About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual is the best copy we could find; it may be incomplete or contain dated information. If we find a more recent copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available. You will find any other available product information on the Agilent Test & Measurement website, www.tm.agilent.com.

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. In other documentation, to reduce potential confusion, the only change to product numbers and names has been in the company name prefix: where a product number/name was HP XXXX the current name/number is now Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

HP 8590 EM-Series EMC Analyzer Calibration Guide

HP Part No. 5962-0467 Printed in USA December 1995

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights of Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies.

© Copyright Hewlett-Packard Company 1995 All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws. 1400 Fountaingrove Parkway, Santa Rosa CA, 95403-1799, USA

Certification

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards Organization members.

Warranty

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Hewlett-Packard. Buyer shall prepay shipping charges to Hewlett-Packard and Hewlett-Packard shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Hewlett-Packard from another country.

Hewlett-Packard warrants that its software and firmware designated by Hewlett-Packard for use with an instrument will execute its programming instructions when properly installed on that instrument. Hewlett-Packard does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error-free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products. For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Compliance

This instrument has been designed and tested in accordance with IEC Publication 348, Safety Requirements for Electronic Measuring Apparatus, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the instrument in a safe condition.

Safety Notes

The following safety notes are used throughout this manual. Familiarize yourself with each of the notes and its meaning before operating this instrument.

WARNING

Warning denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do *not* proceed beyond a warning note until the indicated conditions are fully understood and met.

CAUTION

Caution denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, would result in damage to or destruction of the instrument. Do *not* proceed beyond a caution sign until the indicated conditions are fully understood and met.

General Safety Considerations

WARNING

- No operator serviceable parts inside. Refer servicing to qualified personnel. To prevent electrical shock, do not remove covers.
- If this instrument is not used as specified, the protection provided by the equipment may be impaired. This instrument must be used in a normal condition (in which all means for protection are intact) only.
- For continued protection against fire hazard, replace line fuse only with same type and rating ([F 5A/250V]). The use of other fuses or material is prohibited.

CAUTION

- Before switching on this instrument, make sure that the line voltage selector switch is set to the voltage of the power supply and the correct fuse is installed.
- Always use the three-prong ac power cord supplied with this instrument. Failure to ensure adequate earth grounding by not using this cord may cause instrument damage.
- Only clean the instrument cabinet using a damp cloth.

The instruction documentation symbol. The product is marked with this symbol when it is necessary for the user to refer to the instructions in the documentation.

CE The CE mark is a registered trademark of the European Community. (If accompanied by a year, it is when the design was proven.)

ISM1-A This is a symbol of an Industrial Scientific and Medical Group 1 Class A product.

CSA The CSA mark is a registered trademark of the Canadian Standards Association.

Manual Conventions

Front-Panel Key This represents a key physically located on the instrument.

Softkey This indicates a "softkey," a key whose label is determined by

the firmware of the instrument.

Screen Text This indicates text displayed on the instrument's screen.

HP 8590 EM-Series EMC Analyzer Documentation Description

The following documents are provided with the HP 8590 EM-Series EMC Analyzer.

Verification Guide provides information for verifying the

instrument's performance, specifications and

characteristics, and customer support.

User's Guide describes instrument features and how to make

measurements with your EMC analyzer.

Quick Reference Guide provides menu maps, error messages, and key

descriptions, remote programming codes, and

other helpful charts and tables.

In This Book

This book helps you test the performance of the EMC analyzer. The first three chapters of this guide provide information for performing the performance verification tests. The next six chapters provide specifications and characteristics for the six EMC analyzer products. The last chapter gives helpful information when your require support.

- **Chapter 1** contains information on which performance verification tests
 - that you will perform and lists the equipment required to
 - perform these tests.
- **Chapter 2** contains the performance verification tests to ensure your EMC
 - analyzer is operating properly.
- **Chapter 3** contains the test records for your use when performing the
 - performance verification tests.
- **Chapter 4** provides the specifications and characteristics for the
 - HP 8591EM EMC analyzer.
- **Chapter 5** provides the specifications and characteristics for the
 - HP 8593EM EMC analyzer.
- **Chapter 6** provides the specifications and characteristics for the
 - HP 8594EM EMC analyzer.

Chapter 7 provides the specifications and characteristics for the HP 8595EM EMC analyzer.
 Chapter 8 provides the specifications and characteristics for the HP 8596EM EMC analyzer.
 Chapter 9 provides the characteristics for the EMC analyzer with the RF filter section.
 Chapter 10 contains information for providing customer support to you if you have a problem with your EMC analyzer.

			l

Calibrating

This chapter identifies the performance test procedures which test the electrical performance of the analyzer.

Allow the analyzer to warm up in accordance with the temperature stability specifications before performing the tests called out in this chapter.

None of the test procedures involve removing the cover of the analyzer.

Calibration

Calibration verifies that the analyzer performance is within all specifications. It is time consuming and requires extensive test equipment. Calibration consists of all the performance tests. For a complete listing of the performance tests, see the performance verification tests table for your specific analyzer.

Operation Verification

Operation verification only tests the most critical specifications. These tests are recommended for incoming inspection, troubleshooting, or after repair. Operation verification requires less time and equipment than the calibration. See the performance verification tests table for your analyzer.

Calibration Cycle

The performance tests in Chapter 2 should be used to check the analyzer against its specifications once every year. Specifications are listed in this calibration guide.

The 300 MHz frequency of the CAL OUT signal must be checked at the same time and adjusted if necessary. Refer to the "10 MHz Frequency Reference Adjustment" procedure in the assembly-level repair service guide.

Performance Verification Test Tables

The tables on the following pages list the performance tests in chapter 2. Select the analyzer option being calibrated and perform the tests marked in the option column.

A dot indicates that the test is required for calibration. Note that some of the tests are used for both calibration and operation verification (marked with [•]).

Table 1-1. HP 8591EM Performance Verification Tests

	Calibration for Instrument Option:			ion:
Performance Test Name	Std ¹	004	010	101
1. 10 MHz Reference Output Accuracy	•		•	•
2. 10 MHz Precision Frequency Reference Output Accuracy		•		
4. Frequency Readout and Marker Count Accuracy	•	•	•	•
6. Noise Sidebands	•	•	•	•
7. System Related Sidebands	•	•	•	•
8. Frequency Span Readout Accuracy	•	•	•	•
10. Residual FM	•	•	•	•
12. Sweep Time Accuracy	•	•	•	•
13. Scale Fidelity	•	•	•	•
14. Reference Level Accuracy	•	•	•	•
16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties	•	•	•	•
17. Resolution (IF) Bandwidth Accuracy	•	•	•	•
18. Calibrator Amplitude Accuracy	•	•	•	•
19. Frequency Response	•	•	•	•
24. Other Input Related Spurious Responses	•	•	•	•
29. Spurious Response ²	•	•	•	•
34. Gain Compression	•	•	•	•
39. Displayed Average Noise Level	•	•	•	•
44. Residual Responses	•	•	•	•
47. Fast Time Domain Sweeps				•
49. Absolute Amplitude, Vernier, and Power Sweep Accuracy			•	
52. Tracking Generator Level Flatness			•	
54. Harmonic Spurious Outputs			•	
56. Non-Harmonic Spurious Outputs			•	
58. Tracking Generator Feedthrough			•	
62. CISPR Pulse Response	•	•	•	•

 $^{1\,}$ Use this column for all other options not listed in this table.

