six mixed NI/Agilent combinations for M9036A
- Tested computer list

Open SW Environment:

- Agilent I/O Libs
- Support for multiple platforms

Pickering Interfaces Pickering 40-220-001 (PXI29::10::0::INSTR)


Agilent Software Architecture Advantages


- Agilent IO Libraries identifies all modules within a chassis <u>regardless of vendor</u> via the Agilent Connection Expert (ACE)
- All modules include Soft Front Panel for easy instrument control

Agilent Command Expert offers GUI interface to build programming commands

 Multiple programming interfaces are supported with instrument drivers and example programs

Agenda

Introductions

Agilent Modular Objectives

Agilent's New PXIe Vector Signal Analyzer

Agilent's PXIe Vector Signal Generator

Application Challenges

Wrap-up and Summary

M9391A PXIe Vector Signal Analyzer

Agilent Quality & Performance Vector Signal Analyzer in PXI

Description:

- PXIe Vector Signal Analyzer
- 1 MHz to 3 GHz or 6 GHz
- Up to 160 MHz Bandwidth

Key Features:

- Extremely **fast** Power Measurements
- Baseband tuning for **fast** ACPR Measurements
- Real-time corrections
- PXIe (PCIe) data bus for **fast** data transfer and test execution
- Soft front panel, IVI-COM drivers, and connectivity to 89600 VSA software and SystemVue

M9391A PXIe Vector Signal Analyzer

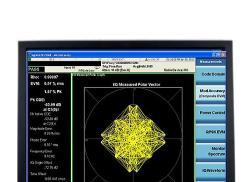
Application Software

Drivers

- M9391A IVI-COM Driver for IQ, Spectrum, and Power Measurements
- Soft Front Panel

89600 VSA connectivity

SystemVue connectivity

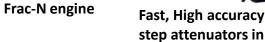


Modular Applications

- X-Series Applications for Modular Products
 - Same look & feel as benchtop analyzer applications
 - Same measurement algorithms
- Same SCPI interface
- One license supports up to four PXI VSAs

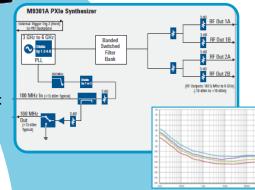
First Release (Sept. 2013)

 WLAN, WCDMA/HSPA, LTE-FDD, LTE-TDD, GSM/EDGE, TD-SCDMA, 1xEV-DO, cdma2000


WCDMA

Innovation in PXIe Signal Analysis

Down Converter



ASIC enabled real-time amplitude and phase corrections

Fast, compact Single-Loop synthesizer

Agilent PXIe Vector Signal Analyzer

M9391A Vector Signal Analyzer Data Acquisition Modes

M9391A Signal Processing ASIC Offers Three Acquisition Modes:

- Time records of IQ data with Arbitrary Sample Rates
- Configurable Channel Filter

Spectrum Mode

- Complex or Power Spectrum Data
- Configurable Span, RBW and Window Shape
- Configurable Averaging: Peak or Average, Time or Count, % Overlapped

Power Mode

- Single Value for Integrated Power Measurement
- Configurable Bandwidth, Acquisition Time and Channel Filter

Faster Throughput

 Data is acquired at desired sample rate so less data is downloaded with each measurement

Easy to Use

· Built in measurements

Faster Throughput

 Data is acquired and processed in ASIC so less data is downloaded with each measurement

M9391A Soft Front Panel IQ Acquisition Mode

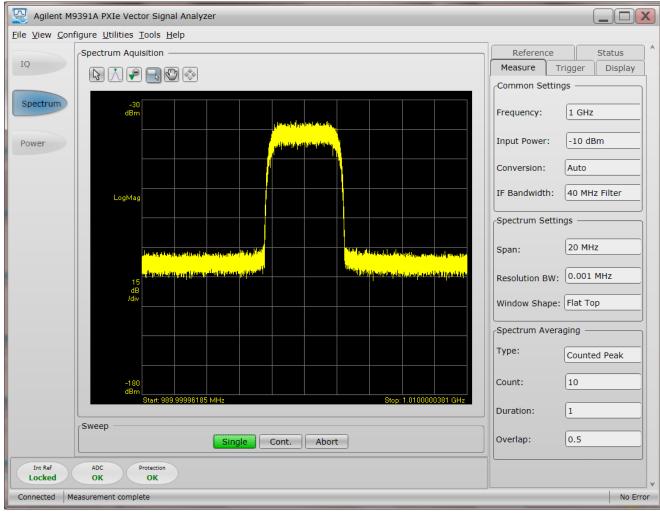
Conversion Mode:

- Single High Side
- Single Low Side
- Image Protect
- Auto

IF Filter Bandwidth:

- 15 MHz
- 40 MHz
- 160 MHz

Sample Rate:


- Arbitrary
- 1 Hz to 200 MHz

Channel Filter:

 See Power Acquisition Slide

M9391A Soft Front Panel Spectrum Acquisition Mode

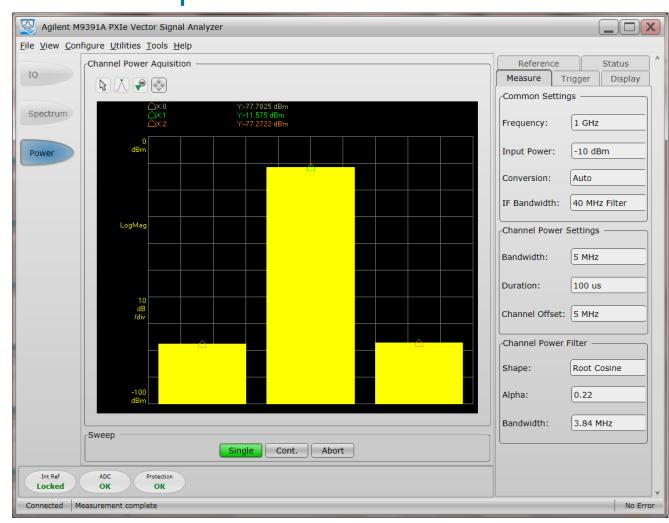
Span:

