
Photonic Foundation Library:

Creating Software for Optical

Component Tests

Getting Started Guide to Programming the

Photonics Foundation Library
Kazuo Yamaguchi

Abstract

The Photonic Foundation Library is a library that enables the

development of customized software to automate measurement

processes, and keep up with the demand for high quality coupled

with low cost.

This guide teaches extensive programming techniques using the

Photonic Foundation Library and its pre-compiled accessory

application which, together offer a complete package for the easy

integration of solid test accuracy solutions.

Contents

Introduction 3

PFL Definition 3

Available Function 3

Programming Environment 3

Instrument Control 3

Test Setup Specification 3

The Photonic Analysis Tool 3

Licensing 4

Measurement Technique 4

Automation Benefit 5

Layer Model of the Software Architecture 5

Hardware Requirements 6

Sample Algorithm 6

Agilent VEE Pro 6.0, VXI PnP library 6

Configuration & Initialization 6

Insertion Loss Measurement 10

Polarization Dependent Loss Measurement 14

Real Time Measurement 19

Trace Analysis 21

pfl_ituChannelWvl 22

pfl_peakAnalysisITU 22

pfl_peakAnalysis 23

pfl_ndBPeakAnalysis 23

pfl_ndbPointShort 24

pfl_ndbPointLong 24

pfl_centerOfMassWvlPeak 24

pfl_minMax 25

pfl_ripple 25

pfl_lossAtWvl 25

ANSI C, API library 26

Configuration & Initialization 26

Insertion Loss Measurement 30

Polarization Dependent Loss Measurement 33

Real Time Measurement 40

Trace Analysis 42

PflITUChannelWvl 43

PflPeakAnalysisITU 43

PflPeakAnalysis 44

PflNdBPeakAnalysis 44

PflNdBPointShort 44

PflNdBPointLong 45

PflCenterOfMassWvlPeak 45

PflMinMax 45

PflRipple 45

PflLossAtWvl 45

Structure Design for Trace Analysis 46

TTraceInfo 46

TPoint 46

TPeakParameterITU 46

TPeakParameter 47

TPeakResult 47

TNdBPeakResult 48

Page 3

Introduction

The demand for bandwidth is growing exponentially. The industry

trend is similar to that experienced by the semi-conductor business

a few years ago; there has been a shift away from the Research

and Development phase, which focuses on specification and

qualification, to the Manufacturing phase, which now delivers on

system integration and flexibility.

• Specification and Qualification: instrument accuracy of

tunable lasers and high precision optical sensors provides the

basic measurement technology.

• Integration and Flexibility: simplify development of complex

and time consuming test procedures by developing the

customized software.

Here, the software is the key to the test system automation.

Nevertheless, there have been many obstacles to developing such

software:

• a lack of programming knowledge

• few resources of test definition

• high development costs

The following sections describe several measurement techniques

that are introduced as library functions in the Agilent Photonic

Foundation Library (PFL). The guide also features examples to

demonstrate the ease of programming details involved in each test

procedure.

This guide demonstrates how the PFL increases the:

• cost effectiveness of application development

• time efficiency through test process automation

For more details of measurement techniques behind the

programming of the PFL, please see the Application Note “Photonic

Foundation Library: Enhancing Swept Loss Measurement” [1].

PFL – Definition
The PFL is a software library product that combines and fully

integrates Agilent’s test knowledge and experience with Agilent’s

outstanding optical measurement instruments such as the tunable

laser sources, the polarization controller, and the power meter.

PFL includes:

• a library for the most-demanding measurement and analysis

procedures

• ready-to-use and user-friendly function calls

• instrument controls

• specifications of measurement performance

• Photonic Analysis Toolbox as a pre-compiled quick start

application

• a license-based management tool

Available Functions: The test definitions of procedures for optical

device specification have been gathered from many years of research.

Common functions available in the PFL include:

• precise insertion loss measurement to accurately capture spectral

response for today’s near loss-free components

• polarization dependent loss measurement for the increasing

demands of long distance transmission technology added in the

field of DWDM

• flexible comprehensive data analysis corresponding to strictly

defined ITU-T specification

Programming Environment: The PFL can be used in combination

with a visual engineering environment, such as Agilent-VEE or LabView.

You can then easily implement the PFL using its user-friendly function

panels without worrying about parameter details. Of course, the PFL can

also be integrated with any programming languages that supports our

VXI Plug&Play drivers. [2]

Instrument Control: You can use the functionality of the PFL to

control the following Agilent test instruments in your test setup:

• lightwave measurement mainframe

• tunable laser source

• optical power meter

• polarization controller

The control of the instruments for certain measurement functions is

embedded within the algorithm of the PFL, and the user does not need to

know which instruments are needed to perform particular actions at

particular times. The PFL takes care of both control and measurement.

Test Setup Specification: The PFL is a software library with

defined test specifications for use with suggested setups. This ensures

the repeatability and integrity in different workstations for many test

applications. The specifications include among others:

• wavelength range

• absolute/relative wavelength uncertainty

• wavelength repeatability

• relative insertion loss uncertainty

• PDL uncertainty … and more

The Photonic Analysis Toolbox: The Photonic Analysis ToolBox

application software, which is included in the PFL installation package,

is a ready-to-use program after you have configured both the

instruments and the GPIB. It allows the user to interactively see the

power of both measurement and post processing of data in the PFL

software.

Page 4

Figure 1: Display of the ToolBox, demonstrating spectrum

measurement.

Licensing: The PFL is a license-based product. A single license is

locked to each controller PC used in a test setup. The computer

fingerprint that distinguishes the uniqueness of one controller PC

from another can be generated using the License Tool in the PFL.

Each user is provided with the full capability of the library for their

programming tool, and is only required to purchase a license for it’s

extended usage.

The PFL also offers a server-based license that allows multiple

users to work on multiple test stations.

To obtain a single-user license, please order: N4150A Photonic

Foundation Library, single user license. For multi-user and site

licenses, contact your local Agilent Sales Office for more details.

Measurement Techniques
This section provides a brief overview of the passive optical

component measurement techniques most commonly used in

today’s test routines and the integration of the PFL in each

environment.

• Insertion Loss Measurement

• Polarization Dependent Loss Measurement

• Real Time Measurement

• Post Data Trace Analysis

• Photonic Analysis Toolbox Application

Insertion Loss Measurement : Among all optical component test

and measurement techniques, the most important measurement is

the insertion loss. This is especially true for dense wavelength

division multiplexing (DWDM) applications where the insertion loss

must be determined as a function of wavelength.

Insertion loss is the ratio of two absolute power readings: spliced or

connectorized fiber directly linking from an optical laser source to

an optical power meter without a device under test (DUT), and the

same environment with an inserted DUT. Typical techniques for

insertion loss measurement are shown in Figure 2 below.

For efficient long-duration measurements, like temperature and pressure

controlled environmental tests that can extend over days, parallel

measurements of DUT are desirable using either optical switching or

multiple power metes.

Insertion loss:

DUT

Source Power meter

Connector

Reference

A) Insertion method:
Connector or

bare fiber

B) Cut back method:

Source

DUT

Power meter

REFP

OutP

[]dBIL
REF

Out
P
P=

Figure 2: Principle of insertion loss measurement. Picture A) describes

the insertion method; B) explains the cut back method.

The PFL integrates insertion loss measurement technique into a few

library function calls and calculates the loss over wavelength with user

defined precision. The measurement resolution and dynamic depend on

the allowable test time that can be adjusted in the function by selecting

the wavelength range, sweep speed, and dynamic range. The balance of

data volume, dynamic, and resolution is configured in one function,

visually showing the choice of parameter by using the function panel

available in the visual programming environment. A sample function

panel for absolute power measurement configuration is shown in Figure

2.

Figure 3: Sample function panel generated in the Agilent VEE Pro 6.0

programming environment.

Page 5

Polarization Dependent Loss Measurement : Recent studies

into the characteristics of passive optical components in the

telecommunications industry indicate that the polarization

dependency of the transmission signal is a key influential test

parameter. The dramatic increase in interest in polarization

dependent loss measurement is due to demanding component

requirements of high-speed long-haul data traffic.

Among the various measurement techniques, the PFL uses the

“Mueller Matrix Algorithm” for the measurement of PDL to cover

a wide wavelength range with high accuracy within a short test

time. Unlike the “scrambling” method, which uses fixed wavelength

points with long test time to test PDL uncertainty, the Mueller

method takes advantage of swept-wavelength measurements that

are performed by our instruments and handles the mathematics

behind PDL calculation without requiring huge data input. A typical

PDL measurement using the Mueller method is shown in Figure 4.

This test setup for PDL measurement is not new and has been well

characterized. However, the PFL brings ease of system

development, predefined specification, and accuracy enhancement

to the Lightwave Measurement System 816x.

The optimization of both Agilent hardware, like tunable laser

source, and software, like the PFL, ensures highest system

accuracy because “we know our instruments best”.

Mueller Method

 DUT

P
n
 (S

n
, λ)S

0 Optical Power

Meter

 Optical

 Source

8169A

Pol λ/4 λ/2
S
n

n=1..4

Application of four well-known polarization states to the DUT

Optical power transmission measured at these polarization states only

Transmission data are used to calculate Mueller matrix coefficients

PDL is obtained from the Mueller matrix coefficients

Single wavelength PDL measurement within few seconds

Figure 4: Principle of polarization dependent loss measurement. The

setup is similar to insertion loss measurement, but in this case a

polarization controller has also been included to measure loss at

four predefined polarization states.

Real Time Measurement: Real time (or fast sweep) measurement

is a new feature that the PFL makes available to your test system.

It allows the user to continuously monitor the result of swept

wavelength measurements without needing to individually stop

each sweep. Imagine the functionality of an optical spectrum

analyzer built into the software!

The capabilities to monitor spectrums for multiple channels and

update data within a short measurement time are achieved using

the PFL’s enhanced technology.

Trace Analysis: Some other device parameters can be determined using

the results of an insertion loss measurement. For example, the crosstalk

between different channels for a DWDM multiplexer can be calculated by

comparing the insertion loss (IL) values of different channels.

Automation Benefit
Over the years, the exponential growth of the optical communication

field has been the driving force behind the need for massive increases in

production volume, and improvements in accuracy combined with lower

test costs. Even a novice programmer can benefit from the PFL’s

comprehensive collections of library functions, without needing to know

the complicated programming algorithms behind the functions.

Such library functions reduce:

• Cost of application development time

• Cost of engineer or skilled person to operate the system

• Cost of test time

The result will bring:

• Simple programming and full functional application

• Further analysis for loss measurement (i.e. crosstalk, etc.)

• Focus on quality and yield

Layer Model of the Software Architecture
The PFL is based on our 816x VXI Plug&Play driver, the instrument

control library for the 816x family [3].

Page 6

Hardware Requirements
For detailed hardware requirements, see the PFL technical

specification [2].

Sample Algorithm
Sample algorithms for the Photonic Foundation Library are shown in

various ways to let you comfortably get started with the library.

This guide gives you step by step instructions on “How to PFL”. The

instructions are presented in two different programming

environments:

• Agilent VEE for visual programming environment using the PFL

VXI Plug & Play library

• C++ for algorithms using the PFL C API

The following instructions assume that Agilent VEE Pro 6.0 \

Microsoft Visual C++ and the PFL are properly installed. It also

assumes that you have configured the GPIB card and installed the

VISA driver to communicate with the instruments. [3]

The following step by step programming techniques will be

described.

Agilent VEE Pro 6.0

• Configuration & Initialization

• Insertion Loss Measurement

• Polarization Dependent Loss Measurement

• Real Time Measurement

• Trace Analysis

Microsoft C++

• Configuration & Initialization

• Insertion Loss Measurement

• Polarization Dependent Loss Measurement

• Real Time Measurement

• Trace Analysis

 (Agilent VEE Pro 6.0, VXI PnP library)

Configuration & Initialization
Agilent VEE Pro 6.0 is a visual engineering environment that allows

the user to view the programming flow, the input and output

parameters directions, and Help description for available functions.

The programming flow is called a sequence. Agilent VEE controls

program sequence with unique input and output sequence pins at

the top or bottom of objects (instructions). By connecting this

sequence pin between two objects, VEE recognizes which

instruction has to be executed first.

The object has unique input and output parameter pins. An input

parameter pin can be seen at the left side of the object whereas

output parameter pin is located at the right side of the object.

