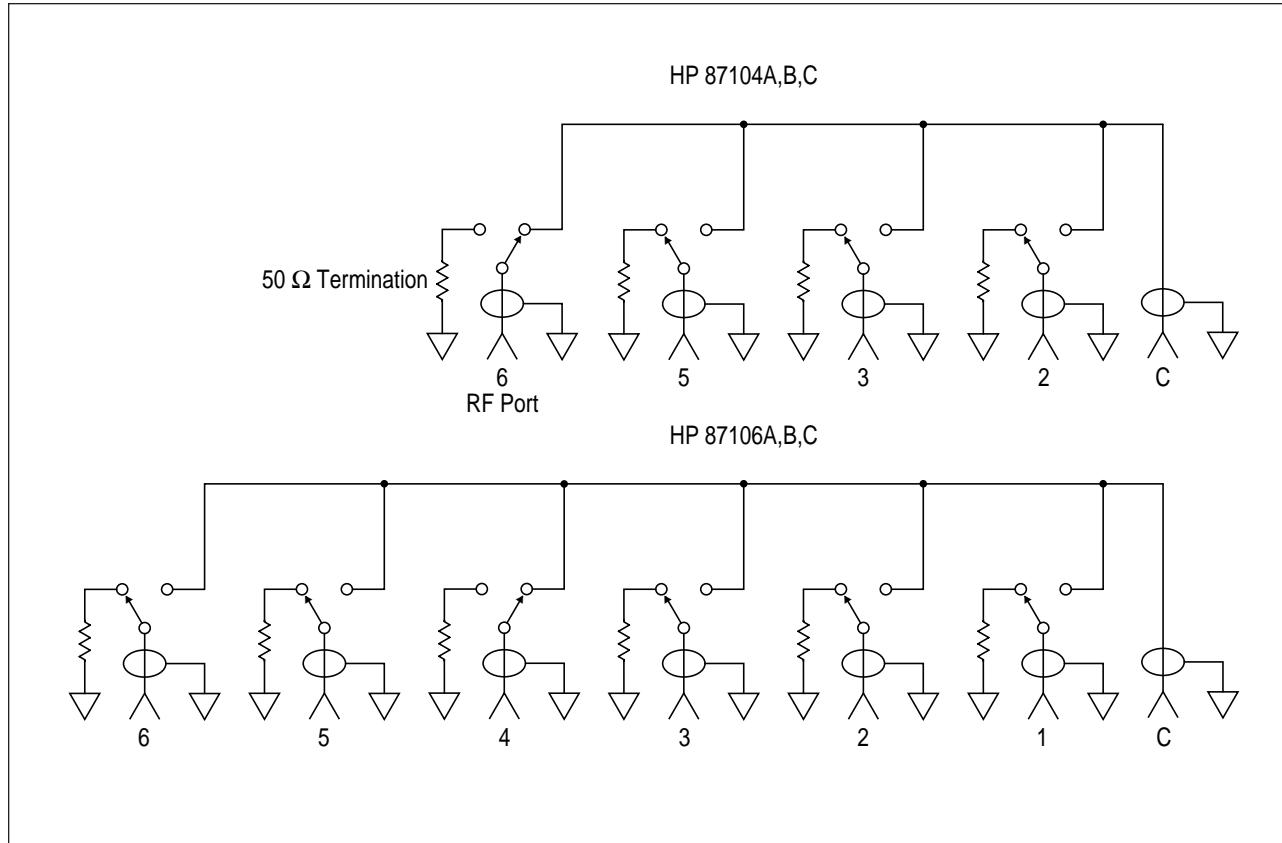


HP 87104/87106A,B,C Multiport Coaxial Switches

dc to 4 GHz, dc to 20 GHz, dc to 26.5 GHz

Product Overview

**High performance
multiport switches
for microwave and
RF instrumentation
and systems**


Modern automated test systems demand higher accuracy and performance than ever before. The HP 87104A,B,C and 87106A,B,C multiport switches offer improvements in insertion loss repeatability and isolation necessary to achieve higher test system performance. Long life, repeatability and reliability lowers the cost of ownership by reducing calibration cycles and increasing test system up-time and are vital to ATS measurement system integrity over time.

