

the root cause of your team's most difficult hardware, software, and system integration problems with Agilent Technologies' powerful emulation and logic analysis solutions.

Agilent's emulation and analysis solutions for the Motorola/IBM PowerPC 603 combine the powerful tools of run control, code

and logic analysis for a complete, scalable system debug environment.

With a scalable solution from Agilent Technologies, design team members can customize product offerings to meet their unique requirements. Solutions range from emulation probes combined

Agilent Technologies Innovating the HP Way

with the industry's leading debuggers to emulation with real-time trace to solve today's most complex PowerPC 603 design problems. Agilent's solutions are designed to meet your needs today and protect your investment as your needs change in the future.

With logic analysis providing timing and state analysis, you can monitor microprocessor activity in relation to other important system signals such as a PCI bus, other microprocessors, or I/O devices. Traditional emulation systems don't allow you to time-correlate events across your entire system using timing, analog, and state analysis for your most difficult integration problems.

The logic analyzer is nonintrusive, allowing you to run your target system at full speed. A system trace, up to 4 M deep, can be combined with complex triggering to find the toughest problems. The microprocessor instruction set execution can be correlated to high-level source code with the Agilent source correlation tool set.

Agilent Technologies Scalable Solutions

Agilent emulation and logic analysis solutions are scalable for each member of the digital design team. The following are three typical configurations for firmware/software debug, hardware debug, and system integration.

Components of these solutions include a logic analyzer, emulation probe/module, analysis probe, inverse assembler, source correlation tool set, and optional system performance analysis tool set. Information on each of these components is included in this document.

System Features	System Components and Functionality
 JTAG Emulation Microprocessor run control on your target system Debugger connection 	 Emulation Probe: (see p. 3) Exceptional download speed and single stepping View and modify memory, view and modify registers on your target system or evaluation board from the debugger interface Connect to industry-leading debuggers from Green Hills, Microtec, SDS, and WindRiver
 Emulation Solution with Real-Time Trace Microprocessor run control on your target system Debugger connection Real-time logic analysis trace solution: Assembly level trace Source code trace OFP probing solution 	 Agilent 16700A Series Logic Analysis System: Capture and analyze code flow and data flow without halting the target system Time-correlate analog, timing, and state events across your entire system Monitor microprocessor activity in relation to system buses, other microprocessors, or I/O devices Analysis Probe: (see p. 11) Connect to PPC 603/603e target using 240-pin QFP probing solution Disassemble trace listing into PPC 603 mnemonics Integrated Emulation Module: (see p. 3) Exceptional download speed and single stepping View and modify memory, view and modify registers on your target system or evaluation board from the debugger interface Connect to industry-leading debuggers from Green Hills, Microtec, SDS, and WindRiver Agilent Source Correlation Tool Set: (see p. 10) Time-correlate acquired logic analysis trace to highlevel source code Step through in assembly or high-level code
 Logic Analysis Solution Real-time logic analysis trace solution: Assembly level trace QFP and PGA probing solutions 	 Agilent 16700A Series Logic Analysis System: Capture and analyze code flow and data flow without halting the target system Time-correlate analog, timing, and state events across your entire system Monitor microprocessor activity in relation to system buses, other microprocessors, or I/O devices Analysis Probe: (see p. 11) Connect to PPC 603/603e target using 240-pin QFP probing solution Disassemble trace listing into PPC 603 mnemonics
	System Features JTAG Emulation • Microprocessor run control on your target system • Debugger connection Emulation Solution with Real-Time Trace • Microprocessor run control on your target system • Debugger connection • Real-time logic analysis trace solution: - Assembly level trace - Source code trace • QFP probing solution Engle Analysis Solution • Real-time logic analysis trace solution: - Assembly level trace • QFP and PGA probing solutions

Microprocessor	Package Type	Microprocessor Clock Speed	JTAG Emulation	Emulation Solution with Real-Time Trace	Logic Analysis Solution
PPC 603	240-pin QFP	Up to 200 MHz	Х	Х	х
PPC 603e	240-pin QFP	Up to 200 MHz	Х	Х	Х
PPC 603ei	Software only	Up to 200 MHz	Х	Х	Х

Table 1: Emulation and Analysis Solutions for Motorola/IBM PowerPC 603 Microprocessors

Emulation Probe and Module

The emulation probe and module provide the same functionality. The emulation probe is a standalone product, as shown in figure 1. The emulation module is an integrated plug-in for the Agilent 16700A Series logic analysis systems.

