
DVB-C Solutions

Product Overview

HP 8594Q QAM Analyzer

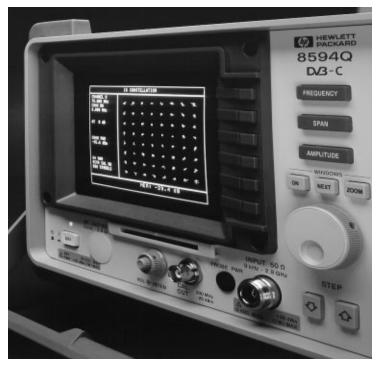
The first choice for field testing of DVB-C signals on your cable TV system

All cable TV network operators planning the introduction of DVB-C (Digital Video Broadcast via Cable) services have increasing competitive pressure to install these new services quickly. Aggressive activation schedules require test equipment capable of verifying your quality of service—fast. The HP 8594Q QAM¹ analyzer is a comprehensive and powerful test solution for installation and maintenance test on European DVB-C systems. Supporting 8, 4 and 2 MHz channel bandwidths. the HP 8594Q QAM analyzer makes both qualitative and quantitative measurements on the transmitted 64 QAM signal. It gives engineers the measurement capability required to accurately verify the quality of service delivered to subscribers. All measurements are presented in a user friendly manner so the engineer can focus on the job at hand, not on operating the test equipment.

The HP 8594Q QAM analyzer can help you during:

- · Headend equipment installation and maintenance
- System verification
- Field installation and maintenance
- · Modulator manufacturing test

The HP 8594Q QAM analyzer demodulates and accurately measures the QAM signals carried through the DVB-C system. It provides new measurement metrics necessary to characterize these signals and troubleshoot problems. The HP 8594Q QAM analyzer's clear user interface and one-button measurement capability will make the transition from analog to digital testing easy for cable TV engineers.


¹ QAM - Quadrature Amplitude Modulation

Verify your quality of service

Activate your DVB-C services faster

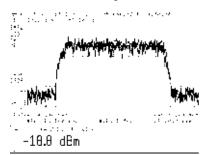
To help you activate your DVB-C services faster, test equipment must provide a comprehensive suite of measurements. The ability to analyze the signals on the system in detail will help you to quickly identify and troubleshoot problems. With the new challenge of testing digital signals it is important that your test equipment is easy to use. With the HP 8594Q QAM analyzer's one button measurement capability, engineers will be able to concentrate on getting measurement results, not finding the right menu. The portable, rugged HP 8594Q QAM analyzer is ideal for testing from the headend through the network to the subscriber drop.

This combination of powerful measurements and usability will ease your transition from analog to DVB-C testing.

Digital video measurement overview

The shift from analog to digital technology brings many new measurement challenges. Analog system measurements which would have indicated a high quality of service are no longer appropriate. Where analog signals degrade slowly as impairments become worse, digital signals will provide excellent picture quality then degrade very rapidly upon reaching the threshold. Analyzing these digital signals in detail is crucial to determining the real quality of service being delivered to your customer.

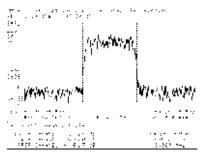
Headend to subscriber drop testing


Comprehensive RF and modulation quality measurements

Comprehensive measurement capability

To accurately verify your quality of service the following measurements are important:

Average channel power


Channel power is the most basic measurement of digital signals on your DVB-C system. The HP 8594Q QAM analyzer gives a real-time display of the average power across the channel being measured. The sensitivity of the HP 8594Q QAM analyzer allows measurements throughout the system, from the headend to the low level signals at the subscriber drop.

Average channel power measured on an HP 8594Q QAM analyzer

Adjacent channel power

Adjacent channel power provides a measure of how much a transmission is 'leaking' into the immediately adjacent channels. Measurements are carried out across the transmission channel as well as two adjacent channels. The power level is presented for each channel.

