
A colloidal dispersion is a suspension of fine particles composed of
molecular assemblies.  Since there are interfaces between the particles
and the surrounding medium, the colloidal dispersion is regarded as a
heterogeneous system.  In general, heterogeneous systems are expected to
show dielectric relaxation caused by interfacial polarization due to the
build-up of charge on the boundaries between the different materials.
Indeed, when the permittivity (or dielectric constant) of colloidal
dispersions is measured over a wide frequency range, we often observe
dielectric relaxation (or dielectric dispersion), in which the permittivity
decreases with increasing frequency.  The underlying relaxation
mechanisms differ from that of pure polar liquids, in which the molecular
dipoles change their orientation depending on the applied electric field.
Analyzing the dielectric relaxation by an appropriate theory based on
interfacial polarization provides valuable information on the structural and
electrical properties of colloidal particles [1-7].  In addition, dielectric
spectroscopy (or measurements of permittivity as a function of frequency)
is suited for in situ characterization of colloidal dispersions because it is a
nondestructive method.  Hence, the dielectric method described in this
article will provide one of the most promising methods for quality control
in factories and for continuous monitoring of microbial conditions in
brewing.  

Although the permittivity of materials is usually measured by applying an
ac field, we first for the sake of simplicity deal with permittivity in a static
(dc) electric field.  Let us consider a parallel plate capacitor consisting of
two flat metal plates separated by a constant distance (Figure 1).  When
one plate is given a positive charge and the other a negative charge of the
same magnitude Q, an electric field is produced in the space between the
plates.  The charge Q on the plates (termed true charge) is directly
proportional to the voltage V between the plates.  

(1)Q = CV

where C is the capacitance.  When the space is empty, the voltage V is
given by V=Q/C0, where C0 is the capacitance for the empty capacitor.
When an electrically-neutral material is inserted between the plates,
positive and negative charges are separated in the material by the charge
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on the plates.  The induced charge of magnitude P, therefore, appears at
the surfaces of the material, having opposite polarity to the true charge.
The induced charge neutralizes a part of the true charge, resulting in the
reduction of voltage between the plates; the voltage is given by
V=(Q-P)/C0.  Alternatively, the voltage is expressed as V=Q/C with the
capacitance C for the capacitor filled with the material.  Hence, the
capacitance ratio C/C0, that is the relative permittivity ε, is 

(2)ε ≡ C
C0

=
Q

Q− P
= 1

1 − P/Q

The relative permittivity depends on the polarizability of materials.  For
example, the P/Q ratio for benzene is 0.6 and thus the relative permittivity
becomes 2.5.  The relative permittivity of water is 78 at 25ºC since
P/Q=0.987.  Heterogeneous systems, such as emulsions and biological cell
suspensions, frequently show a huge relative permittivity exceeding one
thousand.  In this case, the value of P approaches that of Q; P/Q=0.999 for
ε=1000.  

Figure 1.  Definition of

static relative permittivity.

Since the capacitance of a parallel plate capacitor is proportional to the
surface area S of the plates and to the inverse of the distance d between
the plates, the capacitance of the empty capacitor C0 is 

(3)
C0 = ε0

S
d

where ε0 is the permittivity of vacuum (ε0=8.8541 pF/m).  The capacitance
C0 of the empty capacitor is called the 'cell constant', which is used for the
conversion of the measured capacitance into the relative permittivity.  The
capacitance C of the capacitor filled with the material with permittivity ε is

 (4)C = εC0 = εε0
S
d

When the material is not a pure dielectric, conductive current is observed
in proportion to the applied voltage.  The conductance is expressed as
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 (5)G = κS
d

= κC0
ε0

where κ is the conductivity of the material.  The conductivity is called the
'dc conductivity', which is distinguished from the 'ac conductivity'
attributed to the dielectric nature of the material in an ac field, which is
described in the next section.  

Here we describe how to express the dielectric behavior of materials in an
ac field.  When a sinusoidal voltage of angular frequency ω (=2πf, f is
frequency) and amplitude V0 is applied to a capacitor, we can write

(6)V = V0cosωt

The charge Q on the plates of an empty capacitor is given by 

(7)Q = C0V0cosωt

The current is obtained by differentiating the charge Q with respect to t.

