Language Tools for Intel
8086/8088, SOC186EA/EB/EC/XL,

SO0C18SEA/EB/EC/XL Processors for

Embedded Software Development

Technical Data

HPF offers a full line of compilers,
assemblers, linkers, and librarians
for the Intel 3086/80186 family of
microprocessors and microcontrol-
lers. Known as the Advanced
Cross Language System (AxLS),
these tools are fully integrated with
the HP Embedded Debug Envi-
ronment. Used together, these
tools provide a powerful, easy-to-
use, software development environ-
ment that aids in the creation of on-
time, defect-free, specification-
compliant embedded software. This
complete suite of development
tools is offered on both HP and Sun
Microsystems workstations.

Each product offers the user a
different way to perform measure-
ments of both the target hardware
and software. Since all components
of the Debug Environment are

based on OSF/Motif* and X-
Windows, they share a common
iook and feel, minimizing the time
you spend learning how to use each
application.

These tools provide a wide spec-
trum of easy-to-use measurement
capabilities ranging from true real-
time, nonintrusive timing measure-
ments to high-level, source code/
assembly references,

The Advanced Cross Langunage
System consists of an optimizing
€ compiler, assembler, linker, and
librarian. These tools are tightly
integrated with the rest of the HP
embedded development solution.
For example, the language tools
generate all necessary C and assem-
bly symbolic information for the
debuggers and emulators/analyzers.

*ORFMourl is 4 trademark of the Open Software
Foundaticm.

HEWLETT
PACKARD

(D

Integrated,
workstation-based tools
for total development
lifecycle support

The HP Embedded Debug
Environment is a suite of tools
that address the specific tasks of
embedded systems design, from
emulation and emulation bus
analysis to high-level debug of C
and C++ to CASE tool integration,
These tools offer many ways to
look at both your target system
hardware and software, which
assists in solving the toughest
design problems. The debug
environment also operates within
the optional HP SoftBench environ-
ment, which brings advanced CASE
tools and techniques to the realm of
embedded software design.

The Advanced Cross Language
System products are completely
supported by the HPF Debug
Environment. In combination,
these tools will assist you in
tackling the toughest, real-time,
embedded software development
problems.

ANALYZE/SPECIFY

DESIGN

CONSTRUCT SOFTWAREINTEGRATE SYSTEM INTEGRATE & TUNE RELEASE/MAINTAIN

Advanced C Cross Compiler

Description

The HP Advanced C Cross Com-
piler is an optimizing compiler

based on innovative technology that

takes maximal advantage of the
8086/80186 instruction set and
address modes. Highly space- and
time-efficient code is generated at
very competitive compile speeds
with flexible optimization options.
The quality and reliability of this
HP compiler have been ensured
through a comprehensive process
emphasizing object-oriented design
and exhanstive testing.

The compiler uses the HP B1449A
Assernbler/Linker and provides
support for the emulation sub-
systems for the 8086, 8088, 801186/
188, 80C186/C188, S0CI86EA/EB/
EC/XL, and S0C188EA/EB/EC/XL
microprocessors and microcontrol-
lers, Customized configuration files
for the emulation systems provide
inumediate access to emulation and
sinulated I/O. The C Cross com-
piler offers features developed
especially for designers of embed-
ded systems that are generally
unavailable in high-level languages.
In particular, you may choose the
memory model for calling functions
and accessing static data, specify
interrupt handler functions, and

embed assembly language in the
C source,
!
e T
a % Vg
i Wy,
LES See e
P Wt o,
coatt1® ¢ . ’glf.%‘s“ et
g (emes Wit
ey m‘_‘]‘ﬁ “’;‘0‘: aet® w 021
W apetiiay, o .
WI‘T"B 6;5”;: el e RS o
oot 5% ces R L R
o pastd AR
£ ™ Toot iR
';Wﬂ‘ﬂzg e 0%,
EY 2 L A)
£y A 2h
R ps S T G
[t 800 (P“';‘ Di"g‘t L 33804
0"”901'9 Yz;)e ore Lo