Description

The HP 87104A,B,C SP4T and 87106A,B,C SP6T terminated multiport switches provide the life and reliability required for automated test and measurement, signal monitoring and routing applications. Innovative design and careful process control creates switches that meet the requirements for highly repeatable switching elements in test instruments and switching interfaces. The switches are designed to operate for more than 10,000,000 cycles. The exceptional 0.03 dB insertion loss repeatability is warranted for 5 million cycles at 25 °C. This reduces sources of

- SP4T and SP6T configuration
- Magnetic latching
- Exceptional repeatability for more than 5 million cycles
- Excellent isolation, typically >90 dB at 26.5 GHz
- Opto-electronic indicators and interrupts
- Terminated ports
- TTL/5V CMOS compatible (optional)

random errors in the measurement path and improves measurement uncertainty. Switch life is a critical consideration in production test systems, satellite and antenna monitoring systems, and test instrumentation. The longevity of these switches increases system uptime, and lowers the cost of ownership by reducing calibration cycles and switch maintenance.

Figure 1.
HP 87104A,B,C
and 87106A,B,C
simplified
schematics.

Operating to 4 GHz (A models), 20 GHz (B models), and 26.5 (C models), these switches exhibit exceptional isolation performance required to maintain measurement integrity. Isolation between ports is typically >100 dB to 12 GHz and >90 dB to 26.5 GHz. This reduces the influence of signals from other channels, sustains the integrity of the measured signal and reduces system measurement uncertainties. These switches also minimize measurement uncertainty with low insertion loss and reflection, which make them ideal elements in large multi-tiered switching systems.

Both the HP 87204A,B,C and 87206A,B,C are designed to fall within most popular industry footprints. The 2-1/4 inch square flange provides mounting holes, while the rest of the 2-1/2 inch long by 2-1/4 inch diameter body will easily fit into most systems. Ribbon cable or optional solder terminal connections accommodate the need for secure and efficient control cable attachment.

Option 100 provides solder terminal connections in place of the 16-pin ribbon drive cable. Option 100 does not incorporate the “open all paths” feature.

Opto-electronic interrupts and indicators improve reliability and extend the life of the switch by eliminating DC circuit contact failures characteristic of conventional electromechanical switches. These switches have an interrupt circuit that provides logic to open all but the selected ports, and then closes the selected paths. All other paths are terminated with 50 ohm loads, and the current to all the solenoids is then cut off. These versions also offer independent indicators that are controlled by optical interrupts in the switch. The indicators provide a closed path between the indicator common pin and the corresponding sense pin of the selected path.

Applications

Multiport switches find use in a large number of applications, increasing system flexibility and simplifying system design.

Simple signal routing

The simplest signal routing scheme takes the form of single input to multiple outputs. These matrixes are often used on the front of an analyzer in order to test several two-port devices sequentially or for testing multiport devices. In surveillance applications, a multiport switch can be used for selecting the optimum antenna in order to intercept a signal.

Two methods can be used to accomplish the single input to multiple output arrangement. Traditionally where isolation greater than 60 dB was required, a tree matrix composed of SPDT switches was used. While this gave great isolation, it was at the cost of more switches (Figure 2). The HP 87104 and 87106 switches have port-to-port isolations typically greater than 90 dB at 26.5 GHz, eliminating the need to use a tree matrix in order to achieve high isolation (Figure 3). In addition to the reduced part count, the path lengths are shorter, so insertion loss is less, and paths are of equal length, so phase shift is constant.