The emulation probe and module have been improved to provide exceptional download speed and single stepping. These improvements include:

- 32 bit microprocessor
- 100 Base TX LAN
- New scan-chain controller

Both the probe and the module help you debug your code by providing run control, code download, and memory/register display and modification. You can control program execution through single stepping, run/break, and set/modify breakpoints. You can also run code at full speed in the target. Agilent's new emulation probes and modules allow you to complete these tasks more quickly so you can bring your products to market sooner.

An industry leading debugger can be used to control both the emulation probe and module. Alternatively they can be controlled by the emulation control interface provided with the logic analyzer. These interfaces are described on page 4.

The emulation probe and module can be controlled over your local area network (LAN) by the debugger and connect to your target through a 16-pin Berg style connector, as shown in figure 4. Unlike traditional emulators, the emulation probes and modules provide more stable operation by accessing only the debug pins of the microprocessor. You don't need a serial port on your target system to download code. Unlike ROM monitors, they don't require user memory.

Figure 2: Agilent 16702A Logic Analysis System with Integrated Emulation Module

Debugger Interface

Industry-leading debuggers can control the emulation probe and module. You can set breakpoints, single-step through code, examine variables, and modify source code variables from the high-level source code debugger interface.

Debugger interfaces must be ordered directly from the debugger vendor.

Debugger Connections

Green Hills Software, Inc. 30 West Sola Street Santa Barbara, CA 93101 USA Phone: (805) 965-6044 http://www.ghs.com

Microtec, A Mentor Graphics Company 880 Ridder Park Drive San Jose, CA 95131 USA Phone: (800) 950-5554 Phone: (408) 487-7000 http://www.mentor.com/microtec

Diab-SDS 323 Vintage Park Drive Foster City, CA 94404 USA Phone: 630-724-2520 http://www.diabsds.com

WindRiver Systems 500 Wind River Way Alameda, CA 94501 USA Phone: 1-800-545-WIND http://www.wrs.com

Please check with your local Agilent Test and Measurement sales office or visit our web site at http://www.agilent.com/find/las-data for the current list of debugger connections.

Figure 3: Emulation Control Interface

Emulation Control Interface

The emulation module integrated into the logic analysis system can be controlled directly by the emulation control interface. You can easily display and modify contents of microprocessor registers, system memory, and I/O. You can also view memory code segments disassembled into familiar Motorola/IBM PowerPC 603 assembly instructions.

From the run control window you can instruct the microprocessor to run, break, reset, or single-step. You also can choose whether the memory, I/O, and register displays are updated for breaks and single steps. Writing command files that set up registers, memory, and I/O in your system is easy with the command language. Once the command file is written, save it on the logic analyzer hard disk. When you want to initialize your hardware system to a particular state, simply recall and execute the command file. Unlike a debugger interface, the emulation control interface does not reference back to the high-level source code.

Emulation Module and Probe Migration

Agilent Technologies protects your current investment by providing a migration path for the emulation modules and probes as your needs change. To move from one processor family to another, simply order a migration kit for the emulation module or probe, which will provide all the necessary hardware, firmware, and cables to support your new processor family at a fraction of the cost of a new system.

This same migration path works for the emulation probes or emulation modules. Migration is available for those processors in the E5900B Series.

Emulation Module Triggering Integration with Logic Analyzer

With the emulation module, use the powerful triggering of the 16700A Series logic analysis systems to halt on events such as microprocessor activity, system buses, or other external events. The emulation module also can trigger the logic analyzer when a breakpoint is hit. This provides powerful event correlation between the debugger interface environment and the logic analyzer.

Specification	Description	
Microprocessors	Motorola Part Numbers	MPC 600AFExxxA, MPC 600AFExxxB
Supported	IBM Part Numbers(f)	IBMxx EMPPC yyyyy, IBMxx EMPPC yyyyy
		IBMxx PPC yyyyy
Physical Connections	Ethernet	Autosensing 10/100 Ethernet
	RS-232	9600 Kbaud rate
Number of Breakpoints	Virtually unlimited softwa	e breakpoints
	or one hardware breakpoir	nt
Physical Size	105 mm width x 151 mm c	epth x 40 mm height
Environmental		
Temperature	Operating: 5 °C to +40 °C	(+41 °F to + 104 °F)
	Nonoperating: -40 °C to +	70 °C (–40 °F to +158 °F)
Altitude	Operating: 4,600 m (15,00) ft)
	Nonoperating: 4,600 m (15	i,000 ft)
Humidity	15% to 80% @ 40 °C for 2	24 hours
Regulatory Compliance	EMC CISPR 11:1990/EN	55011:1991 Group 1, Class A
	IEC 801-2:1991/EN 50082-	1:1992 4 kV CD, 8 kV AD
	IEC 801-3:1984/EN 50082-	1:1992 3 V/m, (1 kHz 80% AM, 27-1 kMz)
	IEC 801-4: 1988 / EN 5008	2-1:1992 0.RkV Sig lines, 1 kV Power lines
Safety Approvals	IEC 1010-1:1990	
	AMD 1:1992	
	UL 1244	
	CSA-C22.2 No. 231	
	(Series M-89)	