(8)I C0 =
dQ
dt

= C0V0ω cos
ωt + π

2



The wave of current precedes that of the voltage by 90 degrees.  For
convenience, we can introduce complex expressions for the voltage and
current as: 

(9)V∗ = V0exp(jωt) = V0(cosωt + j sinωt)

(10)I C0
∗ = C0

dV∗

dt
= jωC0V∗ = C0V0ω

cos
ωt + π

2

 + j cosωt

where and the asterisk refers to the complex quantity.  Thej = −1
voltage V and current I

C0 correspond to the real parts of V* and I
C0*,

respectively.  In the case of the capacitor filled with a material, the
polarization of the material takes a certain time and thus some delay of the
current occurs compared with the current for the empty capacitor.  Thus,
the phase angle between the current and the voltage becomes smaller than
90 degrees as shown in Figure 2a.  The current has two components: the
current I

G
* in phase with the ac voltage and the charging or displacement

current I
C
* out of phase by 90 degrees.

(11)I C
∗ = jωCV∗

(12)I G
∗ = GacV∗

where G
ac

 is the 'ac conductance'.  The total current is 

(13)I ∗ = I C
∗ + I G

∗ = (jωC + Gac)V∗

This relation is represented by an equivalent circuit of capacitance C in
parallel with a conductance G

ac
 (Figure 2b).  Using the complex

conductivity G* defined by

3. Description of dielectrics

in an ac field 
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(14)G∗ = Gac + jωC

Figure 2.  (a) Phasor

diagram of current and

voltage for a capacitor with

a dielectric material and 

(b) the corresponding

equivalent circuit.

Equation (13) can be rewritten as I*=G*V*, in the form of Ohm's law for a
static field.  Integrating the complex current I* provides the relationship
between the charge Q* and the voltage V* as

(15)Q∗ = ∫ I∗dt = ∫ (jωC + Gac)V∗dt = 
C + Gac

jω

 V∗

Equation (15) thus has the same form as Equation (1), with the complex
capacitance C* defined as

 (16)C∗ = C + Gac

jω = C − j
Gac
ω = G∗

jω

As an analogy of the definition of static relative permittivity, the complex
relative permittivity ε* can be defined by the ratio of the complex
capacitance C* to the capacitance C

0
 for the empty capacitor.  

(17)ε∗ = C∗

C0
= C

C0
− j

Gac

ωC0

Using the relative permittivity ε(=C/C
0
) and conductivity κ(=G

ac
ε0/C0

), the
complex relative permittivity can be expressed as

(18)ε∗ = ε − jε = ε − j κ
ωε0

where ε' is the real part of ε* and ε" is the imaginary part, called the loss
factor.  

When dielectric measurements are carried out over a wide frequency
range, we sometimes observe dielectric behavior in which the permittivity
decreases and the conductivity increases with increasing frequency
(Figure 3a), a phenomenon called dielectric relaxation (or dispersion).
A single dielectric relaxation is characterized by a set of parameters, called
dielectric parameters, i.e., ε

l
 and ε

h
 are the limiting values of relative

permittivity at low and high frequencies respectively, f
0
 is the

characteristic frequency, κ
l
 and κ

h
 are the limiting values of conductivity at

low and high frequencies respectively, and ∆ε (=ε
l
-ε

h
) is the magnitude of

dielectric relaxation.  

4. Dielectric relaxation
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Instead of the conductivity κ, the loss factor ε"(=κ/ωε0) may also be plotted
against frequency, giving rise to a peak at the characteristic frequency f0

(Figure 3b).  If the dc conductivity (=κ
l
) is not negligible, the loss factor is

calculated from ε"=(κ-κ
l
)/ωε0.  The complex plane plot, called the

Cole-Cole plot, is also used for the analysis of dielectric relaxation (Figure
3c).  In the Cole-Cole plot the loss factor is plotted against relative
permittivity, tracing a semicircular, circular or skewed arc.  

Figure 3.  Dielectric

relaxation.