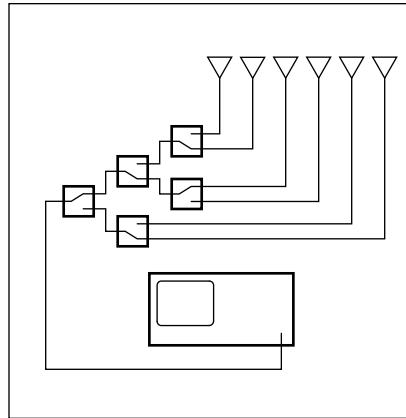


Figure 2.
Tree matrix

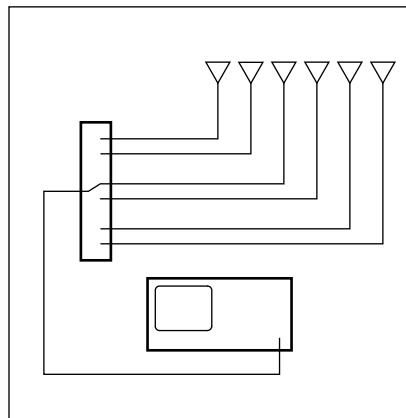


Figure 3.
Multiport matrix

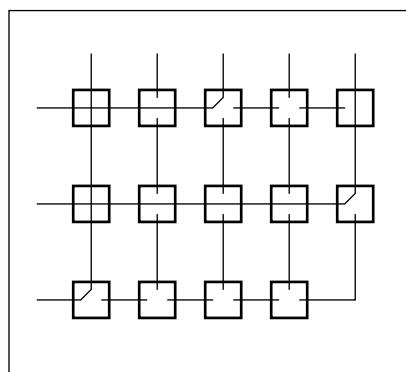


Figure 4.
Cross point matrix

Full access switching

Full access switching systems give the flexibility to route multiple input signals to multiple outputs simultaneously. Full access switching matrixes find use in generic test systems in order to provide flexible routing of signals to and from many different devices under test and stimulus and analysis instrumentation. Cross-point matrixes, using single pole double throw and cross-point switches, have traditionally been used in order to maintain high channel-to-channel isolation (Figure 4). As with the tree matrixes, this is at the cost of hardware and performance. Full access switching can also be achieved using multiport switches (Figure 5).

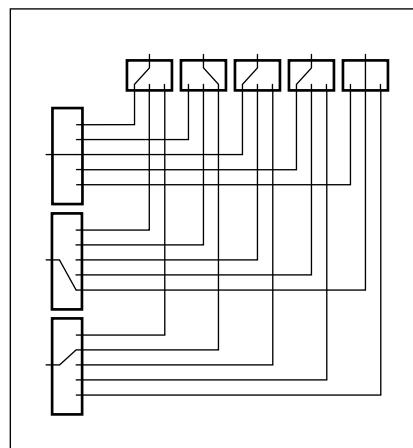


Figure 5.
Full access matrix

The advantage of the multiport matrix over the cross-point matrix is lower insertion loss and improved SWR performance due to consistent path length and fewer switches and connecting cables.

Dedicated switching

There are a number of applications where switching will be used, not for flexibility, but to accomplish a particular function within an instrument. For example, switched filter banks for reducing harmonics in the output of sources or to the input of analyzers can use multiport switches in series to select the right filter for the band of interest. For larger switching systems, where many switches will be used to provide complex signal routing, a switch driver such as the HP 87130A or 70611A with HP 87204/6 switches is recommended.

Driving The Switch

Each RF path can be closed by applying ground (TTL "High" for Option T24) to the corresponding "drive" pin. In general, all other RF paths are simultaneously opened by internal logic.

Standard drive:

See Figure 10 for drive connection diagrams.

- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Connect pin 15 to ground (see note 1).
- Select (close) desired RF path by applying ground to the corresponding "drive" pin; for example ground pin 3 to close RF path 1 (see note 2).
- To select another RF path, ensure that all unwanted RF path "drive" pins are disconnected from ground (to prevent multiple RF path engagement). Ground the "drive" pin which corresponds to the desired RF path (see note 3).

- To open all RF paths, ensure that all RF path "drive" pins are disconnected from ground. Then, connect pin 16 to ground. Note: This feature is not available with Option 100.

TTL drive (Option T24)

See Figure 10 for drive connection diagrams.

- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Connect pin 15 to ground (see notes 1,4).
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin; for example apply TTL "High" to pin 3 to close RF path 1 (see note 2).
- To select another path, ensure that all unwanted RF path "drive" pins are at TTL "Low" (to prevent multiple RF path engagement). Apply TTL "High" to the "drive" pin which corresponds to the desired RF path (see note 3).