Note *f*: where xx = frequency, where yyyyy = Processor

Table 2: Emulation Probe and Module Specifications

Emulation Probe and Module Target Connection Information

A 16-pin male 2X8 header Berg style connector is needed on the target development board to connect the PowerPC 603/e/ei microprocessor interface assembly to the JTAG debug port of the microprocessor.

The header should be placed as close as possible to the processor to ensure signal integrity. TD0, TD1, TCK, TMS, and /TRST signal traces between the JTAG connector and the PowerPC 603/e/ei must be less than three inches. If these signals are connected to other nodes, you must connect in a daisy chain between the JTAG debug connector and the PowerPC 603/e/ei. These signals are sensitive to crosstalk and cannot be routed next to active signals, such as clock lines on the target board.

Figure 4: Target Development Board Header Connector (Top View)

Header Pin No.	PPC 600 I/O	Board 600	Resistor
1	Out	TD0	
2		NC	
3	In	TDI	1K Ω pulldown
4	In	TRST	10K Ω pullup
5		NC	
6		Power*	1K Ω series
7	In	TCK	10K Ω pullup
8		NC	
9	In	TMS	10K Ω pullup
10		NC	
11	In	SRESET	10K Ω pullup
12		NC	
13	In	HRESET	10K Ω pullup
14		KEY	
15	Out	CHECKSTOP	1K Ω pullup
16		GND	

Table 3. JTAG Interface Connections

The +POWER signal is sourced from the development board and is used as a reference signal. It should be the power signal supplied to the processor (either +3.3V or +5V). It does not supply power to the emulation probe.

Note NC Refers to No Connect

Target System Requirements for PowerPC 603/e

(Please note the following is a partial list of requirements. Please refer to the users manuals, for more details.)

Mask Revision dd1

PPC603e silicon does not work in debug mode with either cache enabled.

Mask Revision dd3

PPC603 silicon can be used with the emulation probe and module.

/QACK Signal

If a target does not use the /QACK signal, the board must have a 1 KOhm pull down resistor to drive this signal low.

Reset Signal

The HRESET SRESET, and TRST signals from the JTAG connector must be logically ORed with the HREST, SRESET, and TRST signals that connect to the processor on the target system.

Unsupported Modes

The emulation probe and module do not support any target systems which:

- Use MMU for address translation
- Access devices that check parity (PPC603 and PPC603e)
- Try to access TLB entries

Motorola MVME 160X, Ultra, Atlas and Series E Target Boards

These boards have an unpopulated header location for installing the 16-pin connector. You must install a 16-pin connector as described earlier.

A resistor change is required to pull QACK low. The 1KOhm resistor that goes between the PPC603 and the PPC105 must be changed to 10 ohm.

For the MVME1603 series PM603 module this resistor is R27 on the 8018F, 8019F, 8100F and 8101F artwork.

For the Atlas it is R42 on the Rev B 8115F artwork. For the Ultra, it is R10 on the 8107D and later artwork.

These boards use DRTRY mode, so the configuration entry "cf drty=on" must be set on the emulation probe and module if cache is enabled. The configuration entry "cf reset = runrom" also must be set.

Cogent CSB277

This board asserts AACK for more than one clock cycle. For proper disassembly, "Delayed-AACK" version of the inverse assembler must be used with the logic analyzer.

Target System Requirements for Other PowerPC Processors

For PowerPC processors other than the 603 and 603e, all target requirements are described in the "readme" files on the floppy disks provided with the emulation probe and module.

Real-Time Trace Analysis

Real-time trace analysis consists of a physical connection to signals on the Motorola/IBM PowerPC 603/e/ei microprocessors, acquisition of relevant data, and analysis of the captured bus information.

Physical connection to the microprocessor is provided by the probing solutions listed below. Either of the two probing solution alternatives will provide trace analysis on the PPC 603/e/ei.

The real-time trace analysis solutions are available for both probing alternatives. These include inverse assembly, source correlation, and optional system performance analysis. For information on the data acquisition modules for the 16700A Series logic analyzers, please refer to related literature on page 24.