1Hz to 160 MHz

RBW:

1Hz to 40 MHz

Window Shape:


- Flat Top
- Flat Top2
- Gaussian
- Hanning
- Uniform

Averaging Types:

- Counted/Time
- Average/Peak

M9391A Soft Front Panel Power Acquisition Mode

Channel Bandwidth

1 Hz to 160 MHz

Channel Offset:

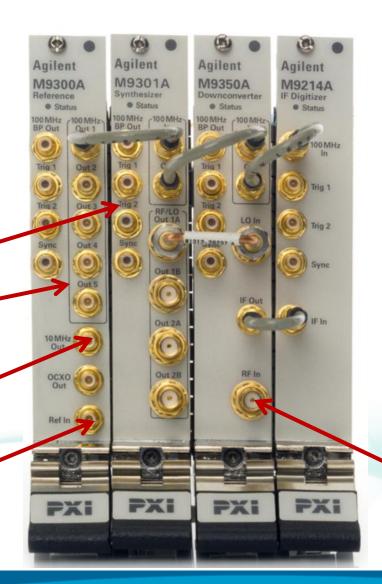
 +/- 80 MHz using Baseband Tuning

Channel Filter:

- None
- Rectangular
- Gaussian
- Raised Cosine
- Root Raised Cosine

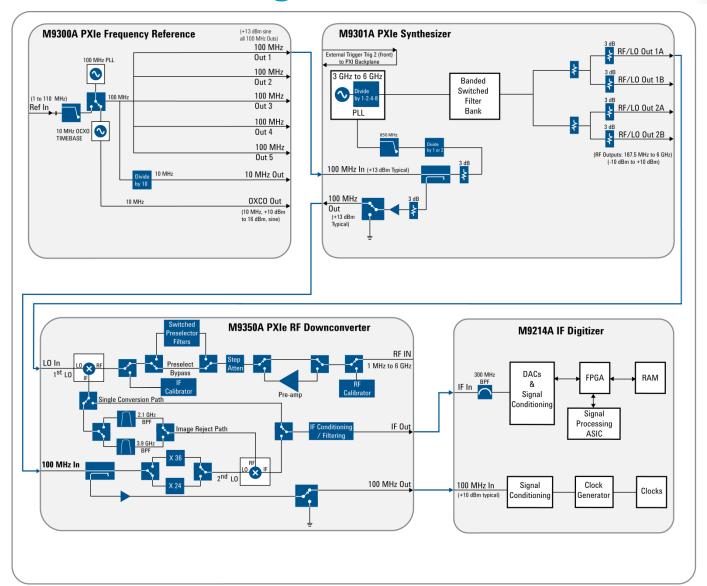
M9391A: A Closer Look

Combination of high performance modules create uncompromising VSA performance in PXI


- M9350A Downconverter
- M9214A IF Digitizer
- M9301A Synthesizer
- M9300A Freq. Reference

Input Triggers and Sync

Five 100MHz Freq outputs for multi- channel systems


10MHz Ref output

Ext Ref input 1 to 110 MHz

RF INPUT

M9391A Block Diagram

Agilent Signal Analyzer Specs Comparison

			n decen	
Key Spec	M9391A (preliminary)	MXA	PXA Secretors of the second of	
Analyzer Type	FFT	Swept/FFT	Swept/FFT	
Frequency Range	1 MHz to 3/6 GHz	10 Hz to 3.6/8.4/13.6/26.5 GHz	3 Hz to 3.6/8.4/13.6/26.5/44/50 GHz	
Analysis BW	40/100/160 MHz	25/40 MHz	10/25/40/160 MHz	
Tuning Time	<300 µs (list) <3 ms (non-list)	16 ms	33 ms (<3.6 GHz) 59 ms ((>3.6 GHz)	
Amplitude Switching Speed	<150 µs typ (list) <3 ms (non-list)			
Amplitude Acc <=3 GHz > 3 GHz Includes Frequency Response	± 0.77 dB ± 0.92 dB (± 1 Degree within Field Alignments)	± 0.78 dB (± 0.4, 95 th percentile) ± 1.83 dB (± 0.81, 95 th percentile)	± 0.59 dB (± 0.35, 95 th percentile) ± 1.74 dB (± 0.63, 95 th percentile)	
TOI @ 2 GHz @ 6 GHz	+16 dBm (23 dBm, nom) +19.5 dBm (23.5 dBm, nom)	+16 dBm (+19, typ) + 15 dBm (+18, typ)	+21 dBm (+23, typ) + 15 dBm (+22, typ)	
DANL @ 2 GHz, Pre-Amp OFF @ 2 GHz, Pre-Amp ON	-140 dBm/Hz (-140 SC) -156 dBm/Hz (-155SC) SC=Single Conversion	-151 dBm/Hz (-154, typ,) -163 dBm/Hz (-166, typ)	-153 dBm/Hz (-155, typ; -162, NFE) -165 dBm/Hz (-166, typ; -172, NFE) NFE=Noise Floor Extension	
SSB Phase Noise @ 1 GHz, 10 kHz offset	-121 dBc/Hz, nom	-103 dBc/Hz (-106, typ.)	-129 dBc/Hz (-132, typ)	
WCDMA ACLR dyn range @ 2 GHz, Adjacent Channel @ 2 GHz, Alternate Channel	-68.1 dBc, typ -70.7 dBc, typ	-73 dBc, typ (-78, noise corrections) -79 dBc, typ (-82, noise corrections)	-82.5 dBc, typ (-83.5, noise corrections) -87 dBc, typ (-89, noise corrections)	
Residual Responses @ 2 GHz, Input Terminated	-120 dBm, nominal	-100 dBm	-100 dBm	
Software	Modular X-Apps 89600 VSA SW Matlab	X-series Measurement Applications 89600 VSA SW Matlab	X-series Measurement Applications 89600 VSA SW Matlab	
Entry Price	\$28K – 30.5K USD (Chassis and controller not included)	\$31K - 48K USD	\$53K - 95K USD	

