

HP 8757D/E Scalar Network Analyzers

Technical Data

10 MHz to 110 GHz

Accurate measurement of transmission and reflection characteristics is a key requirement in your selection of a scalar network analyzer. To help you achieve these goals, Hewlett-Packard offers you a choice of scalar network analyzers which provide an excellent balance of cost, system versatility, and measurement precision.

Overview of features and differences HP 8757E

- · High resolution monochrome display
- Two display channels
- Three detector inputs
- Internal plotter/printer buffer
- +16 to -60 dBm dynamic range
- AC/DC detection modes
- 101 to 401 measurement points/trace
- Noise figure measurement display capability
- · Cursor max and min search functions
- Compatible with the HP 85025, 85026, and 11664 series detectors and the HP 85020 and 85027 series directional bridges

HP 8757D

Includes all of the HP 8757E features, plus the following:

- · High resolution color display
- Four display channels
- An optional fourth detector input (option 001)
- An optional internal power calibrator (option 002)
- Accurate power measurements with the HP 85037 series precision detectors
- External disk save/recall
- 101 to 1601 measurement points/trace
- Limit Line Testing (channels 1 and 2)
- Adaptive normalization
- Cursor search functions (max, min, n dB, BW)

Specifications describe the instrument's warranted performance over the temperature range 0 to 55°C (except where noted). Supplemental characteristics are intended to provide information useful in applying the instrument, by giving typical but non-warranted performance parameters. These are denoted as "typical," "nominal," or "approximate."

HP 8757D/E network analyzer

HP 8757D/E scalar network analyzer

The HP 8757D has four independent display channels that process the signals from the HP 85037 series precision detectors (HP 8757D only), the HP 85025, 85026, and 11664 series detectors, and the HP 85020/27 series directional bridges for logarithmic display, in single channel or ratio mode. Three (optionally four) detector inputs are provided. The HP 8757E has two independent display channels and three detector inputs.

Display

Horizontal resolution

The number of points (horizontal resolution) which may be selected is dependent upon the number of traces displayed.

Network Analyzer	Traces	Selectable Number of Points
HP 8757E	1, 2	101, 201, 401
HP 8757D	1 2	101, 201, 401, 801, 1601 101, 201, 401, 801
	3, 4	101, 201, 401

Display modes

All analyzer display channels can display any one of the detector inputs or any ratio combination of detector inputs.

Log magnitude

dBm: single channel power measurement.

dB: relative power measurement (ratio or relative to trace memory).

SWR

Relative measurements (normalized or ratio measurements) can be displayed in SWR. Channels 1 and 2 only; 401 points or fewer.

AUX voltage

The rear panel BNC input ADC IN can be measured and displayed in volts (-10 to +10 volts). Typical maximum error is 60 mV.

Color settings (HP 8757D only)

Up to 8 operator selectable colors are available for CRT attributes, such as the grid, measurement traces, and labels.

Sweep time

The minimum sweep time is dependant upon the number of traces displayed and the number of points selected.

Number of		Minimum sweep time (ms) (log magnitude format)		
points	1 trace	2 traces	3 traces	4 traces
101	40	50	60	70
201	50	75	90	100
401	100	100	150	200
801	200	250	NA	NA
1601	400	NA	NA	NA

Averaging

2, 4, 8, 16, 32, 64, 128, or 256 successive traces may be averaged.

Smoothing

Provides a linear moving average of adjacent data points. The smoothing aperture defines the trace width (number of data points) to be averaged, and ranges from 0.1% to 20% of the trace width.

Normalization

Traces are stored and normalized with the highest resolution, independent of display scale/division or offset. With Adaptive Normalization on the HP 8757D, calibration data will be interpolated when the frequency span is decreased.

Limit lines (HP 8757D only)

Limit lines facilitate quick pass/fail decisions. Limits can be any combination of flat or sloped lines or single points up to 12 segments. They are only available for channels 1 and 2, for traces with 401 points or fewer, and can be stored in save/recall registers 1 through 4.

Internal save/recall registers

Up to 9 complete front panel states may be saved or recalled. If the source (HP 8350B, HP 8340B/8341B, or HP 8360 series) is connected to the 8757 System Interface, the front panel states of both the network analyzer and source are saved. Registers 1 through 4 store the instrument state and the memory traces for channels 1 and 2. The memory traces for channels 3 and 4 are not stored. Registers 5 through 9 only store the instrument state.

Display mode	Scale resolution	Display range	Vertical resolution
dBm	0.1 to 20 dB/div (1/2/5 sequence)	-80 to +80 dBm	0.003 dB
dΒ	0.1 to 20 dB/div (1/2/5 sequence)	-90 to +90 dB	0.006 dB [']
Normalized ratio measurements	0.1 to 20 dB/div (1/2/5 sequence)	-180 to +180 dB	0.01 dB
SWR	0.02 to 10 units/div (1/2/4 sequence)	1.0 to 37.0	0.01 at 1 0.1 at 10 0.27 at 30
AUX Voltage	0.025 to 5 V/div (1/2.5/5 sequence)	-10 to +10V	0.001V

¹ 0.01 dB for display cursor

Modulation requirements

Applies to the HP 85037 series precision detectors, HP 11664 and HP 85025/26 series detectors, and HP 85020/27 series directional bridges in AC mode. Square-wave amplitude modulation.

Frequency 27,778 Hz ±20 Hz.

≥30 dB on/off ratio.

45% to 55% symmetry.

HP 8757D/E network analyzer (cont'd)

Rear panel connectors

Sweep voltage requirements (Sweep in)

Horizontal sweep voltage, normally provided by the sweeper, from 0 to 10 volts.

Marker and blanking requirements (Pos z blank)

Blanking and marker signals are provided by the sweeper through the "Pos Z Blank" input on the rear panel of the HP 8757.

Voltage levels

Blanked: +5V typical Unblanked: 0V typical Marker: -4V typical Active marker: -8V typical

Modulator drive

The modulator drive output of the HP 8757 scalar analyzer provides the circuitry to drive the HP 8340/8341 synthesized sweepers and the HP 11665B modulator. Modulation drive may be turned on and off via the front panel or HP-IB. In the "off" state, the modulator drive signal turns the HP 11665B fully on for minimum insertion loss.