(a) Relative permittivity

and conductivity vs log

frequency, 

(b) Loss factor vs log

frequency and 

(c) Complex plane plot

(Cole-Cole plot).

For dielectric relaxation in the radio frequency range, the chief
mechanisms are orientation of polar molecules in an electric field and
interfacial polarization at the boundary between materials with different
electrical properties.  Although the dielectric relaxation of a heterogeneous
system includes both mechanisms, the main concern is interfacial
polarization because, in general, the magnitude of the relaxation due to
interfacial polarization is much larger than that due to orientation of polar
molecules.  Therefore, if the interest is in molecular polarization in
heterogeneous systems, it should be discussed after careful consideration
of the interfacial polarization.

Next, we shall discuss the dielectric relaxation due to interfacial
polarization in the case of a water-in-oil emulsion (Figure 4).  When a
static field is applied, ions in the water droplets move to and stay at the
water-oil interface, polarizing the emulsion.  The polarization occurs in an
alternating field whose frequency is sufficiently low, resulting in a high
relative permittivity at low frequencies.  The relative permittivity
decreases with increasing frequency because the polarization is slow
compared with the speed of the alternating field.  The delay of the
polarization results in the increase in conductivity at high frequencies as
described above.  
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Figure 4.  Polarization of a

W/O emulsion in an ac field.

In order to analyze the dielectric behavior of suspensions of spherical
particles quantitatively, several mixture equations were proposed.  Here,
we shall confine our attention to Hanai's equation [8, 9], which provides
better simulation for various colloidal dispersions over a wide range of
volume fraction up to 0.8.  When spherical particles of complex relative
permittivity ε

p
* are suspended in the medium of ε

a
* at volume fraction Φ

(Figure 5), the complex relative permittivity of the suspension ε* is

(19)
ε∗ − εp

∗

εa
∗ − εp

∗



εa
∗

ε∗



1/3

= 1 − Φ

 
Figure 5.  An electrical

model for a suspension of

spherical particles.

Using this equation, we can calculate the frequency dependence of the
relative permittivity and conductivity of the suspension.  The dielectric
parameters (ε

h
, ε

l
, κ

h
, and κ

l
) of the relaxation are related to the phase

parameters (ε
p
, κ

p
, ε

a
, κ

a
, Φ) of the suspension.  For the details of Hanai's

mixture equation, readers are referred to Ref.  2.
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5.1 Water-in-Oil (W/O) emulsion [10, 11]

In the case of a water-in-oil (W/O) emulsion, where water droplets are
suspended in an oil phase, we may assume that the conductivity of the oil
phase is much lower than that of the water droplets.  In this case the
following approximate equations are derived from Equation (19).  

(20)Φ = 1 − 


εa
ε l




1/3

(21)κa = κ l(1 − Φ)3

(22)εp = εa + εh − εa

1 − (
εh
ε l )

1/3

(23)κp = κh

1 − 1
3(2 + εa

εh )( εh
ε l )

1/3


1 − (

εh
εl )

1/3


2

Using these equations we can estimate the volume fraction Φ of the water
droplets, the conductivity κ

a
 of the oil phase, and the relative permittivity

ε
p
 and conductivity κ

p
 of the water phase from the dielectric parameters (ε

l
,

ε
h
, κ

l
 and κ

h
) observed for the W/O emulsion and the relative permittivity ε

a

measured separately for the oil phase.  

Figure 6 shows an example of dielectric measurements for a W/O
emulsion.  The oil phase was a mixture of kerosene and carbon
tetrachloride (72:28 V/V).  The W/O emulsion was prepared by mixing
distilled water with the oil containing 0.4% (V/V) Span 80 as an emulsifier.
The volume fraction of the water in the emulsion was 0.75.  Dielectric
relaxation is clearly found, from which the dielectric parameters are
extracted.  Using the dielectric parameters, the phase parameters are
calculated from Equations (20)-(23), as listed in Table 1.  The volume
fraction is consistent with the volume ratio of water in the emulsion.  The
values of κ

p
 and ε

p
 are in good agreement with the conductivity and

relative permittivity of the water phase separated from the oil phase by
centrifugation after the measurement.