The function panel, also unique to the visual programming environment,

provides easy access to the instrument library. The library can be seen

as a list of functions that provide the visual representation of required

parameters and their types.

The Plug & Play library for 816x (mainframe with TLS and PWM), 8169

(polarization controller), and the PFL has to be properly configured in

Agilent VEE Pro 6.0 in order to use the PFL VXI library functions in the

source code.

The following name and GPIB addresses are used for each instrument

described in this section:

• 816xA : Agi8164, addr=20

• 8169A : Agi8169, addr=22

• PFL : PFL, addr=0 (no hardware address)

Step 1: Start Agilent VEE Pro 6.0.

Step 2: All instruments that need to be controlled via software from VEE

need to be configured in this Instrument Manager window.

• Select [I / O] from menu. Select [Instrument Manager].

Page 7

Step 3: This is an Instrument Manager window. If no

configuration has been done before, the window should looks like

this with empty instrument configuration.

• To add the instrument, press [Add…]. Instrument Property

window appears for names, interface, and GPIB address.

• Enter name of library such as “PFL” for the PFL library and

select “GPIB” for your interface. The GPIB address depends

on your instruments and the GPIB card installed in your PC.

The combination of primary address (7 in the diagram, specific

to the GPIB card) and the secondary address (00 in the

diagram, specific to the Instrument) is written as integer (700

in the diagram). Usually the GPIB card from National

Instruments is configured as “14” and from Agilent as “7” for

its primary address.

Step 4:

• Click [Advanced…] on the Instrument Properties window to

open the Advanced Windows Properties window, and then

click the [Plug&Play Driver] tab.

• If the PFL library driver is properly installed, you can select

“pfl” as your “Plug&Play Driver Name”.

• Press [OK] to confirm the configuration.

Step 5: Repeat the same configuration procedure to add the other

instruments, 816x and 8169.

• Select “816x” for 816x PnP driver and “8169” for 8169 PnP

driver.

This completes the configuration procedure for Plug&Play drivers.

The PFL uses a few functions to initialize and close the library. These

initialization and close routines are always reused in all the applications

described in this document including insertion loss, polarization

dependent loss, and real time measurements.

Step 6: The Plug&Play Driver button should be enabled in the

Instrument Manager window after the configuration of the three

instrument drivers.

• Select 816x (Agi8164 in the diagram) and press [Plug&Play

Driver]. This will generate a single object box (To/From Agi8164)

that you work with in the VEE main page.

Page 8

Step 7:

Double-click the (To/From Agi8164) object box.

The “Select a Function Panel” window appears displaying a list

of Plug & Play drivers. These are the list of available functions for

816x. The same window will appear with 8169 and the PFL Plug &

Play drivers with different library functions. A short description of

each function is displayed at the bottom of the window when you

select one from the list.

Step 8: In order to control the instrument via GPIB, the software

has to generate an instrument handle to store instrument data such

as error status and address. “hp816x_getHandle” and

“hp8169_getHandle” functions of Plug&Play driver allow the

programmer to generate the instrument handle for both the 8164A

mainframe and the 8169A polarization controller for software

control. This has to be defined once at the beginning of the program

before any command/query to the instrument can be sent.

• Select [hp816x_getHandle] from 816x Plug&Play driver list

and press [OK]. The function panel shown in the above

diagram appears.

• Press [OK] without making any configuration changes in the

panel.

Note: The [Configuration] tab shown in each function panel is used to

change the name of input/output parameters, to redefine the size of

parameter if it is an array, and/or to make parameter as input/output

variable. Unless specified in the instruction of this guide, no change is

required. Proceed with the change in function panel configuration for

enhanced usage of the PFL library in the program.

Step 9: Create a PnP driver object box for the PFL.

• Select [pfl_registerTlsMainframe].

• Check “Instrument handle” parameter as variable.

• Check “Create Input Terminal” in [Configuration] of the

function panel.

• Press [OK] to confirm the use of this function and to enable the

configuration change in the panel.

Step 10: Create PnP and PFL objects for the 8169 and use

[hp8169_getHandle] and [pfl_registerPolcontroller] to register 8169

by following the same instruction steps described in 816x.

• Create [pfl_unregisterAllInstruments] PFL object for close

routine.

• Connect output parameter pin of [hp816x_getHandle] to input

parameter pin of [pfl_registerTlsMainframe].

• Connect output parameter pin of [hp8169_getHandle] to input

parameter pin of [pfl_registerPolcontroller].

Page 9

The connecting sequence pin guarantees the sequence of library

execution. These four functions are connected consecutively so that

the order of execution is

1. [hp816x_getHandle]

2. [pfl_registerTlsMainframe]

3. [hp8169_getHandle]

4. [pfl_registerPolcontroller]

Step 11: Make Initialization and Close routine as user objects.

The instruction for creating a user object:

• Drag the screen and highlight multiple objects by pressing

ctrl+right mouse+mouse movement

• Release mouse movement and right-click the screen

• Select [Create User Object] in the list

• Enter the name of the user object.

Module Summary
This is the end of Initialization and Close routine for Agilent VEE Pro

6.0. In this step sequence you have learned how to:

• Configure the Plug&Play drivers

• Initialize instruments in the test setup

• Use a function from the PFL to close the library

For enhanced usage of the function, please review the sample

programs provided in the PFL installation package.

Page 10

(Agilent VEE, VXI PnP library)

Insertion Loss Measurement:
Swept wavelength measurement is based around three PFL

functions:

• “pfl_prepareMfLambdaScan”

• “pfl_executeMfLambdaScan”

• “pfl_getMfLambdaScanResult”.

The complexity of instrument communication methods and error

correction algorithms for measured data are handled within the

source code of the VXI Plug & Play driver. The required parameters

for each function are visually confirmed without type specific

structure, and they also can be defined as variables to add flexibility

to the code.

Step 1:

• Create a PFL PnP object and then select

“pfl_prepareMfLambdaScan” from function panel list. This

function panel provides users with the required parameter

setting for swept wavelength measurement.

Edit the parameter settings according to your test system. Some of

the parameters, such as Low SSE output and different wavelength

range, may only apply to certain types of tunable laser sources.

Step 2:

• Create a PFL PnP object and then select

“pfl_executeMfLambdaScan” from the function panel list. This

function starts executing measurements for the setting configured

in “pfl_prepareMfLambdaScan”. Think of this function as

triggering the TLS when executed.

A parameter “Wavelength Offset” is set to 0 as default. To further

improve the wavelength accuracy and repeatability, the PFL function,

“pfl_measureWavelengthOffset”, combined with an absorption gas

cell provide a one step wavelength calibration procedure.[1]

Step 3:

• Create a PFL PnP object and then select

“pfl_getMfLambdaScanResult” from the function panel list.

• In the [Configuration] tab, check [Create Output Terminals] for

“Power Array” and “Wavelength Array”.

• A single click gives you a change in text from [Create Output

Terminal] to [Create Input and Output Terminal] when

unchecked.

• Single-click again to enable [Create Input and Output Terminal].

This will create input parameter pins for power array and

wavelength array in this function object.

Page 11

Note: To measure multiple channels at the same time, you must

define “Channel Number” as a variable by selecting [Variable] in

the Configuration tab. With this input variable, the algorithm has

to handle a loop where it provides the counter to repeatedly execute

this function until data from all channels has been read. You can

find the programming algorithm in the PFL sample programs,

provided in the installation package.

As an instruction of the first approach to the PFL, the number of

channel used for the measurement is 1 (a default value of the

function panel) and specified as a constant.

Step 4: The VEE Main screen will look similar to the graphic above

if you have followed the sequential procedures described in previous

steps.

Here is the current algorithm:

1. Initialization *

2. pfl_prepareMfLambdaScan

3. pfl_executeMfLambdaScan

4. pfl_getMfLambdaScanResult

5. Close *

*(user objects defined in the “Initialization & Configuration”

module)

• From the menu bar, select [Data], [Allocate Array], then

[Real64] to allocate memory for a 1 dimensional array of 64

bits float. These memory spaces are needed for measured

power data and wavelength data.

Step 5: The “Alloc Real 64” object box should look like above.

• To make an array size variable, add data input terminal and select

“Dim Size 1”.

• From drop-down list, select “Init Value” (the default is “Lin

Ramp”).

Step 6:

• Connect sequence lines and output parameter pins of allocated

memory to input variables of “pfl_getMfLambdaScanResult”.

Generate an X Vs Y Plot object to see the results of swept wavelength

measurement. These results only give an absolute power reading over

wavelength, not insertion loss. A variable “num_data” (the pale orange

object in the graphic above) is used to save number of data.

Page 12

Step 7:

• If the instruments are ready to be used, i.e. power is on and

GPIB is set according to software setting, run the program.

• A spectrum generated in the X Vs Y Plot graph is an absolute

power reading (dBm) over wavelength of the characteristics of

some passive optical device.

Note: This guide assumes that the user has a similar hardware

setup to that described in Photonic Foundation Library Manual.

Step 8:

To advance from power measurement to loss measurement, the

program has to be modified in a way that relative data can be

calculated from the two absolute data: the results of reference and

DUT measurements. Therefore, you need to twice execute the

absolute power measurement routine and then calculate the loss

from two data set.

First, create a user function by selecting:

• [pfl_prepareMfLambdaScan],

[pfl_executeMfLambdaScan],

[pfl_getMfLambdaScanResult],

allocate array function, and variable to store number of data.

Step 9: The above graphic displays a created user function. Every object

from Main is copied except Initialization, Close, and Graph.

• Name this user function (the above diagram uses a name

“LambdaScan”, which will be used for descriptive purposes

throughout the rest of this guide)

• Create two output terminals: one for wavelength data and the other

for absolute power data.

Step 10:

• After creating a function to measure absolute power, call this

function twice in Main.

In between the two measurements, position a message box to interrupt

programming execution and give the user time to set up the DUT

connection. The message description can be anything that instructs

users how to connect up the device in the test system. Graphic inputs

are also added to show “absolute reference power”, “absolute DUT

power”, and insertion loss.

Page 13

Step 11:

• Create a new PFL VXI object and then select

[pfl_calLossFromRef] from the function panel list. This

function alone calculates the insertion loss for two absolute

measurements.

• Create input and output terminals and disable auto-allocate

memory, which is configurable in the function panel.

A variable, “Number_Of_Data” from

“pfl_prepareMfLambdaScan”, is used to allocate memory for one

of the inputs from [pfl_calLossFromRef]. The output parameter

pin of the memory allocating object should be connected to “Loss”

(default parameter name) in [pfl_calLossFromRef].

Step 12: The VEE Main screen looks similar to the above graphic

after you have connected the sequence and data parameter to the

graph. Here is the algorithm used for insertion loss measurement in

this instruction.

1. call Initialization *

2. call LambdaScan **

3. message dialog for DUT connection

4. call LambdaScan **

5. allocate memory to store data from instrument

6. calculate an insertion loss

7. call Close *

8. display to X Vs Y Plot graph

* (user object defined in “Init & Config” section)

**(user function defined in step 8-9)

Step 13: After executing the insertion loss measurement for some

passive optical DUT using the above program, the spectrum shown in the

X Vs Y Plot displays the absolute reference power, the absolute DUT

power, and the insertion loss.

The PFL not only calculates the difference between two absolute

powers, but it also conducts post processing for signal delay and

distortion effects to enhance the accuracy of Lightwave Measurement

System 816x. [1]

Module Summary
You have now completed the programming instruction for Insertion Loss

measurements. In this module you have learned how to apply the

functionality of the PFL to:

• Measure insertion loss using swept wavelength measurements for

a DUT

• Calculate the loss property of the device

For enhanced usage of this function, please review the sample programs

provided in the PFL installation package.

Page 14

(Agilent VEE, VXI PnP library)

Polarization Dependent Loss Measurement:
The Mueller method is a commonly used method of Polarization

Dependent Loss (PDL) measurement in test environments for

passive optical devices with high wavelength resolution. This

method yields the polarization dependency of loss, but also of other

parameters such as passband ripple or crosstalk.

The Mueller method is advantageous to high volume manufacturers

of passive optical components because it increases the

manufacturing yield. This improved yield results from higher test

accuracy and reduced test time over a wide wavelength range.

The complexity of the PDL measurement algorithm lies in the

calculation that optimizes the polarizer used on the polarization

controller, by choosing four well defined polarization states, and

then calculates the PDL value. The defined polarized states are

already programmed in the VXI Plug & Play driver of the PFL and

are ready to use.