Frequency: 27,778 Hz ±12 Hz

Symmetry: 50% ±1%

Stop sweep

Used with the HP 8350B, 8341B, 8340B, and HP 8360 series when controlled by the 8757 System Interface to stop the sweep at band crossings and at the end of sweep. **ADC** in

An input connector for auxiliary voltage input in the -10 to +10 volt range. This voltage can be displayed (in volts) on any channel.

Control 1 and control 2

These connectors provide digital output signals (TTL open-collector) as a user convenience for driving other peripheral equipment in an HP-IB controlled system.

Video outputs (HP 8757D only)

Used to drive an external color monitor with the following characteristics:

- Red, green, and blue (RGB) BNC inputs, sync on green
- 75 ohm input impedance
- 25.5 kHz horizontal scan rate
- 60 Hz vertical refresh rate
- 1 V p-p (typically 0.7 V = white; 0 V = black; -0.3 V = sync)

Compatible monitors

HP 35741B color monitor

Analog multi-sync monitor (must be able to accept 25.5 kHz horizontal scan rate).

Recommended external monitor interconnect cables HP 45742A 3 meter cable, 75 ohm BNC

HP P/N 8120-3616 2.4 meter cable, 75 ohm BNC

Interface

HP-IB

HP-IB operates according to IEEE 488-1978 and IEC-625 interface standards.

Interface function codes

SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT0, C0, E1.

Transfer formats

Data may be transferred either as ASCII strings or as 16 bit integers. Readings may be taken at a single point, or an entire trace may be transferred at once.

Transfer speed

ASCII format, 401 point trace:

ASCII format, single point:

Binary format, 401 point trace:

Binary format, 401 point trace:

30 ms typical.

7 ms typical.

Programmable functions

All front panel functions except power on/off are programmable. The HP 8757D/E is compatible with all appropriate HP 8757A/C scalar analyzer programming codes.

User-accessible display graphics

HP-GL subset which allows user to display test setup diagrams and operator instructions on the analyzer CRT.

Interrupts

HP-IB service interrupts (SRQs) are generated for the following conditions:

- Front panel key pressed
- Operation complete
- Illegal command
- Instrument self-test error
- · Limit test failed

System interface

The HP 8757 System Interface is a dedicated HP-IB port used exclusively by the HP 8757 to control and extract information from a swept source, a digital plotter, a printer, and a disk drive (HP 8757D only).

Compatible swept sources

The following swept sources are specifically made to complement the HP 8757 system. With them, the HP 8757 is able to display start, stop and marker frequencies, save and recall front panel states of both the sweeper and the scalar analyzer, preset both instruments simultaneously, and alternately sweep two different frequency or power ranges and display both simultaneously:

- HP 8350B sweeper with an RF plug-in (HP 83500 series or HP 86200 series with HP 11869A adapter).
- HP 8340B or HP 8341B synthesized sweeper.
- HP 8360 series synthesized sweeper

Plotters

The following plotters, when connected to the HP 8757 system interface, produce hardcopy plots:

- HP 7090A
- HP 7440B option 002
- HP 7470A option 002
- HP 7475A option 002
- HP 7550A
- HP 7550B option 005

Printers

The following printers, when connected to the HP 8757 system interface, produce hardcopy outputs in the form of tabular data listings or graphic plots.

- HP 2225A ThinkJet
- HP 2227B QuietJet
- HP 3630A option 002 PaintJet

Internal plotter/printer buffer

The HP-IB buffer speeds measurements by returning the control to the analyzer while outputting data to a plotter or printer. Output two channels (401 points each) of information to the buffer in typically less than 5 seconds.

Disk interface (HP 8757D only)

The HP 8757D provides the capability to store and retrieve the analyzer's instrument state, measurement data, and user accessible display graphics to and from an external HP-IB disk drive that is compatible with command subset CS/80. Data files are stored in Hewlett-Packard's standard LIF format and can be read by a wide variety of computers, including the HP 9000 series 200 or 300. Files can be stored in binary or ASCII format. ASCII data files can be accessed on PCs using the HP E2080A LIFUTIL utility program.

Recommended disk drives

HP 9122C dual 3.5 in. disk drive HP 9153C option 020 20 Mbyte hard disk (includes 3.5 in. disk drive)

General information

Temperature range

Operating: 0 to 55°C Storage: -40 to 75°C Power requirements

48 to 66 Hz, 100/120/220/240V ±10%, typically 155 VA.

Dimensions: 178 H x 425 W x 482 mm D (7.0 x 16.75 x 19.0 in.)

Weight: Net 22 kg (48 lb.), Shipping: 28 kg (61.5 lb.)

Power calibrator (HP 8757D option 002 only)

The HP 8757D's internal power calibrator provides a 50 MHz reference standard for characterizing the absolute power accuracy and dynamic power accuracy of the HP 85037 series precision detectors.

Frequency: 50 MHz ± 0.2 MHz Output power: (25 $\pm 5^{\circ}$ C) Range: +20 to -50 dBm Accuracy at 0 dBm: ± 0.05 dB Linearity: (over any 10 dB range) ± 0.08 dB (+20 to +10 dBm) ± 0.04 dB (+10 to -30 dBm) ± 0.06 dB (-30 to -50 dBm)

SWR: ≤1.05

Modes of operation

DC Mode (unmodulated)

AC Mode (modulated at 27,778 Hz ±12 Hz)

Connector: Type-N (f) Accessory included

A type-N (m) to 3.5 mm (f) adapter is provided to allow calibration of the HP 85037B (3.5 mm) precision detector.

Ordering information

HP 8757D scalar network analyzer

Option 001: adds fourth detector input Option 002: adds internal power calibrator

Option 802: adds an HP 9122C dual 3.5 in. disk drive and HP 10833A HP-IB cable.

HP 8757E scalar network analyzer

HP 8757D/E service and support options

Option 1BN: MIL-STD 45662A certificate of calibration Option 1BP: MIL-STD 45662A certificate of calibration with data

Option W03: convert to 90 day on-site warranty (where available)

Option W30: two additional years return to HP service Option W32: three years calibration, return to HP service

System accuracy

Transmission measurement accuracy

Transmission loss or gain measurements are made relative to a 0 dB reference point established at calibration.