1.4 Calibrating

 $^{2\ \}hbox{``Part 2: Third Order Intermodulation Distortion, }50\ \hbox{MHz"} \ \hbox{is not required for operation verification.}$

Table 1-2. HP 8593EM Performance Verification Tests

	Calibration for Instrument Option:					
Performance Verification Test Name	\mathbf{Std}^{1}	004	010	026	027	101
1. 10 MHz Reference Output Accuracy	•		•	•	•	•
2. 10 MHz Precision Frequency Reference Output Accuracy		•				
3. Comb Generator Frequency Accuracy	•	•	•	•	•	•
5. Frequency Readout and Marker Count Accuracy	•	•	•	•	•	•
6. Noise Sidebands	•	•	•	•	•	•
7. System Related Sidebands	•	•	•	•	•	•
9. Frequency Span Readout Accuracy	•	•	•	•	•	•
11. Residual FM	•	•	•	•	•	•
12. Sweep Time Accuracy	•	•	•	•	•	•
13. Scale Fidelity	•	•	•	•	•	•
15. Reference Level Accuracy	•	•	•	•	•	•
16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties	Ō	Ō	Ō	Ō	Ō	Ō
17. Resolution (IF) Bandwidth Accuracy	•	•	•	•	•	•
18. Calibrator Amplitude Accuracy	•	•	•	•	•	•
20. Frequency Response	•	•	•	•	•	•
25. Other Input Related Spurious Responses	•	•	•	•	•	•
30. Spurious Response ²	•	•	•	•	•	•
35. Gain Compression	•	•	•	•	•	•
40. Displayed Average Noise Level	•	•	•	•	•	•
46. Residual Responses	•	•	•	•	•	•
48. Fast Time Domain Sweeps						•
50. Absolute Amplitude Accuracy			•			
51. Power Sweep Range			•			
53. Tracking Generator Level Flatness			•			
55. Harmonic Spurious Outputs			•			
57. Non-Harmonic Spurious Outputs			•			
60. Tracking Generator Feedthrough			•			
61. Tracking Generator LO Feedthrough Amplitude			•			
62. CISPR Pulse Response	•	•	•	•		
		1	1	I	I	

¹ Use this column for all other options not listed in this table.

 $^{2\ \}hbox{``Part 2: Third Order Intermodulation Distortion, 50 MHz''} \ is \ not\ required\ for\ operation\ verification.$

Table 1-3. HP 8594EM Performance Verification Tests

	Calibration for Instrument Option:			ion:
Performance Verification Test Name	Std ¹	004	010	101
1. 10 MHz Reference Output Accuracy	•		•	•
2. 10 MHz Precision Frequency Reference Output Accuracy		•		
4. Frequency Readout and Marker Count Accuracy	•	•	•	•
6. Noise Sidebands	•	•	•	••••
7. System Related Sidebands	•	•	•	•
9. Frequency Span Readout Accuracy	•	•	•	•
11. Residual FM	•	•	•	•
12. Sweep Time Accuracy	•	•	•	•
13. Scale Fidelity	•	•	•	•
15. Reference Level Accuracy		•	•	••••
16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties	•	•	•	•
17. Resolution (IF) Bandwidth Accuracy	•	•	•	•
18. Calibrator Amplitude Accuracy	•	•	•	•
21. Frequency Response	•	•	Ō	• • •
26. Other Input Related Spurious Responses	•	•	•	•
31. Spurious Response ²	•	•	•	•
36. Gain Compression	•	•	•	•
41. Displayed Average Noise Level	•	•	•	•
45. Residual Responses	•	•	•	•
48. Fast Time Domain Sweeps				•
50. Absolute Amplitude Accuracy			•	
51. Power Sweep Range			•	
53. Tracking Generator Level Flatness			•	
55. Harmonic Spurious Outputs			•	
57. Non-Harmonic Spurious Outputs			•	
59. Tracking Generator Feedthrough			•	
61. Tracking Generator LO Feedthrough Amplitude			•	
62. CISPR Pulse Response	•	•	•	•

 $^{1\,}$ Use this column for all other options not listed in this table.

1.6 Calibrating

 $^{2\,}$ "Third Order Intermodulation Distortion" is not required for operation verification.

Table 1-4. HP 8595EM Performance Verification Tests

	Calibration for Instrument Option:			ion:
Performance Verification Test Name		004	010	101
1. 10 MHz Reference Output Accuracy	•		•	•
2. 10 MHz Precision Frequency Reference Output Accuracy		•		
5. Frequency Readout and Marker Count Accuracy	•	•	•	•
6. Noise Sidebands	Ō	Ō	Ō	Ō
7. System Related Sidebands	•	•	•	
9. Frequency Span Readout Accuracy	•	•	•	•
11. Residual FM	•	•	•	•
12. Sweep Time Accuracy	•	•	•	•
13. Scale Fidelity	•	•	•	•
15. Reference Level Accuracy	•	•	Ō	••••
16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties	•	•	•	•
17. Resolution (IF) Bandwidth Accuracy	•	•	•	•
18. Calibrator Amplitude Accuracy	•	•	•	•
22. Frequency Response		Ō	•	•
27. Other Input Related Spurious Responses	•	•	•	•
32. Spurious Response ²	•	•	•	•
37. Gain Compression	•	•	•	
42. Displayed Average Noise Level	•	•	•	•
46. Residual Responses	•	•	•	•
48. Fast Time Domain Sweeps				•
50. Absolute Amplitude Accuracy			•	
51. Power Sweep Range			•	
53. Tracking Generator Level Flatness			•	
55. Harmonic Spurious Outputs			•	
57. Non-Harmonic Spurious Outputs			•	
60. Tracking Generator Feedthrough			•	
61. Tracking Generator LO Feedthrough Amplitude			•	
62. CISPR Pulse Response	•	•	•	•

¹ Use this column for all other options not listed in this table.

² "Third Order Intermodulation Distortion" is not required for operation verification.