Figure 6.  Dielectric

relaxation of a W/O

emulsion.  

The open circles indicate

the measured data.  The

solid lines are the

theoretical curves.

5. Emulsion
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Table 1.  Dielectric analysis for a W/O emulsion.

Measured dielectric parameters
εl=121, εh=30.6, κl=1.27 nS/cm, κh=0.700 µS/cm, f0=11.3 kHz

Volume fraction in preparation
Φ=0.75

The parameters of the oil and water phases separated from the emulsion after its 
dielectric measurement
εa=2.23, εp=78.5, κp=3.09 µS/cm

Estimated phase parameters
Φ=0.736, κa=0.023 nS/cm, εp=79.6, κp=2.93 µS/cm

5.2 Oil-in-Water (O/W) emulsion [12-14]

For oil-in-water (O/W) emulsions, in which oil droplets are suspended in a
water phase, the conductivity of the oil droplets is negligibly small
compared with that of the aqueous phase.  Assuming that κ

p
<<κ

a
 we obtain

the following equations from Equation (19):

(24)εl = 3
2

εp + 
εa − 3

2
εp


 (1 − Φ)3/2

(25)


εh − εp

εa − εp







εa
εh




1/3

= 1 − Φ

(26)κ l = κa(1 − Φ)3/2

(27)κh = κa
εh(εh − εp)(2εa + εp)
εa(εa − εp)(2εh + εp)

Using these equations, we can assess the magnitude of dielectric
relaxation of O/W emulsions.  When the relative permittivity is 78 for the
water phase and 2.5 for the oil phase and the volume fraction is 0.7, the
magnitude of the relaxation ∆ε becomes 0.15, which is too small to detect.

In general, most O/W emulsions do not give a detectable relaxation
magnitude as expected from the numerical assessment.  However, the use
of an oil with a higher relative permittivity value leads to a definite
dielectric relaxation.  Figure 7 shows an example with a
nitrobenzene(ε=35)/water emulsion.
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Figure 7.  Dielectirc

relaxation of a

nitrobenzene/water

emulsion.

 
Column chromatography is widely used for separation of ions and organic
molecules.  One of the packing materials is ion-exchange resin, whose
electrical properties can be evaluated by dielectric spectroscopy.  As an
example we describe the dielectric analysis of Sulfopropyl(SP)-Sephadex
beads.  The beads are swollen in water to be spheres of about 100 µm in
diameter.  The matrixes of the beads have negative fixed charges, whose
density is about 0.25 mole/dm3.  

The relative permittivity and conductivity of a bed of the SP-Sephadex
beads in distilled water show a typical dielectric relaxation as shown in
Figure 8.  Since the interior of the bead has movable counter-ions around
the fixed charges, the conductivity of the bead is higher than that of the
external medium (distilled water), i.e., κ

p
>κ

a
.  However, the assumption of

κ
p
>>κ

a
 that holds for W/O emulsions is not necessarily applicable to the

ion-exchange resin beads because the conductivity of the beads depends
on the fixed charge density.  The analysis for the ion-exchange resin beads,
therefore, is based on the following general equations derived without
approximations.  

Figure 8.  Dielectric

relaxation of a bed of

ion-exchange resin beads.

The open circles indicate

the measured data and the

solid lines are the

theoretical curves.

(28)R = 3(ε l − εh)

(29)D = 


εaκ l
εhκa




1/3

6. Ion-exchange resin

particles [15-19]
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(30)P = 


κa
κ l

+ 2
 εlD − 3[εhD − εa(D − 1)]D + 


κl
κa

− 1
 εaD

(31)Q = 3[2εhD − εa(D − 1)] − 





κa
κ l

+ 2
 D + 3


εl − 


κ l
κa

− 1
 εaD

(32)C =
−Q − Q2 − 4PR

2P

f(κa) ≡ 

3 − 

2 + εa
εh


 C


(1 − DC)κh − 3{κ l − [κa(D − 1) + κ l]C}(1 − C)

(33)+κa

1 − εh

εa

 C(1 − DC) = 0

(34)Φ = 1 − 


εa
εh




1/3

C

(35)εp = εh − εaC
1 − C

(36)κp = κ l − κaDC
1 − DC

Figure 9.  Flow chart of the

computer program for

dielectric analysis of

ion-exchange resins.  κκ
a
 is

estimated by a successive

approximation.  κκ
a, i is an

initial value of κκ
a
.