Transmission measurement uncertainty

= dynamic power accuracy + mismatch uncertainty

Dynamic power accuracy is the measurement uncertainty due to the change in power level between calibration and the measurement. Mismatch uncertainty is the uncertainty due to reflections in the measurement setup. The frequency response errors of the source, detectors, bridge, and power splitter are removed via calibration.

Transmission measurement uncertainty examplesAssumptions

- Measurement frequency = 10 GHz
- DUT input/output SWR = 1.5
- Ratio measurement

Change in power after calibration <30 dB (+0 to -30 dBm range)

Uncertainty component	HP 85037B precision detector	HP 85025E detector	HP 11664E detector
Dynamic accuracy (±dB)	0.11	0.40	0.30
Mismatch (±dB)	0.45	0.33	0.61
Total (±dB)	0.56	0.73	0.91

Change in power after calibration 60 dB (+6 to -55 dBm range)

Uncertainty component	HP 85037B precision detector	HP 85025E detector	HP 11664E detector
Dynamic accuracy (±dB)	0.96	2.00	1.50
Mismatch (±dB)	0.45	0.33	0.61
Total (±dB)	1.41	2.33	2.11

Absolute power measurement accuracy

This specification is useful for determining the accuracy of power measurements in dBm when using the HP 85037 series precision detectors or the HP 85025 series detectors in DC mode.

Absolute power uncertainty =

absolute power accuracy at 50 MHz

+ frequency response + mismatch uncertainty

Absolute power measurement uncertainty examples

Assumptions

- Measurement frequency = 10 GHz
- DUT input/output SWR = 1.5

Power = +10 dBm

HP 85037 B precision detector	HP 85025E detector	
· ·		
0.11	0.50	
0.18	0.50	
0.18	0.10	
0.47	1.10	
	0.11 0.18 0.18	

Power = 0 dBm

HP 85037B precision detector	HP 85025E detector	
0.11	0.40	
0.18	0.50	
0.18	0.10	
0.47	1.00	
	0.11 0.18 0.18	

Power = -50 dBm

HP 85037B precision detector	HP 85025E detector	
0.85	1,30	
0.18	0.50	
0.18	0.10	
1.21	1.90	
	0.85 0.18 0.18	

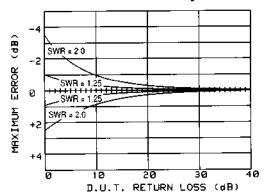
Precision detector vs. power sensor absolute power measurement accuracy

With different accuracy terms, comparing the power measurement accuracy of an HP 8757 system using an HP 85037 series precision detector versus a power meter using a power sensor can be confusing. To help reduce this confusion, the following table provides a simplified comparison of accuracy terms. In addition, a measurement accuracy example is provided.

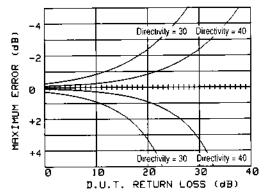
Scalar terms	Equivalent power meter/sensor terms
Absolute power accuracy at 50 MHz	Power reference uncertainty Instrument linearity Zero set Noise
Frequency response	Sensor calibration factor uncertainty
Mismatch	Mismatch

Scalar analyzer vs power meter Absolute power measurement uncertainty examples

Assumptions


- Measurement frequency = 10 GHz
- DUT input/output SWR = 1.5
- Power measurement range = +10 to -20 dBm

Uncertainty component (see above table for equivalent power meter terms)	HP 8757D opt 002/ 85037B	HP 437B/ 8485A	
Absolute power accuracy			
at 50 MHz (±dB)	0.11	0.09	
Frequency response (±dB)	0.18	0.09	
Mismatch (±dB)	0.18	0.12	
Total (±dB)	0.47	0.30	


Reflection Measurement Accuracy

Uncertainties due to calibration error and the frequency response of the source, detectors, and bridges are removed via open/short averaging. The remaining uncertainties are primarily the sum of directivity uncertainty, effective source match uncertainty, and dynamic power accuracy. As shown in the graphs below, directivity is the dominant error term when measuring small reflected signals (high return loss) and source match is dominant when measuring large reflected signals (low return loss).

Effective source match versus reflection uncertainty

Directivity versus reflection uncertainty

Example calculation

The following example shows how to find the uncertainty (excluding dynamic accuracy), in measuring a 14 dB return loss (SWR = 1.5) with an HP 85027A directional bridge at 10 GHz (directivity = 40 dB, test port match = 1.25 SWR).

Uncertainty Component	Uncertainty	
Source malch error Directivity error	approximately ±0.2 dB approximately ±0.4 dB	
Total uncertainty	approximately ±0.6 dB	

Detectors

HP 85037 series precision detectors (AC/DC)

The HP 85037 series precision detectors are designed specifically for operation with the HP 8757D scalar network analyzer and are not compatible with the HP 8757A/E, 8756, or 8755 scalar network analyzers. These detectors may be used in either AC or DC detection modes. For improved power measurement accuracy versus frequency, each HP 85037 series precision detector includes detector specific frequency response data, stored in an internal EEPROM, which is automatically read by the HP 8757D. When used in conjunction with the HP 8757D's internal power calibrator (option 002), these detectors provide the maximum absolute power measurement accuracy.

HP 85025 and 85026 series detectors (AC/DC)

The HP 85025 and 85026 series detectors are designed specifically for operation with the HP 8757 scalar network analyzer and are not compatible with either the HP 8756 or the 8755. The HP 85025/26 detectors may be used in either AC or DC detection modes.

11664 series detectors (AC only)

The HP 11664 series detectors are designed to operate with the HP 8757, 8756, and 8755 scalar analyzers in AC mode only.

General information—coaxial detectors

Impedance: 50 ohms nominal

Maximum input power: +20 dBm (100 mW)

Maximum input voltage: 10 VDC

Dimensions: Cable length is 1.22 m (48 in.)