L]
1!30mw\9 ETLLARTY
o6 T oA
@onmws PO
oY gasd

R
L Ll TR
e M-(%ﬂw‘;gm» Iy

[N E N
bl E o0 T

4 oot A E:
oot 33‘7,0.—?:; oﬂigmﬂ"“' m’,‘ﬁ;oﬂ% o o

Rt et ERLE
a2 a5t

¥ :

W L L
LI 3009;7'0 e o
0
ok

T e i PNT S Ly
a4 ool L 50,800
el 0 ¥ ® - - tp.o-“fwtiw‘
O X oy e
aE ad
At 1E A any ¥
W

Features

Standards

¢ ANSI standard C compiler

ANSI standard C preprocessor

¢ Complete C support and math
libraries from ANSI standard for
nonthosted environments

¢ Standard UNIX command-line
interface

Embedded system

¢ Fully integrated with the HP
Enbedded Debug Environment

¢ (Option to separate initialized and
uninitialized data into separate
segments

* Pragma for embedding assembly
code in C source

¢ Pragma for named segment
specification in C source

¢ Userspecifiable choice of multiple
memory models for function calls
and static data access

+ Listings with generated assembly
language intermixed with C source
and cross reference

* Fully reentrant code

+ Options for uninitialized static data
and inhibition of I/O

+ Option for run-time checking of
array bounds and NULL pointer
dereferences

¢ Option to copy initial value data
from ROM to RAM at “load time”

Optimization

¢ Constant folding, automatic
register variable selection, and
other global optimizations

¢ Locally optimal code

¢ Peephole optimizer

¢ Userselectable time versus space
optimization

*

Generation of highly
optimal and reliable code
for embedded designs

Emulation

Library providing system file /0
functions using HP's emulation
systems’ simulated I/O facility
Full symbol information and C
source-line numbers provided to
emulation and analysis

Standards ensure
portability and familiarity

The language accepted is ANSI
standard C. This is a superset of
“K&R C” and is the most rigorous
C language definition currently
available. This helps ensure port-
ability of users’ C sources. The
ANSI C preprocessor provides
several major additions to the
standard UNIX C preprocessor
including the “stringization” of a
macro parameter, recursive func-
tion handling, macro parameter
concatenation, and #elif prepro-
cessing directive. The ANSI stan-
dard #pragma directives are used
to support cross compiler options.

*UNIX is a registered crade-mark of UNIX System
Laboratories [nc. in the U.8.A_ and other countries.

Sample List of Support Library Functions

string.h math.h stdlib.h stdio.h

streat acos tog abs malloc felose Jwrite
strokr asin fog10 alexrit qsort fush gete
stremp ot maodf alof rand Juetc getchar
strepy atan pow atod reatloc fgets gels
strespn cos sinh atol srand fopen printf
sirlen cosh tank bsearch strtod fpringf pute
strneal axp calloe strtol Spute plchar
strremp fobs div sirtowd fpuls puls
strpbrk Sloor exit Sread remone
strrehr fmod Jree Sreopen rewind
sirspn Sfrexp labs fseanf scanf
strtok ldexrp Idiv fseck wngete

Figure 1. C support library functions and math library functions
are ANSI standard and include /O, string manipulation, and

math functions.

The cross compiler command-line
interface is patterned after the
native HP-UX C compiler. That is,
the preprocessor, compiler body,
peephole optimizer, assembler,
lister, and linker are all invoked
with a single command. This eases
makefile construction and provides
a tool familiar to UNIX users.

The C support library functions and
math library functions are ANSI
standard and include familiar 1/0,
string manipulation, and math func-
tions (figure 1). Routines involving
real numbers implement the IEEE
P754 real number representations.

Embedded system features

HP Advanced C Cross Compilers
incorperate many features unique to
microprocessor development. The
ANSI standard C const type modi-
fier causes data to be located in a
named constant segment. Similarly,
the volatile type modifier is
appropriate for declarations of 'O
potts in the target system (this over
rides optimizations which might

otherwise “optimize out” reads
from or writes to the I/O port).