MPC603	Supported	Probing Solutions	Real-Time Trace
Microprocessor	Speed		Solutions
PPC 603/e/ei	Up to 200 MHz	 Analysis Probe: PPC 603/603e 240-pin QFP probing solution Inverse assembler included Access to all microprocessor signals for logic analysis Optional Mictor Connector Solution for PPC 603/e: Mictor connectors designed in target for access to critical signals for logic analysis 	Inverse Assembly: Disassembly of bus information into PPC 603 microprocessor mnemonics PPC 603 configuration files for logic analyzers Source Correlation: Time-correlation of acquired trace to high-level source code Trigger and search through trace in high-level source code System Performance Analysis: Statistical performance measurements on trace data State overview, state interval, time interval, and time overview measurements

Table 4: Real-Time Trace and Probing Alternatives

Inverse Assembler

Software provided with the analysis probe quickly configures the logic analyzer by labeling address, data, and status signals for the PPC 603 microprocessors. The software includes an inverse assembler, which gives you PPC 603 mnemonics in the trace listing for easy correlation between captured data and target code. The inverse assembler also works with the Agilent B4620B source correlation tool set to provide time correlation between the assemblylevel trace and the high-level source code.

The inverse assembler provides filters and color coding to show and/or suppress different instructions such as data reads, data writes, unexecuted prefetches, and memory map regions.

The inverse assembler has several modes of operation, depending on your microprocessor configuration. The inverse assembler provides PPC 603 mnemonics, but the cache must be off to see all cycles on the microprocessor.

Cache-On Trace

Agilent's newest inverse assemblers provide the ability to trace while the microprocessor cache is enabled. The logic analyzer samples branch messages, and reconstructs the program flow. This is the only solution that guarantees uninterrupted program execution and never disables the cache.

The cache-on trace feature is available in version 1.42 or greater of the logic analyzer system software.

Figure 5: Inverse Assembled Trace Time-Correlated to Source Code Using the Source Correlation Tool Set

nvasm Preferences – Listing<1>								
File In	PowerPC 6xx/7xx (E8129A) Preferences File In<1>:File In<1>:File In<1>:Frame 10:Slot J:603/604							
Memory Map Pro	cessor Options Sim	olified Mnemonic D	ecoding					
Bank Number	Base Address	End Address	Memory Width					
Bank 0	0000000	FFFFFFF	64 bits 🗖					
Bank 1	0000000	00000000	64 bits 🗖					
Bank 2	0000000	00000000	64 bits 🗆					
Bank 3	0000000	00000000	64 bits 🗖					
Bank 4	0000000	00000000	64 bits 🗖					
Bank 5	0000000	00000000	64 bits 🗆					
Bank 6	0000000	00000000	64 bits 🗖					
Bank 7	00000000	00000000	64 bits 🗖					
Appl	y I	Reset	Close					

Figure 6: Inverse Assembler Options

B4620B Source Correlation Tool Set

The inverse assembler can be used with the B4620B source correlation tool set. This allows time correlation of an acquired trace to source code. The source correlation tool set uses the symbolic information provided in your object file to build a database of source files, line numbers and symbol information.

Once the logic analyzer acquires the real-time trace, you can step through the trace at assemblycode level or source-code level. You can also easily locate the cause of a problem by stepping backward to the root cause. With time-correlated analysis in both the digital and analog domains, Agilent Technologies provides powerful solutions for your most difficult hardware/software integration problems.

IEEE 695, Elf/Dwarf, Elf/Stabs and ASCII symbol files are supported.

System Correlation

With the Agilent logic analysis systems, you can time-correlate bus information from other microprocessors or bus interfaces in your system, such as a PCI bus, with the PPC 603. Analysis probes are available for additional microprocessors. (Contact your local Agilent Test and Measurement sales office or visit our web site at http://agilent.com/find/las-data for more information).

Figure 7: Statistical Performance Information from the HP System Performance Analysis Tool Set

System Performance Analysis Tool Set

The Agilent system performance analysis (SPA) tool set is an optional software package for the 16700A Series logic analysis systems. The SPA tool set provides such statistical performance measurements as state overview, state interval, time interval, and time overview. The same symbol file used with the source correlation tool set provides symbolic support for the system performance analysis tool set, as shown in figure 7.

Optional Mictor Connection Solution

If system constraints won't allow use of the analysis probe, you can design high-density AMP Mictor connectors into your target system for connection to the microprocessor signals. The inverse assembler can be ordered separately to provide inverse assembly and configuration files to set up the logic analyzer. Four E5346A high-density termination adapters are required for connection to the logic analyzer pods. Mictor connectors can be purchased directly from AMP or from Agilent Technologies. Five Mictor connectors and recommended support shrouds are included in the Agilent E5346-68701 Mictor connector kit.