Weight: Net 0.24 kg (0.5 lb), Shipping 1.0 kg (2.2 lb)

Detector adapters

The HP 85025C and 11664C detector adapters match the scalar analyzer display to most standard crystal, silicon, and gallium arsenide detectors. This enables the user to operate up to 110 GHz with the HP 8757 and 8756. The HP 85025C detector adapter is designed for use with the HP 8757 only, and can operate in either AC or DC detection modes. The HP 11664C detector adapter is designed for use with the HP 8757, 8756, and 8755 scalar analyzers.

Maximum measurable input: ±3V peak Maximum allowable input: ±10V peak

Connector: SMA (m)

Precision Detector Summary, HP 85037 Series For use with the HP 8757D in either AC or DC detection modes

Model	Frequency Range	Connector Type	Dynamic Range	Frequency	Return Loss	Frequency Response
HP 85037A	10 MHz-18 GHz	Type-N (m) 7 mm ²	AC mode +20 to -55 dBm DC mode +20 to -50 dBm	0.01-0.04 GHz 0.04-18 GHz	10 dB 20 dB	±0.35 dB ±0.18 dB
HP 85037B	10 MHz-26.5 GHz	3.5 mm (m)	AC mode +20 to -55 dBm DC mode +20 to -50 dBm	0.01-0.04 GHz 0.04-18 GHz 18-26.5 GHz	10 dB 20 dB 18 dB	±0.35 dB ±0.18 dB ±0.22 dB

Model	Power	Dynamic /	Accuracy ^{4,5}	Absolute Accuracy**	
	(50 MHz)	Corrected	Default	Corrected	Default
HP 85037A/B	20 dBm	±0.25 dB	±0.40 dB	±0.25 dB	±0.40 dB
111 00001700	10 dBm	±0.11 dB	±0.40 dB	±0.11 dB	±0.40 dB
	-30 dBm	±0.11 dB	±0.40 dB	±0.11 dB	±0.40 dB
	-40 dBm	±0.40 dB	±0.80 dB	±0.40 dB	±0.80 dB
	-50 dBm	±0.85 dB	±1.30 dB	±0.85 dB	±1.30 dB
	-55 dBm	±0.85 dB	±1.30 dB		

Temperature coefficient of linearity: 0.01 dB/°C temperature change after calibration

3 –10 dBm, 25 ±5°C

6 DC mode, 25 ±5°C, calibration and measurement at the same temperature.

¹ The HP 85037A/B specifications are only applicable when used with the HP 8757D scalar network analyzer.

² Option 001 changes to 7 mm connector.

⁴ The corrected specifications apply after a calibration via the HP 8757D Option 002 internal power calibrator. The default specifications apply when the calibrator is not used. Power calibrator uncertainty is included in the HP 85037A/B corrected specifications.

⁵ Dynamic accuracy refers to measurement accuracy as power varies (in dB) from a 0 dBm reference. 25 ±5°C, 50 MHz, calibration and measurement at the same temperature.

Coaxial Detector Summary, HP 85025 and 11664 Series For use with the HP 8757 in either AC or DC detection modes

Model	Frequency Range	Connector Type	Dynamic Range	Frequency	Return Loss	Frequency Response	Power (50 MHz)	Dynamic , Accuracy ,	Absolute Accuracy
HP 85025A ⁵	10 MHz- 18 GHz	Type-N (m)	AC mode +16 to -55 dBm	0.01-0.04 GHz 0.04-4 GHz	10 dB 20 dB	±0.8 dB ±0.5 dB	16 dBm 6 dBm	±0.8 dB ±0.4 dB	±0.8 dB ±0.4 dB
		7 mm [']	DC mode +16 to -50 dBm	4–18 GHz	17 dB	±0.5 dB	-35 dBm -50 dBm -55 dBm	±0.4 dB ±1.3 dB ±1.6 dB	±0.4 dB ±1.3 dB
HP 85025B ³	10 MHz- 26.5 GHz	3.5 mm (m)	AC mode +16 to -55 dBm DC mode +16 to -50 dBm	0.01-0.04 GHz 0.04-4 GHz 4-18 GHz 18-26.5 GHz	10 dB 20 dB 17 dB 12 dB	±0.8 dB ±0.5 dB ±0.5 dB ±2.0 dB	16 dBm 6 dBm -36 dBm -50 dBm -55 dBm	±0.8 dB ±0.4 dB ±0.4 dB ±1.3 dB ±1.6 dB	±0.8 dB ±0.4 dB ±0.4 dB ±1.3 dB
HP 85025D ³	10 MHz- 50 GHz	2.4 mm (m)	AC mode +16 to -55 dBm DC mode +16 to -50 dBm	0.01-0.1 GHz 0.1-20 GHz 20-26.5 GHz 26.5-40 GHz 40-50 GHz	10 dB 20 dB 20 dB 15 dB 9 dB	±0.8 dB ±0.5 dB ±1.0 dB ±2.5 dB ±3.0 dB	16 dBm 6 dBm -35 dBm -50 dBm -55 dBm	±1.0 dB ±0.4 dB ±0.4 dB ±1.3 dB ±1.6 dB	±1.0 dB ±0.4 dB ±0.4 dB ±1.3 dB
HP 85025E ⁵	10 MHz- 26.5 GHz	3.5 mm (m)	AC mode +16 to -55 dBm DC mode +16 to -50 dBm	0.01-0.1 GHz 0.1-18 GHz 18-25 GHz 25-26.5 GHz	10 dB 25 dB 25 dB 23 dB	±0.8 dB ±0.5 dB ±0.5 dB ±1.4 dB	16 dBm 6 dBm -35 dBm -50 dBm -55 dBm	±1.0 dB ±0.4 dB ±0.4 dB ±1.3 dB ±1.6 dB	±1.0 dB ±0.4 dB ±0.4 dB ±1.3 dB

For use with the HP 8757, 8756, or 8755 in AC detection mode only

Model	Frequency Range	Connector Type	Dynamic Range	Frequency	Return Loss	Frequency Response	Power (50 MHz)	Dynamic Accuracy
HP 11664A ⁶	10 MHz- 18 GHz	Type-N (m) 7 mm	+16 to -60 dBm	0.01–0.04 GHz 0.04–4 GHz 4–12 GHz 12–18 GHz	10 dB 20 dB 18 dB 16 dB	±0.5 dB ±0.5 dB ±0.5 dB ±0.5 dB	16 dBm 6 dBm -35 dBm -60 dBm	±0.4 dB ±0.3 dB ±0.3 dB ±1.2 dB
HP 11664E [°]	10 MHz- 26.5 GHz	3.5 mm (m)	+16 to -60 dBm	0.01-0.04 GHz 0.04-6 GHz 6-18 GHz 18-26.5 GHz	10 dB 20 dB 16 dB 12 dB	±0.5 dB ±0.5 dB ±0.5 dB ±1.0 dB	16 dBm 6 dBm -35 dBm -60 dBm	±0.4 dB ±0.3 dB ±0.3 dB ±1.2 dB

6 For <20 dB change of power within +10 to -40 dBm, the specification for the HP 6757 with the HP 11664A/E is ± (0.1 dB + 0.01 dB/dB).