Adjacent channel power measured on an HP 8594Q QAM analyzer

Constellation display

The constellation display gives a graphical view of the demodulated 64 QAM signal. This allows quick identification of impairments such as gain compression or IQ imbalance. The information from the visual appearance of the constellation display can be used to isolate and troubleshoot problems.

		٠	: :				
(J. 2.) - (%) %,							
· · · · •1							`
en id			:	,	i	•	
12 /*					٠		
				•			

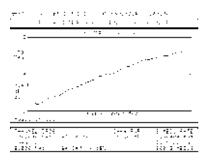
The HP 8594Q QAM analyzer constellation display of a signal with gain compression

	:	٠.	٠.		٠٠.				
Professional Control of the Control		,							
2.70 mg.							٠	٠.	
			٠	٠	٠	•		•	
0.750				•	-				
-1.1 dis						٠	-		
					•				
			-						

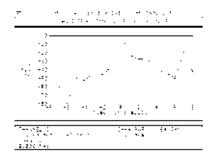
The HP 8594Q QAM analyzer constellation display of a signal with IQ imbalance

MER (modulation error ratio) and EVM (error vector magnitude and origin offset)

MER and EVM give a metric measurement of the modulation quality. The measurement results can be displayed in real-time alongside the graphical constellation. Alternatively, ten average, maximum, minimum and standard deviation measurements can be captured and analyzed for trends.

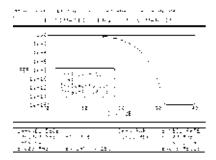

**************************************	e menggan enggap Langgan
MER (SNR):	35.1 dB
RMS EVM:	1.2 %
ID DFFSET:	-39.1 dB

1		[6.2	4411 4-75
A 100 M TO 2	1. 7. 41		A CHARLES AND
1.00 1.5			10.50
1,800 ***	1.5		107 1 19147 .


The HP 8594Q QAM analyzer display of MER, EVM and IQ offset

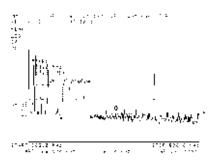
Built-in equalizer response

The built-in adaptive equalizer in the HP 8594Q QAM analyzer displays both impulse and frequency response. The impulse response allows identification of microreflections in the transmission plant while the frequency response shows any tilt across the channel.


The HP 8594Q QAM analyzer display of the built-in equalizer frequency response

The HP 8594Q QAM analyzer display of the built-in equalizer impulse response

Estimated SER (symbol error ratio) versus carrier to noise


The estimated SER versus carrier-to-noise ratio measurement shows the current operating point of the cable TV system. A calculation is carried out for each measured constellation point to determine its probability of being misinterpreted. This point is then plotted against the current carrier-to-noise ratio. An operating curve can then be traced out by adding an external noise source to decrease the carrier-to-noise ratio.

The HP 8594Q QAM analyzer display of SER versus carrier to noise

Spectrum analysis

In addition to these specific DVB-C measurements, the HP 8594Q QAM analyzer provides a fully featured 2.9 GHz spectrum analyzer.

The HP 8594Q QAM analyzer showing a sweep of several analog and digital channels

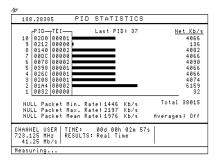
Full spectrum analysis capability

Data analysis option

Check data integrity

Add Option 195 to the HP 8594Q QAM analyzer to verify that the MPEG data has been correctly decoded, and check transport stream content. The option also proves a real-time output (both ASI and parallel), to allow access to the data stream for further comprehensive analysis.

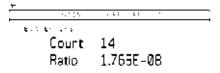
Reed-Solomon error


Examining the statistics from the forward error correction (FEC) system gives information about the transmission margin of the RF channel. The FEC process adds information to each packet in the transport stream, to enable the correction of transmission errors. The HP 8594Q Option 195 includes a real-time FEC decoder. By monitoring the activity of the FEC decoder, analysis of byte and packet errors is provided. Since this analysis can be made on live data, this is the method recommended for non-intrusive in-service bit error ratio estimation.