ANSI C's mechanism for options in
the C source, #pragma directives,
are used to provide several cross-
development features:

#pragma ASM allows you to em-
bed Intel 8086/80186 assembly lan-
guage statements anywhere thata C
statement could be placed. This is
convenient for inserting otherwise
inaccessible 8086/80186 instruc-
tions without resorting to a function
call, or for implementing a routine
entirely in assembly language but
surrounding it with a C interface.

#pragma SEGMENT allows
naming of program, data, and
constant output segments for
convenient grouping and link-time
specification of load addresses,

#pragma INTERRUPT specifies
that a € function is an interrupt
handler. This causes the compiler to
buffer all registers and generate an
IRET instruction rather than an
RET at function exit.

Special command-line options

allow for specification of memory
models, uninitialized static data, and
no I/0. The mernory model option
permits selection of either the small
or large mcdel. The small memory
model allows one code segment and
one data/stack segment. In this
model, function calls are considered
to be “NEAR,” and 16-bit pointers
are used to access static data.

The large memory model permiits
ane or more code segments, one
stack segment, and one or more
static data segments. In the large
model, 32-bit pointers are used for
static data accesses, and function
calls are considered to be “FAR”
except for the userspecifiable
option to access static function as
“NEAR.” An option is provided to
accommodate the typical embedded
system circumstance of static data
being uninitialized (in its absence
such data is initialized to zero).
Finally, the “no FO” option caters to
an embedded system by avoiding
the overhead of unused 170 routines.

In addition, the C language allows
for “prior to execution” initialization
of static variables, the program’s
start-up code can optionally invoke
arun-time routine, _initdata(), to
copy initial value data from ROM to
RAM for these variables.

The compiler produces C source
listings with intermixed assembly
code, expansion of include files, and
C cross reference. All assembly code
uses Intel syntax and symbol names
incorporating the user’s C symbol
names. This makes referencing C
symbols from embedded assembly
easy and aids the readability of
intermixed listings.

All code generated by the compiler
is reentrant to ensure that interrupt
functions written in C work prop-
erly. Small and large memory model
versions of libraries (run-time, sup-
port, and math) have been provided.

Investment in
total quality

Optimizing compilers are complex
software programs. Hewlett-Packard
has made a major investment to
ensure the reliability of our ad-
vanced C cross compiler. Conscien-
tious focus on highest quality was
maintained throughout compiler
development. Modular object-
oriented design was used to “design
in” quality. Code reviews were used
to inspect for errors in logic before

testing.

Four independent test suites were
used to validate quality (figure 2).
The first test suite contains “white-
box" tests — it was written with a
imowledge of the compiler’s internal
data structures and program flow.
The other test suites contain “black-
box” tests designed independently
from the compiler. The second test
suite is tailored to the cross compiler
and tests options and pragmas in all
combinations. The third is a test
suite developed by HP for the host C
compiler for the HP Precision
Architecture (PA-RISC) family of

Suite No. Lines Execution Coverage
! 61,675 'Y 95%
2 87,200 ¥ 0%
3 346,300 ¥ 84%
4 251,500 14 80%

Figure 2. Summary of the four test suites. The Coverage
column refers to the percentage of branches in the compiler
covered by the suite as measured by a branch flow analysis
tool. The Execution column indicates whether or not the
suite's tests are executed on the HP 8086 emulator. Many of
these tests are run multiple times with variations on memory
models, optimization, and debug options.

computers. The fourth is the Plum-
Hall C test suite which tests con-
formance with the ANSI C standard.

Automatic and
discretionary
optimizations

The HP Advanced C Cross Com-
piler places great emphasis on
generation of optimal code. Com-
pile-time inexpensive optimizations
are always performed. The first of
these is the automatic assignment
of local variables or addresses of
static variables to the register
variable even when ho register
declaration appears in the C source,
Another automatic optimization is
constant folding; that is, arithmetic
on compile-time constants is per-
formed at compile time rather than
run time., Expression simplification
replaces a specified operation with
an equivalent, less expensive
operation (such as replacing a
multiplication by a power of two
with an equivalent shift). Looping
constructs are optimized to remove
an initial test if this can be recog-
nized as unnecessary. Switch state-
ments are optimized to a hybrid
binary/linear search whenever the
Jjump table would be less than

20 percent full.