Agenda

Introductions

Agilent Modular Objectives

Agilent's New PXIe Vector Signal Analyzer

Agilent's PXIe Vector Signal Generator

Application Challenges

Wrap-up and Summary

M9381A PXIe Vector Signal Generator

Agilent Quality & Performance Vector Signal Analyzer in PXI

M9381A PXIe Vector Signal Generator M9380A PXIe CW Source

Key Features:

- Frequency range 1 MHz up to 3 or 6 GHz
- 160 MHz BW for emerging 802.11ac, (± 0.3 dB flatness)
- +19 dBm output power; ±0.4 dB level accuracy
- Class leading power, linearity & accuracy
- Frequency & Amplitude Switching Speed to within 1ppm
 - <220us, <10 us using baseband switching

Software:

Signal Studio, SFP, programming examples, drivers, lower-level software, SystemVue, MATLAB

M9381A PXIe VSG

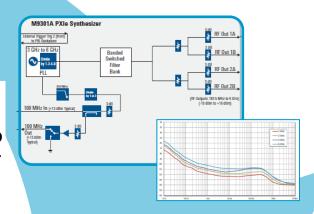
M9380A PXIe CW

Signal Studio Connectivity

- LTE TDD
- W-CDMA
- GSM/EDGE
- WiMAX
- cdma2000
- WLAN
- Bluetooth
- Broadcast Radio
- Digital Video

Innovation in PXIe Signal Generation

Proprietary Agilent technology


Fast, High accuracy step attenuators in ALC loop

ASIC enabled real-time amplitude and phase corrections

Frac-N engine in Frequency Reference	Lower Spurs
ALC Loop Source Output	Accuracy, Speed
ASIC enabled superior real- time corrections	Speed & EVM Performance
Single-Loop, Low pedestal noise Synthesizer	Speed & LTE EVM
Unique HW, SW, and Calibration designed for true mix &match	Swappable modules

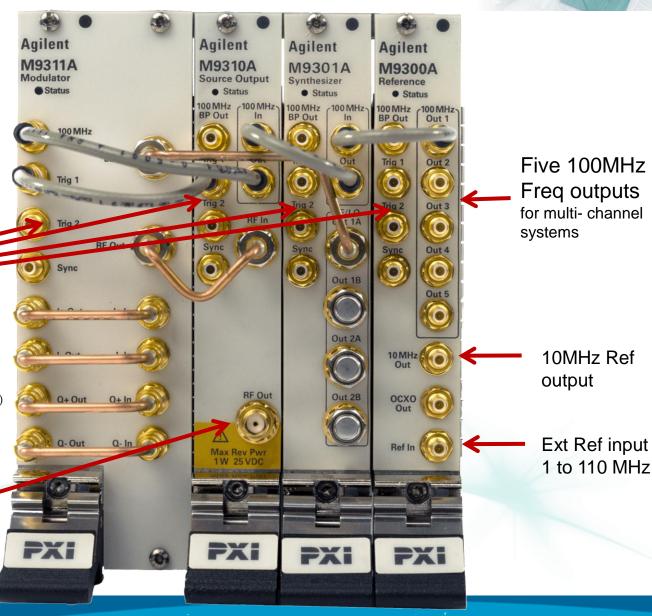
Fast, compact Single-Loop synthesizer

Agilent PXIe signal sources

M9381A: A Closer Look

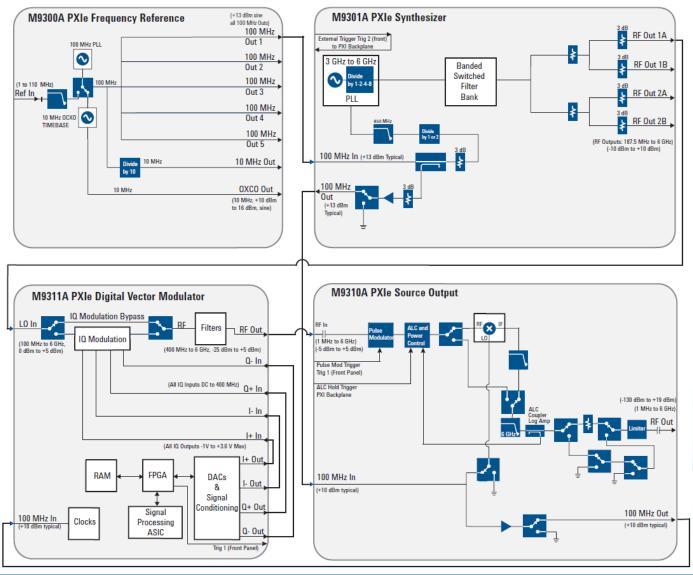
Combination of high performance modules create uncompromising VSG performance in PXIe

M9311A Digital Vector Modulator


- M9310A Source Output
- •M9301A Synthesizer
- M9300A Reference

Input Triggers and Sync

M9311A:


- Trig 1: Pulse Blanking Output to M9310A Trig 1
- Trig 2: Synchronization Output Trigger to User M9310A:
- Trig 1: Pulse Blanking Input to M9311A Trig 1
- Trig 2: Source Settled Output to User M9301A:
- Trig 1: External Trigger (Start ARB, List or List Step) from User
- Trig 2: End Output (ARB File, List or List Step) to User

RF OUTPUT

M9381A Simplified Block Diagram

Agenda

Introductions

Agilent Modular Objectives

Agilent's New PXIe Vector Signal Analyzer

Agilent's PXIe Vector Signal Generator

Application Challenges

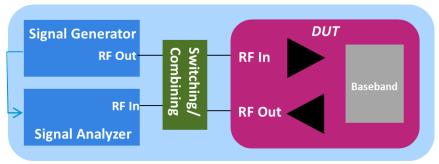
Wrap-up and Summary

Application Challenges

 Increase test speed and throughput even as test complexity increases

 Best performance with continuity in trusted results

 Fast and easy integration into test platforms


Lower maintenance costs and minimize downtime

Transceiver Calibration

Maximize throughput with a synchronized test sequence

Transceiver Test Setup

APPLICATION CHALLENGE

- Calibration for both Tx output power level and Rx input level
- Synchronization between test equipment and DUT over many states

BENEFITS

- List mode with fast step times and flexible triggering
- 10µs switching speed for fastest step times on the source
- 3201 points for long list sequences
- 80 channel parameters for flexible sequences

Power Amplifier and Front End Module Test

Fastest speed when using programmed commands

Amplifier & Front End Module

Signal Generator RF Out RF In RF In RF In RF In

APPLICATION CHALLENGE

- DUT is specified at an exact RF Out power level
- VSG RF Out is iteratively adjusted by command from the VSA to achieve that exact power level
- Adjustment routine takes up to 40% of test time

BENEFITS

- Fastest switching speeds via program commands reduce time for each iteration
- Real-time calculation of channel power reduces time
- Accurate power linearity & outstanding repeatability
 - <1ms Servo Loop Step Time
 - <7 ms ACPR Measurements

M9391A WCDMA Power Measurements Repeatability vs. Acquisition Time vs. Power Level

Pref	0 dB		-25 dB			-50 dB		-75 dB	
	Power	Time	Power	Time		Power	Time	Power	Time
Min	1.668415	0.000216	-23.33	24 0.000208	3	-48.462	0.000211	-66.4404	0.000209
Max	1.8262	0.000382	-23.18	28 0.000324	1	-47.8952	0.003227	-63.6651	0.0009
AVG	1.767361	0.000266	-23.24	44 0.000264	1	-48.2046	0.000279	-65.047	0.000297
SDEV	0.033105	2.89E-05	0.0317	25 2.42E-05	5	0.108387	0.000299	0.550126	0.000134

Acquisition Time:

10 us

Pref	0 dB		-25 dB		-50 dB		-75 dB	
	Power	Time	Power	Time	Power	Time	Power	Time
Min	1.875489	0.00027	-23.1443	0.000316	-48.1623	0.000321	-65.4593	0.000292
Max	1.925576	0.001985	-23.103	0.003037	-47.9583	0.032696	-64.6917	0.000861
AVG	1.895269	0.000386	-23.1134	0.000385	-48.0546	0.000706	-65.0729	0.000426
SDEV	0.007027	0.000171	0.005252	0.000269	0.034463	0.003232	0.167882	0.000138

100 us

Pref	0 dB		-25 dB		-50 dB		-75 dB	
	Power	Time	Power	Time	Power	Time	Power	Time
Min	1.750469	0.001808	-23.2481	0.001786	-48.21	0.001825	-65.2446	0.001753
Max	1.764527	0.016923	-23.2429	0.017754	-48.1545	0.018412	-64.9032	0.004883
AVG	1.75785	0.002238	-23.2458	0.002353	-48.177	0.002207	-65.0594	0.002051
SDEV	0.002877	0.001616	0.001169	0.002204	0.01048	0.001686	0.058773	0.000355

1 ms

Measured on 1 unit at room temperature

Application Challenges

 Increase test speed and throughput even as test complexity increases

 Best performance with continuity in trusted results

 Fast and easy integration into test platforms

Lower maintenance costs and minimize downtime

Widest Bandwidth

160 MHz with <± 0.3 dB flatness

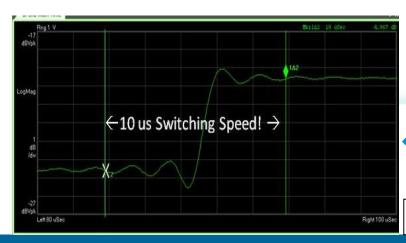
Support for next generation standards like 802.11ac with excellent EVM performance