Table 1-5. HP 8596EM Performance Verification Tests

	Calibration for Instrument Option:		tion:	
Performance Verification Test Name	Std ¹	004	010	101
1. 10 MHz Reference Output Accuracy	•		•	•
2. 10 MHz Precision Frequency Reference Output Accuracy		•		
3. Comb Generator Frequency Accuracy	•	•	•	•
5. Frequency Readout and Marker Count Accuracy	•	•	•	•
6. Noise Sidebands	•	•	•	•
7. System Related Sidebands	•	•	•	•
9. Frequency Span Readout Accuracy	•	•	•	•
11. Residual FM	•	•	•	•
12. Sweep Time Accuracy	•	•	•	•
13. Scale Fidelity	•	•	•	•
15. Reference Level Accuracy	• •	•	•	•
16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties	•	•	•	
17. Resolution (IF) Bandwidth Accuracy	•	•	•	•
18. Calibrator Amplitude Accuracy	•	•	•	•
23. Frequency Response	•	•	•	•
28. Other Input Related Spurious Responses	•	•	•	•
33. Spurious Response ²	•	•	•	•
38. Gain Compression	•	•	•	•
43. Displayed Average Noise Level	•	•	•	•••••
46. Residual Responses	•	•	•	•
48. Fast Time Domain Sweeps				•
50. Absolute Amplitude Accuracy		ļ	•	
51. Power Sweep Range			•	
53. Tracking Generator Level Flatness			•	
55. Harmonic Spurious Outputs			•	
57. Non-Harmonic Spurious Outputs			•	
60. Tracking Generator Feedthrough			•	
61. Tracking Generator LO Feedthrough Amplitude			•	
62. CISPR Pulse Response	•	•	•	•

¹ Use this column for all other options not listed in this table.

1.8 Calibrating

 $^{2\,}$ "Third Order Intermodulation Distortion" is not required for operation verification.

Safety

Familiarize yourself with the safety symbols marked on the analyzer, and read the general safety instructions and the symbol definitions given in the front of this guide before you begin verifying performance of the EMC analyzer.

Before You Start

There are four things you should do before starting a performance verification test:

- Switch the analyzer on and let it warm up in accordance with the temperature stability specification.
- Read "Making a Measurement" in your analyzer user's guide.
- After the analyzer has warmed up as specified, perform the self-calibration procedure documented in "Improving Accuracy With Self-Calibration Routines" in the HP 8590 EM-Series EMC Analyzer User's Guide. The performance of the analyzer is only specified after the analyzer calibration routines have been run and if the analyzer is autocoupled.
- Read the rest of this section before you start any of the tests, and make a copy of the Performance Verification Test Record described below in "Recording the test results."

Test equipment you will need

Tables 1-6 through 1-9 list the recommended test equipment for the performance tests. Any equipment that meets the critical specifications given in the table can be substituted for the recommended model.

Recording the test results

Performance verification test records, for each EMC analyzer, are provided in the chapter following the tests.

Each test result is identified as a TR Entry in the performance tests and on the performance verification test record. We recommend that you make a copy of the performance verification test record, record the test results on the copy, and keep the copy for your calibration test record. This record could prove valuable in tracking gradual changes in test results over long periods of time.

Frequency and amplitude self-calibration

Perform the frequency and amplitude self-calibration routines at least once per day, or if the analyzer fails a verification test. To perform self-calibration, press CAL freq & AMPTD. The instrument must be up to operating temperature in order for this test to be valid. Press CAL STORE when the test is complete. If the analyzer continuously fails one or more specifications, complete any remaining tests and record all test results on a copy of the test record. Then refer to the "Customer Support" chapter for instructions on how to solve the problem.

Periodically verifying operation

The analyzer requires periodic verification of operation. Under most conditions of use, you should test the analyzer at least once a year with either operation verification or the complete set of performance verification tests.

Table 1-6. Recommended Test Equipment

Equipment	Critical Specifications for Equipment Substitution	Recommended Model
Digital Voltmeter	Input Resistance: ≥10 megohms Accuracy: ±10 mV on 100 V range	HP 3456A
Frequency Counter ¹	Frequency: 10 MHz Resolution: ±0.002 Hz External Timebase	HP 5334A/B
Frequency Standard	Frequency: 10 MHz Timebase Accy (Aging): <1 ×10 ⁻⁹ /day	HP 5061B
Measuring Receiver	Compatible with Power Sensors dB Relative Mode Resolution: 0.01 dB Reference Accuracy: ±1.2%	HP 8902A
Microwave Frequency Counter	Frequency Range: 9 MHz to 7 GHz Timebase Accy (Aging): <5 × 10 ⁻¹⁰ /day	HP 5343A
Power Meter	Power Range: Calibrated in dBm and dB relative to reference power -70 dBm to +44 dBm, sensor dependent	HP 436A
Power Sensor	Frequency Range: 100 kHz to 1800 MHz Maximum SWR: 1.60 (100 kHz to 300 kHz) 1.20 (300 kHz to 1 MHz) 1.1 (1 MHz to 2.0 GHz) 1.30 (2.0 to 2.9 GHz)	HP 8482A
Power Sensor ²	Frequency Range: 1 MHz to 2 GHz Maximum SWR: 1.18 (600 kHz to 2.0 GHz) 75 Ω	HP 8483A
Power Sensor, Low Power	Frequency Range: 300 MHz Amplitude Range: -20 dBm to -70 dBm Maximum SWR: 1.1 (300 MHz)	HP 8484A

¹ Precision Frequency Reference only

² HP 8591EM only

Table 1-6. Recommended Test Equipment (continued)

Equipment	Critical Specifications for Equipment Substitution	Recommended Model
Power Sensor ¹	Frequency Range: 50 MHz to 26.5 GHz Maximum SWR: 1.10 (300 MHz) 1.15 (50 MHz to 100 MHz) 1.10 (100 MHz to 2.0 GHz) 1.15 (2.0 GHz to 12.4 GHz) 1.20 (12.4 GHz to 18.0 GHz) 1.25 (18.0 GHz to 26.5 GHz)	HP 8485A
Pulse Generator	Period Range: 1 ms to 980 ms $\pm 2\%$, single pulse mode Level -2 V to $+2$ V Transition Time: 6 ns $\pm 10\%$, ± 1 ns Pulse Width: 150 ns to 3 μ s $\pm 1\%$ ± 1 ns	HP 8161A
Pulse Generator ²	Frequency: 100 Hz Duty Cycle: 50% Output: TTL	HP 8116A
Signal Generator	Frequency Range: 1 MHz to 1000 MHz Amplitude Range: -35 to +16 dBm SSB Noise: <-120 dBc/Hz at 20 kHz offset	HP 8640B, Option 002 or HP 8642A
Spectrum Analyzer, Microwave	Frequency Range: 100 kHz to 7 GHz Relative Amplitude Accuracy: 100 kHz to 1.8 GHz: <±1.8 dB Frequency Accuracy: <±10 kHz @ 7 GHz	HP 8566A/B
Synthesized Sweeper ³	Frequency Range: 10 MHz to 22 GHz Frequency Accuracy (CW): ± 0.02% Leveling Modes: Internal and External Modulation Modes: AM Power Level Range: -35 to +16 dBm	HP 8340A/B or HP 83630A
Synthesizer/Function Generator 1-12 Calibrating	Frequency Range: 0.1 Hz to 500 Hz Frequency Accuracy: ±0.02% Waveform: Triangle	HP 3325B
Synthesizer/Level Generator	Frequency Range: 1 kHz to 80 MHz Amplitude Range: +12 to -85 dBm Flatness: ±0.15 dB Attenuator Accuracy: ±0.09 dB	HP 3335A