Also, the accuracy enhancement of the PDL correction algorithm is

implemented in the PFL to overcome the wavelength dependency of

the waveplates (λ/2 & λ/4 waveplates), in the polarization

controller (8169A), when used in the wavelength outside of the

instrument specification.

Step1:

• Use the “Initialization” and “Close” user objects (yellow

objects) defined in the Initialization and Configuration module

of this guide.

Add the PFL function panel, [pfl_findMaxPolPosition]. The

polarizer in the polarization controller needs to be adjusted in such a

way that the maximum dynamic range of optical sources can be

used for the measurement. Configure the parameters accordingly.

Step 2: Similar to the core algorithm introduced in the insertion loss

program, a user function is used to program the core algorithm of PDL

measurement.

• Select “Device” and “User Function” from the menu bar

• Name the new user function. (The example diagram uses a name

“PdlLambdaScan”, which will be used for further descriptions in

this guide)

Step 3: Three core PFL Plug & Play functions are used:

• [pfl_prepareMfLambdaScan]

• [pfl_executeMfLambdaPolScan]

• [pfl_getMfLambdaScanResult]

This function panel provides users with the required parameter settings

for swept wavelength measurement. Edit the parameter settings

according to your test system. Some of the parameters, such as

LowSSE output and different wavelength range, may not apply

depending on the tunable laser source.

Page 15

Step 4: The functionality of [pfl_executeMfLambdaPolScan] is

similar to that of [pfl_executeMfLambdaScan] (described in step

13 of the Insertion Loss module) except that it has a polarization

state and a polarizer angle for its additional parameters.

• A polarization state parameter is an integer that defines the

polarization states

• A polarizer angle parameter is the angle of polarizer in 8169A

searched by calling “pfl_findMaxPolPosition”

Adjust wavelength offset if wavelength calibration is done and

needed for more accurate measurement.

Step 5:

• Create the PFL PnP object and select

“pfl_getMfLambdaScanResult” from function panel list.

• In [Configuration] tab, click [Create Output Terminal] for

[Power Array] and [Wavelength Array].

• Single click [Create Output Terminal] check box to give you

a change in text from [Create Output Terminal] to [Create

Input and Output Terminal].

• Single click check box again to enable [Create Input and

Output Terminal]. This will create input parameter pins for

power array and wavelength array in this function object.

Note: To measure multiple channels at the same time, you must make

“Channel Number” a variable by selecting “Variable” in the

“Configuration” tab. With this input variable, the algorithm has to

handle a loop where it provides the counter to repeatedly execute this

function until data from all channels has been read. You can see this

programming algorithm in the PFL sample programs that are included in

the installation package.

Step 6: The [Alloc Real 64] object box should look like the above

graphic.

• To create an array size variable, add the data input terminal and

select [Dim Size 1].

• From the drop-down list, select [Init Value] (the default is [Lin

Ramp].

Step 7: The output parameter of “pfl_prepareMfLambdaScan”,

number of channel, is connected to the [Allocate Memory] object to

make storage size appropriate to data size.

Page 16

Step 8: As described in the definition of Mueller method, four

absolute powers are measured at four different polarization states.

• “For loop” is appropriate to give index to polarization states,

an input parameter used in

“pfl_executeMfLambdaPolScan”. 1 dimensional array of

result data is temporary stored in collector object, which then

will output 2 dimensional array (4 polarization states, data

size).

Step 9: A variable polarizer angle (pale orange object) is used as

another input parameter of “pfl_executeMfLambdaPolScan”.

This variable is set by calling “pfl_findMaxPolPosition” as

already described in step 1. By convention, data size is stored in a

variable.

• Create two outputs: wavelength data and 2 dimensional array

power data

• Connect the wavelength output parameter pin to the

wavelength data output of this function

• Connect the power data output parameter pin from the

collector object to the power data output of this function

Step 10:

• Back to main.

• Introduce two message box. One describes user to connect

reference fiber and one to connect DUT (device under test) in the

test system.

Like insertion loss measurement, polarization dependent loss

measurement also compares data referenced with patch cable and test

device inserted.

Step 11: Call a user function created in step 2-9 (“PdlLambdaScan” in

the diagram of this paper).

• Under [Local User Function] of program explore in VEE screen,

select your user function and right click.

• From menu, choose [Generate] then [Call].

• Place the user function object box below two message box.

Reusing the same user function is possible here since the same

procedure applies to reference and DUT measurement.

Page 17

Step 12: After connecting the sequence to control the program

flow, the program looks like the diagram above. The sequence is:

1. Initialization *

2. “pfl_findMaxPolPosition” **

3. message box for reference

4. “PdlLambdaScan” ***

5. message box for DUT

6. “PdlLambdaScan”

7. close *

* (user object defined in Init. & Config. module)

** PFL function

***(user function defined in steps 2-9)

The measurement part of the program has been completed. The rest

of the instruction for PDL measurement describes the calculation of

PDL value derived from reference and DUT data.

Step 13:

• Create a PFL PnP object and then call the

“pfl_calcPDLMueller8169” function.

• The following input parameter pins have to be created to pass

data to the function. The function configuration tab allows the

user to choose each parameter as a variable. The parameters

to create are:

• Number_Of_Sample

• Ref_Power_LH0

• Ref_Power_LDP45

• Ref_Power_LDN45

• Ref_Power_RHC

• Dut_Power_LH0

• Dut_Power_LDP45

• Dut_Power_LDN45

• Dut_Power_RHC

• PDL

(default names for input parameters)

Bot start and step wavelength parameters can also be input variable if

defined previously.

Step 14:

• A variable, number of data, set in the user function is called and

used as an input [Number_Of_Sample] to the

“pfl_calPDLMueller8169” function.

Allocate memory, 1 dimensional array for 62 bits float, and use it as

input for “PDL” input parameter.

Step 15: A [Formula] object is used to distribute data for each input

parameter to calculate PDL.

• The [Formula] object is generated by choosing [Device] in the

menu bar, then [Formula] from drop-down list.

Page 18

• The output of the user object, “PdlLambdaScan”, is a 2

dimensional array, (4 polarization states by data size).

Therefore, refarray [0,*], gives reference data measured at a

linear horizontal polarized state.

“*” in the index is used by VEE to select all rows. Here is the list of

formulae used in the program:

• Ref array [0,*] – LH0 (linear horizontal)

• Ref array [1,*] – LDP45 (linear diagonal positive 45)

• Ref array [2,*] – LDN45 (linear diagonal negative 45)

• Ref array [3,*] – RHC (right hand circle)

• Dut array [0,*] – LH0

• Dut array [1,*] – LDP45

• Dut array [2,*] – LDN45

Dut array [3,*] – RHC

step 16:

• Connect the reference measurement output and the absolute

power data generated from the first user function call, to the

first four formulae listed in step 14.

• Connect the DUT measurement output and the absolute power

data generated from the second user function call, to the next

four formulae in the list

• Create X Vs Y Plot graph to display PDL over wavelength.

Take the wavelength data from the wavelength array output

generated by the user function.

• You can also view minimum loss, maximum loss, and average

loss by adding input to the X Vs Y Plot. (Remember to

allocate memory with proper data size for each loss parameter

to be displayed)

Notice that only five PFL VXI commands, excluding Initialization

and Close, are used to demonstrate PDL measurement. No complex

calculation and instrument communication algorithm is added.

Module Summary
You have completed the programming instruction for PDL measurement.

In this module you have learned how to apply the functionality to:

• Measure PDL

• Calculate the PDL value derived from reference and DUT data.

For enhanced usage of the function, please review the sample programs

provided in the PFL installation package.

Page 19

(Agilent VEE, VXI PnP library)

Real Time Measurement:
With a short program development time, the user is able to

implement a powerful tool to continuously monitor the absolute

power reading, while adjusting the position of test devices like thin

film filter or writing fiber brag grating.

This real time sweep is an enhanced feature that synchronizes

swept wavelength measurement technology with upgraded

firmware of tunable laser source and mainframe, by improving both

the hardware and software trigger method.

The software consists of only four PFL VXI commands, excluding

“Initialization” and “Close” routines, and two of them are

included within a loop to continuously activate directional sweep

without interruption.

Step 1: Use the “Initialization” and “Close” user objects defined

in the Initialization and Configuration module earlier in this guide.

Step 2:

• Create the PFL VXI object and then select the

“pfl_prepareFastSweep” function.

• Set parameters according to your test setup.

Step 3: You need to allocate memory for wavelength data and absolute

power data reading. To allocate memory:

• Select [Data] from VEE menu bar and then select [Allocate Array]

• Select [Real64] to allocate memory for 1 dimensional array of 64

bits float.

Step 4: A loop object is used to repeatedly execute the PFL function for

real time measurement. To select the FOR loop functionality to execute

a defined number of repeat:

• Select [Flow] in menu bar and [Repeat]

• Select [For Count] from the list. The default execution counter, 10,

is used for the purposes of this demonstration.

The repeat procedure described here is FOR counter but other repeat

procedure such as UNTIL BREAK or ON CYCLE loops can also be

implemented according to your requirement. In these cases, some

program halt procedure must be programmed in order to execute the PFL

closing routine.

• Create the PFL VXI object and select “pfl_doFastSweep”

function.

Connect the sequence pin from the repeat object to the function to

include “pfl_doFastSweep” in the loop.

Page 20

Step 5: Create the PFL VXI object and select the

“pfl_getFastSweepResult” function from the list.

This function allows the retrieval, via the GPIB cable, of data stored

in the memory buffer of the power meter. Number of channel,

number of slot, number of data to be measured, and wavelength

range are some of the factors that affect total measurement time.

Nevertheless, one sweep takes less than one second per channel.

Step 6: Create a PFL VXI object and select

“pfl_closeFastSweep”. This is a closing routine not included in

the normal lambda scan procedure described in insertion loss and

PDL loss measurement. The trigger to the hardware has to be

carefully handled by the software in order to achieve maximum

communication speed with the instruments and minimum loss time.

The X Vs Y Plot graph is added to display the swept measurement

update.

The VEE main screen looks similar to above after connecting the

sequence and data parameters to the graph. Here is the algorithm

used for real time measurement in this instruction:

1. call Initialization *

2. call “pfl_prepareFastSweep”

3. allocate memory for wavelength and power data array

4. loop

4.1 call “pfl_doFastSweep”

4.2 call “pfl_getFastSweepResult”

4.3 display to X Vs Y Plot graph

5. end loop

6. call “pfl_closeFastSweep”

7. call Close *

* (user object defined in “Init & Config” section)

Module Summary
This completes the programming instruction for real time sweep

measurement. In this module you have learned how to:

• Perform a real time measurement using the PFL fast sweep

functionality

For enhanced usage of the function, please review the sample programs

provided in the PFL installation package.

Page 21

(Agilent VEE, VXI PnP library)

Trace Analysis:
Some of today’s most demanding device characteristics can be

easily analyzed using trace analysis functions provided by the PFL.

Such functions include among others:

• losses at ITU / peak of the spectrum

• n dB bandwidth

• wavelength at minimum / maximum loss

• ripple

With conjunction to insertion loss measurement, post data

processing is one more added value provided with the library.

This module features a programming example followed by a

description diagram. The PnP capability that gives a programmer

ready-to-use function parameters applies here also. The description

of each input and output parameters in the function is shown in the

description diagram. Comparing the description diagram to the

actual function library can guide the user in deciding what values to

set and what data to expect.

Some trace analysis functions take an input parameter that is an

output of other function. This parameter conjunction can distinguish

difference in the device characterization based on its given input

parameters. See “pfl_ndBPeakAnalysis” as an example. Unless

noted, the following description assumes that each step is not a

sequential order.

The two diagrams show the result of insertion loss measurement.

The top graph is an absolute power reading, and the bottom graph

is an insertion loss with a reference at TLS power level. The following

trace information is used for the rest of the description.

trace start wavelength : 1530nm

trace stop wavelength : 1535nm

trace step wavelength : 1pm

laser power : -10 dBm

sweep speed : 0.5 nm/s

DUT channel spacing : 100GHz

DUT ITU specification : 26 (1531.90nm)

Step 1: The “calcLossFromPwr” function calculates loss from the

given absolute power data. This function uses the TLS output power

level as a reference value, which means it does not take into account any

loss occurred in the connection or the fiber. Instead,

“calcLossFromRef” takes two absolute power data readings, one with

a device and the other with a reference cable. Both functions provide

calculated loss data that can be used in all trace analysis functions.