Use of these equations enables us to calculate the phase parameters (κ
a
, Φ,

ε
p
, κ

p
) from the dielectric parameters (ε

l
, ε

h
, κ

l
) and the relative permittivity

of the medium εa according to the flow chart shown in Figure 9.  The phase
parameters estimated for the dielectric relaxation shown in Figure 8 are
listed in Table 2.  The internal conductivity of the ion-exchange resin is
much higher than the external conductivity.  With the estimated internal
conductivity Ishikawa et al.  discussed the mobility of counter ions and the
interactions between the counter ions and the fixed ionic residues in the
ion-exchange resin [16-19].  
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Table 2.  Dielectric analysis for an ion-exchange resin suspension.

Measured dielectric parameters
εl=855.6, εh=66.3, κl=0.303 mS/cm, κh=10.3 mS/cm, f0=13.1 MHz

The phase parameters measured for the external medium
εa=76.0, κa=2.35 µS/cm

Estimated phase parameters
Φ=0.568, κa=25.6 µS/cm, εp=59.4, κp=16.9 mS/cm

Microcapsules are widely used in pharmaceutical, food and industrial
fields.  There are many kinds of microcapsules made from various
materials.  Here, we choose polystyrene microcapsules because of their
simple and well-defined structure.  Polystyrene microcapsules have the
shell-sphere structure in which an aqueous core is covered with a thin
insulating shell of polystyrene.  Thus, the polystyrene microcapsule is
represented by the 'single-shell' model shown in Figure 10.  The complex
relative permittivity ε* of the microcapsule suspension is given by
Equation (19)

(19)
ε∗ − εp

∗

εa
∗ − εp

∗



εa
∗

ε∗



1/3

= 1 − Φ

with the equivalent complex relative permittivity ε
p
* of the shell-sphere

consisting of the core of ε
i
* and the shell of ε

s
*.  The ε

p
* is expressed as 

 (37)εp
∗ = εs

∗ 2(1 − v)εs
∗ + (1 + 2v)εi

∗

(2 + v)εs
∗ + (1 − v)εi

∗

where v=(1-d/R)3, d is the shell thickness, and R is the radius of the
shell-sphere.  

Figure 10.  Single-shell

model.

Figure 11 shows the results of dielectric measurements for a dense
suspension of polystyrene microcapsules.  Unlike W/O emulsions there are
two relaxations, which correspond to the inner and outer interfaces of the
shell.  When the KCl concentration of the inner aqueous phase is fixed,
only the low-frequency relaxation, termed the P-relaxation, shifts to lower
frequencies with decreases in the KCl concentration of the outer aqueous
phase.  On the other hand, the high-frequency relaxation, termed the
Q-relaxation, depends only on the inner KCl concentration.  This suggests
that the P-relaxation is attributed to the polarization at the outer interface
and the Q-relaxation is due to the polarization at the inner interface.  

7. Microcapsules [20-23]
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Figure 11.  Double

dielectric relaxation of a

microcapsule.

The double relaxation is characterized with the dielectric parameters
indicated in Figure 12.  They are the two characteristic frequencies f

P
 and

f
Q
 for the P-and Q-relaxations, respectively, the low-frequency limits of the

relative permittivity ε
l
 and conductivity κ

l
, the high-frequency limits of the

relative permittivity ε
h
 and conductivity κ

h
, and the relative permittivity ε

m

and conductivity κ
m

 in the middle of the two relaxations.  

Figure 12.  Dielectric

relaxation of a dense

suspension of polystyrene

microcapsules.

The open circles indicate

the measured data and the

solid lines are the

theoretical curves.