¹ Not for HP 8591EM

² HP 8591EM only

 $^{3\;}For\;HP\;8591EM,\;HP\;8593EM\;Option\;026\;or\;Option\;027,\;HP\;8594EM,\;HP\;8595EM,\;and\;HP\;8596EM$

Table 1-7. Recommended Accessories

Equipment	Critical Specifications for Accessory Substitution	Recommended Model
Attenuator, 3 dB	Type N (m to f) Attenuation: 3 dB Frequency: dc to 12.4 GHz	HP 8491A Option 003
Attenuator, 10 dB	Type N (m to f) Frequency: 300 MHz	HP 8491A Option 010
Attenuator, 1 dB Step	Attenuation Range: 0 to 12 dB Frequency Range: 50 MHz Connectors: BNC female	HP 355C
Attenuator, 10 dB Step	Attenuation Range: 0 to 30 dB Frequency Range: 50 MHz Connectors: BNC female	HP 355D
Directional Bridge	Frequency Range: 0.1 to 110 MHz Directivity: >40 dB Maximum VSWR: 1.1:1 Transmission Arm Loss: 6 dB (nominal) Coupling Arm Loss: 6 dB (nominal)	HP 8721A
Directional Coupler	Frequency Range: 1.7 GHz to 8 GHz Coupling: 16 dB (nominal) Max. Coupling Deviation: ±1 dB Directivity: 14 dB minimum Flatness: 0.75 dB maximum VSWR: <1.45 Insertion Loss: <1.3 dB	0955-0125
Low Pass Filter, 50 MHz	Cutoff Frequency: 50 MHz Rejection at 80 MHz: >50 dB	0955-0306
Low Pass Filter, 300 MHz 1-14 Calibrating	Cutoff Frequency: 300 MHz Bandpass Insertion Loss: <0.9 dB at 300 MHz Stopband Insertion Loss: >40 dB at 435 MHz	0955-0455
Low Pass Filter, 4.4 GHz	Cutoff Frequency: 4.4 GHz Rejection at 5.5 GHz: >40 dB	HP 11689A

Table 1-7. Recommended Accessories (continued)

Equipment	Critical Specifications for Accessory Substitution	Recommended Model
Modulator Teletech SC35B	Frequency 50 MHz ON/OFF RATIO >70 dB Switching Speed 2 ns Insertion Loss: 5 dB	0955-0533
Power Splitter ¹	Frequency Range: 50 kHz to 1.8 GHz Insertion Loss: 6 dB (nominal) Output Tracking: <0.25 dB Equivalent Output SWR: <1.22:1	HP 11667A
Power Splitter ²	Frequency Range: 50 kHz to 22 GHz Insertion Loss: 6 dB (nominal) Output Tracking: <0.25 dB Equivalent Output SWR: <1.22:1	HP 11667B
Termination, 50 Ω	Impedance: 50 Ω (nominal) (2 required for Option 010)	HP 908A
Termination ³		HP 909D

¹ HP 8591EM and HP 8593EM

² HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

 $^{3\} HP\ 8595EM$ and HP 8596EM only

Table 1-8. Recommended Adapters

Equipment	Critical Specifications for Accessory Substitution	Recommended Model
Adapter	APC 3.5 (f) to APC 3.5 (f) (2 required)	5061-5311
Adapter ¹	BNC (f) to dual banana plug	1251-1277
Adapter	BNC (f) to SMA (m)	1250-1200
Adapter	BNC (m) to BNC (m)	1250-0216
Adapter	BNC tee (m) (f) (f)	1250-0781
Adapter	Type N (f) to APC 3.5 (f)	1250-1745
Adapter	Type N (f) to APC 3.5 (m)	1250-1750
Adapter	Type N (m) to APC 3.5 (m)	1250-1743
Adapter ²	Type N (m) to APC 3.5 (f)	1250-1744
Adapter ³	Type N (f) to BNC (f)	1250-1474
Adapter	Type N (f) to BNC (m) (2 required)	1250-1477
Adapter	Type N (m) to BNC (f) (4 required)	1250-1476
Adapter	Type N (m) to BNC (m) (2 required)	1250-1473
Adapter	Type N (f) to Type N (f)	1250-1472
Adapter ³	Type N (m) to Type N (m)	1250-1475

¹ HP 8591EM only

1.16 Calibrating

 $^{2~\}mathrm{HP}~8593\mathrm{EM},~\mathrm{HP}~8594\mathrm{EM},~\mathrm{HP}~8595\mathrm{EM},~\mathrm{and}~\mathrm{HP}~8596\mathrm{EM}$ only

 $^{3~\}mathrm{HP}~8591\mathrm{EM},~\mathrm{HP}~8594\mathrm{EM},~\mathrm{HP}~8595\mathrm{EM},~\mathrm{and}~\mathrm{HP}~8596\mathrm{EM}$ only

Table 1-9. Recommended Cables

Equipment	Critical Specifications for Cable Substitution	Recommended Model
Cable ¹	Cal Comb Connectors: SMA (m) both ends	08592-60061
Cable ¹	Connectors: SMA (m) both ends Length: 61 cm (18 in)	8120-1578
Cable ²	Frequency Range: 10 MHz to 26.5 GHz Maximum SWR: <1.4 at 26.5 GHz Length: \geq 91 cm (36 in) Connectors: APC 3.5 (m) both ends Maximum Insertion Loss 2 dB (2 required)	8120-4921
Cable	Type N, 183 cm (72 in)	HP 11500A
Cable	Type N, 62 cm (24 in)	HP 11500B/C
Cable	Type N, 152 cm (60 in)	HP 11500D
Cable	Frequency Range: dc to 1 GHz Length: \geq 91 cm (36 in) Connectors: BNC (m) both ends (2 required)	HP 10503A
Cable	Frequency Range: dc to 310 MHz Length: 23 cm (9 in) Connectors: BNC (m) both ends	HP 10502A

¹ For HP 8593EM only

 $^{2~\}mathrm{For}~\mathrm{HP}~8593\mathrm{EM}$ Option $026~\mathrm{or}~027,~\mathrm{or}~\mathrm{HP}~8594\mathrm{EM},~\mathrm{HP}~8595\mathrm{EM},~\mathrm{or}~\mathrm{HP}~8596\mathrm{EM}$ only

Performance Verification Tests

These tests verify the electrical performance of the EMC analyzer. Allow the EMC analyzer to warm up in accordance with the temperature stability specifications before performing the tests.

CAUTION

All performance verification tests (except test 62. CISPR Pulse Response) must be performed with the EMC analyzer set in the spectrum analyzer mode.