Compile-time expensive optimiza-
tions are performed only in the
presence of a command-line option.
You may specify time or space
optimization. The result of these
optimizations is locally optimal
code making extensive use of every
8086/80186 address mode.

Finally, a separate pass over the
assembly code is made performing
classic “peephole” optimizations,
These include branch shortening
where conditional and uncondi-
tional branches are reduced to the
minimal size; tail merging in which
two comumnon code sections are
merged to form one; redundant
register load elimination, avoiding a
reload of a register with a value
already in any register; branch
chain elimination, removing jumps
to jumps; unreachable code elimi-
nation; and elimination of redun-
dant array scale calculations,

Assembler/Linker/Librarian

Description

The cross assembler consists of an
assembler, a macro string prepro-
cessor, a linking loader, and an
object module librarian. HP 64000
absolute and symbol formats may
optionally be produced for down-
loading to HP emulators and
analyzers.

The relocatable macro assembler
for the Intel 8086/80186 family of
microprocessors translates syni-
bolic machine instructions into
object code for execution by an
8086/88, 80186/188, 80C186/C138,
S0C18/EA/EB/EC/XL, or
S0C188EA/EB/EC/XL micro-
processor. The assembler also
translates instructions specific to
the 8087 floating-point coprocessor
into machine-readable code for
Coprocessor execution.

Object code is produced in a relo-
catable format by the assembler.
Multiple relocatable modules are
then linked into a single absolute
module by the linking loader. When
an absolute load is performed,
relocatable addresses are trans-
formed into absolute addresses,
external references between
modules are resolved, and the final
absolute symbol value is substi-
tuted for each external symbol
reference, The loader allows the
specification of the program
segment addresses, external
definitions, and assign the final load
address and segment loading order.

The linking loader also contains an
incremental linking feature. The
linking loader can combine multiple
relocatable ohject modules into a
single relocatable object module

*

L

»

-

suitable for relinking with other
modules. The linking loader pro-
duces an output object module file
in either HP-OMF86 absolute
format, HP 64000 absolute format,
or Intel hexadecimal format. Global
symbols, local symbols, or line
number and module information
can be included in the output file
for symbolic debugging.

The linking loader provides the
ability to load object modules from
a library. The librarian is used to
create such a library. The loader
will include only those modules
from a library that are necessary to
resolve external references,

Features

Assembler

Code generation for complete Intel
8086/88 and 80186/188 instruction
set

Support for Intel 8087 floating-point
coprocessor instruction set
Powerful, string-oriented macro
preprocessor

Repeated definitions of the same or
of different code, data, and con-
stant segments within a single
source file

High-level-language-like data
structures

Symbolic memory references via
symbol name

Flexible set of assembly control
statements {conditional assembly,
structured control, listing and
output control)

Detailed, well-documented error
messages

Extensive program listing capabili-
ties including symbhol table/cross
reference information

UNIX tailored command-line
interface

Code generation for
complete microprocessor
instruction set and
addressing modes

Linker

Incremental linking (produces
relocatable object modules for later
relinking)

Generation of HP-OMFS6 absolute
format, HP 64000 absclute format,
and Intel hexadecimal object file
format absolute

Independent specification of

all relocatable segments load
addresses

Specification of relocatable
segment loading order

Segment groupings into either
GROUP or CLASS

User-generated libraries
(librarian)

Definition of and modifications to
external symbols at load time
Extensive listing capabilities
including cross reference and
memory map information
Detailed, well-documented error

messages
UNIX tailored command-line
interface

Integration of Advanced Cross Language
System with the HP Debug Environment

The Advanced Cross Language
Syster includes many features

that work in conjunction with the
HP G4762G, 64763G, 64764G,
64764H, 64765J, and 847T6TA/B/C
emulation subsystems for the 8086/
80186 family. The default linker
command file links in the emulation
mwonitor and locates program, data,
and constant segments at addresses
coordinated with the provided
default emulation configuration file.
These files provide a working
environment familiar to application
writers on UNIX (K&R's “hello
world” program works as expected)
and they also provide a model on
which a user may expand.