At least three input parameters have to be created in the configuration

tab of the function (assuming the reference power level (in dBm) is

written in the function panel of “calcLossFromPwr”):

• number of data point

• DUT power reading (in W)

• allocated memory space for loss data

The number of data point is data provided by

“pfl_prepareMfLambdaScan” and DUT power reading (in W) is a

result of absolute power data generated by

“pfl_getMfLambdaScanResult” function, both of which are

introduced in the insertion loss measurement routine.

For loss variable, memory size is allocated to the number of data points

each with 64 bits real number using [Alloc Real64] object found under

[Data] -> [Allocate Array] -> [Real 64] of VEE menu bar.

Any other input parameters used in the description need to be adjusted

according to the device characteristics. For convenience, the following

input variables are defined prior to their use in the sample program

shown in this guide:

Page 22

• Number_Of_Datapoints – number of data points measured

• lambda_arr – absolute power reading for device test

• loss_trace – loss data, referenced at TLS power level

• Trace_StartWvl – start wavelength of the whole trace

• Trace_StepWvl – step wavelength of the trace

• Start_Wavelength – user defined start wavelength within

the trace*

• Stop_Wavelength – user defined stop wavelength within the

trace*

* Inputs parameters, “Start_Wavelength” and

“Stop_Wavelength”, specify the wavelength range approximated

around ITU wavelength. For convenience, these parameters can be

0 if the whole trace range contains only one spectrum peak to be

analyzed. Yet, it is highly recommended to specify the passband of

target range to avoid noise in its calculation.

pfl_ituChannelWvl: The “pfl_ituChannelWvl” function

utilizes ITU information by selecting proper channel spacing and the

ITU channel number. An output “Wavelength” is an ITU channel

wavelength specific to its ITU channel number.

The channel spacing is an enumerate type defined as follow:

 0 – 25 GHz 5 – 400 GHz

 1 – 50 GHz 6 – 500 GHz

 2 – 100 GHz 7 – 600 GHz

 3 – 200 GHz 8 – 1000 GHz

 4 – 300 GHz

pfl_peakAnalysisITU: The “pfl_peakAnalysisITU” function

calculates the loss spectrum information according to its given ITU

specification. “NextITUChannel” is an ITU channel number of the trace.

The loss at the ITU wavelength, “LossAtITUChannel”, the wavelengths

at minimum / maximum losses, “MinLossAtITUChannel” and

“MaxLossAt ITUChannel”, are all searched. Minimum loss means that

the device has a peak point within the passband centered at ITU

wavelength. It is most likely to be different from the loss at the ITU

channel wavelength due to interference and other device peak distortion

effects in the optical transmission.

Page 23

pfl_peakAnalysis: The “pfl_peakAnalysis” function searches

peak information at nominal wavelengths. Unlike the

“pfl_peakAnalysisITU” function, “pfl_peakAnalysis” is based

on the nominal wavelength, which can be defined as any

wavelength within the trace.

“peakWvl” and “lossAtPeak” are the spectrum peak wavelength

and loss information, within the pre-defined wavelength range of

“Start_Wavelength” and “Stop_Wavelength”, which can be “0”

(32 bit integer) for the whole trace.

Two maximum losses occurring in the bandwidth centered at two

different wavelengths, nominal and peak wavelengths, are

calculated along with the minimum loss of passband of nominal

wavelength.

pfl_ndBPeakAnalysis: The device channel bandwidth at “n dB”

down from either ITU wavelength or peak wavelength can be analyzed

using the “pfl_ndBPeakAnalysis” function. “n dB” can be specified

according to its test requirement such as 1, 3… dB. The difference

between “LongNdBWvl” and “ShortNdBWvl” is the bandwidth of the

spectrum.

The “Reference_Level” input, can be either loss at peak wavelength or

loss at ITU wavelength depending on the user specifications. From this

reference loss, offset is added to its calculation.

Page 24

pfl_ndbPointShort: The “pfl_ndbPointShort” function is

similar to the previously described “pfl_ndBPeakAnalysis”

function, except that it only searches for shorter wavelengths

from “Reference_Wvl”.

pfl_ndbPointLong: The “pfl_ndbPointLong” function is

similar to the previously described “pfl_ndBPeakAnalysis”

function, except that it only searches for longer wavelengths from

“Reference_Wvl”.

pfl_centerOfMassWvlPeak: One way of finding the center

wavelength is by calculating the total mass (volume) of spectrum

between the user defined start and stop wavelength and then calculating

the middle. “pfl_centerOfMassWvlPeak” takes this approach.

For example, the center of mass of a circle is a very center point of a

circle. If one defines left coordinate of circle as (0,-1), right as (0,1), top

as (1,0) and bottom as (-1,0), then the center coordinate is (0,0).

Page 25

pfl_minMax: A useful way to analyze ripple is by calculating

maximum variation in insertion loss over operating wavelength

range for unpolarized light. “pfl_minMax” allows users to find the

minimum loss (peak) and the maximum loss (bottom) of the

predefined wavelength range.

Instead of providing ripple value, this function generates only

wavelength where maximum and minimum loss occurs.

pfl_ripple: The ”pfl_ripple” function is used to find ripple over

operating wavelength range. Output parameter, ripple, is returned in

dB.

pfl_lossAtWvl: Any loss within the spectrum can be found using

“pfl_lossAtWvl” by specifying wavelength. The linear interpolation

calculation is used within the function at the wavelength outside of step

size.

Module Summary
This completes the programming instruction for trace analysis function.

In this module you have learned how to use trace analysis functions

provided by the PFL, such as:

• losses at ITU / peak of the spectrum

• n dB bandwidth

• wavelength at minimum / maximum loss

• ripple

Page 26

(ANSI C, API library)

Configuration & Initialization
To identify the functional differences in the PFL, the C++ API

offers four header files:

• “stdpfl.h”

• “pflmeasurement.h”

• “pfltransformation.h”

• “pflanalysis.h”.

The functions provided by the PFL completely replace equivalent

functions in the Agilent 816x and 8169 API by hiding the

implementation details from users. With such information hidden,

the programmer can focus more on the application itself in major

implementations.

• “stdpfl.h” includes the essential initialization, error handling,

and version related interface.

• “pflmeasurement.h” is a measurement related interface,

such as lambda scan, real time sweep, and PDL related

measurement using the Mueller method. It adds extensive

capability for measurement of passive optical components to

the test system.

• “pfltransformation.h” is not only the calculus involved in IL

and PDL, but also includes the accuracy enhancement

algorithms which account for the instrument specific

properties.

• “pflanalysis.h” defines calculus of today’s most demanding

spectrum loss parameters such as bandwidth, isolation, ripple,

crosstalk, and center wavelength.

Microsoft Visual C++ is the programming environment used to

describe and demonstrate the PFL C++ API in a clear, visual, top-

down manner. By first considering measurement structure on a high

level using the PFL without concern for the implementation details,

the user obtains a powerful tool that simplifies the process of

handling data and naturally extends the concept of measurement.

The setup described in the following steps shows users how they

must configure the MS VC++ application prior to compilation and

execution. This guide touches briefly on the configuration that links

the PFL and the PnP driver for 816x and 8169.

Step 1: Start the MS VC++ 6.0 environment and you should see the

screen shown above.

Step 2: To create a new working environment, select [File]->[New] in

the start up screen. This prompts the above window to appear asking for

the application that the programmer intends to use for development.

Choose “Win32 Console Application” and enter the project name. The

following window “Win32 Console Application – Step 1 of 1” should

be checked with “An empty project” (depending on how to implement

the PFL in the software, the definition of application might change).

Step 3: To link other libraries in MS VC++ 6.0:

Page 27

• Select [Project]-> [Settings] to open the Project Settings

window

• Enter the following libraries (used by the PFL and PnP) in the

Object/Library modules: field.

“pfl_32.lib”

“hp816x_32.lib”

“hp8169_32.lib”

Step 4: You want to define PFL and PnP functions within the

program:

• Select [Tools] -> [Options] to prompt the Options window.

• Select the [Directories] tab

• Enter the path (either by typing directly or browsing) of the

following files in the [Show directories for:] field:

“Include files” – header folder (*.h for PFL & PnP)

“Library files” – library folder (*.lib for PFL & PnP)

“Source files” – dll folder (*.dll for PFL & PnP)

The setup for MS VC++ 6.0 should be configured and it is ready to

write the source code that endures full capability of instrument control

and post data transaction simply by calling build in function of the PFL

Here is the sample source code, based on the example provided by the

PFL installation package. This section, along with configuration of

working environment, introduces initialization and required variable /

function declaration within every program that uses the PFL.

#include <stdio.h> /* standard input output library */
#include <stdlib.h> /* standard library */
#include <string.h> /* string operation library */
#include <conio.h> /* console I/O */

#include <stdpfl.h> /* definition for PFL init and close functions */
#include <pflmeasurement.h> /* definition for PFL loss measurement functions */
#include <pfltransformation.h> /* definition for PFL loss calculation functions */
#include <pflanalysis.h> /* definition for PFL analysis functions */

ViSession IHandle; /* global variable definition for 816xA handle */
ViSession IpolHandle; /* global variable definition for 8169A pol controller */

static void CheckError (ViStatus errStatus); /* check measurement status */
static void OpenPFLSession (); /* routine to establish communication with instruments */
static void ClosePFLSession (); /* routine to close communication with instruments */

#define NUM_POL_STATES 4 /* number of polarization states used by pdl measurement */

int main ()
{

return 0;
}

Step 5: The definitions used for all measurement routines

introduced in the PFL to establish and free the communications link

with the instruments and perform specific measurements are

programmed in main ().

Page 28

“OpenPFLSession” and “ClosePFLSession” are called at the

beginning and the end of the program to initiate and free the

instruments communication link. The instrument handles are stored

in the variables, “IHandle”, for 816x and “IpolHandle” for 8169A,

which are defined as global variables.

This guide introduces three static functions, “CheckError”,

“OpenPFLSession”, and “ClosePFLSession” to ease the readability of

C++ source code and to demonstrate repeatable usage in different

measurement program routines.

Void CheckError (ViStatus errStatus)
{

ViInt32 inst_err,
errSource;

ViChar err_message[256],
inst_err_message[256];

if (errStatus < VI_SUCCESS)
{

PflErrorInfo (errStatus, err_message, &errSource, &inst_err, inst_err_message);
printf (“ Error : %lx, %s\n", errStatus, err_message);
printf(" Source: %lx\n", errSource, err_message);
printf(" Inst : %lx, %s\n", inst_err, inst_err_message);

ClosePFLSession();

printf("Press <ENTER> to continue");
getchar();
exit(errStatus);

}
return;

}

Step 6: The “CheckError” function works on an error status

generated in the PFL function that could result from either hardware

failure such as GPIB connection problems or software failure such

as an out of range parameter setting. It is especially useful to debug

the problem by seeing the error message transcribed by a PFL specific

error number and its description.

An error message is generated on the Console Screen which awaits

keyboard input for confirmation before halting the program.

void OpenPFLSession ()
{

ViRsrc defBus816xadress = “GPIB0::20::INSTR” /* instrument address for 816x*/
ViRsrc defBus8169adress = “GPIB0::24::INSTR” /* instrument address for 8169*/

errStatus = PflInit816x (defBus816xadress, VI_FALSE, VI_TRUE, &IHandle);
CheckError (errStatus);

errStatus = PflInit8169 (defBus8169adress,VI_FALSE, VI_TRUE, &IpolHandle);
CheckError (errStatus);

errStatus = PflInit(IHandle, IpolHandle);
CheckError (errStatus);

return;
}

Step 7: The Initialization routine that opens the session involving

the instruments and the PFL takes place in three steps:

• “PflInit816x”

• “PflInit8169”

• “PflInit”.

This routine assumes that the 816x Lightwave Measurement

System and 8169A Polarization Controller are in the system setup.

Note: Although some measurements like insertion loss and real time

don’t require the 8169A polarization controller in the test setup, it

is good practice to use this routine throughout all measurement

algorithms. Where the PDL measurement is not required or the 8169A is

NOT available in the system, the programmer MUST omit the line that

initializes the 8169A. Otherwise, the “CheckError” function after the

“PflInit8169” function generates an error message that fails to find or

describe the instrument that causes the program to halt.

Note: Instrument addresses are arbitrarily set to address 20 for the

816x Lightwave Measurement System and address 24 for the 8169A

Polarization Controller. These addresses must match with the hardware

settings found in the instruments “config menu”.