Low-Cost Option for Code-Flow Only

Agilent offers a low-cost solution that provides much of the functionality of an emulation solution with real-time trace, but at a reduced cost. By connecting the logic analyzer to only the address and status bus, up to 68 channels of logic analysis can be captured. The real-time trace will still show opcode disassembly because the inverse assembler will read your S-Record file instead of the data bus. The tradeoff is that data reads and writes will be displayed with no value. Simply swap in another logic analyzer card and connect to the data bus if this functionality is required.

PowerPC 603/603e Analysis Probe

The analysis probe allows easy connection of a logic analyzer to your Motorola/IBM PowerPC 603/603e QFP target system for real-time analysis. With the analysis probe solution, you don't need to design special debug connectors into your target system.

The Motorola/IBM PowerPC 603/603e analysis probe consists of:

- Analysis probe board
- Inverse assembler and configuration files
- 240-pin elastomeric probing solution
- Five Agilent E5346A high-density termination adapters
- User's guide

Elastomeric Probing Solution

The elastomeric probing solution included in the analysis probe offers an inexpensive, rugged, and easy-to-use probing solution for the 240-pin QFP PowerPC 603/603e package. The probes require a minimal "keep out" area around the device, as shown in figure 14.

A retainer is glued to the top of the device, which ensures a solid connection to each pin of the device. Five retainers, a locator tool, and adhesive are included with each probe adapter.

Additional retainers and locator tools may be ordered. E5363A option 201 offers a kit of five additional retainers and adhesive. An additional locator tool is available as E5363A option 202.

Figure 8: Analysis Probe for the PPC 603/603e

Modes of Operation

State Modes

In state-per-address or data-cycle modes, the logic analyzer records only those states in which one or more of the strobes AACK, ARTRY, TA, DRTRY, or TEA are asserted. This mode filters wait states and exposes the PowerPC 603/603e/603ei microprocessor's decoupled address and data buses.

In state-per-clock mode, address, data, and status are captured on each CPU clock. This mode is useful in hardware validation and analysis during system crashes.

Timing Mode

Timing analysis is supported. All microprocessor signals are presented to the logic analyzer unbuffered.

Pods Required

Eight, 16-channel logic analyzer pods are required for inverse assembly. These eight pods are connected to four E5346A highdensity termination adapters included with the analysis probe. Five of these adapters are included with the analysis probe. One additional adapter is included for the other signals on the processor.

Probe Loading

- 10 pf on all signals
- 100 Kohms on all signals

Logic Analyzers Supported

• Contact your Agilent field engineer for latest logic analyzer information.

Passively Probing the BGA Target System with Agilent Logic Analyzers

Signals required for inverse assembly are shown in the pinout information beginning on page 17 and must be routed to AMP Mictor 38 connectors for connection to the logic analyzer.

Eight, 16-channel logic analyzer pods are required for inverse assembly. These eight pods are connected via the Mictor connectors to four E5346A high-density termination adapters. The adapters are not included with the inverse assembler and must be ordered separately.

Figure 9: Connector Layout for a Motorola/IBM PowerPC 603/603e BGA Target

Direct Connection through High-Density Adapter Cables

The Agilent E5346A high-density adapters use a minimal amount of board space. Each high-density adapter connects two logic analyzer pods, providing 32 channels of logic analysis per connector and access to two clock pins, as shown in figure 10.

Grounds need to be connected to pin 3 of the AMP Mictor connector. SCL, +5VDC and SDA are not to be connected electrically to the target system (pins 1, 2, and 4 on the Mictor connector).

Figure 10. E5346A High-Density Termination Adapter

Termination for logic analysis is included at the probe tip of the E5346A high-density termination adapter for easy application and use. A schematic of this termination is shown in figure 11.

The AMP Mictor connector must be placed close enough to the target system so that the stub length created is less than 1/5 the Tr (bus risetime). For PC board material (er=4.9) and Zo in the range of 50-80 Ω , use a propagation delay of 160 ps/inch of stub.

Figure 11. RC Network for Signal Termination

Figure 12. AMP Mictor Connector Dimensions

Mictor Connector Placement	Placing the AMP Mictor connectors as close as possible to the signal source will minimize stub length and ensure a reliable measurement. Figure 9 shows the connector layout of J1-J5. J1-J4 are required for inverse assembly, while J5 is optional for timing or state analysis of I/O ports.
Mictor Connector	The AMP Mictor connectors are available directly from AMP (PN 2-767004-2) or from Agilent Technologies (PN E5346-68701). The Agilent Mictor kit contains five AMP Mictor connectors and five support shrouds. The signals +5 V DC, SCL, and SDA are not used for probing and should not be electrically connected to the target system. See figure 10.
Support Shroud	A support shroud (Agilent E5346-44701) is recommended to provide additional strain relief between the E5346A adapter and the AMP Mictor connector, as shown in figure 13. The shroud fits around the AMP Mictor connector and requires two through-hole connections to the tar- get board. Five shrouds are included with five AMP Mictor connectors in the E5346-68701 kit.