To set the EMC analyzer to the spectrum analyzer mode, press:

(MODE)

SPECTRUM ANALYZER

Performance verification test 62. CISPR Pulse Response must be performed with the EMC analyzer set in the EMC analyzer

To set the analyzer to the EMC analyzer mode, press:

(MODE)

EMC ANALYZER

1. 10 MHz Reference Output Accuracy, HP 8590 EM-Series

If your instrument is equipped with a Precision Frequency Reference, perform "10 MHz Precision Frequency Reference Output Accuracy," instead.

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The settability is measured by changing the setting of the digital-to-analog converter (DAC) which controls the frequency of the timebase. The frequency difference per DAC step is calculated and compared to the specification.

The related adjustment for this performance verification test is the "10 MHz Reference, HP 8590 EM-Series".

Equipment Required

Microwave frequency counter Frequency standard Cable, BNC, 122 cm (48 in) (2 required)

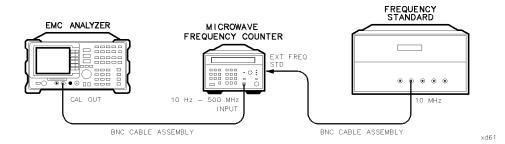


Figure 2-1. 10 MHz Reference Output Accuracy Test Setup

Procedure

The test results will be invalid if REF UNLK is displayed at any time during this test. REF UNLK will be displayed if the internal reference oscillator is unlocked from the 10 MHz reference. A REF UNLK might occur if there is a hardware failure or if the jumper between 10 MHz REF OUTPUT and EXT REF IN on the rear panel is removed.

2.2 Performance Verification Tests

1. 10 MHz Reference Output Accuracy, HP 8590 EM-Series

- 1. Connect the equipment as shown in Figure 2-1.
- 2. Set the frequency counter controls as follows:

SAMPLE RATE	Midrange
50 $\Omega/1$ Ω SWITCH	50 Ω
10 Hz-500 MHz/500 MHz-26.5 GHz SWITCH10	Hz-500 MHz
FREQUENCY STANDARD (Rear panel)	. EXTERNAL

- 3. Wait for the frequency counter reading to stabilize. Record the frequency counter reading in the 10 MHz Reference Accuracy Worksheet as Counter Reading 1.
- 4. Set the EMC analyzer by pressing the following keys:

$$(\overline{\text{FREQUENCY}} - 37 \text{ Hz})$$
 (CAL) More 1 of 4 More 2 of 4 VERIFY TIMEBASE

- 5. Record the number in the active function block of the EMC analyzer in the 10 MHz Reference Accuracy Worksheet as the Timebase DAC Setting.
- 6. Add one to the **Timebase DAC Setting** recorded in step 5, then enter this number using the DATA keys on the EMC analyzer.
 - For example, if the timebase DAC setting is 105, press 1,0,6 (Hz).
- 7. Wait for the frequency counter reading to stabilize. Record the frequency counter reading in the 10 MHz Reference Accuracy Worksheet as Counter Reading 2.
- 8. Subtract one from the Timebase DAC Setting recorded in step 5, then enter this number using the DATA keys on the EMC analyzer.
 - For example, if the timebase DAC setting is 105, press 1, 0, 4, (Hz).
- 9. Wait for the frequency counter reading to stabilize. Record the frequency counter reading in the 10 MHz Reference Accuracy Worksheet as Counter Reading 3.

1. 10 MHz Reference Output Accuracy, HP 8590 EM-Series

10 MHz Reference Accuracy Worksheet

Description	Measurement
Counter Reading 1	Hz
Timebase DAC Setting	
Counter Reading 2	Hz
Counter Reading 3	Hz

- 10. Calculate the frequency settability by performing the following steps:
 - a. Calculate the frequency difference between Counter Reading 2 and Counter Reading 1.
 - b. Calculate the frequency difference between Counter Reading 3 and Counter Reading 1.
 - c. Divide the frequency difference with the greatest absolute value by two and record the value as **TR Entry 1** of the performance verification test record. The settability should be less than $\pm 150~{\rm Hz}$.
 - d. Press (PRESET) on the EMC analyzer. The timebase DAC will be reset automatically to the value recorded in step 5.

2. 10 MHz Precision Frequency Reference Output Accuracy, HP 8590 EM-Series Option 004

If the EMC analyzer is not equipped with a Precision Frequency Reference, perform "10 MHz Reference Output Accuracy," instead.

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

This test measures the warmup characteristics of the 10 MHz reference oscillator. The ability of the 10 MHz oscillator to meet its warmup characteristics gives a high level of confidence that it will also meet its yearly aging specification.

A frequency counter is connected to the 10 MHz REF OUTPUT. After the EMC analyzer has been allowed to cool for at least 60 minutes, the EMC analyzer is powered on. A frequency measurement is made five minutes after power is applied and the frequency is recorded. Another frequency measurement is made 25 minutes later (30 minutes after power is applied) and the frequency is recorded. A final frequency measurement is made 60 minutes after power is applied. The difference between each of the first two frequency measurements and the last frequency measurement is calculated and recorded.

The related adjustment for this procedure is "10 MHz Precision Frequency Reference for Option 004, HP 8590 EM-Series".

Equipment Required

Frequency counter Frequency standard Cable, BNC, 122 cm (48 in) (two required)

Procedure

The EMC analyzer must have been allowed to sit with the power off for at least 60 minutes before performing this procedure. This adequately simulates a cold start. A cold start is defined as the EMC analyzer being powered on after being off for at least 60 minutes.

1. Allow the EMC analyzer to sit with the power off for at least 60 minutes before proceeding. Connect the equipment as shown in Figure 2-2.

2. 10 MHz Precision Frequency Reference Output Accuracy, HP 8590 EM-Series Option 004

2. Set the EMC analyzer LINE switch on. Record the Power On Time below.

Power On Time _____

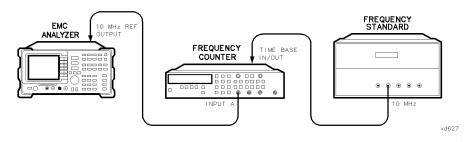


Figure 2-2.
10 MHz Precision Frequency Reference Output Accuracy Test Setup

2. 10 MHz Precision Frequency Reference Output Accuracy, HP 8590 EM-Series Option 004

3. Set the frequency counter controls as follows:

THE LOWE CALLS AND

FUNCTION/DATA FREQ A	A
INPUT A	
X10 ATTNOF	F
ACOF	F
50 Ω ZOFI	F
AUTO TRIGOf	V
100 kHz FILTER AOF	F

- 4. On the frequency counter, select a 10 second gate time by pressing GATE TIME) 10 (GATE TIME). Offset the displayed frequency by -10.0 MHz by pressing (MATH), (SELECT/ENTER), (CHS/EEX) 10 (CHS/EEX) 6 (SELECT/ENTER), (SELECT ENTER). The frequency counter should now display the difference between the INPUT A signal and 10.0 MHz with 0.001 Hz resolution.
- 5. Proceed with the next step 5 minutes after the Power On Time noted in step 2.
- 6. Wait at least two periods for the frequency counter to settle. Record the frequency counter reading in the 10 MHz Reference Accuracy Worksheet as Counter Reading 1 with 0.001 Hz resolution.
- 7. Proceed with the next step 30 minutes after the Power On Time noted in step 2.
- 8. Record the frequency counter reading in the 10 MHz Reference Accuracy Worksheet as Counter Reading 2 with 0.001 Hz resolution.
- 9. Proceed with the next step 60 minutes after the Power On Time noted in step 2.
- 10. Wait at least two periods for the frequency counter to settle. Record the frequency counter reading in the 10 MHz Reference Accuracy Worksheet as **Counter Reading 3** with 0.001 Hz resolution.