Option 001 changes to 7 mm connector.
 -10 dBm, 25 ±5°C
 Dynamic accuracy refers to measurement accuracy as power varies (in dB) from a 0 dBm reference. 25 ±5°C, 50 MHz.
 DC mode, 25 ±5°C.

The HP 85025 and 85026 series detectors and the HP 85025C detector adapter require HP 8757A firmware revision 2.0 or higher. To upgrade previous revisions, order the HP 11614A Firmware Enhancement.

System accessories (cont'd)

Waveguide Detectors and Detector Adapters Summary For use with the HP 8757 only in either AC or DC detection modes

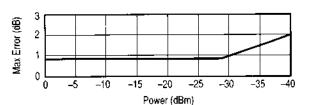
Model	Frequency Range	Connector Type	Dynamic Range	Return Loss	Frequency Response	Dynamic Accuracy
HP R85026A	26.5– 40 GHz	WR-28	+10 to -50 dBm (AC mode) +10 to -45 dBm (DC mode)	12 dB	±1.5 dB	±(0.3 dB + 0.03 dB/dB)
HP Q85026A	33– 50 GHz	WR-22	+10 to -50 dBm (AC mode) +10 to -45 dBm (DC mode)	12 dB	±2.0 dB	±(0.3 dB + 0.03 dB/dB)
HP U85026A	40– 60 GHz	WR-19	+10 to -50 dBm (AC mode) +10 to -45 dBm (DC mode)	12 dB	±2.0 dB	±(0.3 dB + 0.03 dB/dB)
HP 85025C Opt K57	50– 75 GHz	WR-15	+10 to -45 dBm (typical)	9.5 dB (typical)		
HP 85025C Opt K71	75- 110 GHz	WR-10	+10 to -45 dBm (typical)	9.5 dB (typical)		
HP 85025C	2	SMA (m)	2	2	2	z

For use with the HP 8757, 8756, or 8755 in AC detection mode only

Model	Frequency Range	Connector Type	Dynamic Range	Return Loss	Frequency Response	Dynamic Accuracy
HP 11664D	26.5– 40 GHz	WR-28	+10 to -50 dBm	12 dB	±1.5 dB	±0.5 dB @ 10 dB ±0.2 dB @ 0 to -35 dB ±1.0 dB @ -50 dB
HP 11664C	2	SMA (m)	2	2	2	2

¹ The HP 85025 and 85026 series detectors and the HP 85025C detector adapter require HP 8757A firmware revision 2.0 or higher. To upgrade previous revisions, order the HP 11614A Firmware Enhancement.

Directional bridges HP 85020A/B directional bridges (AC only)


The HP 85020A/B directional bridges offer high directivity and excellent test port match to 4.3 GHz. These bridges may be used with the HP 8757, 8756 or 8755 scalar network analyzers in AC detection mode. The HP 85020A is designed for 50 ohm environments while the HP 85020B is designed for 75 ohm environments.

HP 85027 series directional bridges (AC/DC)

The HP 85027 series directional bridges are designed to operate with either the HP 8757 in AC or DC detection modes or with the HP 8756 or 8755 in AC detection mode. These bridges offer high directivity, excellent test port match, and a measurement range of up to $50~\rm{GHz}$ in coax.

General information—directional bridges

Dynamic power accuracy (50 MHz, 25 ±5°C, +7 dBm input)

² Depends upon the particular detector being used.

³ Must be used with the HP 85025C or 11664C detector adapter.

Typical insertion loss

6.5 dB at 10.0 MHz 8.0 dB at 18.0 GHz 10.0 dB at 26.5 GHz 11.0 dB at 40.0 GHz 13.0 dB at 50.0 GHz

Typical minimum input power for a

40 dB return loss measurement at 18 GHz: +2 dBm

Dimensions:~26~H~x~124~W~x~118~mm~D

(1.0 x 4.9 x 4.4 in.)

Weight: Net 0.5~kg~(1.2~lb), Shipping 2.3~kg,~(5~lb)Accessories included with directional bridges:

HP 85027A 7 mm open/short Type-N (m)–(m) adapter HP 85027B

3.5 mm (m) open/short 3.5 mm (m)–(m) adapter 3.5 mm (m)–(f) adapter

HP 85027C Type-N (m) short

Type-N (m) shielded open

Type-N (m)-(m) adapter

HP 85027D 2.4 mm (f) open

2.4 mm (f) short HP 85027E

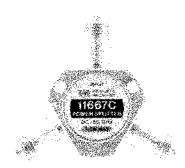
3.5 mm (f) open/short

3.5 mm (f)–(f) adapter

3.5 mm (f)-(m) adapter

Directional Bridge Summary For use with the HP 8757, 8756, or 8755 in AC detection mode only

Model	Frequency Range	Nominal Impedance	Input Connector	Test Port Connector	Frequency	Directivity	Frequency	Test Port Match
HP 85020A	10 MHz- 4.3 GHz	50 ohms	Type-N (f)	Type-N (f)	0.01–3 GHz 3–4.3 GHz	40 dB 34 dB	0.01–3 GHz 3–4.3 GHz	<1.20 SWR <1.25 SWR
HP 85020B	10 MHz- 2.4 GHz	75 ohms	Type⋅N (f)	Type-N (I)	0.01-2.4 GHz	40 dB	0.01–1.3 GHz 1.3–2.4 GHz	<1.25 SWR <1.39 SWR