Page 29

void ClosePFLSession ()
{

PflSetTLSState (VI_FALSE);
PflUnregisterMainframe (IHandle);
PflClose816x (IHandle);
PflClose8169 (IpolHandle);
PflClose ();

return;
}

Step 8: The Close routine closes any session involving the

instruments and the PFL. It also includes the functionality to switch

the tunable laser source’s power output to “off” and unregisters the

mainframe. This routine assumes that the 816x Lightwave

Measurement System and 8169A Polarization Controller are in the

system setup.

Note: As previously described, you should omit the“PflClose8169”

routine if no polarization controller is used in the test system.

Module Summary
In this module you have learned how to configure and initialize the PFL

C++ API in Microsoft Visual C++.

Page 30

(ANSI C, API library)

Insertion Loss Measurement:
Based on the stimulus response system, the insertion loss of the

DUT is determined by a two step approach. However, the program

can be written in such a way that the same functions and the same

parameters can be used for both measurements.

The following diagram features line by line instructions on programming

techniques using the PFL. All source code should be written in the main

function, “int main()”.

ViStatus errStatus; /* measurement status */
ViReal64 power,

startWavelength, /* start wavelength for lambda scan */
stopWavelength, /* stop wavelength of lambda swan */
stepSize, /* step size of lambda scan */
dOffset; /* wavelength offset if calibrated with gas cell */

ViInt32 opticalOutput, /* optical output used for measurement */
numberofScans, /* number of scan depend on required device dynamic */
PWMChannel; /* power meter channel */

ViUInt32 numberofDatapoints, /* number of data to be read from instrument */
numberofValueArrays; /* number of channel detected in the system setup*/

ViUInt32 i, j; /* index used for reading & writing data */

char filename[256] = “ilout.csv”; /* output file name to store loss data */
FILE *fp; /* file pointer used to write output file */

ViReal64 *wavelengthArray, /* wavelength data */
powerArray, / measured absolute power data */
lossArray; / calculated loss data */

Step 1: Several important variables are declared according to their

data type. The data type must be specifically defined according to

the input / output parameters of the PFL functions (for example, it is

crucial to differentiate between signed or unsigned integers). The

programmer can use whatever descriptive name he chooses to name

variables. For convenience, all further descriptions will use the above

variable names.

power = -5.0; /* TLS power is set to –5 dBm */
startWavelength = 1520.0e-9; /* start wavelength for lambda scan is set to 1520nm
*/
stopWavelength = 1570.0e-9; /* stop wavelength for lambda scan is set to 1570nm */
stepSize = 10e-12; /* step size for lambda scan is set to 10pm */
opticalOutput = pfl_LOWSEE; /* low SSE optical output is used */
numberofScans = pfl_NO_OF_SCANS_1; /* number of scan is set to 1 for low dynamic */
PWMChannel = 0; /* 1 power meter channel is used (0 index) */
dOffset = 0.0; /* wavelength calibrated offset value */

OpenPFLSession(); /* call function to open PFL session */

Step 2: The initialization part of the program always involves

parameter settings and session opening with the instruments. The

parameters must be valid according to the option of Tunable Laser

Source in the test system. For example, the wavelength range of

81640A, C-L band tunable laser source with low SEE output, is

from 1520nm to 1640nm. Wavelength range outside of this

designated wavelength will result in error.

The consideration of measurement time over accuracy can be easily

analyzed by adjusting two parameters: number of scan and step

size. For multiple channels like MUX / DeMUX, adjust a variable,

PWMChannel, to availability of power meter channels, which are

simultaneously synchronized with a unique hardware triggering system

of tunable laser source and mainframe via BNC cable. The instrument

handle for an additional mainframe has also to be declared and initialized

if used in the test system. Optimizing parameters by analyzing test

results is simple programming when compared to lower level

development where it is easy to get lost in a sea of details.

errStatus = PflPrepareMfLambdaScan (power, opticalOutput, numberofScans, PWMChannel +1,
startWavelength, stopWavelength, stepSize, pfl_SPEED_AUTO,
&numberofDatapoints, &numberofValueArrays);

CheckError (errStatus);

Step 3: Three steps (step 3,5,6) are central to insertion loss

measurement. These steps measure the absolute power level over

Page 31

wavelength. “PflPrepareMfLambdaScan” sets parameters for

the instrument that in return generates the number of data to be

measured in one channel, and the number of channels available in the

instrument.

wavelengthArray = (ViReal64 *)malloc(numberofDatapoints * sizeof (ViReal64));
powerArray = (ViReal64 *)malloc(numberofDatapoints * sizeof (ViReal64));
lossArray = (ViReal64 *)malloc(numberofDatapoints * sizeof (ViReal64));

Step 4: Based on the number of data points for one channel

estimated by “PflPrepareMfLambdaScan”, the memory size for

wavelength array, power reading array and loss calculated array

must be properly allocated to specific data types. Data read from

the instruments will be stored in these parameters according to the

name description.

The description of each line is:

ALLOCATE memory space of NUMBER OF DATA, each data has a

SIZE OF 64 BITS REAL

errStatus = PflExecuteMfLambdaScan (wavelengthArray, dOffset);
CheckError (errStatus);

Step 5: “PflExecuteMfLambdaScan” takes properly allocated

memory of wavelength data and wavelength calibrated offset as

input. An offset is a wavelength offset of tunable laser source,

usually less than one half of picometer, which can be determined

with the “PflMeasureWavelengthOffset” function provided in the

PFL using standard gas cells, such as Acetylene or Cyanide gas cells

with NIST specification. The tunable laser source in conjunction with the

power meter synchronized reading starts off the swept wavelength

measurement.

errStatus = PflGetMfLambdaScanResult (PWMChannel, powerArray, wavelengthArray);
CheckError (errStatus);

Step 6: The memory buffer in each power meter stores absolute

power readings over a measured wavelength’s range until

measurement is complete. To retrieve data from the power meter,

the “PflGetMfLambdaScanResult” function is used.

Note: To measure multiple channels at the same time,

“PWMChannel” has to be a variable along with the algorithm to

handle a loop where it provides the counter to repeatedly execute this

function until data from all channels is read. See the PFL sample

programs, provided in the installation package, for the programming

algorithm. This guide features instructions for first-time users to the

PFL, therefore the number of channels used for the measurement is 1, as

set in parameter initialization step 2.

errStatus = PflCalcLossFromPwr(numberofDatapoints, power, powerArray, lossArray);
CheckError (errStatus);

Step 7: Based on the absolute power reading (W), the loss data

(dB) measurement is calculated by comparing the reference of a

power level used by a tunable laser source (dBm).

Note: It is recommended to take a separate reference measurement

by repeating the steps 3, 5, 6. Variables of two absolute power

readings, reference and DUT, are passed to the “PflCalcLossFromRef”

function to calculate the loss property of the device. The function also

calculates connectivity loss such as fiber connector and/or spliced

section.

fp = fopen (filename, “wt”;
if (fp == NULL)

printf (“unable to open file %s\n”, filename);
else
{

for (i = 0; i < numberofDatapoints; i++)
{

fprintf (fp, “%1.13lf,%1.12lf\n”, wavelengthArray[i], lossArray[i]);
}

}
fclose(fp);

Step 8: A data file, the name is a variable of filename, is created to

save loss data. This is a standard C routine where it directs data

output to the file with the “fprintf” command after setting file pointer,

“fp”, using the “fopen” command.

Page 32

free (wavelengthArray);
free (powerArray);
free (lossArray);

Step 9: Free any array variable created in the program at the end of

program.

ClosePFLSession();

Step 10: Closing part of the program involves switching off the

laser power, unregistering instruments, and then closing the

session. The routine is described in the PFL C++ API Configuration

& initialization module of this guide.

Module Summary
You have completed the programming instruction for insertion loss

measurement. In this module you have learned how to apply the

functionality of the PFL to:

• measure insertion loss using swept wavelength measurements for

a DUT

• calculate the loss property of the device

For enhanced usage of the function, please review the sample programs

provided in the PFL installation package.

Int main ()
{

ViStatuserrStatus; /* measurement status */
ViReal64power,

startWavelength, /* start wavelength for lambda scan */
stopWavelength, /* stop wavelength of lambda swan */
stepSize, /* step size of lambda scan */
dOffset; /* wavelength offset if calibrated with gas cell */

ViInt32 opticalOutput, /* optical output used for measurement */
numberofScans, /* number of scan depend on required device dynamic */
PWMChannel; /* power meter channel */

ViUInt32numberofDatapoints, /* number of data to be read from instrument */
numberofValueArrays; /* number of channel detected in the system setup*/

ViUInt32i, j; /* index used for reading & writing data */

char filename[256] = “ilout.csv”; /* output file name to store loss data */
FILE *fp; /* file pointer used to write output file */

ViReal64 *wavelengthArray, /* wavelength data */
powerArray, / measured absolute power data */
lossArray; / calculated loss data */

power = -5.0; /* TLS power is set to –5 dBm */
startWavelength = 1520.0e-9; /* start wavelength for lambda scan is set to

1520nm */
stopWavelength = 1570.0e-9; /* stop wavelength for lambda scan is set to 1570nm */
stepSize = 10e-12; /* step size for lambda scan is set to 10pm */
opticalOutput = pfl_LOWSEE; /* low SSE optical output is used */
numberofScans = pfl_NO_OF_SCANS_1; /* number of scan is set to 1 for low dynamic */
PWMChannel = 0; /* 1 power meter channel is used (0 index) */
dOffset = 0.0; /* wavelength calibrated offset value */

OpenPFLSession(); /* call function to open PFL session */

errStatus = PflPrepareMfLambdaScan (power, opticalOutput, numberofScans, PWMChannel +1,
startWavelength, stopWavelength, stepSize, pfl_SPEED_AUTO,

&numberofDatapoints, &numberofValueArrays);
CheckError (errStatus);

wavelengthArray = (ViReal64 *)malloc(numberofDatapoints * sizeof (ViReal64));
powerArray = (ViReal64 *)malloc(numberofDatapoints * sizeof (ViReal64));
lossArray = (ViReal64 *)malloc(numberofDatapoints * sizeof (ViReal64));

errStatus = PflExecuteMfLambdaScan (wavelengthArray, dOffset);
CheckError (errStatus);

errStatus = PflGetMfLambdaScanResult (PWMChannel, powerArray, wavelengthArray);
CheckError (errStatus);

fp = fopen (filename, “wt”;
If (fp == NULL)

Printf (“unable to open file %s\n”, filename);
Else
{

for (i = 0; i < numberofDatapoints; I++)
{

fprintf (fp, “%1.13lf,%1.12lf\n”, wavelengthArray[i], lossArray[i]);
}

}
fclose(fp);

free (wavelengthArray);
free (powerArray);
free (lossArray);

ClosePFLSession();

return 0;
}

 (ANSI C, API library)

Polarization Dependent Loss Measurement:
The programming side of PDL measurement involves 5 steps:

• initialization and variable declarations

• polarizer angle adjustment

• reference measurement

• DUT measurement

• close and deallocation of variables.

However, the complexity of measurement techniques and instrument

control is, once again, hidden under the PFL to facilitate programmers

and thereby reduce development time.

Page 33

ViStatus errStatus; /* measurement status */
ViReal64 power,

startWavelength, /* start wavelength for lambda scan */
stopWavelength, /* stop wavelength of lambda swan */
stepSize, /* step size of lambda scan */
dOffset; /* wavelength offset if calibrated with gas cell */

ViInt32 opticalOutput, /* optical output used for measurement */
numberofScans, /* number of scan depend on required device dynamic */
PWMChannel; /* power meter channel */

ViUInt32 numberofDatapoints, /* number of data to be read from instrument */
numberofValueArrays; /* number of channel detected in the system setup*/

ViUInt32 i, j; /* index used for reading & writing data */

char filename[256] = “pdlout.csv”; /* output file name to store loss data */
FILE *fp; /* file pointer used to write output file */

ViReal64 *wavelengthArray, /* wavelength data */
powerArray, / measured absolute power data */
lossArray; / calculated loss data */

ViPReal64 refPower[NUM_POL_STATES]={0,0,0,0}, /* measured ref data at different pol
states*/

dutPower[NUM_POL_STATES]={0,0,0,0}, /* measured DUT data at different pol
states*/

wavelengthArray = 0, /* wavelength data */
minLoss = 0, /* minimum loss occurrence within 4 SOP spectrums */
maxLoss = 0, /* maximum loss occurrence within 4 SOP spectrums */
avgLoss = 0, /* average loss occurrence within 4 SOP spectrums */
pdl = 0; /* calculated PDL data after the measurement */

ViReal64 polAngle; /* maximum polarizer angle in pol controller */
ViUInt32 polState; /* counter to measure 4 pol states */
ViInt32 polStates[NUM_POL_STATES] = {pfl_PS_LH0, pfl_PS_LDP45, pfl_PS_LDN45,
pfl_PS_RHC};

Step 1: The description with the variable declaration above lists

the parameters required for PDL program. Unlike insertion loss, PDL

is the loss measurements at four different polarization states that

is required to define a 2 dimensional array for reference and DUT

power readings, named as “refPower” and “dutPower”. The

“refPower[0]” variable stores reference data as linear horizontal.