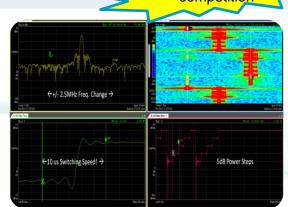
TimeLen 4 Sym

C: Strm1 OFDM Err Vect Spectrum *

Start - 250 carrier Res BW 312.5 kHz

D: Ch1 OFDM Error Summary

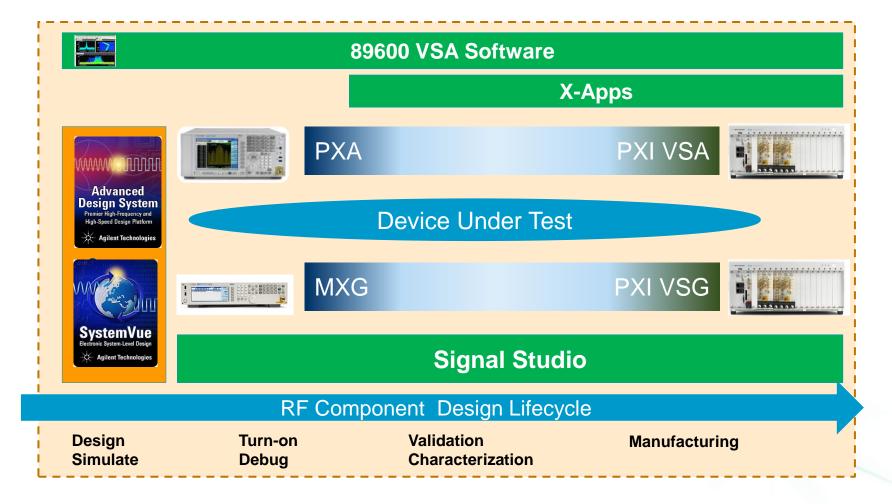



LogMag

🏊 IEEE 802.11n/ac - Agilent 89600 VSA Software

Industry Leading RF Switching Speeds

Туре	RF Tuning	Baseband Tuning			
Definition	Changes to the RF carrier frequency and output attenuation using the "RF" interface	Changes to the Frequency Offset and Power Offset in the signal processing ASIC			
Range	Frequency range: 1 MHz to 6 GHz Amplitude range: +19 dBm to -130 dBm	Frequency range: ± 80 MHz from RF carrier frequency Amplitude range: 0 to -20 dB from RF			
Command driven	2 ms 5x faster than competition	power level 250 μs 40x faster than competition			
List Mode	220 µs freq/amp (125 µs amp only)	10 μs 30x faster than competition			



25 point list of baseband frequency and power tuning. Three frequencies and 5 power levels at each frequency. Switching time is < 10 us. Step time is less than 25 us.

Performance & Continuity in Trusted Results

Application Challenges

 Increase test speed and throughput even as test complexity increases

 Best performance with continuity in trusted results

Fast and easy integration into test

platforms

 Lower maintenance costs and minimize downtime

Trusted Agilent Application Software

Signal Studio

M9381A supports deep playback memory with up to 1 Gsample of simulation

Waveform Creation Software

- Connectivity License:
 - N76xxB-9TP connect to M9381A, transportable, perpetual license
 - N76xxB-9FP connect to M9381A, fixed perpetual license
- Selected Signal Studio Formats at introduction

Cellular communications

W-CDMA/HSPA+ cdma2000/1xEV-DO GSM/EDGE/EVO LTE/LTE-Advanced FDD LTE/LTE-Advanced TDD TD-SCDMA/HSDPA

Wireless connectivity

WLAN 802.11a/b/g/n/ac Bluetooth Broadcast radio Digital video Mobile WiMax

Flexible Waveform Playback

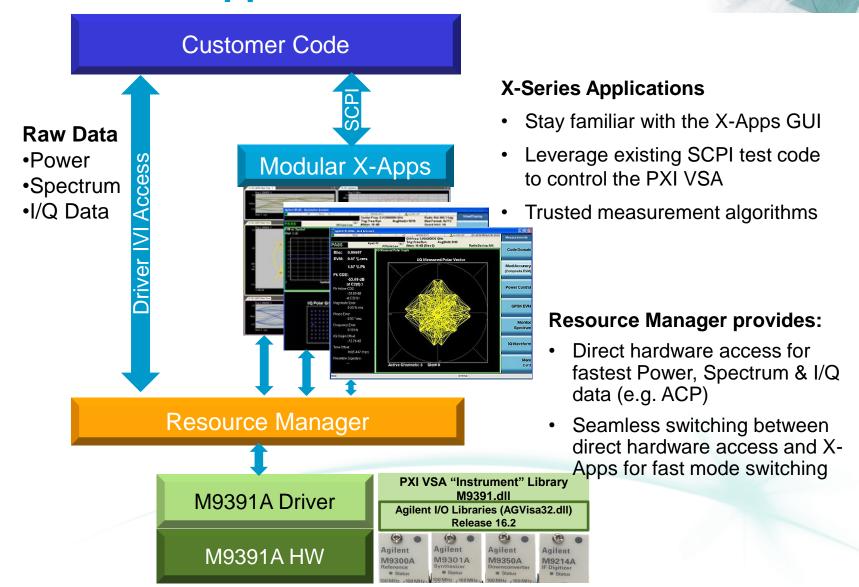
- Licensed to controller (embedded or remote PC)
 - Playback on up to <u>four</u> channels per license
- 5-pack and 50-packs for cost sensitive manufacturing allow waveform playback without purchasing software packages

Trusted Agilent Application Software

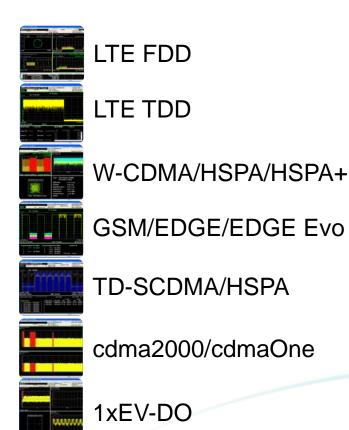

X-Series Applications for Modular Products

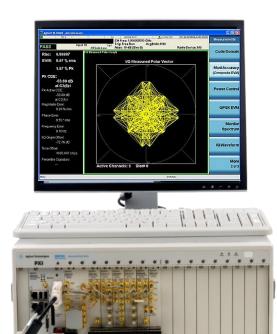
LTE-FDD LTE-TDD W-CDMA/HSPA/HSPA+ TD-SCDMA/HSPA GSM/EDGE/EDGE Evo cdma2000/cdmaOne 1xEV-DO