For use with the HP 8757 in AC or DC detection mode or with the 8756 or 8755 in AC detection mode only

Model	Frequency Range	Nominal Impedance	Input Connector	Test Port Connector	Frequency	Directivity	Frequency	Test Port Match
HP 85027A	10 MHz- 18 GHz	50 ohms	Type-N (f)	7 mm	0.01-18 GHz	40 dB	0.01-8.4 GHz 8.4-12.4 GHz 12.4-18 GHz	<1.15 SWR <1.25 SWR <1.43 SWR
HP 85027B	10 MHz- 26.5 GHz	50 ohms	3.5 mm (f)	3.5 mm (f)	0.01-20 GHz 20-26,5 GHz	40 dB 36 dB	0.01-8.4 GHz 8.4-20 GHz 20-26.5 GHz	<1.15 SWR <1.43 SWR <1.78 SWR
HP 85027C	10 MHz- 18 GHz	50 ohms	Type-N (f)	Type-N (f)	0.01–12.4 GHz 12.4–18 GHz	36 dB 34 dB	0.01-8.4 GHz 8.4-12.4 GHz 12.4-18 GHz	<1.15 SWR <1.25 SWR <1.43 SWR
HP 85027D	10 MHz- 50 GHz	50 ohms	2.4 mm (f)	2.4 mm (m)	0.01–26.5 GHz 26.5–40 GHz 40–50 GHz	35 dB 30 dB 25 dB	0.01-16 GHz 16-30 GHz 30-40 GHz 40-50 GHz typical	<1.18 SWR <1.27 SWR <1.40 SWR y <1.85 SWR
HP 85027E	10 MHz- 26.5 GHz	50 ohms	3.5 mm (f)	3.5 mm (m)	0.01 –20 GHz 20–26.5 GHz	40 dB 36 dB	0.01 - 8.4 GHz 8.4-20 GHz 20-26.5 GHz	<1.15 SWR <1.43 SWR <1.78 SWR

System accessories (cont'd)

Power splitters

The HP 11667 series power splitters are two-resistor splitters recommended for external source leveling or for ratio measurement applications.

General information

Impedance: 50 ohms nominal Maximum input power: +27 dBm

Dimensions: 46 H x 52 W x 21 mm D (1.8 x 2.0 x 0.8 in.). Weight: Net 0.14 kg (0.3 lb), Shipping 0.22 kg (0.5 lb)

Power dividers

The HP 11636 series power dividers are three-resistor splitters intended for direct power dividing applications such as transmission line fault location with the HP 85016B software. The HP 11636 series can also be used as a power combiner.

General information

Impedance: 50 ohms nominal

Dimensions: 42 H x 45 W x 18 mm D (1.6 x 1.8 x 0.7 in) Weight: Net 0.14 kg (0.3 lb), Shipping 0.45 kg (1.0 lb)

HP 11679A/B extension cables

These cables extend the distance between the scalar network analyzer and the detector or bridge to a maximum of 200 feet without degradation of performance.

HP 11679A 7.6 m (25 ft.) extension cable **HP 11679B** 61 m (200 ft.) extension cable

HP 11665B modulator

The HP 11665B modulates test signals with the 27.8 kHz modulation drive signal from the scalar network analyzer.

Frequency range: 15 MHz to 18 GHz Insertion loss and return loss

Frequency	Return	Insertion Loss			
,	Loss	ON (+50mA)	OFF (-50mA)		
15 MHz to 40 MHz	>10 dB	<7.0 dB	>35 dB		
40 MHz to 4 GHz	>15 dB	<3.2 dB	>35 dB		
4 GHz to 8 GHz	>12 dB	<3.8 dB	>40 dB		
8 GHz to 12.4 GHz	>8 dB	<4.3 dB	>45 dB		
12.4 GHz to 18 GHz	>8 dB	<5.0 dB	>45 dB		

Maximum input: +24 dBm

Connectors: Input: Type-N (f), Output: Type-N (m) Weight: Net: 0.17 kg (0.38 lbs), Shipping: 0.9 kg (2 lbs.)

Power splitters

Model	Frequency Range	input Connector	Output Connectors	Frequency	Insertion Loss (typical)	Equivalent Output Match	Output Tracking
HP 11667A	DC to 18 GHz	Type-N (f)	Type-N (f)	DC to 4 GHz 4 to 8 GHz 8 to 18 GHz	6.6 dB 7.0 dB 7.8 dB	1.10 SWR 1.20 SWR 1.33 SWR	0.15 dB 0.20 dB 0.25 dB
HP 11667B	DC to 26.5 GHz	3.5 mm (f)	3.5 mm (f)	DC to 8 GHz 8 to 18 GHz 18 to 26.5 GHz	6.5 dB 7.0 dB 7.3 dB	1.22 SWR 1.22 SWR 1.22 SWR	0.25 dB 0.25 dB 0.40 dB
HP 11667C	DC to 50 GHz	2.4 mm (f)	2.4 mm (f)	DC to 18 GHz 18 to 26.5 GHz 26.5 to 40 GHz 40 to 50 GHz	6.0 dB 7.0 dB 8.0 dB 8.5 dB	1.29 SWR 1.20 SWR 1.50 SWR 1.65 SWR (typical)	0.30 dB 0.35 dB 0.40 dB 0.40 dB

Power dividers

Model	Frequency Range	Input Connector	Output Connectors	Frequency	Output Match	Output Tracking
HP 11636A	DC to 18 GHz	Type-N (m)	Type-N (1)	DC to 4 GHz 4 to 10 GHz 10 to 18 GHz	1.25 SWR 1.25 SWR 1.35 SWR	0.20 dB 0.40 dB 0.50 dB
HP 11636B	DC to 26.5 GHz	3.5 mm (f)	3.5 mm (f)	DC to 10 GHz 10 to 18 GHz 18 to 26.5 GHz	1.22 SWR 1.29 SWR 1.29 SWR	0.25 dB 0.50 dB 0.50 dB

¹ Option 001 changes the input connector to Type-N (m)

HP 85023A/B/C/D/F verification kits

These verification kits each contain an open, a short, a 10 dB attenuator, a termination, and a source-to-bridge adapter. The HP 85023D also includes two HP 11852A 50-to-75 ohm minimum loss pads for 50/75 ohm impedance conversion.