REED-SO	LOMON RESULTS
Byte Errors Count Ratio	186924 4.338F-04
Packet Errors	72
Ratio	3.408E-05
CHANNEL USER TIME: 723.125 MHz RESULTS: 41.25 Mb/s	00d 00h 01m 23s [Cumulative]
Measurement Stopped	

Reed-Solomon byte and packet error count displayed on an HP 8594Q Option 195 QAM analyzer

PID statistics


The program identifier (PID) statistics provide two critical pieces of information about the MPEG transport stream. First, they list the individual data streams which make up the transport stream, along with the data rate associated with each one. An operator can check the video, audio and data content of the stream, and check for "illegal" PIDs. The number of "null" packets (added to bring the overall data rate up to the rate used for the channel) determines how much more information could be added to the stream. Second, they allow identification of any PID which has suffered uncorrectable packet errors during transmission. Packet errors cause glitches or blocking effects on the picture.

The PID statistics of a transport stream displayed on an HP 8594Q Option 195 QAM analyzer

Bit error ratio testing

For out-of-service testing of a digital channel, the recommended quality metric is bit error ratio (BER). Typical headend modulators can be set to transmit a standard continuous 2²³-1 pseudo-random binary sequence (PRBS). The HP 8594Q QAM analyzer data analysis option allows the instrument to function as a BER receiver, providing analysis and display of true bit error ratio measurements during installation of new channels or during system troubleshooting.

The HP 8594Q Option 195 QAM analyzer makes the key out-of-service test of bit error ratio

Solutions from baseband to RF...

HP Digital Video Test Solutions

HP provides a comprehensive range of test equipment for DVB-C analysis, generation and MPEG analysis.

RF Testing

HP 8594Q DVB-C QAM Analyzer

- Field testing solution for the European DVB-C standard
- Comprehensive RF and data quality testing
- Test from the headend to the subscriber drop

HP 8591C Cable TV Analyzer

- Includes digital carrier power measurement
- In service analog RF and video measurements

HP 89441A Option AYH Digital Video Modulation Analysis

- Provides highest quality QAM and VSB analysis capabilities
- · Measures key modulation metrics
- · Ideal for R&D use

HP CaLan 3010R/H Sweep/Ingress Analyzer

- · Return sweep and ingress detection
- Includes digital carrier power measurements
- Identify, troubleshoot and eliminate ingress

HP E4441A DVB QAM Coder

- Fully compliant with DVB-C specifications
- · Flexible real-time encoding
- Built-in calibrated impairments simplifies receiver characterization

MPEG Testing

E6277A MPEGScope Plus

- Verify or troubleshoot MPEG-2/DVB/ATSC implementations
- Generate and capture MPEG-2 streams up to 60 Mb/s
- Live monitoring and analysis of MPEG-2 transport streams
- Complete MPEG-2, DVB and ATSC protocol decode

HP E6271A MPEGScope ATM Test Application

- Comprehensive MPEG-2 testing for the HP E4200B/4210B Broadband Series Test System - the ATM industry standard tester
- Real-time MPEG-2 transport stream analysis for ATM systems
- Implements key measurements including PCR jitter
- Supports most ATM standard interfaces from DS1 to OC-3DVB-C channel bandwidths

...and back again.

HP 8594Q QAM Analyzer Specifications

This section contains specifications and characteristics for the HP 8594Q QAM Analyzer. The distinction between specifications and characteristics is described as follows.

Specifications describe warranted performance over the temperature range 0 $^{\circ}$ C to +55 $^{\circ}$ C (unless otherwise noted). The analyzer will meet its specifications under the following conditions: 0 $^{\circ}$ C to +50 $^{\circ}$ C with Option 015 or Option 016 operating/carrying case; the instrument is within the one year calibration cycle; two hours of storage at a constant temperature within the operating temperature range; thirty minutes after the analyzer is turned on; after the CAL frequency, and CAL amplitude routines have been run.