Figure 13. Support Shroud Dimensions

Figure 14. High-Density Termination Adapter Cable Dimensions

Pin-out Information on Required Signals for Inverse Assembly

This table describes the connections for the four Mictor 38 connectors necessary for compatibility with the inverse assembler and the E5346A high-density termination adapter cables. This is intended to be a guide for placing probing connectors on a target system.

For inverse assembly, the J1, J2, J3, and J4 connectors listed below must be connected through the four high-density adapter cables. For simultaneous timing and state analysis for all signals, additional connectors must be used.

Mictor 3	8	Logic A	nalyzer	Microp	rocessor
Conn.	Pin#	Pod #	Bit#	Pin#	Signal name
14			•	D01	A01/LOD)
JI	38	1	0	P01	A31(LSB)
	36		1	J15	A30
	34		2	M01	A29
	32		3	H16	A28
	30		4	K02	A27
	28		5	G15	A26
	26		6	K01	A25
	24		7	G13	A24
	22		8	F04	A23
	20		9	F16	A22
	18		10	H03	A21
	16		11	F15	A20
	14		12	J02	A19
	12		13	F14	A18
	10		14	J01	A17
	8		15	F13	A16
	6		CLK	C09	SYSCLK
11	27	2	0	L102	۸15
51	37	Z	0	F102	A13 A14
	30		1	E 10	A14 A12
	33		2		A13
	31		3	EIS	AIZ
	29		4	G02	AII
	27		5	EI3	AIU
	25		6	D04	A9
	23		7	D16	A8
	21		8	E02	A/
	19		9	D15	A6
	17		10	G01	A5
	15		11	D14	A4
	13		12	F02	A3
	11		13	D13	A2
	9		14	E04	A1
	7		15	C16	A0(MSB)
	5		CLK		

Mictor 38		Logic Ana	lyzer	Microproc	cessor
Conn.	Pin#	Pod #	Bit#	Pin#	Signal name
J2	38	3	0	K04	ABB*
	36		1	J04	ARTRY*
	34		2	J03	QREQ*
	32		3	L02	AACK*
	30		4	L01	BG*
	28		5	N01	DBG*
	26		6	G04	DBW0*
	24		7	F01	GBL*
	22		8	E01	CI*
	20		9	D02	WT*
	18		10	A03	TC1
	16		11	A02	TC0
	14		12	B06	BR*
	12		13	A06	CKSTP-OUT*
	10		14	D08	CKSTP-IN*
	8		15	A07	HRESET*
	6		CLK	D03	QACK*
J2	37	4	0	J14	DBB*
	35		1	J13	TS*
	33		2	B05	CSE1
	31		3	H13	TEA*
	29		4	H14	TA*
	27		5	G16	DRTRY*
	25		6	B15	INT*
	23		7	B14	SRESET*
	21		8	C14	TT3
	19		9	B16	TT2
	17		10	A15	TT1
	15		11	B13	TT0
	13		12	A14	TBST*
	11		13	B12	TSIZ2
	9		14	D10	TSIZ1
	7		15	A13	TSIZ0
	5		CLK	C15	TT4
J3	38	5	0	R04	DL31(LSB)
	36		1	T03	DL30
	34		2	P04	DL29
	32		3	T02	DL28
	30		4	T01	DL27
	28		5	R03	DL26
	26		6	N04	DL25
	24		7	N03	DL24
	22		8	P03	DL23
	20		9	T13	DL22
	18		10	N12	DL21
	16		11	P13	DL20
	14		12	N10	DL19
	12		13	T14	DL18
	10		14	R14	DL17
	8		15	R16	DL16
	6		CLK		
	-				