The order of polarization states is defined in the “polStates” array

in order to rotate the polarized light to linear horizontal, linear diagonal

plus 45, linear diagonal negative 45, and right hand circle in sequence.

The “polAngle” variable is the result of determining the polarizer

position of the 8169A polarization controller at the maximum absolute

power reading.

power = -10.0; /* TLS power is set to –10 dBm */
startWavelength = 1520.0e-9; /* start wavelength for lambda scan is set to 1520nm
*/
stopWavelength = 1560.0e-9; /* stop wavelength for lambda scan is set to 1560nm */
stepSize = 10e-12; /* step size for lambda scan is set to 10pm */
opticalOutput = pfl_LOWSSE; /* low SSE optical output is used */
numberofScans = pfl_NO_OF_SCANS_1; /* number of scan is set to 1 for low dynamic */
PWMChannels = 0; /* 1 power meter channel is used (0 index) */
dOffset = 0.0; /* wavelength calibrated offset value */

OpenPFLSession(); /* call function to open PFL session */

Step 2: Variable initialization depends on the instrument setup and

test requirement. For details on opening a PFL session, which

initializes the instruments, see C++ API Configuration & Initialization

section of this paper.

Page 34

Page 35

printf("Prepare the optical connections for the reference measurement!\n");
printf("Press <ENTER> to continue");
fflush();
getchar();

errStatus = PflFindMaxPolPosition (0, opticalOutput, power,
(startWavelength+stopWavelength)*.5, &polAngle);

CheckError (errStatus);

Step 3: A prompt informs users of the need for a reference

connection, by first temporarily stopping the execution flow and

then waiting for keyboard input. This is needed when the program

takes a top-down approach to PDL measurement where both

reference and DUT are measured consecutively. It is possible to

implement the software to save the reference data in a file where it

can be retrieved for repeated usage.

Optimum algorithm to find the polarizer angle of the polarization

controller at maximum transmission power is implemented in the

“PflFindMaxPolPosition” function. A center wavelength of configured

start and stop wavelengths for maximum transmission is sufficient to

measure PDL of wide wavelength range. This is because the PFL takes

into account the post data error correction of PDL uncertainty at any

wavelength outside of the polarization controller’s designated

wavelength range.

for(polState = 0; polState < NUM_POL_STATES; ++polState)
{
errStatus = PflPrepareMfLambdaScan (power, opticalOutput, numberofScans,

PWMChannels +1, startWavelength, stopWavelength,
stepSize, sweepSpeed, &numberofDatapoints,
&numberofValueArrays);

CheckError (errStatus);

Step 4: As described in the definition of the Mueller method, four

absolute powers are measured at four different polarization states.

A For Loop is appropriate to index to polarization states.

“PflPrepareMfLambdaScan” sets parameters of the instrument

which in return generates number of data to be measured in one channel

and number of channel available in the instrument.

if(0 == polState)
wavelengthArray = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));

refPower[polState] = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));

Step 5: If the loop is being executed for the first time, then you

must allocate memory for wavelength data with the size of number

of data points, where each data point consists of 64 bits real. For

all reference power data indexed at the polarization state, you must

also allocate enough memory for reference data with the size of a

number of data points, each consisting of 64 bits real.

errStatus = PflExecuteMfLambdaPolScan(wavelengthArray, polStates[polState],
polAngle, dOffset);

CheckError (errStatus);

Step 6: The functionality of “PflEexecuteMfLambdaPolScan” is

similar to that of “PflExecuteMfLambdaScan” (described in IL

step 5 in C++ API) except that it has a polarization state and a

polarizer angle for its additional parameters. A polarization state

parameter is an integer used to define the polarization states and a

polarizer angle parameter is the angle found in

“PflFindMaxPolPosition”. Adjust the wavelength offset if you need to

do wavelength calibration for more accurate measurement.

errStatus = PflGetMfLambdaScanResult(PWMChannels, refPower[polState],
wavelengthArray);

CheckError (errStatus);
}

Step 7: The memory buffer in each power meter stores absolute

power readings over a measured wavelength’s range until

measurement is complete. To retrieve data from the power meter,

the “PflGetMfLambdaScanResult” function is used.

Note: To measure multiple channels at the same time, “PWMChannel”

has to be a variable along with the algorithm to handle a loop where it

provides the counter to repeatedly execute this function until data from

all channels is read. See the PFL sample programs, provided in the

installation package, for programming algorithm. This guide features

Page 36

instructions for first-time users to the PFL, therefore the number of

channels used for the measurement is 1, as set in parameter

initialization step 2.

printf("Prepare the optical connections for the DUT measurement!\n");
printf("Press <ENTER> to continue");
fflush();
getchar();

Step 8: The prompt lets users know the connection requirements of

the DUT by temporarily stopping the execution flow and waiting for

keyboard input.

for(polState = 0; polState < NUM_POL_STATES; ++polState)
{
errStatus = PflPrepareMfLambdaScan(power, opticalOutput, numberofScans,

PWMChannels + 1, startWavelength, stopWavelength,
stepSize, sweepSpeed, &numberofDatapoints,
&numberofValueArrays);

CheckError (errStatus);

dutPower[polState] = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));
if(!dutPower[polState]) goto Exit;

errStatus = PflExecuteMfLambdaPolScan(wavelengthArray, polStates[polState],
polAngle, dOffset);

CheckError (errStatus);

errStatus = PflGetMfLambdaScanResult(PWMChannels, dutPower[polState],
wavelengthArray);

CheckError (errStatus);
}

Step 9: To measure the PDL of the DUT you can use the same

routine that was used to take reference measurements as described

in Steps 4 to 7, except that the variable to store data changes to

“dutPower”. Therefore, you can implement the source code with this

part functionalized for ease of programming.

minLoss = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));
maxLoss = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));
avgLoss = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));
pdl = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));

Step 10: Allocate four arrays to store:

• minimum loss

• maximum loss

• average loss

• polarized dependent loss

The technique to allocate memory is the same as before, and involves

using the “malloc” function of C++.

errStatus = PflCalcPDLMueller8169A(numberofDatapoints, startWavelength, stepSize,
refPower[0], refPower[1], refPower[2], refPower[3],
dutPower[0], dutPower[1], dutPower[2], dutPower[3],
minLoss, maxLoss, avgLoss, pdl);

CheckError (errStatus);

Step 11: The complex calculus and optical theory behind the

Mueller method is hidden in the “PflCalcPDLMueller8169A”

function. In addition to passing data for reference and DUT

measurement to calculate PDL, this function also passes some

measurement parameters to apply post data collection.

fp = fopen(filename,"wt");
if(fp == NULL)

printf("unable to open file %s",filename);
else

{
fprintf(fp, "wvl[m],min[dB],max[dB],avg[dB],pdl[dB]\n");
for (i = 0 ; i < numberofDatapoints; i++)

{
fprintf(fp,"%1.13lf,%1.12lf,%1.12lf,%1.12lf,%1.12lf\n",

wavelengthArray[i], minLoss[i], maxLoss[i], avgLoss[i], pdl[i]);
}

}
fclose(fp);

Step 12: A data file (the name is a variable of filename) is created

to save PDL data. This is a standard C routine where it directs data

output to the file using the “fprintf” command after initially setting the

file pointer, “fp”, using the “fopen” command.

free (wavelengthArray);
free (minLoss);
free (maxLoss);
free (avgLoss);
free (pdl);

for(polState = 0; polState < NUM_POL_STATES; ++polState)
{
free(refPower[polState]);
free(dutPower[polState]);

}

Step 13: You must free any array variable created in the program

at the end of program.

ClosePFLSession();

Step 14: Closing part of the program involves switching off the

laser power, unregistering instruments, and closing the session. The

routine is described in the Configuration & Initialization of the PFL

C++ API section of this guide.

Module Summary
You have completed the programming instruction for PDL measurement.

In this module you have learned how to apply the functionality to:

• Measure PDL

• Calculate the PDL value derived from reference and DUT data.

For enhanced usage of the function, please review the sample programs

provided in the PFL installation package.

Int main ()
{

ViStatuserrStatus; /* measurement status */
ViReal64power,

startWavelength, /* start wavelength for lambda scan */
stopWavelength, /* stop wavelength of lambda swan */
stepSize, /* step size of lambda scan */
dOffset; /* wavelength offset if calibrated with gas cell */

ViInt32 opticalOutput, /* optical output used for measurement */
numberofScans, /* number of scan depend on required device dynamic */
PWMChannel; /* power meter channel */

ViUInt32numberofDatapoints, /* number of data to be read from instrument */
numberofValueArrays; /* number of channel detected in the system setup*/

ViUInt32i, j; /* index used for reading & writing data */

char filename[256] = “pdlout.csv”; /* output file name to store loss data */
FILE *fp; /* file pointer used to write output file */

ViReal64 *wavelengthArray, /* wavelength data */
powerArray, / measured absolute power data */

Page 37

lossArray; / calculated loss data */

ViPReal64 refPower[NUM_POL_STATES]={0,0,0,0}, /* ref data at different pol states*/
dutPower[NUM_POL_STATES] = {0,0,0,0}, /* DUT data at different pol states*/
wavelengthArray = 0, /* wavelength data */
minLoss = 0, /* minimum loss occurrence within 4 SOP spectrums */
maxLoss = 0, /* maximum loss occurrence within 4 SOP spectrums */
avgLoss = 0, /* average loss occurrence within 4 SOP spectrums */
pdl = 0; /* calculated PDL data after the measurement */

ViReal64polAngle; /* maximum polarizer angle in pol controller */
ViUInt32 polState; /* counter to measure 4 pol states */
ViInt32 polStates[NUM_POL_STATES] = {pfl_PS_LH0, pfl_PS_LDP45, pfl_PS_LDN45,

pfl_PS_RHC};

power = -10.0; /* TLS power is set to –10 dBm */
startWavelength = 1520.0e-9; /* start wavelength for lambda scan is set to

1520nm */
stopWavelength = 1560.0e-9; /* stop wavelength for lambda scan is set to 1560nm */
stepSize = 10e-12; /* step size for lambda scan is set to 10pm */
opticalOutput = pfl_LOWSSE; /* low SSE optical output is used */
numberofScans = pfl_NO_OF_SCANS_1; /* number of scan is set to 1 for low dynamic */
PWMChannels = 0; /* 1 power meter channel is used (0 index) */
dOffset = 0.0; /* wavelength calibrated offset value */

OpenPFLSession(); /* call function to open PFL session */

printf("Prepare the optical connections for the reference measurement!\n");
printf("Press <ENTER> to continue");
getchar();

errStatus = PflFindMaxPolPosition (0, opticalOutput, power,
(startWavelength+stopWavelength)*.5, &polAngle);

CheckError (errStatus);

for(polState = 0; polState < NUM_POL_STATES; ++polState)
{
errStatus = PflPrepareMfLambdaScan (power, opticalOutput, numberofScans,

PWMChannels +1, StartWavelength, stopWavelength,
stepSize, sweepSpeed, &numberofDatapoints,
&numberofValueArrays);

CheckError (errStatus);

if(0 == polState)
wavelengthArray = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));

refPower[polState] = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));

errStatus = PflExecuteMfLambdaPolScan(wavelengthArray, polStates[polState],
polAngle, dOffset);

CheckError (errStatus);

errStatus = PflGetMfLambdaScanResult(PWMChannels, refPower[polState],
wavelengthArray);

CheckError (errStatus);
}

printf("Prepare the optical connections for the DUT measurement!\n");
printf("Press <ENTER> to continue");
getchar();

for(polState = 0; polState < NUM_POL_STATES; ++polState)
{
errStatus = PflPrepareMfLambdaScan(power, opticalOutput, numberofScans,