10 MHz Reference Accuracy Worksheet

Description	Measurement
Counter Reading 1	Hz
Counter Reading 2	Hz
Counter Reading 3	Hz

DDDO 4

2. 10 MHz Precision Frequency Reference Output Accuracy, HP 8590 EM-Series Option 004

- 11. Calculate the 5 Minute Warmup Error by subtracting Reading 3 from Reading 1 and dividing the result by $10~\mathrm{MHz}$.
 - 5 Minute Warmup Error = (Reading 1 Reading 3) $/(10.0 \times 10^6)$
- 12. Record the results as **TR Entry 1** of the performance verification test record.
- 13. Calculate the 30 Minute Warmup Error by subtracting Reading 3 from Reading 2 and dividing the result by 10 MHz.
 - 30 Minute Warmup Error = (Reading 2 Reading 3) $/ (10.0 \times 10^6)$
- 14. Record the results as **TR Entry 2** of the performance verification test record.

3. Comb Generator Frequency Accuracy, **HP 8593EM and HP 8596EM**

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

A 100 MHz signal from a synthesized source and the output from a comb generator are applied to the input of the EMC analyzer. The source frequency is adjusted until the two signals appear at the same frequency. The frequency setting of the source is then equal to the comb generator frequency and this frequency is compared to the specification.

The related adjustment procedure for this performance verification test is the "Comb Generator, HP 8593EM and HP 8596EM" adjustment.

Equipment Required

Synthesized sweeper Power splitter Cable, APC 3.5 mm (m) 91 cm (36 in) Cable, SMA 61 cm (18 in) (m) to (m) Adapter, Type N (m) to APC 3.5 (m) Adapter, 3.5 mm (f) to 3.5 mm (f)

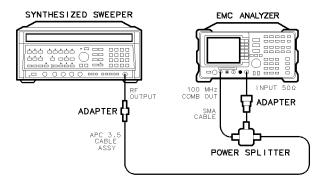


Figure 2-3. Comb Generator Frequency Accuracy Test Setup

xc62

3. Comb Generator Frequency Accuracy, HP 8593EM and HP 8596EM

Procedure

- 1. Connect the equipment as shown in Figure 2-3.
 - Option 026 only: Omit the Type N to APC 3.5 mm adapter.
- 2. Press instrument preset on the synthesized sweeper, then set the controls as follows:

CW	
POWER LEVEL	0 dBm
RF	$\dots \dots OFF$

3. Press (PRESET) on the EMC analyzer, then wait for preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
FREQUENCY 100 (MHz)

AUX/USER COMB GEN ON OFF (ON)

SPAN 10 (MHz)