Agilent PXI VSG/VSA


- Uplink & downlink
- Greatest breadth of measurement coverage
- First to market for new standards
- Fast measurements
- Compatibility from design through production

Wireless Connectivity


802.11 WLAN


Measurement Application Software

X-Series Applications for Modular Products =

Cellular Communication

Common algorithms, programming commands and shared library of measurement applications across X-Series signal analyzers and M9391A PXI VSA ensure consistent, repeatable results

www.agilent.com/find/xseriesapplications

LTE FDD Modular Measurement Application -

M9080A

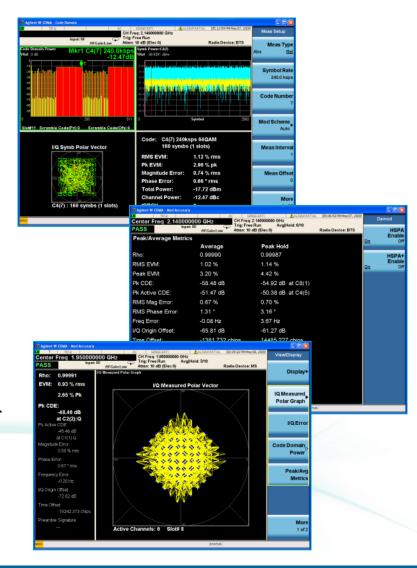
- ✓ Supports 3GPP Rel 9 (2011-12) standard
- ✓ Downlink & uplink analysis in a single option
- ✓ All LTE bandwidths: 1.4 MHz to 20 MHz
- ✓ Transmitter characteristic measurements:
 - Base station (eNB): EVM, freq error, DL RS
 Power, RSTP, OSTP, SEM, ACLR and more.
 - User equipment: EVM, freq error, I/Q offset, in-band emissions, SEM, ACLR and more
 - Multiple color coded result views: EVM vs. subcarrier, symbol, slot, resource block etc..
- √Transport layer channel decoding

www.agilent.com/find/M9080A

LTE TDD Measurement Application –

M9082A

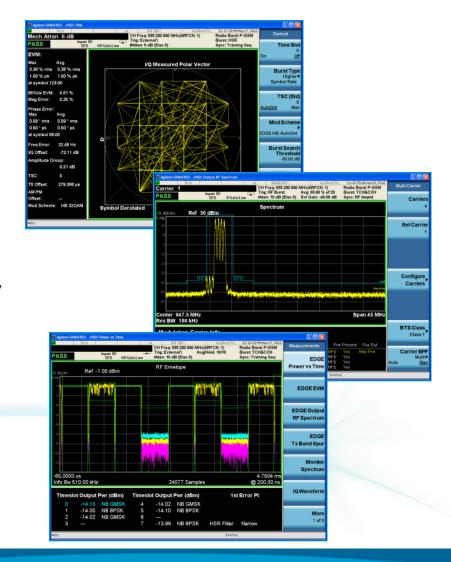
- ✓ Supports 3GPP Rel 9 (2011-12) standard
- ✓ Downlink and uplink analysis in a single option
- ✓ All LTE bandwidths: 1.4 MHz to 20 MHz
- ✓ All DL/UL configurations and special subframe length configurations
- ✓ Transmitter characteristic measurements:
 - Base station (eNB): EVM, freq error, DL RS Power,
 RSTP, OSTP, transmit on/off power, SEM and more.
 - User equipment : EVM, freq error, I/Q
 offset, in-band emissions, SEM, ACLR and more
 - Multiple color coded result views: EVM
 vs. subcarrier, symbol, slot, resource block etc..
- √Transport layer channel decoding


www.agilent.com/find/M9082A

W-CDMA/HSPA/HSPA+ Measurement Application

M9073A

- √W-CDMA, HSPA and HSPA+ per 3GPP
 release 99 to 8
- ✓Analysis of both uplink and downlink in single option
- ✓One-button transmitter measurements :
 - Downlink: EVM, freq error, CPICH power,
 64QAM RCDE, SEM, ACLR plus more
 - Uplink: EVM, freq error, PkCDE, RCDE, slot power, SEM, ACLR plus more
 - Multiple result views: constellation, code domain, numeric display plus more
- ✓ Automatic detection of all channels and signals
- ✓ Single Acquistion Combined Measurement option for fastest measurement speed


www.agilent.com/find/M9073A

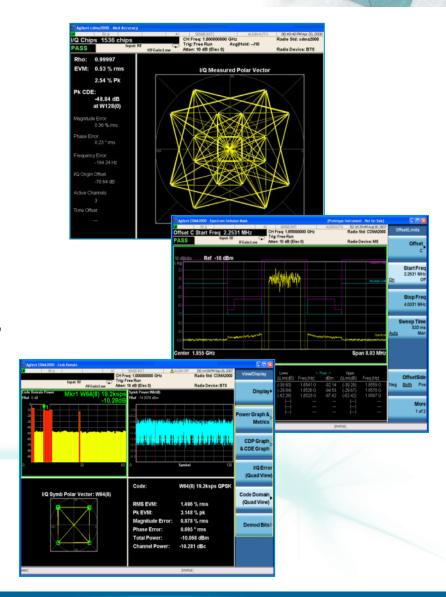
GSM/EDGE/EDGE Evolution Measurement Application – M9071A