PWMChannels + 1, startWavelength, stopWavelength,
stepSize, sweepSpeed, &numberofDatapoints,
&numberofValueArrays);

CheckError (errStatus);

dutPower[polState] = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));

Page 38

if(!dutPower[polState]) goto Exit;

errStatus = PflExecuteMfLambdaPolScan(wavelengthArray, polStates[polState],
polAngle, dOffset);

CheckError (errStatus);

errStatus = PflGetMfLambdaScanResult(PWMChannels, dutPower[polState],
wavelengthArray);

CheckError (errStatus);
}

minLoss = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));
maxLoss = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));
avgLoss = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));
pdl = (ViReal64 *)malloc(numberofDatapoints *sizeof(ViReal64));

errStatus = PflCalcPDLMueller8169A(numberofDatapoints, startWavelength, stepSize,
refPower[0], refPower[1], refPower[2], refPower[3],
dutPower[0], dutPower[1], dutPower[2], dutPower[3],
minLoss, maxLoss, avgLoss, pdl);

CheckError (errStatus);

fp = fopen(filename,"wt");
if(fp == NULL)

printf("unable to open file %s",filename);
else

{
fprintf(fp, "wvl[m],min[dB],max[dB],avg[dB],pdl[dB]\n");
for (i = 0 ; i < numberofDatapoints; i++)

{
fprintf(fp,"%1.13lf,%1.12lf,%1.12lf,%1.12lf,%1.12lf\n",

wavelengthArray[i], minLoss[i], maxLoss[i], avgLoss[i], pdl[i]);
}

}
fclose(fp);

free (wavelengthArray);
free (minLoss);
free (maxLoss);
free (avgLoss);
free (pdl);

for(polState = 0; polState < NUM_POL_STATES; ++polState)
{
free(refPower[polState]);
free(dutPower[polState]);

}

ClosePFLSession();

return 0;
}

Page 39

(ANSI C, API library)

Real Time Measurement:
For real time measurement, the PFL introduces what is probably the

easiest program for one of the library’s most powerful tools. The

same parameters as for insertion loss measurement are used for

continuously monitoring absolute power readings. Triggering and data

retrieving timing are improved in the software to maximize the hardware

capability of the test system.

ViStatus errStatus; /* measurement status */
ViReal64 power,

startWavelength, /* start wavelength for lambda scan */
stopWavelength, /* stop wavelength of lambda swan */
stepSize, /* step size of lambda scan */
pmRange; /* power meter range set by factor of 10 (ie. 0, -10,...)

*/
ViInt32 opticalOutput, /* optical output used for measurement */

PWMChannel; /* power meter channel */
ViUInt32 numberofDatapoints, /* number of data to be read from instrument */

numberofValueArrays; /* number of channel detected in the system setup*/
ViUInt32 i, j; /* index used for writing data */

ViReal64 *wavelengthArray, /* wavelength data */
powerArray; / measured absolute power data */

Step 1: Parameters used for real time measurement are declared.

Again, the data type of each variable must be specific to the

definition of the PFL described in the header file.

power = -10.0; /* TLS power is set to –10 dBm */
startWavelength = 1540.0e-9; /* start wavelength for lambda scan is set to 1520nm */
stopWavelength = 1560.0e-9; /* stop wavelength for lambda scan is set to 1560nm */
stepSize = 10e-12; /* step size for lambda scan is set to 10pm */
opticalOutput = pfl_LOWSSE; /* low SSE optical output is used */
PWMChannels = 0; /* 1 power meter channel is used (0 index) */
pmRange = -10; /* power meter range to –10dB

OpenPFLSession(); /* call function to open PFL session */

Step 2: The power meter range, “pmRange” is selectable with the

Real Time function. The auto ranging capability of the power meter

is switched to a manual setting in order to improve the speed of

measurement. The power meter range is set based on the device

loss properties.

Note: The power meter can read power values of –40dBm to +3dBm

from the selected range in a single sweep. For example, setting the

power meter (with an exception of fast power meter, 81636B &

81637B) range to –10dBm enables optical power readings between –

50dBm and –7dBm.

errStatus = PflPrepareFastSweep (power, optical_output, PWMChannels,
start_wavelength, stop_wavelength, step_size,
pmRange, & numberofDatapoints, & numberofValueArrays);

CheckError (errStatus);

Step 3: Defined parameters are applied to the instrument by calling

“PflPrepareFastSweep”, which returns the number of data to be

measured in one channel and the number of channel available in the

instrument.

wavelengthArray= (ViReal64 *)malloc(datapoints *sizeof(ViReal64));
powerArray = (ViReal64 *)malloc(datapoints *sizeof(ViReal64));

Step 4: The wavelength and transmission power data are stored in

arrays, while memories are allocated in this C standard routine

using the malloc function.

Page 40

for (i=0; i<10;i++)
{

errStatus = PflDoFastSweep();
for (j=0; j< numberofValueArrays; j++)
{

errStatus = PflGetFastSweepResult(j, powerArray, wavelengthArray);
}

}

Step 5: This is the simplest form of repeated routine for executing

real time sweep over wavelength. The outer loop specifies the

number of repeated measurements to be executed. Although the

above instruction is limited to 10 loops, the real time function

allows infinite repetition if required. The inner loop is used to

retrieve data from multiple channels. A variable,

“numberofValueArray”, is estimated by the previous function,

“PflPrepareFastSweep”, to count all enabled channels.

If only one channel is required, the programmer can even omit the inner

FOR loop that indexes the channel number.

Note: Stopping the program within the execution of real time

measurement might cause the system to halt due to a precise timing

mechanism that enables maximum measurement speed. It is highly

recommended that the programmer implements the source code in such

a way that it always executes the next two steps of the instruction.

PflCloseFastSweep();

Step 6: Real time measurement, also called fast sweep, has a

special close routine to properly close the communication link with

the instruments because the functionality of fast sweep is only

possible by providing minimum allowable triggering timing by directly

talking and listening the instrument.

free (wavelengthArray);
free (powerArray);

ClosePFLSession();

Step 7: At the end of the program, this function frees any array

variables created in the program. Closing part of the program

involves switching off laser power, unregistering instruments, and

closing the session. The routine is described in the Configuration &

Initialization of the PFL C++ API section of this guide.

Module Summary
You have completed the programming instruction for real time sweep

measurement. In this module you have learned how to:

• Perform a real time measurement using the PFL fast sweep

functionality

• Create a loop object that repeatedly executes the PFL function for

real time measurement

For enhanced usage of the function, please review the sample programs

provided in the PFL installation package.

Page 41

int main ()
{

ViStatuserrStatus; /* measurement status */
ViReal64power,

startWavelength, /* start wavelength for lambda scan */
stopWavelength, /* stop wavelength of lambda swan */
stepSize, /* step size of lambda scan */
pmRange; /* power meter range set by factor of 10 (ie. 0, -10,...)

*/
ViInt32 opticalOutput, /* optical output used for measurement */

PWMChannel; /* power meter channel */
ViUInt32numberofDatapoints, /* number of data to be read from instrument */

numberofValueArrays; /* number of channel detected in the system setup*/
ViUInt32i, j; /* index used for writing data */

ViReal64 *wavelengthArray, /* wavelength data */
powerArray; / measured absolute power data */

power = -10.0; /* TLS power is set to –10 dBm */
startWavelength = 1540.0e-9; /* start wavelength for lambda scan is set to

1540nm */
stopWavelength = 1560.0e-9; /* stop wavelength for lambda scan is set to 1560nm */
stepSize = 10e-12; /* step size for lambda scan is set to 10pm */
opticalOutput = pfl_LOWSSE; /* low SSE optical output is used */
PWMChannels = 0; /* 1 power meter channel is used (0 index) */
pmRange = -10; /* power meter range to –10dB

OpenPFLSession(); /* call function to open PFL session */

errStatus = PflPrepareFastSweep (power, optical_output, PWMChannels,
start_wavelength, stop_wavelength, step_size,
pmRange, & numberofDatapoints, & numberofValueArrays);

CheckError (errStatus);

wavelengthArray = (ViReal64 *)malloc(datapoints *sizeof(ViReal64));
powerArray = (ViReal64 *)malloc(datapoints *sizeof(ViReal64));

for (i=0; i<10;i++)
{

errStatus = PflDoFastSweep();
for (j=0; j< numberofValueArrays; j++)
{

errStatus = PflGetFastSweepResult(j, powerArray, wavelengthArray);
}

}

PflCloseFastSweep();

free (wavelengthArray);
free (powerArray);

ClosePFLSession();

return 0;
}

(ANSI C, API library)

Trace Analysis:
Trace analysis functions are among the most powerful precompiled

tools in the PFL. These functions enable programmers to implement

software not only to measure the device but also to analyze the

device characteristics based on its insertion loss data. Such device

characterizations include among others:

• loss at ITU / peak wavelength

• n dB center wavelength

• bandwidth

• ripple

• crosstalk and more

Based on the structure data type (which will be described in the next

section), the individual analysis library functions included in the PFL

Page 42

enable programmers to justify measured data using just one

function call. This has been achieved through the development of

software that leverages the complex concepts behind the test and

measurement of passive optical components. The programmer can

study the diagrams provided in each description step in this module

in order to understand the input and output parameters of the

analysis function. This makes the subsequent programming task

much easier. Some functions take input parameters that are the

output of other functions. This parameter conjunction differentiates

the device characterization based on its given input parameters. See

“PflNdBPeakAnalysis” as an example.

The following section describes analysis functions, definition found

in header file, to clarify individual parameters and functionality.

Unlike other measurement routines, such as the IL and PDL

algorithm, individual functions can be called separately and do not have

to be in the order of this paper, but some output parameters can be

passed from one function to another to observe different device

characteristics. For example, reference wavelength for

“PflNdBPeakAnalysis” can be either ITU or peak wavelength

depending on the device manufacture test specification.

Before we begin with the description of trance analysis functions, it has

to be noted that the programmer must be careful with the data used for

each parameter. Trace data, the insertion loss calculated from the result

of reference and device measurements using transformation function

(PflCalcLossFromPwr or PflCalcLossFromRef), needs to be stored in

a variable to be analyzed.

loss = (double*)malloc(numSamples * sizeof(double)); /* allocate memory for loss */
trace = (double*)malloc(numSamples * sizeof(double)); /* allocate memory for trace */

ViStatus PFL_API PflCalcLossFromPwr (ViInt32 numSamples,
ViReal64 refPowerDbm,
ViReal64 dutPowerW[],
ViReal64 loss[]);

trace = loss; /* store calculated loss data as a trace data for analysis
*/

Step 1: This is a transformation function defined in the

“pfltransform.h” header file to calculate insertion loss from two

absolute powers, reference “refPowerDbm” and device

“dutPowerW”. A function is, again, introduced here in the analysis

section of the paper for one reason; loss array in the parameter will

be used by most analysis function calls.

A variable “trace[]” in the rest of this paper is loss array data, and a

variable “loss[]” is calculated in ”PflCalcLossFromPwr” if TLS output

power level (dBm) is used as a reference, or in “PFLCalcLossFromRef”

if reference measurement is also done prior to DUT measurement. An

input variable, “numSamples”, is size of loss trace that can be either

calculated from the size of data or saved from an output variable of

“PflPrepareMfLambdaScan”.

ViReal64 PFL_API PflITUChannelWvl (EChSpacing spacing,
ViInt32 chNumber);

PflITUChannelWvl: “PflITUChannelWvl” returns ITU

wavelength according to input channel spacing “spacing” and

target channel number “chNumber” of which programmers want to

find the wavelength. Channel spacing used in this function is an

enumerate type defined as below:

SPC_25_GHZ → 25 GHz SPC_400_GHZ → 400 GHz

SPC_50_GHZ → 50 GHz SPC_500_GHZ → 500 GHz

SPC_100_GHZ → 100 GHz SPC_600_GHZ → 600 GHz

SPC_200_GHZ → 200 GHz SPC_1000_GHZ → 1000 GHz

EStatus PFL_API PflPeakAnalysisITU (ViReal64 trace[],
TTraceInfo* trcInfo,
TPeakParameterITU* peakParameter,
TPeakResult* result);

PflPeakAnalysisITU: A tested device characteristics can be

confirmed with information based on ITU specification. These

characteristics include loss at ITU wavelength, at nominal

wavelength, and at spectrum peak wavelength. See the description

of “TPeakResult” structure data type introduced at the beginning

of this section.