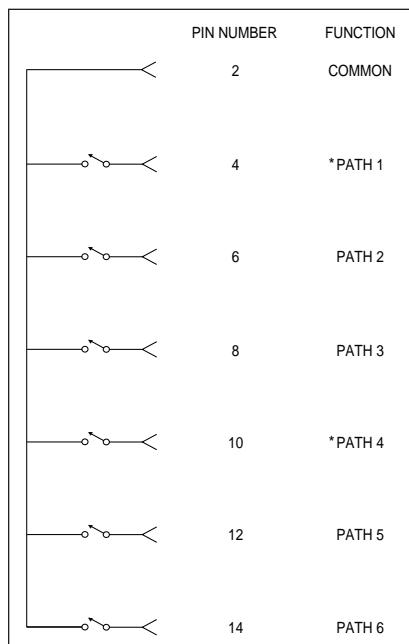
- To open all RF paths; ensure that all RF path "drive" pins are at TTL "Low". Then, apply TTL "High" to pin 16.

Note: This feature is not available with Option 100.

2. After the RF path is switched and latched, the drive current is interrupted by the electronic position-sensing circuitry. Pulsed control is not necessary, but if implemented, the pulse width must be 15 ms minimum to ensure that the switch is fully latched.

3. The default operation of the switch is break-before-make. Make-before-break switching can be accomplished by simultaneously selecting the old RF path "drive" pin and the new RF path "drive" pin. This will simultaneously close the old RF path and the new RF path. Once the new RF path is closed (15 ms), de-select the old RF path "drive" pin while leaving the new RF path "drive" pin selected. The switch circuitry will automatically open the old RF path while leaving the new RF path engaged.

4. In addition to the quiescent current supplying the electronic position-sensing circuitry, the drive current flows out of pin 15 (during switching) on TTL drive switches (Option T24).


Notes:

1. Pin 15 must always be connected to ground to enable the electronic position-indicating circuitry and drive logic circuitry.

CAUTION: IF PIN 15 IS NOT CONNECTED TO POWER SUPPLY GROUND, CATASTROPHIC FAILURE WILL OCCUR.

Electronic Position Indicators

The electronic position indicators consist of optically-isolated, solid-state relays which are driven by photoelectric sensors coupled to the mechanical position of the RF path's moving elements (Figure 6). The circuitry consists of a common which can be connected to an output corresponding to each RF path. If multiple RF paths are engaged, the position indicator corresponding to each closed RF path will be connected to common. The solid state relays are configured for AC and/or DC operation. (See indicator specifications.) The electronic position indicators require that the supply (20-32 VDC) be connected to pin 1 and ground connected to pin 15.

* Paths 1 and 4 are not connected for the HP 87104A,B,C.

Figure 6.
Pin function diagram

Specifications

Specifications describe the instrument's warranted performance. **Supplemental** and **typical characteristics** are intended to provide information useful in applying the instrument by giving typical, but not warranted performance parameters.

General operating data

Maximum power rating:

1 watt average into $50\ \Omega$ internal loads

Switching:

1W CW

Non-switching:

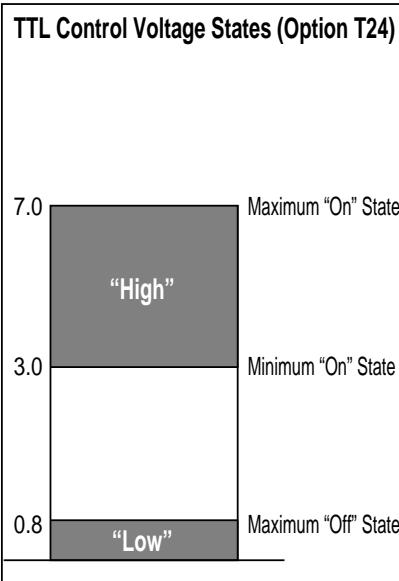
50W Pk (not to exceed 1 watt average)

Life:

5,000,000 cycles minimum

Switching speed:

15 ms maximum


Indicator specifications:

Maximum withstand voltage: 60 V

Maximum current capacity: 100 mA

Maximum "ON" resistance: $50\ \Omega$

Maximum "OFF" resistance: $1\ G\ \Omega$

Switch drive specifications

Parameter	Test	Conditions	Min	Nom	Max	Units
Supply Voltage, Vcc						
	STD, Opt. T24		20	24	32	V
Supply Current, Icc		Switching: Pulse width $\geq 15\text{ms}$; $Vcc = 24\text{ VDC}$				
	STD, Opt. T24			200 ¹		mA
Supply Current (quiescent)						
	STD, Opt. T24		25		50	mA
Option T24			Min	Nom	Max	Unit
High level input			3		7	V
Low level input					0.8	V
Max high input current	Vcc=Max Vinput=3.85 VDC		1	1.4		mA

Notes:

1. Closing one RF path requires 200 mA. Add 200 mA for each additional RF path closed or opened. Using all RF paths open (selecting pin 16) requires 200 mA per RF path reset with $Vcc=24\text{ VDC}$.