Characteristics provide useful, but nonwarranted information about the functions and performance of the analyzer. Characteristics are specifically identified. Typical performance, where listed, is not warranted, but indicates performance that most units will exhibit. Nominal value indicates the expected, but not warranted, value of the parameter.

Spectrum Analyzer Specifications

When used as a spectrum analyzer, the HP 8594Q QAM analyzer conforms to all specifications described in the HP 8590E-Series Portable Spectrum Analyzers, Technical Specifications. Literature number 5963-6909E.

Specifications for DVB measurement capability

DVB-C channel bandwidths	8 MHz, 4 MHz and 2 MHz				
Supported symbol rates (Characteristics)					
Channel Bandwidth Symbol Rate	8 MHz 6.9 MSymbol/s 6.89 MSymbol/s 6.875 MSymbol/s 6.872 MSymbol/s	4 MHz 3.45 MSymbol/s 3.445 MSymbol/s 3.4375 MSymbol/s 3.436 MSymbol/s	2 MHz 1.725 MSymbol/s 1.72 MSymbol/s 1.71875 MSymbol/s 1.718 MSymbol/s		
Channel Selection Standard Tuning Ranges	DVB-C D channel 31 - 41, 330 - 445 CCIR VHF S channels 21 - 41 CCIR UHF U channels 21 - 69				
User defined channel tuning	10 MHz - 2.9 GHz 10 MHz - 1 GHz (with internal pre-amplifier)				
Testing at the headend Conditions	Single input signal				
Average power measurement Minimum average power at input without preamp	<u>8 MHz</u> -60 dBm	<u>4 MHz</u> -63 dBm	2 MHz -66 dBm		
with preamp¹	-62 dBm typical -81 dBm -83 dBm typical	-65 dBm typical -84 dBm -87 dBm typical	-68 dBm typical -87 dBm -90 dBm typical		
Average power accuracy	± 2.8 dB, ± 1 dB typical				

¹ Gain error of internal pre-amp not included.

HP 8594Q QAM Analyzer Specifications (continued)

Residual EVM/MER <u>EVM</u> <u>MER</u>

1.47 % 33 dB 1.16 % typical 35 dB typical

Reflects mean residual EVM/MER of 50 individual measurements

All measurements using 800 symbols

Typical value is at 20-30 °C (room) temperature

Minimum power input for

EVM/MER measurements -55 dBm (Using internal pre-amplifier)

Testing at the subscriber drop

Conditions Multiple input signals

Total incident power at 50 ohm <+17 dBm

Without external pad

Average power measurement

Minimum average power at input 4 MHz 2 MHz <u>8 MHz</u> without preamp -40 dBm -43 dBm -46 dBm -42 dBm typical -45 dBm typical -48 dBm typical -41 dBm -47 dBm with preamp1 -44 dBm -43 dBm typical -47 dBm typical -50 dBm typical

Average power accuracy ± 2.8 dB, ±1 dB typical

Residual EVM/MEREVMMER(For total incident power at input < +20 dBm)</td>2.07 %30 dB1.74 % dB typical31.5 dB typical

Reflects mean residual EVM/MER of 50 individual measurements

All measurements using 800 symbols

Typical value is at 20-30 °C (room) temperature

Minimum power input for

EVM/MER measurements -55 dBm (Using internal pre-amplifier)

Characteristics

Demodulator Characteristics

Supported digital demodulation format 64 Quadrature Amplitude Modulation

Nyquist Filter Alpha 0.15 time DFE/FFE Adaptive Equalizer

ACP dynamic range 58 dB without internal pre-amplifier

Maximum total incident input power + 30 dBm without internal pre-amplifier

+ 5 dBm with internal pre-amplifier

Pre-amp typical specifications

Maximum safe input level -5 dB (average or peak power)

Gain +23 dB ±3 dB

 $\begin{array}{lll} \mbox{Frequency range} & 1 \mbox{ MHz to 1 GHz} \\ \mbox{Flatness} & \pm 0.5 \mbox{ dB} \\ \mbox{Noise figure} & 4 \mbox{ dB maximum} \\ \mbox{TOI} & \pm 14 \mbox{ dBm} \\ \end{array}$