The relationships between the dielectric parameters and the phase
parameters are derived from Equations (19) and (37) assuming that the
conductivity of the shell phase is much less than that of the outer and
inner aqueous phases.  The equations are as follows:

(38)f(Φ) ≡ κm
κ l

(1 − Φ)1/2 −
εm + 2εa − 3εa(1 − Φ)( εm

εa )
1/3

3εm − (2εm + εa)(1 − Φ)(εm
εa )

1/3



εm
εa




4/3

= 0

(39)κa = κ l

(1 − Φ)3/2
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(40)εql = εa + εm − εa

1 − (1 − Φ)(εm
εa )

1/3

(41)v =
εql − εs

εql + 2εs

(42)d = R(1 − v1/3)

(43)εqh = εa + εh − εa

1 − (1 − Φ)(
εh
εa )

1/3

(44)εi =
εqh(εql + εs) − 2εs

2

εql − εqh

(45)κqh = 1
3(εa − εh)


(εa − εqh)(2εh + εqh)

κh
εh

− (εh − εqh)(2εa + εqh)
κa
εa




(46)κ i = κqh
(εql + εi + εs)

2

(εql + 2εs)(εql − εs)

Figure 13 shows a flow chart describing the procedure for estimation of
the phase parameters from the dielectric parameters using Equations
(38)-(46).  According to the flow chart we can calculate the volume
fraction, the shell thickness, and the relative permittivity and conductivity
of the inner aqueous phase.  Table 3 shows the results for the data shown
in Figure 12.  The theoretical curves calculated from the estimated phase
parameters are in good agreement with the observed curves.  The same
dielectric analysis is also applicable to similar microcapsules with an
insulating shell, such as polymethylmethacrylate microcapsules [22, 23].
For microcapsules with a leaky shell, however, the rather simple analysis
described is no longer applicable and more sophisticated methods are
required such as computer-assisted curve fitting using the general
equations without the assumptions.  

Table 3.  Dielectric analysis of a microcapsule suspension.

Measured dielectric parameters
εl=156.0, εm=103.6, εh=62.0, κl=0.424 µS/cm, κm=0.787 µS/cm, κh=79.2 µS/cm, 
fP=14 kHz, fQ=3.4 MHz

Measured phase and morphological parameters
εa=80.0, εs=2.65, R=175 µm

Estimated phase parameters
Φ=0.575, κa=1.53 µS/cm, εi=86.7, κi=350 µS/cm, d=3.7 µm
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Figure 13.  Flow chart of

the computer program for

dielectric analysis of

polystyrene microcapsules.

ΦΦ is estimated by a

successive approximation.

ΦΦ
i
 is an initial value of ΦΦ.

8.1 Liposomes [24]

Liposomes are vesicles with lipid bilayer membranes which are
spontaneously formed by mixing phospholipids in an aqueous medium.
The liposomes are regarded as a model of biological cells.  Figure 14
shows the dielectric relaxation obtained for lecithin liposomes of a few µm
in diameter suspended at Φ=0.45.  Although liposomes are represented by
the shell-sphere model as well as microcapsules, the suspension of the
liposomes did not show the double relaxation of the polystyrene
microcapsules.  According to numerical assessments using Equations (19)
and (37), this is because the membrane is very thin and the conductivity of
the internal phase is similar to that of the external medium.

Figure 14.  Dielectric

relaxation of a liposome

suspension.

8. Biological cells and their

models 
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8.2 Biological cells [25-35]

Biological cells are also represented by the shell-sphere model.  The
thickness of the plasma membrane is 5-10 nm, the same order as that of
liposome membranes.  Hence, biological cells hold for the conditions that
d/R<<1.  The conductivity of the plasma membrane of viable cells is
negligibly small compared with that of the external medium and the
cytoplasm.  Using these assumptions, the following equations are
obtained:

(47)Φ = 1 − 


κ l
κa




2/3

(48)Cm = εsε0

d
= 2ε0

3R






ε l − (1 − Φ)3/2εa

1 − (1 − Φ)3/2




 = 2ε0

3R



ε lκa − κ lεa
κa − κ l




(49)εi =
εh( εa

εh )
1/3 − εa(1 − Φ)

(εa
εh )

1/3 − (1 − Φ)