Specifications (continued)

	HP 87104A HP 87106A	HP 87104B HP 87106B	HP 87104C HP 87106C
Frequency range:	dc to 4 GHz	dc to 20 GHz	dc to 26.5 GHz
Insertion loss: (see Figure 7)	0.3 dB + 0.015 X frequency (GHz)	0.3 dB + 0.015 X frequency (GHz)	0.3 dB + 0.015 X frequency (GHz)
Isolation: (see Figure 8)	100 dB minimum	100 dB minimum to 12 GHz 80 dB minimum to 12 to 15 GHz 70 dB minimum to 15 to 20 GHz	100 dB minimum to 12 GHz 80 dB minimum to 12 to 15 GHz 70 dB minimum to 15 to 20 GHz 65 dB minimum to 20 to 26.5 GHz
SWR:	1.2 maximum	1.2 maximum dc to 4 GHz 1.35 maximum 4 to 12.4 GHz 1.45 maximum 12.4 to 18 GHz 1.7 maximum 18 to 20 GHz	1.2 maximum dc to 4 GHz 1.35 maximum 4 to 12.4 GHz 1.45 maximum 12.4 to 18 GHz 1.7 maximum 18 to 26.5 GHz
Repeatability: (Up to 5 million cycles measured at 25 degrees C)	0.03 dB maximum	0.03 dB maximum	0.03 dB maximum
Connectors:	SMA (f)	SMA (f)	SMA (f)

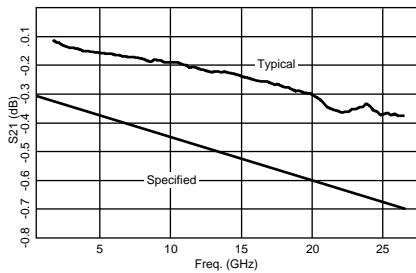


Figure 7.
Insertion loss

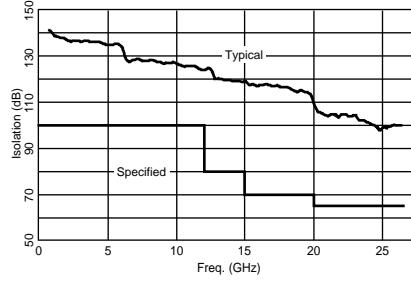


Figure 8.
Isolation

Environmental specifications

Operating temperature:

-25 to 75 °C

Storage temperature:

-55 to 85 °C

Temperature cycling:

-55 to 85 °C, 10 cycles per
MIL-STD-202F, Method 107D,
Condition A (modified)

Vibration:

Operating: 7g: 5 to 2000 Hz at 0.25
in p-p

Survival: 20 g: 20 to 2000 Hz at
0.06 in p-p, 4 min/cycle,
4 cycles/axis

Random: 2.41 g (rms) 10 min/axis

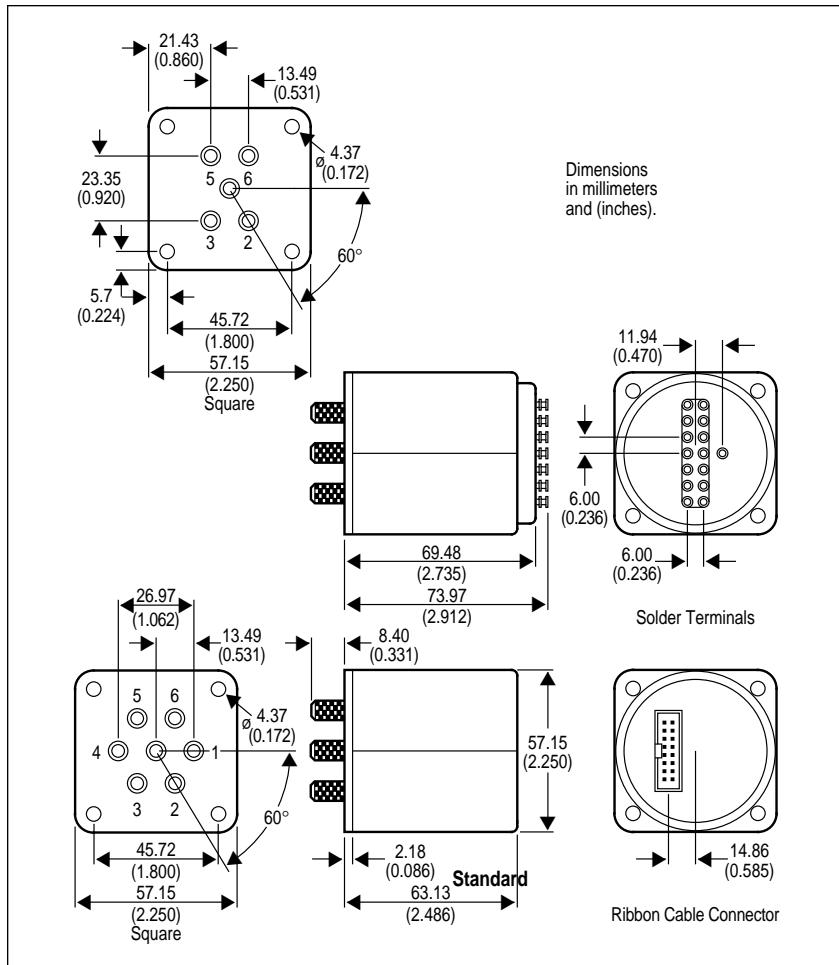
Shock: Half-sine: 500 g at 0.5 ms,
3 drops/direction, 18 total

Operating: 50 g at 6 ms, 6
directions

Moisture resistance: 65 °C, 95%
RH, 10 days per MIL-STD-202F,
Method 106E

Altitude storage: 50,000 feet

(15,240 meters per
MIL-STD-202F, Method 105C,
Condition B)


RFI: Per MIL-STD-461C, RE02,
Part 4

Magnetic field: <5 gauss 1/4 inch
from surface

Physical specifications

Dimensions: Per Figure 9

Weight: 229 gm (0.50 lb)

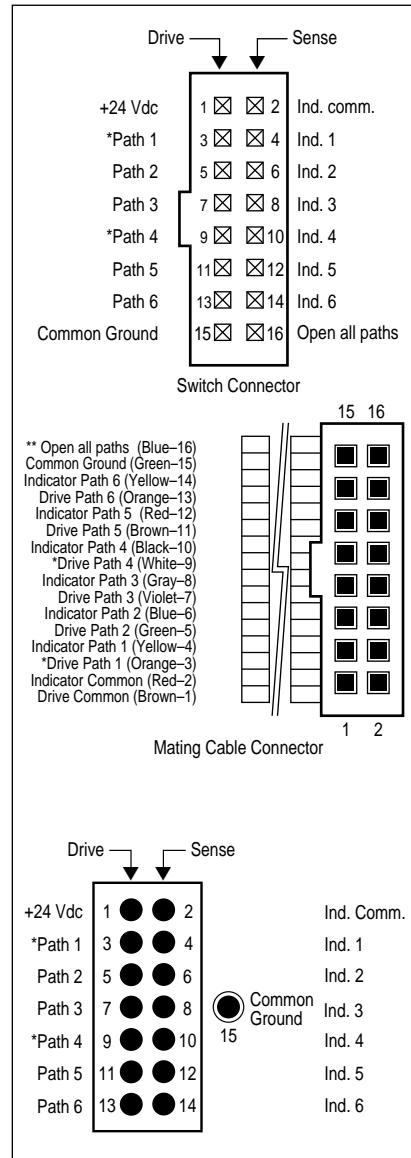


Figure 9.
Product outlines

Troubleshooting

Symptom	Probable Cause
1. Will not switch	Not connected to supply Supply < 20 V Supply current too low Not connected to ground Select line not at ground (std) TTL "Low" voltage too high (Option 72) All-path-open line selected
2. Position indicators don't work	Supply not connected Supply < 20 VDC Pin 15 not connected to ground

Figure 10.
Drive connection diagrams

Option 100

*Paths 1 and 4 not connected for the HP 87104A,B,C.
** "Open all paths" pin is not available with Option 100.