Weight: Net 0.5 kg (1.2 lb.), Shipping: 1.2 kg (2.9 lb.)

HP 85028A directivity verification kit

The HP 85028A directivity verification standards allow on-site verification of the directivity of the HP 85027A and 85021A 7 mm directional bridges, when used with an HP 8757 scalar network analyzer.

Contents

7 mm 50 ohm termination

7 mm open/short

7 mm sliding mismatch

7 mm center contact extractor

7 mm 6-slot center connector collets (4)

7 mm torque wrench

7 mm connector gauge

HP 85022A system cable kit

The HP 85022A contains the BNC and HP-IB cables needed to connect an HP 8350B, 8340B, 8341B, or HP 8360 series source, an HP 9000 series 200 or series 300 computer, and a plotter or printer to the HP 8757. **Contents**

HP-IB cable, 100 cm (3.3 ft.), 3 each

50 ohm BNC (m) cable, 61 cm (2 ft.), 3 each

50 ohm BNC (m) cable, 122 cm (4 ft.)

Weight: Net: 0.5 kg (1.2 lbs.), Shipping: 1.2 kg (2.9 lbs)

HP 11668A high pass filter

The HP 11668A high pass filter is recommended when making measurements on active devices that have high gain below 50 MHz.

Impedance: 50 ohms nominal Insertion loss and return loss

Frequency	Return Loss	Insertion Loss
50 to 100 MHz	>12 dB	<2.5 dB
100 MHz to 8 GHz	>16 dB	<1.0 dB
8 to 12 GHz	>14 dB	<1.0 dB
12 to 18 GHz	>14 dB	<1.5 dB

Maximum input: +27 dBm

Connectors: Type-N (m) input, Type-N (f) output **Weight:** Net: 0.13 kg (0.31 lb) Shipping: 0.28 kg (0.63 lb)

Verification kits

Model	Frequency Range	Connector Type	Characteristic Impedance	Contents (terminations and pads 50 ohms unless otherwise noted)
HP 85023A	DC to 18 GHz	7 mm	50 ohms	7 mm open/short Type-N (m)-(m) adapter 7 mm termination 7 mm 10 dB pad
HP 85023B	DC to 26.5 GHz	3.5 mm	50 ohms	3.5 mm (m)-(m) open/short 3.5 mm (m) to Type-N (m) adapter 3.5 mm (m) termination 3.5 mm (m) 10 dB pad
HP 85023C	DC to 18 GHz	Type-N	50 ohms	Type-N (m) open Type-N (m) short Type-N (m)-(m) adapter Type-N (m) termination Type-N (m)-(f) 10 dB pad
HP 85023D	DC to 1.3 GHz	Type-N	75 ohms	Type-N (m) 75 ohm short Type-N (m)-(m) adapter Type-N (m) 75 ohm termination Type-N (m) 10 dB pad Two 50/75 ohm min loss pads
HP 85023F	0.01 to 50 GHz	2.4 mm	50 ohms	2.4 mm (f) open 2.4 mm (f) short 2.4 mm (f) to (f) adapter 2.4 mm (f) termination 2.4 mm 10 dB pad

System accessories (cont'd)

HP 11678A low pass filter kit

This kit contains five filters. Their use is recommended for reducing undesirable harmonics generated by the RF source.

Cutoff frequency (fc)

HP 11688A: 2.8 GHz HP 11689A: 4.4 GHz HP 11684A: 6.8 GHz HP 11685A: 9.5 GHz HP 11686A: 13.0 GHz

General information

Insertion loss: Typically <1.1 dB in passband at 0.95fe

Rejection: Typically >40 dB at 1.25fc Impedance: 50 ohms nominal

Connectors: Type-N (m) input, Type-N (f) output Weight: Net: 0.44 kg (1 lb.), Shipping: 1.2 kg (2.9 lb.)

HP 11613B calibrator

The HP 11613B is a dedicated transfer standard for calibration of the HP 8757. The HP 11613B provides the standard, a 27.778 kHz source and a series of precision attenuators. The calibrator includes software (both 3.5 and 5.25 inch formats) that operates on an HP 9000 series 200 or 300 computer and the HP BASIC operating system (HP BASIC 3.0 or higher). The software verifies (and adjusts if necessary) the internal calibration parameters stored in the non-volatile memory of the HP 8757. All HP 8757 detector inputs can be calibrated in a matter of minutes. Re-calibration of the HP 11613B is recommended every two years. The HP 11613B calibrator also allows verification and calibration of the HP 8756A and HP 8755 scalar network analyzers.

Memory requirement: 0.5 Mbyte Outputs

The 5 pin cable (1.22 m) mates with the detector inputs of the HP 8757. The lines in this cable transfer the squarewave signal to the HP 8757, provide power for the HP 11613B (from the HP 8757 supply), and program the HP 11613B's internal attenuators.

Dimensions: 40 H x 185 W x 203 mm D

(1.5 x 7.3 x 8.0 in.)

Cable length: 1.22 m (48 in.)

Weight: Net: 0.91 kg (2 lbs.), Shipping: 2.3kg (5 lbs.)

Software

HP 85015B system software

The HP 85015B software enables the user to automate scalar measurements. The user can make simple menu selections to customize a scalar measurement test procedure. Once created, this test procedure can be easily stored on the computer disk. The HP 85015B software is not compatible with the HP 8360 series synthesized sweeper.

HP 85016B transmission line test software

The HP 85016B adds distance-to-fault measurements to the capabilities of the HP 85015B system software. Using frequency domain reflectometry (FDR), frequency response data is transformed to the distance domain enabling the user to see the location and magnitude of impedance mismatches.

HP 85015B and 85016B recommended equipmentComputer

HP 9000 Series Model 332 computer with 2.0 Mbyte of memory (minimum) and HP BASIC 5, or 6.

Scalar network analyzer: HP 8757

Source

HP 8350B sweeper with any HP 83500 series RF plug-in or an HP 8341B or 8340B synthesized sweeper

Ordering information

HP 85015B system software Option 630: 3-1/2-inch disks Option 655: 5-1/4-inch disks

HP 85016B transmission line test software

Option 630: 3-1/2-inch disks Option 655: 5-1/4-inch disks

Option H01: Provides software compatibility for an HP 8360 series synthesized sweeper and HP 8757C/D/E scalar network analyzer system.