AMPLITUDE REF LVL 117 (_{\rm I} _{\rm I} _
```

- 4. Press (AMPLITUDE) and adjust the reference-level setting until the signal peak is 10 dB below the reference level.
- 5. Set the synthesized sweeper RF on. Adjust the synthesized sweeper power level until the two signals are the same amplitude.
- 6. Set SCALE LOG LIN (LOG) to 2 dB on the EMC analyzer.
- 7. If necessary, readjust the synthesized sweeper power level until the two signals are the same amplitude.
- 8. Set the synthesized sweeper CW to 100 MHz. A very unstable signal will probably appear. The peak amplitude should be at least 3 dB greater in amplitude than either of the individual signals.
- 9. Adjust the synthesized sweeper CW setting until a single signal appears to rise and fall in amplitude at the slowest rate (1 Hz frequency resolution will be necessary). The signal peak should be displayed approximately 6 dB above the amplitude of the individual signals.

2.10 Performance Verification Tests

3. Comb Generator Frequency Accuracy, HP 8593EM and HP 8596EM

10. Record the synthesized sweeper CW frequency setting as **TR Entry 1** of the performance verification test record. The frequency should be between $99.993~\mathrm{MHz}$ and $100.007~\mathrm{MHz}.$

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The frequency readout accuracy of the EMC analyzer is tested with an input signal of known frequency. By using the same frequency standard for the EMC analyzer and the synthesized sweeper, the frequency reference error is eliminated.

Equipment Required

Synthesized sweeper Adapter, Type N (f) to APC 3.5 (m) Adapter, APC 3.5 (f) to APC 3.5 (f) Cable, BNC, 122 cm (48 in) Cable, APC 3.5 mm (m) 91 cm (36 in)

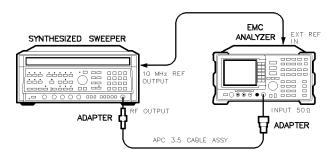


Figure 2-4.
Frequency Readout Accuracy Test Setup, HP 8591EM and HP 8594EM

Procedure

This performance verification test consists of two parts:

Part 1: Frequency Readout Accuracy

Part 2: Marker Count Accuracy

Perform "Part 1: Frequency Readout Accuracy" before performing "Part 2: Marker Count Accuracy."

2-12 Performance Verification Tests

Part 1: Frequency Readout Accuracy

- 1. Connect the equipment as shown in Figure 2-4. Remember to connect the 10 MHz REF OUT of the synthesized sweeper to the EXT REF IN of the EMC analyzer.
- 2. Perform the following steps to set up the equipment:
 - Press INSTRUMENT PRESET on the synthesized sweeper, then set the controls as follows:

- On the EMC analyzer, press (PRESET), wait for the preset routine to finish, then press (FREQUENCY) 1.5 (GHz).
- 3. Set the EMC analyzer to measure the frequency readout accuracy by pressing the following keys:

$$(SPAN)$$
 20 (MHz) $(MKR \rightarrow)$ MARKER \rightarrow HIGH

- 4. Record the MKR frequency reading as **TR Entry 1** in the performance verification test record. The reading should be within the limits shown in Table 2-1.
- 5. Change to the next EMC analyzer span setting listed in Table 2-1.
- 6. Repeat steps 3 through 5 for each EMC analyzer span setting/TR entry listed in Table 2-1.

Table 2-1. Frequency Readout Accuracy

EMC Analyzer	MKR Reading		
Span (MHz)	Min. (MHz)	TR Entry	Max. (MHz)
20	1.49918	1	1.50082
10	1.49958	2	1.50042
1	1.499968	3	1.500032

7. Set the EMC analyzer by pressing the following keys:

(BW) IF BW AUTO MAN (MAN) 300 (Hz)

(SPAN) $20 \, (kHz)$

- 8. Press $(\overline{MKR} \rightarrow)$ MARKER \rightarrow HIGH on the EMC analyzer.
- 9. Record the MKR frequency reading as **TR Entry 4** of the performance verification test record. The reading should be within the limits of 1.49999924 GHz and 1.50000076 GHz.
- "Part 1: Frequency Readout Accuracy" is now complete. Continue with "Part 2: Marker Count Accuracy."

Part 2: Marker Count Accuracy

Perform "Part 1: Frequency Readout Accuracy" before performing this procedure.

1. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer to measure the marker count accuracy by pressing the following keys:

(FREQUENCY) 1.5 (GHz) (SPAN) 20 (MHz) (BW) IF BW AUTO MAN (MAN) 300 (kHz) (MKR) More 1 of 3 MK COUNT ON OFF (ON)

More 2 of 3 CNT RES AUTO MAN (MAN) 100 (Hz)

- 2. Press $(\overline{MKR} \rightarrow)$ MARKER \rightarrow HIGH, then wait for a count to be taken (it may take several seconds).
- 3. Record the CNTR frequency reading as **TR Entry 5** of the performance verification test record. The reading should be within the limits of 1.4999989 GHz and 1.5000011 GHz.
- 4. Change the EMC analyzer settings by pressing the following keys:

(SPAN) 1 (MHz) (MKR) More 1 of 3 More 2 of 3 CNT RES AUTO MAN (MAN) 10 (Hz)

- 5. Press $(\overline{MKR} \rightarrow)$ MARKER \rightarrow HIGH, then wait for a count to be taken (it may take several seconds).
- 6. Record the CNTR frequency reading as **TR Entry 6** of the performance verification test record. The reading should be within the limits of 1.49999989 GHz and 1.50000011 GHz.
- 7. Set the EMC analyzer by pressing the following keys:

(BW) IF BW AUTO MAN (MAN) 300 (Hz) (SPAN) 20 (kHz)

- 8. Press $(\overline{MKR} \rightarrow)$ MARKER \rightarrow HIGH on the EMC analyzer.
- 9. Record the MKR frequency reading as **TR Entry 7** of the performance verification test record. The reading should be within the limits of 1.49999989 GHz and 1.50000011 GHz.

10. Set the EMC analyzer by pressing the following keys:

$$\ensuremath{\mathsf{BW}}$$
 IF $\ensuremath{\mathsf{BW}}$ AUTO MAN (MAN) $30~\ensuremath{\mathsf{Hz}}$ $\ensuremath{\mathsf{SPAN}}$ 2 $\ensuremath{\mathsf{kHz}}$

- $^{11}\cdot$ Press (MKR \to MARKER \to HIGH (MKR) More 1 of 3 MK TRACK ON OFF (ON), then wait until the count is completed (it may take several seconds).
- 12. Record the MKR reading as **TR Entry 8** of the Performance verification Test Record. The reading should be within the limits of 1.49999989 and 1.50000011.

5. Frequency Readout and Marker Count Accuracy, HP 8593EM, HP 8595EM, and HP 8596EM

5. Frequency Readout and Marker Count Accuracy, HP 8593EM, HP 8595EM, and HP 8596EM

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

The frequency readout accuracy of the EMC analyzer is tested with an input signal of known frequency. By using the same frequency standard for the EMC analyzer and the synthesized sweeper, the frequency reference error is eliminated.

Equipment Required

Synthesized sweeper Adapter, Type N (f) to APC 3.5 (m) Adapter, APC 3.5 (f) to APC 3.5 (f) Cable, APC 3.5, 91 cm (36 in) Cable, BNC, 122 cm (48 in)

Additional Equipment for Option 026

Adapter, 3.5 mm (f) to 3.5 mm (f)

Figure 2-5. Frequency Readout Accuracy Test Setup, HP 8593EM, HP 8595EM, and HP 8596EM

5. Frequency Readout and Marker Count Accuracy, HP 8593EM, HP 8595EM, and HP 8596EM

Procedure

This performance verification test consists of two parts:

Part 1: Frequency Readout Accuracy

Part 2: Marker Count Accuracy

Perform "Part 1: Frequency Readout Accuracy" before performing "Part 2: Marker Count Accuracy."

Part 1: Frequency Readout Accuracy

1. Connect the equipment as shown in Figure 2-5. Remember to connect the 10 MHz REF OUT of the synthesized sweeper to the EXT REF IN of the EMC analyzer.

Option 026 only: Use the 3.5 mm adapter to connect the cable to the EMC analyzer input.