HP 8594Q QAM Analyzer Specifications (continued)

Front and rear panel interfaces

Front Panel

RF Input 50 ohms Type-N

Calibration Output 50 ohms BNC, -20 dBm, 300 MHz
Probe Power +15Vdc, -12.6Vdc, and Gnd 150 mA each

Rear Panel

Keyboard (Standard or Option 043) 5-Pin mini-DIN, compatible with HP C1405B and most IBM/AT keyboards

External Trigger Input BNC, TTL levels, positive edge trigger

HPIB and Parallel SH1, AH1, T6, L4, ST1, RL1, PPO, DC1, C1 C2, C3, & C28 and 25 Pin subminiature D-shell

female or parallel

RS-232 and Parallel (Option 043) 9-Pin subminiature D-shell female and 25 Pin subminiature D-shell female for parallel

External Ref Input 50 ohms BNC, 10 MHz, -2 to +10 dBm 10 MHz Ref Output 50 ohms BNC, 10 MHz, 0 dBm

Monitor Out 50 ohms BNC, Selectable Format NTSC, 15.75 kHz, 60 Hz PAL, 15.625 kHz, 50 Hz

DVB Parallel interface (Option 195)25-Pin subminiature D-shell female. Compliant with DVB-PI specification,

188 or 204 byte mode user-selectable

DVB ASI serial interface (Option 195)75 ohms BNC. Compliant with DVB-ASI specification, 188 or 204-byte mode,

user-selectable

Data Measurements (Option 195)

PID statistics measurement

Maximum number of PID's analyzed simultaneously 64

Transport stream net data rate accuracy

PID net data rate accuracy

Transport stream gross data rate accuracy

1% without averaging
1% without averaging
1% without averaging

Multiplex overview measurement

Maximum number of PIDs detected in transport stream 5000 Maximum number of PIDs analyzed simultaneously 10

Transport stream net data rate accuracy

PID net data rate accuracy

Transport stream gross data rate accuracy

1% without averaging
1% without averaging
1% without averaging

Reed-Solomon error statistics measurement

Measurement displays: Byte error count

Byte error ratio
Packet error count
Packet error ratio
Estimated bit error ratio

Bit error ratio measurement

Measurement stimulus types: 2²³-1 continuous PRBS

Sync (47hex, no inversion) + 203-byte 2²³-1 PRBS *

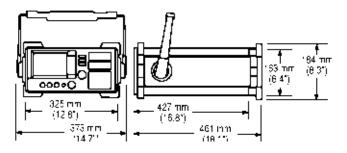
R-S encoded packet with payload of 187 bytes of 2²³-1 PRBS *

R-S encoded packet with user-definable PID and payload of 184 bytes of 2²³-1 PRBS *

R-S encoded packet with null PID value and payload of 184 bytes of 0000 *Note: PRBS sequence paused during header and Reed-Solomon bytes

HP 8594Q QAM Analyzer Specifications (continued)

Dimensions


 Without handle, feet, or cover
 163 mm (H) x 325 mm (W) x 427 mm (D)

 Overall
 184 mm (H) x 373 mm (W) X 461 mm (D)

Weight

 Net
 16.4 kg (36 lb)

 Shipping
 19.1 kg (42 lb)

General Specification

Temperature Range Operating 0 °C to +55 °C

Storage -40 °C to +75 °C

EMI Compatibility Conducted and radiated interference CISPR Pub. 11 and Messempfaenger Postverfuegung

526/527/79

Audible Noise <37.5 dBa pressure and <5.0 Bels power (ISODP7779)