(50)κ i =
κh




3
εh−εi

− 1
εh


 − κa




3
εa−εi

− 1
εa




3


1
εh−εi

− 1
εa−εi




The volume fraction is obtained from Equation (47) with the values of κ
l

and κ
a
 observed for the suspension and for the medium, respectively.  With

the mean radius of the cell estimated by microscopy, the membrane
capacitance is calculated from Equation (48).  The relative permittivity and
conductivity of the cytoplasm are estimated from Equations (49) and (50).
Figure 15 shows the dielectric relaxation of the suspension of human
erythrocytes (red blood cells) that are swollen in hypotonic medium.
Since the swollen erythrocyte is spherical and has no intracellular
structure, the shell-sphere model is applicable to it.  The results are shown
in Table 4.  With the value of 0.66 µF/cm2 for the membrane capacitance,
the thickness of the hydrophobic region in the plasma membrane is
estimated to be 2.5-3.7 nm assuming that its relative permittivity is 2-3.

Table 4.  Dielectric analysis of a human erythrocyte suspension.

Measured dielectric parameters
εl=2195, εh=67, κl=3.65 mS/cm, κh=6.98 mS/cm, f0=2.6 MHz

Measured phase and morphological parameters
εa=78, κa=8.57 mS/cm, R=3.4 µm

Estimated phase parameters
Φ=0.434, Cm=0.66 µF/cm2, εi=54, κi=5.2 mS/cm
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Figure 15.  Dielectric

relaxation of a human

erythrocyte suspension.

Since most cells have organelles in the cytoplasm unlike erythrocytes,
their electrical models become complicated.  Yeast cells with a large
vacuole and lymphocytes with a sizable nucleus are represented by the
'double-shell' model [27, 28] (Figure 16a).  With such a complicated model,
the phase parameters can no longer be simply calculated from the
dielectric parameters as described above but can be estimated through
computer-assisted curve fitting.  For the non-spherical cells, such as
E. coli and intact erythrocyte, the shell-ellipsoid model (ellipsoid covered
with a thin shell) is available [29, 30] (Figure 16b).  

Figure 16.  (a) Double-shell

model and 

(b) Shell-ellipsoid model.

8.3 Dielectric monitoring of yeast in fermentation [36-38]

Since the magnitude of the dielectric dispersion ∆ε is proportional to the
cell concentration N

c
 for a dilute cell suspension(P<<1), the cell

concentration in cell culture can be monitored by the dielectric method.
The relation between ∆ε and N

c
 is expressed as

(51)∆ε ≈ 9ΦRCm

4ε0
= 3πR4Cm

ε0
Nc

where R is the cell radius and C
m

 is the membrane capacitance, which is
regarded as a constant (usually between 0.5-2 µF/cm2 depending on the
cell type).  The magnitude of the dielectric dispersion is proportional to
the 4th-power of the cell radius.  The sensitivity of the dielectric method
for measuring cell concentration depends on the cell radius.  In the case of
yeast cells, which have a radius of a few µm, the detection limit is about
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107 cell/ml.  When the relative permittivity of the culture broth is
monitored during cultivation, the cell growth curve can be obtained.  A
typical result for yeast cell culture is shown in Figure 17, where the
increment of the relative permittivity is plotted logarithmically versus
cultivation time.  There are two phases in the plots, which correspond to
the logarithmic growth phase (up to 10 hr) and the stationary phase.  The
generation time or growth rate of the yeast is calculated from the slope of
the straight line in the logarithmic growth phase.  

Figure 17.  (a) Dielectric

relaxation of a

concentrated suspension of

yeast cells and 

(b) Dielectric growth curve

of yeast in suspension

culture.

The dielectric monitoring of cell growth in culture has several advantages
over conventional methods as follows: (1) real-time and automated
monitoring, (2) applicability to turbid and colored culture medium, (3)
direct measurement of cell number or mass and (4) counting of only viable
cells because dead cells, which have plasma membranes which are leaky
to ions, are not polarized.  These advantages enable continuous monitoring
and control of fermentation in brewing.