Also included with the compiler is
an environment-dependent library
providing the “system” functions
required by the C suppott libraries.
All sources for this library tailored
t0o the HP 8086/80186 family emul-
ators are provided. The functions in
this library include IO routines,
such as open, close, read, write, and
unlink; a utility to display messages
on the emulation status line; and
the system function for returning
dynamically allocated memory.

Debug Environment Component Function

HP EmulatorfAnalyzer Controls HP 64700 series emulator for setting breakpoints,
probing target memory, analyzing iraces using target hard-
ware, and debugging.

HP Debugger/Emulator Provides the ability to perform real-time, in-circuit

debugging ottarget code using an emulator.

HP Debugger/Simulator

Provides C and C++ debug capability without having to connect

to an emulator. Assists in debugging target code befare the
target hardware is ready.

HP Branch Validatar

Assists intesting your code by providing branch coverage

analysis to insure the highest quality software.

HP Software Perfarmance Analyzer

Assists in meeting code performance objectives by

providing real-time measurement of code execution.

All assembly langunage symbols
(typically C symbols with a pre-
pended underscore} are available in
emulation, plus C source-line num-
ber information. This allows you,
for example, to trace on a function
name or C source-line nurmber. It
also allows display of trace informa-
tion with intermixed C source lines
providing a real-time “intermixed
listing” similar to that produced at
compile time.

The compiler also has an option for
performing run-time checking of
array accesses for bounds viola-
tions as well as checking for NULL
pointer dereferences. This mecha-
nism is coupled with the emulation
monitor's status line display to

provide immediate run-time error
message feedback. In this “debug
mode,” the compiler ensures the
association of each assembly lan-
guage label with unique executed
code by generating a NOP machine
instruction at each such label. This
eliminates the inability to trace on,
for example, the beginning of an
outermost loop whose initial code
is shared with that of an inner loop.

The compiler generates symbol
information including function
entry, exit symbols, and line num-
bers. This information can be used
with all HP emulators for the Intel
8086/80186 family processors and
with the HP 64708A Software
Performance Analyzer.

Ordering Information

Software is licensed on a per-user basis. One license must be purchased for
each, concurrent user of the software. Manuals and software media are
purchased separately. These software tools support Intel 8086/3088,
80186/188, 80C186/188, 80C186EA/EB/EC/XL, 80CI8SEA/EB/EC/XL
MiCTOProcessors.

B1493A 8086/186 Advanced ANSI C Cross Compiler
Opt AAX HP 9000 Series 300/400 Media (DC-600 1/4" tape) and
Documentation
Opt AAH HP 9000 Series 300/400 Media {DAT) and Documentation
Opt AAY HP 9000 Series 700 Media (DAT) and Documentation
Opt AAV SUN SPARC Media (1/4" tape) and Documentation
Opt UBX HP 9000 Series 300/400 Single User License
Opt UBY HP 9000 Series 700 Single User License
OptUBK SUN SPARC Single User License
OptUDY IBM Single User License
Opt AJ4 IBM 3-1/2" Media and Documentation
Opt AJ5 IBM 5-1/4" Media and Documentation

B1449A 8086/186 Assembler/Linker/Librarian
Opt AAX HP 9000 Series 300/400 Media (DC-600 1/4" tape)} and
Documentation
Opt AAH HP 9000 Series 300/400 Media (DAT) and Documentation
Opt AAY HP 9000 Series 700 Media (DAT) and Documentation
Opt AAV SUN SPARC Media (1/4" tape) and Documentation
OptUBX HP 9000 Series 300/400 Single User License
Opt UBY HP 9000 Series 700 Single User License
Opt UBK SUN SPARC Single User License
OptUDY IBM Single User License
Opt Al4 IBM 3-1/2" Media and Documentation
Opt AJ5 IBM 5-1/4" Media and Documentation

Complete software development bundles that combine these products
with those of the HP Embedded Debug Environment are also availahle,
Contact your HP 64000 field engineer for details.

Please call your HP 64000 field engineer for configuration information,
supported emulators, and latest software options,

Data subject to change.

Printed in U.S.A, 8/93

5091-8G71E

Copyright © 1993 Hewlett-Packard
Company