Mictor 3	B	Logic Ana	alyzer	Micropro	cessor
Conn.	Pin#	Pod #	Bit#	Pin#	Signal name
J3	37	6	0	P15	DL15
	35		1	P16	DL14
	33		2	N14	DL13
	31		3	N13	DL12
	29		4	N15	DL11
	27		5	N16	DL10
	25		6	M13	DL9
	23		7	M15	DL8
	21		8	M16	DL7
	19		9	L14	DL6
	17		10	L13	DL5
	15		11	L15	DL4
	13		12	L16	DL3
	11		13	K16	DL2
	9		14	K15	DL1
	7		15	K13	DL0(MSB)
	5		CLK	H15	DBDIS*
J4	38	7	0	T04	DH31(LSB)
	36		1	T05	DH30
	34		2	N05	DH29
	32		3	R05	DH28
	30		4	T06	DH27
	28		5	R06	DH26
	26		6	N06	DH25
	24		7	P06	DH24
	22		8	T07	DH23
	20		9	R07	DH22
	18		10	N07	DH21
	16		11	T08	DH20
	14		12	R08	DH19
	12		13	N08	DH18
	10		14	P08	DH17
	8		15	T09	DH16
	6		CLK		
14	07	0	•	Doo	DUIT
J4	37	8	0	R09	DH15
	35		1	110	DH14
	33		2	NU9	DHI3
	31		3	P09	DH12
	29		4	KIU Taa	DHII
	27		5	111	DHIU
	25		6	112	DH9
	23		/	KII N11	UH8
	21		۲ ۵	NTT D11	
	19		9	P11 D10	DH6
	1/		10	KIZ D10	
	15		11	R13	UH4 DUD
	13		12	115 D15	DH3
	11		13	H15	UH2
	9		14	116	DHI
	/		15	P14	DH0(MSB)
	5		ULK		

Mictor 38		Logic Aı	Logic Analyzer		Microprocessor	
Conn.	Pin#	Pod #	Bit#	Pin#	Signal name	
J5	38	9	0	D09	PLL_CFG3	
	36		1	A09	PLL_CFG2	
	34		2	B09	PLL_CFG1	
	32		3	A08	PLL_CFG0	
	30		4	B10	LSSDMODE*	
	28		5			
	26		6	C10	TRST*	
	24		7	A11	TDI	
	22		8	B11	TMS	
	20		9	A12	TDO	
	18		10	A16	SMI	
	16		11	C13	MCP	
	14		12	B02	AP3	
	12		13	B03	AP2	
	10		14	B04	AP1	
	8		15	C01	AP0	
	6		CLK			
J5	37	10	0	R02	DP7	
	35		1	M04	DP6	
	33		2	P02	DP5	
	31		3	R01	DP4	
	29		4	L04	DP3	
	27		5	N02	DP2	
	25		6	L03	DP1	
	23		7	M02	DP0	
	21		8	C04	TLBISYNC*	
	19		9	C02	TBEN	
	17		10	D01	RSRV*	
	15		11	B01	CSE0	
	13		12	A05	DPE*	
	11		13	A04	APE*	
	9		14	D12	L2_TSTCLK	
	7		15	D11	L1_TSTCLK	
	5		CLK	C11	TCK	

Analysis Probe Mechanical Specifications

Figure 15. PPC 603/e Analysis Probe Specifications

Figure 16. Elastomeric Keep-Out Information

System Configuration and Ordering Information

The table below shows the system components you need to order and what is included in each. For realtime trace, two alternatives are available to fit your needs. The

_

solution product numbers do not include logic analysis. The 16700A Series logic analysis systems must be ordered separately. If you want to configure or upgrade your system with individual products, see page 23 for individual product number information.

Solution	Products to Order	Included Components
JTAG Emulation		
 PPC 603/e/ei Emulation Probe 	• E5900B #060	
Debugger Connection	Order directly from Green Hills, Microtec, SDS, or WindRiver	
Emulation Solution with Real-Tir	ne Trace	
16700A Series Logic Analysis System	 Refer to publication 5966-3148E for logic analyzer configuration Contact your Agilent field engineer for latest logic analyzer information 	
PPC 603/e Emulation Using Analysis Probe	• E9487B #002	 PPC 603/e QFP Analysis Probe Source Correlation Tool Set Emulation Module Inverse Assembler
PPC 603/e/ei Emulation Using Mictor Probing	• E9487B #001	 Inverse Assembler Source Correlation Tool Set Emulation Module
	 Four E5346A High-Density Termination Adapters E5346-68701 Mictor Connector Kit 	
Debugger Connection	 Order directly from Green Hills, Microtec, SDS, or WindRiver 	
Optional System Performance Analyzer Tool Set	• B4600B	
Logic Analysis Solution		
16700A Series Logic Analysis System	 Refer to publication 5966-3148E for logic analyzer configuration Contact your Agilent field engineer for latest logic analyzer information 	
 PPC 603/e Logic Analysis Solution Using Analysis Probe 	• E9587A #002	 PPC 603/e QFP Analysis Probe Inverse Assembler
 PPC 603/e/ei Logic Analysis Solution Using Mictor Probing 	 E9587A #001 Four E5346A High-Density Termination Adapters E5346-68701 Mictor Connector Kit 	Inverse Assembler
 Optional Source Correlation Tool Set 	• B4620B	
Optional System Performance Analyzer Tool Set	• B4600B	
Optional Emulation Module	• E5901B #060	