Amplifier test software HP P/N 86399-10001

This amplifier test software automates basic amplifier measurements of gain, gain compression, return loss, and standing wave ratio. The software is completely menu driven, emphasizing simplicity and ease of use. Both 3.5 inch and 5.25 inch formats are provided.

Recommended equipment

Computer

HP 9000 series 200 or 300 with 1.0 Mbyte of memory and HP BASIC 3.0 or higher.

Scalar network analyzers: HP 8757

Sources

HP 8350B sweeper with an HP 83500 series RF plug-in, an 8341B or 8340B synthesized sweeper or an HP 8360 series synthesized sweeper

Support products and literature

Service and support products

HP 8757D/E option W03

On-site service (where available)

Option W03 converts your one-year, return-to-HP service to a 90-day, on-site service. Consult with your local HP service office for availability.

HP 8757D/E+23N

On-site installation (where available)

An HP customer engineer will assemble and verify the operation of your scalar network analyzer system at your site.

HP 8757D/E+02B

On-site service (where available)

An HP customer engineer will perform all repairs at your site for one year. This service may be renewed annually.

HP 8757D/E option W30

Two additional years return-to-HP service (where available)

In the event of a failure, HP will repair these products for three years after delivery. (The first year is under standard warranty; the second and third are under this extended support program.) All parts, labor, post-repair adjustments, and verification are included. (Periodic maintenance and scheduled "calibrations" are not included.)

HP 8757D/E option W32

3-year calibration

Option W32 provides three years of return to HP calibration service. Includes scheduled calibration at the manufacturer's calibration cycle and calibration after repair performed by Hewlett-Packard.

HP 8757D option 1BN

MIL-STD 45662A Certificate of calibration

Certificate of calibration in full compliance with MIL-STD 45662A.

HP 8757D/E option 1BP

MIL-STD 45662A certificate of calibration with data

Certificate of calibration in full compliance with MIL-STD 45662A supplied with calibration data.

Literature guide

Product note 8757-1

(Request Lit. No. 5954-8386)

Using AC detection with the HP 8757 and 8756 scalar network analyzer to make more accurate measurements.

Product note 8757-2

(Request Lit. No. 5954-8380)

V and W band scalar measurements using the HP 8757 scalar network analyzer.

Product note 8757-5

(Request Lit. No. 5954-1537)

Measuring voltage-controlled devices with the HP 8757 scalar network analyzer.

Product note 8757-6

(Request Lit. No. 5954-8347)

Automated amplifier measurements using the HP 8757 and 8756 scalar network analyzers.

Product note 85016-1

(Request Lit. No. 5954-1600)

Making measurements and configuring run-only tests using the HP 85016B software.

Application note 183

(Request Lit. No. 5952-9200)

High frequency swept measurements.

Application note 312-1

(Request Lit. No. 5952-9316)

Configuration of a two tone sweep oscillator.

Application note 327-1

(Request Lit. No. 5953-8882)

Extended dynamic range of scalar transmission measurements using the HP 8757 scalar network analyzer.

Application Note 345-1

(Request Lit. No. 5954-1599)

Amplifier measurements using the scalar network analyzer.

Application note 345-2

(Request Lit. No. 5954-8369)

Mixer measurements using the scalar network analyzer.

For more information, call your local HP sales office listed in your telephone directory or an HP regional office listed below for the location of your nearest sales office.

United States:

Hewlett-Packard Company 4 Choke Cherry Road Rockville, MD 20850 (301) 670 4300

Hewlett-Packard Company 5201 Tollview Drive Rolling Meadows, IL 60008 (708) 255 9800

Hewlett-Packard Company 5161 Lankershim Blvd. No. Hollywood, CA 91601 (818) 505 5600

Hewlett-Packard Company 2015 South Park Place Atlanta, GA 30339 (404) 955 1500

Canada:

Hewlett-Packard Ltd. 6877 Goreway Drive Mississauga, Ontario L4V 1M8 (416) 678 9430

Japan:

Yokogawa-Hewlett-Packard Ltd. 15-7, Nishi Shinjuku 4 Chome Shinjuku-ku, Tokyo 160, Japan (03) 5371 1351

Latin America:

Hewlett-Packard Latin American Region Headquarters Monte Pelvoux No. 111 Lomas de Chapultepec 11000 Mexico, D.F. (525) 202 0155

Australia/New Zealand:

Hewlett-Packard Australia Ltd. 31-41 Joseph Street Blackburn, Victoria 3130 Australia (A.C.N. 004 394 763) (03) 895 2895

Far East:

Hewlett-Packard Asia Ltd. 22/F Bond Centre, West Tower 89 Queensway, Central, Hong Kong (852) 848 7777

South Africa: HiPerformance Systems (011) 806 1000

Israel:

Computation and Measurement Systems (CMS) Ltd. (03) 5380 333 In Europe, please call your local HP sales office or representative:

Austria:

 $(0222)\ 2500-0$

East Central Europe, USSR, and Yugoslavia: (0222) 2500-0

Belgium and Luxembourg:

 $(02)\overline{761}\ 31\ 11$

Denmark: (45) 99 10 00

Finland: (90) 88 721

France: (1) 69 82 65 00

Germany: (06172) 16 0

Greece: (01) 68 28 811

Iceland: (91) 67 10 00

Ireland: (01) 88 33 99

Italy:

(02) 95 300 134

Netherlands: (020) 547 6669

Norway: (02) 87 97 00

Portugal: (11) 301 73 30

Spain: 900 123 123

Sweden: (08) 750 20 00

Switzerland:

(057) 31 21 11 (Head office) (022) 780 41 11 (Suisse Romande) (046) 05 15 05 (Customer Information

Center)

Turkey: (1) 175 29 70

U.K.: (0344) 369 369

Europe/Africa/Middle East:

Hewlett-Packard European Marketing Centre P.O. Box 999 1180 AZ Amstelveen The Netherlands

Data Subject to Change Copyright © 1991 Hewlett-Packard Company Printed in U.S.A. 10/91 5091-2471E