- ✓GSM, EDGE and EDGE Evolution per 3GPP
 GERAN standard
- ✓ Analysis of both base station and mobile station in a single option
- ✓ One-button transmitter measurements:
 - Base station: EVM; phase and frequency error; output RF spectrum (ORFS), power vs. time (PvT) and more
 - Mobile station: EVM; phase and frequency error; ORFS; PvT; TX band spur and more
- ✓ Multi-Carrier BTS (MCBTS) and adaptive QPSK (AQPSK) modulated VAMOS¹ measurements per Rel-9 of 3GPP TS 45 standard
- ✓ Single Acquisition Combined Measurement option for fastest measurement speed

www.agilent.com/find/M9071A

TD-SCDMA/HSPA Measurement Application -

M9079A

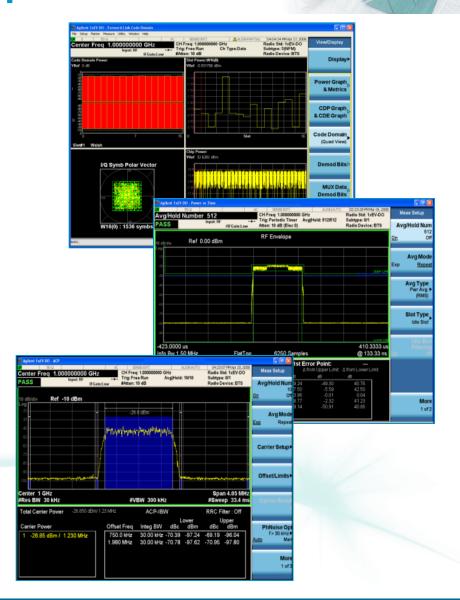

- ✓TD-SCDMA, TD-HSDPA/HSUPA/8PSK per 3GPP release 99 to 8
- ✓Analysis of both uplink and downlink in single option
- ✓One-button transmitter measurements :
 - Downlink: EVM, frequency error, power vs. time, transmit power, code domain power, SEM, ACLR, and more
 - Uplink: EVM, freq stability, transmit ON/OFF power, PkCDE, SEM, ACLR, and more
 - Multiple result views: constellation diagram, code domain, numeric display, spectrum, time domain

www.agilent.com/find/M9079A

cdma2000/cdmaOne Measurement Application

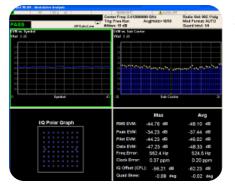
M9072A

- ✓cdmaOne and cdma2000 per 3GPP2 Release A
- ✓Analysis of forward link and reverse link in single option
- ✓ Supports forward link radio configuration(RC) 1 thru 5 and reverse link RC1 thru 4.
- ✓One-button Tx measurements with pass/fail per 3GPP2 standard:
 - ✓Modulation accuracy: Composite Rho and EVM, frequency error, I/Q offset plus more...
 - √Code domain power: displayed in hadamard code order or bit-reverse
 - ✓Power and spectrum measurements: channel power, ACP, SEM, spurious emissions plus more


www.agilent.com/find/M9072A

1xEV-DO Measurement Application –

M9076A


- ✓1xEV-DO per Rel 0, Rev. A and Rev B of 3GPP2 standard
- ✓Analysis of both forward link and reverse link in single option
- ✓ Auto detection for data channels QPSK, 8PSK, 16QAM and 64QAM
- ✓One-button Tx measurements with pass/fail per 3GPP2 standard:
 - Modulation accuracy: composite EVM and rho, CDP, CDE, I/Q chip error plus more
 - Power and spectrum measurements: channel power, power vs. time, ACP, SEM, spurious emissions plus more

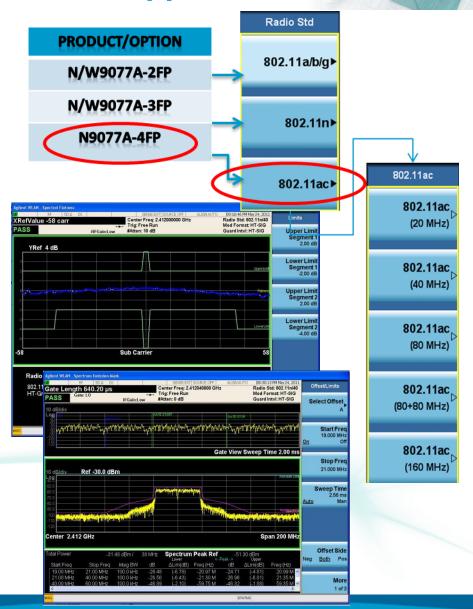
www.agilent.com/find/M9076A

X-Series Applications for Modular Products -

Wireless Connectivity

WLAN 802.11 a/b/g/n/ac

Common algorithms, programming commands and shared library of measurement applications across X-Series signal analyzers and M9391A PXI VSA ensure consistent, repeatable results

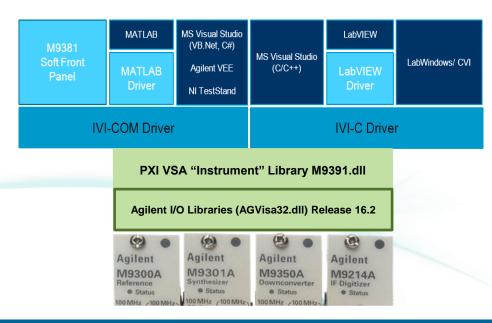

www.agilent.com/find/xseriesapplications www.agilent.com/find/wirelessconnectivity

WLAN 802.11a/b/g/n/ac Measurement Application -

M9077A

- √ Supports IEEE 802.11a/b/g/n/ac standard
 - ✓ Presets include 802.11a/g, 802.11b/g, 802.11g DSSS-OFDM, 802.11n 20MHz and 802.11n 40MHz signals
- ✓ One-button, standard-based measurements with pass/fail tests
 - I/Q demodulation measurements: Modulation accuracy, Power vs. time, Spectral flatness, Power Stat CCDF
 - Swept spectrum measurements: Spectrum emission mask, Spurious emissions, Occupied bandwidth, Channel power
- ✓ Fully bandwidth support of 11ac coving 20/40/80/160 and 80+80 MHz
- ✓ Legacy/mixed/Greenfield mode supported for IEEE 802.11n signals
- ✓ Custom demodulation settings to analyze 802.11j, Turbo Mode, 802.11p signals