22

Individual Components Ordering Information

Description	Agilent Product
PPC 603/e/ei Emulation Probe	E5900B #060
PPC 603/e/ei Emulation Module	E5901B #060
PPC 603/e Analysis Probe	E9587A #002
PPC 603/e/ei Inverse Assembler Only	E9587A #001
Source Correlation Tool Set	B4620B
System Performance Analysis Tool Set	B4600B
High-Density Termination Adapter	E5346A
Mictor Connector Kit	E5346-68701
High-Density Right Angle Adapter	E5346-63201
High-Density Termination Adapter Support Shroud	E5346-44701
AMP Mictor Connector (order from AMP)	AMP PN 2-767004-2

Training and Consulting

Agilent Technologies has experienced Digital Systems Consultants who can help you maximize the use of your emulation and analysis system through training and consulting. Digital Systems Consultants are experienced in debugging complex digital hardware/software problems and hardware/software integration.

Training can be delivered through scheduled courses, on-site classes, or one-on-one consulting. Agilent Technologies has courses for the beginner as well as advanced users migrating from the Agilent 16500 Series systems. Call 1-800-593-6632 in the U.S. for information about training schedules and location or to register. For training offered in other countries and languages, consult the Test and Measurement education web site: http://www.hp.com/go/tmeducation.

For consulting services, contact your local Test and Measurement sales office. A digital systems consultant can help you solve tough digital debug problems by showing you how to apply Agilent Technologies tools and debug best practices. Topics covered can include:

- System Installation
- Complex Triggering
- Multiple Bus Analysis
- Source-Line Referencing
- System Performance Analysis
- Instrumenting Code to Solve Specific Issues
- Bus Signal Timing Analysis
- Signal Integrity Analysis
- 16700A/1660XA Networking

Topics related to the debug of PowerPC 603 microprocessorbased targets can include:

- Instruction/Data Cache Related Issues
- Checkstop Analysis
- Single and Multiple Beat Bus Cycles
- Pipelining and Bursts

Ordering Information

www.agilent.com

Related Literature	Pub.	For more information about A
Number		and measurement products, a and for a current sales office
HP 16600A and 16700A Series Logic Analysis		site: http://www.agilent.com/
System Mainframes, Product Overview	5966-3107E	You can also contact one of th and ask for a test and measur representative.
Processor and Bus Support for Agilent Technologies		United States
Logic Analyzers, Configuration Guide	5966-4365E	Agilent Technologies
Probing Solutions for HP Logic Analysis Systems	5968-4632E	Test and Measurement Call Ce P.O. Box 4026 Englewood, CO 80155-4026 (tel) 1 800 452 4844

Product Warranty

Agilent Technologies hardware products are warranted against defects in materials and workmanship for a period of one year from date of shipment. Some newly manufactured Agilent Technologies products may contain remanufactured parts, which are equivalent to new in performance. If you send notice of defects during the warranty period, Agilent Technologies will either repair or replace hardware products that prove defective.

gilent Technologies test pplications, services, listing, visit our web find/tmdir

ne following centers ement sales

enter (tel) 1 800 452 4844

Canada:

Agilent Technologies Canada Inc. 5150 Spectrum Way Mississauga, Ontario L4W 5G1 (tel) 1 877 894 4414

Europe:

Agilent Technologies European Marketing Organisation P.O. Box 999 1180 AZ Amstelveen The Netherlands (tel) (31 20) 547 9999

Japan:

Agilent Technologies Japan Ltd. Measurement Assistance Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192-8510, Japan (tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Latin America:

Agilent Technologies Latin American Region Headquarters 5200 Blue Lagoon Drive, Suite #950 Miami, Florida 33126 U.S.A. (tel) (305) 267 4245 (fax) (305) 267 4286

Australia/New Zealand:

Agilent Technologies Australia Pty Ltd 347 Burwood Highway Forest Hill Victoria 3131 (tel) 1-800 629 485 (Australia) (fax) (61 3) 9272 0749 (tel) 0 800 738 378 (New Zealand) (fax) (64 4) 802 6881

Asia Pacific:

Agilent Technologies 19/F, Cityplaza One, 1111 King's Road, Taikoo Shing, Hong Kong, SAR (tel) (852) 2599 7889 (fax) (852) 2506 9233

Technical data is subject to change

Printed in U.S.A.	12/99
5966-2868E	

Agilent Technologies Innovating the HP Way