User defined input parameters such as wavelength range and offset

level, included in the member of “trcInfo” and “peakParameter”, set

test specification over traced data, “trace[]”.

Note, status flag returned from “PflPeakAnalysisITU” is enumerate

type that the trace analysis function, which generates spectrum

characteristics, returns with more detailed information to be handled by

implemented software to clarify for both users and programmers the

right input parameter usage.

Page 43

ST_NotFound

ST_OK

ST_InvalidPara

ST_NoTrace

ST_InvalidTraceInfo

ST_NoOutputPara

ST_InternalError

ST_LicenseNotAvailable

ST_LicenseNotGranted

ST_PflNotInitialized

ST_InvalidSession

EStatus PFL_API PflPeakAnalysis (ViReal64 trace[],
TTraceInfo* trcInfo,
TpeakParameter* peakParameter,
TPeakResult* result);

PflPeakAnalysis: “PflPeakAnalysis” is similar to

“PflPeakAnalysisITU” except it takes a data structure

“TPeakParameter” instead of “TPeakParameterITU” to analyze loss

spectrum, “trace[]”, with user defined specification instead of ITU.

EStatus PFL_API PflNdBPeakAnalysis (ViReal64 trace[],
TTraceInfo* trcInfo,
ViReal64 referenceWvl,
ViReal64 referenceLevel,
ViReal64 ndBOffset,
TNdBPeakResult* result);

PflNdBPeakAnalysis: “PflNdBPeakAnalysis” takes offset levels,

reference and offset, as shown in the diagram and returns spectrum

information of center wavelength, “ndBCenterWvl”, and losses,

“lossAtndBCenter” (member of structure data type

“TndBPeakResult”) at any offset level depending on the device test

requirement.

Center wavelength at n dB offset is where spectrum starts at offset,

“shortNdBWvl”, and ends at offset, “longNdBWvl”, are divided

exactly in the middle (λ/2).

In conjunction to such amplitude and wavelength information, spectrum

bandwidth at the offset level, “ndBBandWidthHz”, is calculated.

EStatus PFL_API PflNdBPointShort (ViReal64 trace[],
TTraceInfo* trcInfo,
TPoint* refPoint,
ViReal64 offset,
TPoint* ndBPoint);

PflNdBPointShort: To simplify the previous analysis function,

“PflNdBPointShort” returns only the coordinate at spectrum

where offset level starts. The coordinate is expressed in a struct,

“TPoint” based on x (wavelength) and y (loss) in the graph.

EStatus PFL_API PflNdBPointLong (ViReal64 trace[],
TTraceInfo* trcInfo,
TPoint* refPoint,
ViReal64 offset,
TPoint* ndBPoint);

PflNdBPointLong: To simplify the previous analysis function,

“PflNdBPointLong” returns only the coordinate at the spectrum

where offset level ends. The coordinate is expressed in a struct,

“TPoint” based on x (wavelength) and y (loss) in the graph.

Page 44

Page 45

EStatus PFL_API PflCenterOfMassWvlPeak (ViReal64 trace[],
TTraceInfo* trcInfo,
ViReal64 startWvl,
ViReal64 stopWvl,
ViReal64* centerWvl);

PflCenterOfMassWvlPeak: “PflCenterOfMassWvlPeak” takes

another approach to find the center wavelength, “centerWvl”, by

calculating the mass within the defined spectrum. Again, important

parameters, such as “startWvl” and “stopWvl” narrow down the mass

to calculate more precisely the location.

An image, for example, of the center of a circle helps to understand the

concept of this function.

EStatus PFL_API PflMinMax (ViReal64 trace[],
TTraceInfo* trcInfo,
ViReal64 startWvl,
ViReal64 stopWvl,
TPoint* minPoint,
TPoint* maxPoint);

PflMinMax: The coordinates at minimum loss and maximum loss

occurrences are searched by calling “PflMinMax” within the

predefined start wavelength, “startWvl”, and stop wavelength,

“stopWvl”. The coordinate is stored in structure format, “TPoint”

where wavelength is expressed in m (meter) and loss in dB.

EStatus PFL_API PflRipple (ViReal64 trace[],
TTraceInfo* trcInfo,
ViReal64 startWvl,
ViReal64 stopWvl,
ViReal64* ripple);

PflRipple: The definition of ripple is the difference between

minimum and maximum losses within the predefined wavelength.

“PflRipple” can be used to find a “ripple” of the spectrum by selecting

the wavelength range, “startWvl” and “stopWvl”.

EStatus PFL_API PflLossAtWvl (ViReal64 trace[],
TtraceInfo* trcInfo,
ViReal64 wvl,
ViReal64* loss);

PflLossAtWvl: “PflLossAtWvl” looks for loss, “loss”, at specific

wavelength, “wvl”, within the spectrum. The linear interpolation

calculation is used within the function at the wavelength outside of

step size.

(ANSI C, API library)

Structure Design for Trace Analysis:
Using the library in C makes it easier for programmers to

understand a function’s input and output parameter by using

structure data type. The diagrams shown in this section describe

the meaning of each member in the structure (some languages refer to

a structure as a record with fields instead of members).

TTraceInfo

typedef struct
{

ViInt32 numSamples;
ViReal64 startWvl;
ViReal64 stepWvl;

} TTraceInfo;

A structure “TTraceInfo” defines measured loss spectrum

information. “numSamples” is a total number of data points

within the trace generated by calling

“PflPrepareMfLambdaScan” in the insertion loss routine.

“startWvl” is a start wavelength of the trace and “stepWvl” is a

step size used for measurement. Both take real numbers in units of

“m” with a scientific notation (ie. for 1530nm start wavelength,

use 1530.0e-9).

TPoint

typedef struct
{

ViReal64 wvl;
ViReal64 loss;

} TPoint;

A structure “TPoint” is used to define the coordinate information in the

function. A member, “wvl”, is wavelength on x-axis with unit of “m”

(meter) and “loss” is loss data on y-axis with unit of “dB”. Such trace

point is useful in the parameter of “PflMinMax”, for example, where

minimum / maximum loss over wavelength can be passed as

(wavelength, loss) format.

TPeakParameterITU

typedef struct
{

ViReal64 startWvl;
ViReal64 stopWvl;
ViReal64 chBandWidthHz;
ViReal64 ndBOffset;
EchSpacing chSpacing;

} TPeakParameterITU;

A structure “TPeakParameterITU” is a parameter for the trace

analysis function “pfl_peakAnalysisITU” that requires trace

information according to its ITU specification. Such wavelengths as

“startWvl” and “stopWvl” differ from the member defined in the

“TTraceInfo” structure, by the way that they define only at the target

wavelength range of the peak spectrum to which the function applies

for its calculation (see “TPeakParameterITU” function for detailed

description).

“startWvl” and “stopWvl” specify the wavelength range approximated

around ITU wavelength. For convenience, these parameters can be 0 if

the whole trace range contains just one device information, one peak.

Yet, it is highly recommended to specify passband of target range to

avoid including noise data from uninteresting wavelength ranges in this

calculation.

A member “chBandWidthHz”, specifies the peak spectrum bandwidth

of the device under test with the unit of “Hz”. For 50GHz bandwidth

device, for example, use 50e9 to set a value.

Page 46

Channel spacing is defined as the index in the structure as follows:

0 – 25 GHz 4 – 400 GHz

1 – 50 GHz 5 – 500 GHz

2 – 100 GHz 6 – 600 GHz

3 – 200 GHz 7 – 1000 GHz

TPeakParameter

typedef struct
{

ViReal64 startWvl;
ViReal64 stopWvl;
ViReal64 chBandWidthHz;
ViReal64 ndBOffset;
ViReal64 nominalWvl;

} TPeakParameter;

Instead of specifying ITU specification information as input,

“TPeakParameter” can be used to find peak loss spectrum

information. Nominal wavelength, “nominalWvl”, can be either

peak or ITU wavelength according to test requirements.

“ndBOffset” is an offset from reference level to find wavelength /

loss information of the spectrum at specified level.

“startWvl” and “stopWvl” specify the wavelength range

approximated around ITU wavelength. For convenience, these

parameters can be 0 if whole trace range contains only one device

information, one peak. Yet, it is highly recommended to specify

passband of target range to avoid noise in its calculation.

TPeakResult

Page 47

typedef struct
{

ViInt32 nextITUChannel;
ViReal64 nextITUChannelWvl;
ViReal64 lossAtITUChannel;
ViReal64 minLossITUChannel;
ViReal64 maxLossITUChannel;
ViReal64 ndBCenterWvl;
ViReal64 lossAtndBCenter;
ViReal64 shortNdBWvl;
ViReal64 longNdBWvl;
ViReal64 ndBBandWidthHz;
ViReal64 peakWavelength;
ViReal64 lossAtPeak;
ViReal64 maxLossPeakBand;
ViReal64 lossAtNominalWvl;
ViReal64 minLossPassBand;
ViReal64 maxLossPassBand;

} TPeakResult;

The results of trace analysis function for peak loss spectrum are

stored completely as one comprehensive structure,

“TPeakResult” for both ITU specific data and peak spectrum

specific data.

“nextITUChannel” is an ITU channel number found in the closest

peak within defined wavelength range, specific ITU channel

spacing and channel bandwidth. Wavelength information at ITU

channel is returned along with loss information at ITU channel,

“lossAtITUChannel”, minimum, “minLossITUChannel”, and

maximum, “maxLossITUChannel”, losses within predefined

spectrum bandwidth centered at ITU wavelength. (see “TPeakResult

no1” diagram above)

Analysis information at n dB offset from reference level are described in

“TPeakResult no2” of the diagram above. “ndBCenterWvl” is a

center wavelength of the spectrum bandwidth at n dB offset and a loss

at that wavelength is “lossAtndBCenter”. Spectrum intersection at

offset level, both at short and long wavelength, are parameters of

“shortNdBWvl” and “longNdBWvl” and such bandwidth is described

as “ndBBandWidthHz”.

Spectrum peak wavelength information, “peakWavelength”, and

maximum loss within the bandwidth centered at peak wavelength,

“maxLossPeakBand”, are shown in diagram “TpeakResult no3”.

Parameters referenced at nominal wavelength are shown in

“TPeakResult no4”.

TNdBPeakResult

typedef struct
{

ViReal64 ndBCenterWvl;
ViReal64 lossAtndBCenter;
ViReal64 shortNdBWvl;
ViReal64 longNdBWvl;
ViReal64 ndBBandWidthHz;

} TNdBPeakResult;

See “TPeakResult” for the description of each member.

Page 48

This page left intentionally blank

Agilent Technologies’
Test and Measurement Support,
Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement
capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your
applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the
production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment,
we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When
you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified
capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique
technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty
repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced
Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems,
and obtain dependable measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test & measurement needs

Online assistance:

www.agilent.com/comms/lightwave
Phone or Fax

United States:

(tel) 1 800 452 4844

Canada:

(tel) 1 877 894 4414

(fax) (905) 206 4120

Europe:

(tel) (31 20) 547 2323

(fax) (31 20) 547 2390

Japan:

 (tel) (81) 426 56 7832

(fax) (81) 426 56 7840

Latin America:

(tel) (305) 269 7500

(fax) (305) 269 7599

Australia:

(tel) 1 800 629 485

(fax) (61 3) 9210 5947

New Zealand:

(tel) 0 800 738 378

(fax) 64 4 495 8950

Asia Pacific:

(tel) (852) 3197 7777

(fax) (852) 2506 9284

Product specifications and descriptions in this document subject to change without notice.

Copyright © 2001 Agilent Technologies

November 5, 2001

5988-4100EN

Related Agilent literature:

[1] Photonic Foundation Library : Enhancing Swept Loss Measurement,

Application Notes

p/n 5988-3622EN

[2] Agilent N4150A, N4151A Photonic Foundation Library Rev 1.0

Technical Specification, Max 2001

p/n 5980-1453E

[3] Optical Communication Measurement Division How to use VXI Plug and

Play Driver with Agilent VEE, C/C++, Visual Basic, LabVIEW, and

LabWindows/CVI

p/n 5980-2790N

[4] PDL Measurement Using The HP8169A Polarization Controller, Product

Note

p/n 5964-9937E

[5] State of the Art characterization of optical components for DWDM

application, Application Brief

p/n 5980-1454E