The characteristics of dielectric behavior in colloidal dispersions are
summarized in Table 5.  The number of dielectric relaxations theoretically
expected for a colloidal dispersion is identical to the number of different
interfaces found in it.  In practice, however, all relaxations predicted are
not observed because of the limited frequency range and the limited
sensitivity of the measurements.  With reference to the examples
described in this article, the structure and electrical properties of the
colloidal dispersion concerned would be determined from its dielectric
relaxation using an appropriate model.  

9. A summary of dielectric

behavior of colloidal

dispersions [39]
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Table 5.  Summary of the dielectric behavior of colloidal dispersions.

Colloidal dispersion
Number of
dielectric
relaxations

Models

Emulsions W/O type 1 Sphere

O/W type 0-1 Sphere

Ion-exchange resin particles 1 Sphere

Microcapsules 2 Shell-sphere

Liposomes 1 Shell-sphere

Biological cells Erythrocyte 1 Shell-sphere

Yeast Lymphocyte 1-3 Double-shell

E. coli >2 Shell-ellipsoid

In this article I have dealt with colloidal dispersions with relatively large
particles whose radius R is much larger than the Debye screening length l,
which is a measure of the thickness of the diffuse double layer
surrounding the particles.  Under the conditions of R>>l, dielectric
relaxation of colloidal dispersions can be interpreted by interfacial
polarization alone.  However, when the radius of particles approaches the
Debye screening length, dielectric behavior of colloidal dispersions is
influenced by electrodiffusion processes in the vicinity of particle surfaces
[3].  For these systems, therefore, more sophisticated models should be
used, instead of the interfacial polarization models.

In order to study the dielectric relaxation of a colloidal dispersion, it is
necessary to measure its permittivity and conductivity over a wide
frequency range.  Recently, instruments suited for dielectric spectroscopy
have become commercially available.  Although well-advanced
instruments enable us to easily get accurate dielectric spectra without
knowledge on dielectric measurement, it is worth noting that dielectric
measurement includes various errors to be corrected.

The raw data include errors due to stray capacitance and residual
inductance arising from the measurement cell (or electrodes) and its
connecting leads.  Correction for the stray capacitance and the residual
inductance, therefore, is requisite, especially at high frequencies
(>10 MHz).  For details of the correction, readers are referred to Refs.  40
and 41.  

In addition, electrode polarization due to the electrical double layer
between electrode surfaces and electrolytes becomes a serious problem at
low frequencies (<1 MHz).  When an electrolyte solution (e.g., a 100-mM
KCl solution) is measured, an enormous increase in capacitance is seen at
low frequencies (Figure 18, the capacitance of the electrolyte should be
independent of frequency).  The increase in capacitance at low frequencies
is not due to the intrinsic property of the electrolyte solution but due to the
electrode polarization artifact which depends on the surface properties
and geometry of the electrodes and conductivity of the solution.  For
example, the use of platinized Pt electrodes (Pt-black electrodes) reduces
the artifact above 100 Hz compared with the use of bare (bright) Pt
electrodes, as shown in Figure 18.

10. Dielectric measurement

[40, 41] 
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Figure 18.  Frequency

dependence of capacitance

and conductance of a

capacitor filled with a 100

mM KCI solution.

The open circles indicate

data obtained with bright

Pt electrodes and the

closed circles indicate data

obtained with platinized Pt

electrodes.

However, a new technique which is free from electrode polarization has
been developed recently.  The method is based on electromagnetic
induction and uses a probe, consisting of two concentric toroidal coils
covered with epoxy resin, which is immersed in the sample.  Although the
frequency range is limited to between 200 kHz and 20 MHz at present, the
method is a promising new tool for evaluation of the dielectric properties
of colloidal dispersions.

C = Capacitance (F, Farad)
G = Conductance (S, Siemens, inverse Ω (Ohm))
I = Current (A, Ampere)
Q = Charge (C, Coulomb)
V = Voltage (V, Volt)
f = Frequency (Hz, Hertz)
Φ = Volume fraction 
ε = Permittivity (F/m, Farad per meter) or relative permittivity
κ = Conductivity (S/m, Siemens per meter)
ω = Angular frequency (=2πf, rad/s)
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