Ordering guide

Switches

HP 87104A

dc to 4 GHz, SP4T Terminated

HP 87104B

dc to 20 GHz, SP4T Terminated

HP 87104C

dc to 26.5 GHz, SP4T Terminated

HP 87106A

dc to 4 GHz, SP6T Terminated

HP 87106B

dc to 20 GHz, SP6T Terminated

HP 87106C

dc to 26.5 GHz, SP6T Terminated

Option 100

Solder terminals to replace ribbon cable

Option UK6

Commercial calibration test data with certificate

Option T24

TTL/5V CMOS compatible option

Drivers

HP 11713A Attenuator Switch Driver:

Drives up to 10 sections of switches or attenuators.

Accessory Cable: 5061-0969

Viking connector to bare tinned wires (60 inches long). Use to connect HP 11713A to 87104/106 with Option 100. One required with HP 87104 Option 100; two required with 87106 Option 100.

HP 70611A Attenuator/Switch Driver*:

Drives up to 31 sections of switches or attenuators with Option 001 installed. When expanded with up to 8 external (standard) or 1 internal and 7 external (Option 001) HP 84940A driver cards, the 87130A will drive up to 248 switch or attenuator sections. See below for accessories.

HP 87130A Attenuator/Switch Driver*:

Drives up to 31 sections of switches or attenuators. When expanded with up to 7 external HP 84940A driver cards, the HP 87130A will drive up to 248 switch or attenuator sections. See below for accessories.

Accessories

HP 84940A Switch Driver Card:

Will drive up to 31 switch or attenuator sections. For use with HP 87130A and 70611A.

HP 84941A Switch Interface Kit:

Includes a signal distribution card and 70611-60008 accessory cable. For use with HP 87104/106 with Option 100.

HP 11764-60008 Accessory Cable (use with HP 87104/106):

16-pin DIP to (6) 4-pin Berg Connectors (30 inches long).

HP 70611-60008 Accessory Cable (use with HP 87104/106 Option 100): (31) 52 inch cables, 4-pin Berg Connector to bare tinned wire.

Configuration Guide

See publication 5963-2038E

*HP 87104 or 87106 in combination with HP 87130A or 70611A does not provide position sensing capability. Use HP 87204/206 if position sensing is required.

For more information about Hewlett-Packard test and measurement products, applications, services, and for a current sales office listing, visit our web site, <http://www.hp.com/go/tmdir>. You can also contact one of the following centers and ask for a test and measurement sales representative.

United States:

Hewlett-Packard Company
Test and Measurement Call Center
P.O. Box 4026
Englewood, CO 80155-4026
1 800 452 4844

Canada:

Hewlett-Packard Canada Ltd.
5150 Spectrum Way
Mississauga, Ontario
L4W 5G1
(905) 206 4725

Europe:

Hewlett-Packard
European Marketing Centre
P.O. Box 999
1180 AZ Amstelveen
The Netherlands
(31 20) 547 9900

Japan:

Hewlett-Packard Japan Ltd.
Measurement Assistance Center
9-1, Takakura-Cho, Hachioji-Shi,
Tokyo 192, Japan
Tel: (81-426) 56-7832
Fax: (81-426) 56-7840

Latin America:

Hewlett-Packard
Latin American Region Headquarters
5200 Blue Lagoon Drive, 9th Floor
Miami, Florida 33126, U.S.A.
(305) 267 4245/4220

Australia/New Zealand:

Hewlett-Packard Australia Ltd.
31-41 Joseph Street
Blackburn, Victoria 3130, Australia
1 800 629 485

Asia Pacific:

Hewlett-Packard Asia Pacific Ltd.
17-21/F Shell Tower, Times Square,
1 Matheson Street, Causeway Bay,
Hong Kong
Tel: (852) 2599 7777
Fax: (852) 2506 9285

Data Subject to Change

Copyright © 1997
Hewlett-Packard Company
Printed in U.S.A. 5/97
5091-3366E