Power Requirements

ON (Line 1) 90 to 132 V rms, 47 to 440 Hz,195 to 250 V rms, 47 to 66 Hz

Power consumption <500 VA; <180W

Standby (Line 0) Power consumption <7 W

User Program Memory 289 Kbytes non-volatile RAM

Data Storage (nominal) Internal 24 traces or 32 states

Ordering Information

HP 8594Q QAM Analyzer

Option 190 ¹	DVB-C RF and modulation quality measurements
_	(includes DVB-C measurement software, precision frequency reference, HP-IB/parallel interface)
Option 195	Data measurements
Option 016	Soft yellow operating/carrying case
Option 040	Front panel protective cover w/storage
Option 042	Protective soft carrying case
Option 043	Replace HP-IB/parallel interface with RS232/parallel interface
Option 908	Rack mount kit without handles
Option 909	Rack mount with handles
Option 910	Additional manual set

Related Test Equipment

HP E4441A DVB QAM Coder

HP E443xA Series digital signal generators
HP 89441A 2.65 GHz vector signal analyzer
Option AYA Vector modulation analysis
Option AYH Digital video modulation analysis

Option UFG 4 Mbytes extended RAM and additional I/O

HP 8591C Cable TV Analyzer, 1.8-GHz, 75-ohm input

(includes digital carrier power measurement)

HP CaLan 3010R/H Sweep/Ingress Analyzer

(includes digital carrier power measurement)

HP E6277A MPEGScope DVB Plus

Recommended HP Accessories

HP 85702A 128K RAM card
HP 85704A 256K RAM card
HP 85705A 512K RAM card
HP 85901A Portable AC power source
HP 24542U RS-232 9-pin cable (analyzer to PC)
HP 24542G RS-232 9-pin to 25-pin cable (analyzer to PC)
HP C2950A Parallel 36-pin to 25-pin cable (analyzer to printer)

HP 10833A HP-IB (GP-IB) cable (1 m)

For further information on the HP 8594Q QAM Analyzer the following literature may be ordered:

5965-3210E HP 8594Q QAM Analyzer photo card HP 8594Q QAM Analyzer product note

Visit the interactive demo page on the WorldWideWeb at http://www.hp.com/info/HP8594Q_demo

For further information on associated test equipment the following literature may be ordered:

5965-4722E HP E4441A DVB QAM Coder product information

5964-0244E HP Calan 8591C Cable TV Analyzer

5965-1108E HP CaLan 3010R/H Sweep/Ingress Analyzer

5964-3403E HP 89440A Option AYH Vector Signal Analyzer product information

5965-8194E MPEGScope DVB Plus product information

¹ Required option.

For more information on Hewlett-**Packard Test and Measurement** products, applications, or services, please call your local Hewlett-Packard sales office. A current listing is available via the Worldwide Web through AccessHP at http://www.hp.com. If you do not have access to the Internet, please contact one of the HP centers listed below and they will direct you to your nearest HP representative.

United States:

Hewlett-Packard Company Test and Measurement Organization 5301 Stevens Creek Blvd. Bldg. 51L-SC Santa Clara, CA 95052-8059 1 800 452 4844

Canada:

Hewlett-Packard Canada Ltd. 5150 Spectrum Way Mississauga, Ontario L4W 5G1 (905) 206 4725

Europe:

Hewlett-Packard **European Marketing Centre** P.O. Box 999 1180 AZ Amstelveen The Netherlands

Japan:

Hewlett-Packard Japan Ltd. Measurement Assistance Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192, Japan (81) 426 48 3860

Latin America:

Hewlett-Packard Latin American Region Headquarters 5200 Blue Lagoon Drive, 9th Floor Miami, Florida 33126, U.S.A. (305) 267 4245/4220

Australia/New Zealand:

Hewlett-Packard Australia Ltd. 31-41 Joseph Street Blackburn, Victoria 3130, Australia 1 800 629 485

Asia Pacific:

Hewlett-Packard Asia Pacific Ltd. 17-21/F Shell Tower, Time Square, 1 Matheson Street, Causeway Bay, Hong Kong Fax: (852) 2506 9285

Data Subject to Change Copyright © 1997 **Hewlett-Packard Company** Printed in U.S.A. 6/97 5965-5826E