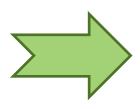
www.agilent.com/find/M9077A



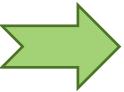
Easy Integration Into Your Test Systems

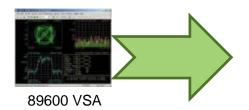
- One-step installation for drivers, example programs, documentation
- Integrated soft front panel allows for quick instrument set up

- One integrated PXI VSG or PXI VSA driver controls instrument functions
- Program in your language of choice
- Generate complex signals using MATLAB, Agilent's Signal Studio Software or other environments that support .BIN or .CSV formats

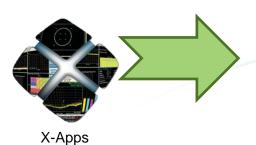


Software leverage and reuse





Compatible with existing license



New license required for PXI VSG to play waveforms

Compatible with existing license Must also purchase Connectivity Option 200

New license required for PXI VSA measurements (one license supports 4 PXI VSAs)

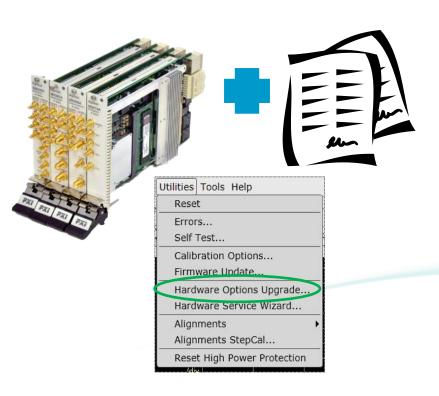
Application Challenges

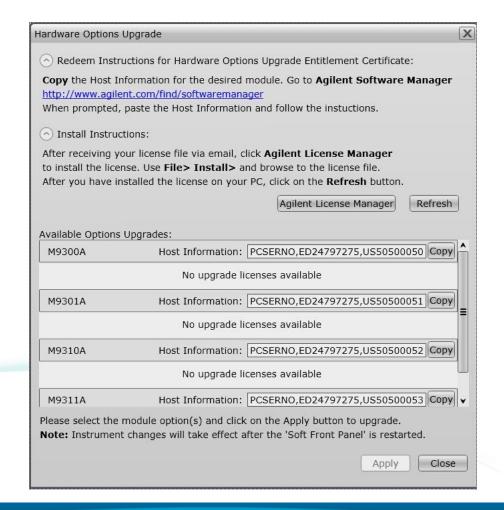
 Increase test speed and throughput even as test complexity increases

 Best performance with continuity in trusted results

 Fast and easy integration into test platforms

Lower maintenance costs and minimize downtime





License Key Upgrade Options

Purchase what you need, as your needs change, upgrade without changing the physical hardware

Utility Provides the ability to upgrade Module options via license key

Agilent's RF Modular Product Calibration

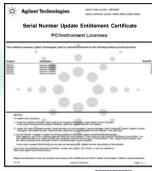
 RF Modular product calibration will be available through the N7800A TME Calibration software. M9381A Available December 2012

Calibration procedures are ISO 17025A and Z540.3 compliant

 Calibration can be perform at Agilent Service Centers, On-site, or by Self-maintainer.

 Calibration will be performed either at the Multi-Module Instrument level or individual module level based on their specifications

Multi-Module Instrument level Calibration Certificates contain each individual module model & serial number


WorldWide Service and Support

- WARRANTY
- Agilent quality in PXIe with 3 Year Warranty Included
- 50 Agilent Service and Support Centers world-wide
- Return to Agilent calibration and repair
- NEW Modular Replacement Core Exchange Assembly repair process.
 - Enables quick and easy replacement of the module assembly while retaining the modules original serial number.
 - > Replacement assembly ships with a serial number updated entitlement certificate
- Return to Agilent Express Warranty with 5 day turn around time (TAT)

Agenda

Introductions

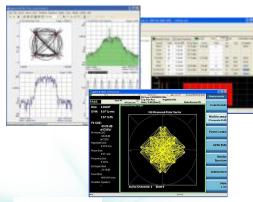
Agilent Modular Objectives

Agilent's New PXIe Vector Signal Analyzer

Agilent's PXIe Vector Signal Generator

Application Challenges

Wrap-up and Summary



Summary

Agilent PXI VSA/G is the next logical step in signal generation and analysis

- Innovation in Agilent PXI RF Sources and Analyzers
 - Excellent RF Parametric Specifications
 - Proprietary Baseband Tuning
 - Upgradable Options
 - Core Exchange Assembly repair
 - Express Warranty
- Consistent measurement science applied across the portfolio
 - Signal Studio
 - X-Series Applications for Modular Products
 - 89600 VSA SW
- Delivering the software needed for effective modular solutions – for any development environment.

More Information

- For more information about the Agilent portfolio of PXI and AXIe products www.agilent.com/find/modular
- Download the Agilent PXI portfolio catalog

http://cp.literature.agilent.com/litweb/pdf/5990-7367EN.pdf

Go to: <u>www.agilent.com/find/M9381A</u>

- Datasheet
- Application overviews Topics include:
 - How the VSG can influence and enhance test systems for power amplifiers
 - Calibration of transceivers
- Product Video

Discussion / Questions