2. Press INSTRUMENT PRESET on the synthesized sweeper, then set the controls as follows:

CW	1.5	GHz
POWER LEVEL	-10	dBm

- 3. Press (PRESET) on the EMC analyzer, wait for the preset routine to finish, then press (FREQUENCY) 1.5 (GHz).
- 4. On the EMC analyzer, press the following keys to measure the frequency readout accuracy:

$$\begin{array}{c} \text{(SPAN)} \ 20 \ \text{(MHz)} \\ \text{(MKR} \ \rightarrow \ \text{MARKER} \ \rightarrow \ \text{HIGH} \end{array}$$

- 5. Record the MKR frequency reading as **TR Entry 1** in the performance verification test record as indicated in Table 2-2. The reading should be within the limits shown.
- 6. Change to the next EMC analyzer span setting listed in Table 2-2.
- 7. Repeat steps 4 through 6 for the EMC analyzer 10 MHz and 1 MHz span settings as listed in Table 2-2.
- 8. Change the synthesized sweeper CW frequency and the EMC analyzer center frequency and span as required by Table 2-2 and repeat steps 4 through 7.

2.18 Performance Verification Tests

5. Frequency Readout and Marker Count Accuracy, HP 8593EM, HP 8595EM, and HP 8596EM Table 2-2. Frequency Readout Accuracy

Synthesized Sweeper CW Frequency (MHz)	EMC Analyzer Span (MHz)	EMC Analyzer Center Frequency (GHz)	Minimum Frequency (GHz)	TR Entry Frequency (GHz)	Maximum Frequency (GHz)
1500	20	1.5	1.49918	1	1.50082
1500	10	1.5	1.49958	2	1.50042
1500	1	1.5	1.499968	3	1.500032
4000	20	4.0	3.99918	4	4.00082
4000	10	4.0	3.99958	5	4.00042
4000	1	4.0	3.999968	6	4.000032
Stop here for HP 859	5EM.				
9000	20	9.0	8.99918	7	9.00082
9000	10	9.0	8.99958	8	9.00042
9000	1	9.0	8.999968	9	9.000032
Stop here for HP 859	Stop here for HP 8596EM.				
16000	20	16.0	15.99918	10	16.00082
16000	10	16.0	15.99958	11	16.00042
16000	1	16.0	15.999968	12	16.000032
21000	20	21.0	20.99918	13	21.00082
21000	10	21.0	20.99958	14	21.00042
21000	1	21.0	20.999968	15	21.000032

- 9. Set the synthesized sweeper CW to 1.5 GHz.
- 10. Set the EMC analyzer by pressing the following keys:

11. Press ($\overline{\rm MKR} \rightarrow {\rm MARKER} \rightarrow {\rm HIGH}$ on the EMC analyzer.

5. Frequency Readout and Marker Count Accuracy, HP 8593EM, HP 8595EM, and HP 8596EM

12. Record the MKR frequency reading as **TR Entry 16** of the performance verification test record. The reading should be within the limits of 1.49999924 GHz and 1.50000076 GHz.

"Part 1: Frequency Readout Accuracy" is now complete. Continue with "Part 2: Marker Count Accuracy."

Part 2: Marker Count Accuracy

Perform "Part 1: Frequency Readout Accuracy" before performing this procedure.

- 1. Press PRESET on the EMC analyzer, then wait for the preset routine to finish
- 2. Set the EMC analyzer to measure the marker count accuracy by pressing the following keys:

FREQUENCY 1.5 GHz
SPAN 20 MHz
BW IF BW AUTO MAN (MAN) 300 kHz
MKR More 1 of 3 MK COUNT ON OFF (ON)
More 2 of 3 CNT RES AUTO MAN (MAN) 100 Hz

- 3. Press $(MKR \rightarrow MARKER \rightarrow HIGH)$, then wait for a count to be taken (it may take several seconds).
- 4. Record the CNTR frequency reading as **TR Entry 17** of the performance verification test record. The reading should be within the limits shown in Table 2-3.

5. Frequency Readout and Marker Count Accuracy, HP 8593EM, HP 8595EM, and HP 8596EM Table 2-3. Marker Count Accuracy

Synthesized Sweeper CW Frequency	EMC Analyzer Center Frequency	EMC Analyzer Span	EMC Analyzer Counter Resolution	CNT	MKR Frequ	iency
(MHz)	(GHz)	(MHz)	(Hz)	Min. (GHz)	TR Entry	Max. (GHz)
1500	1.5	20	100	1.4999989	17	1.5000011
1500	1.5	1	10	1.49999989	18	1.50000011
4000	4.0	20	100	3.9999989	19	4.0000011
4000	4.0	1	10	3.99999989	20	4.00000011
If HP 8595EM,	If HP 8595EM, stop here.					
9000	9.0	20	100	8.9999979	21	9.0000021
9000	9.0	1	10	8.999999979	22	9.00000021
If HP 8596EM,	If HP 8596EM, stop here.					
16000	16.0	20	100	15.9999969	23	16.0000031
16000	16.0	1	10	15.99999969	24	16.00000031
21000	21.0	20	100	20.9999959	25	21.0000041
21000	21.0	1	10	20.99999959	26	21.00000041

5. Change the EMC analyzer settings by pressing the following keys:

(SPAN) 1 (MHz) (MKR) More 1 of 3 MK COUNT ON OFF (ON) More 2 of 3 CNT RES AUTO MAN (MAN) 10 (Hz)

- 6. Press $(MKR \rightarrow)$ MARKER \rightarrow HIGH, then wait for a count to be taken (it may take several seconds).
- 7. Record the CNTR frequency reading as TR Entry 18 of the performance verification test record. The reading should be within the limits shown in Table 2-3.
- 8. Set the synthesized sweeper CW frequency to the next frequency as required by Table 2-3.
- 9. Repeat steps 2 through 8 for each of the remaining EMC analyzer settings listed in Table 2-3.

5. Frequency Readout and Marker Count Accuracy, HP 8593EM, HP 8595EM, and HP 8596EM

- 10. Set the synthesized sweeper CW to 1.5 GHz.
- 11. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 1.5 (GHz)
(BW) IF BW AUTO MAN (MAN) 300 (Hz)
(SPAN) 20 (kHz)

- 12. Press ($\overline{\text{MKR}} \rightarrow$) MARKER \rightarrow HIGH on the EMC analyzer.
- 13. Record the MKR frequency reading as **TR Entry 27** of the performance verification test record. The reading should be within the limits of 1.49999989 GHz and 1.50000011 GHz.
- 14. Set the EMC analyzer by pressing the following keys:

BW IF BW AUTO MAN (MAN) 30 (Hz) (SPAN) 2 (kHz)

- 15. Press (MKR \rightarrow) MARKER \rightarrow HIGH (MKR) More 1 of 3 MK TRACK ON OFF (ON), then wait until the count is completed (it may take several seconds).
- 16. Record the MKR reading as **TR Entry 28** of the Performance verification Test Record. The reading should be within the limits of 1.49999989 and 1.50000011.

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

A 500 MHz CW signal is applied to the input of the EMC analyzer. The marker functions are used to measure the amplitude of the carrier and the noise level 10 kHz, 20 kHz, and 30 kHz above and below the carrier. The difference between these two measurements is compared to specification after the result is normalized to 1 Hz.

Equipment Required

Signal generator Cable, Type N, 183 cm (72 in)

Additional Equipment for Option 026

Adapter, APC 3.5 (f) to Type N (f)

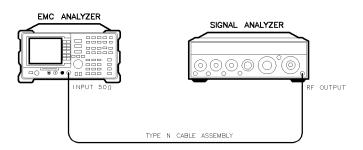


Figure 2-6. Noise Sidebands Test Setup

Procedure

This performance verification test consists of three parts:

Part 1: Noise Sideband Suppression at 10 kHz

Part 2: Noise Sideband Suppression at 20 kHz

Part 3: Noise Sideband Suppression at 30 kHz

Perform part 1 before performing part 2 or part 3 of this procedure.

xu18ce

A worksheet is provided at the end of this procedure for calculating the noise sideband suppression.

Part 1: Noise Sideband Suppression at 10 kHz

- 1. Perform the following steps to set up the equipment:
 - Set the signal generator controls as follows:

FREQUENCY 500 MH	\mathbf{z}
OUTPUT LEVEL 0 dBr	n
AMOF	F
FMOF	F
COUNTERIN	Τ
RF Ol	N

- Connect the equipment as shown in Figure 2-6.
- Press (PRESET) on the EMC analyzer, wait for the preset routine to finish, then press (FREQUENCY) 500 (MHz).
- 2. Press the following EMC analyzer keys to measure the carrier amplitude.

```
(SPAN) 10 (MHz)
(MKR \rightarrow) MARKER \rightarrow HIGH
(MKR) More 1 of 3 MK TRACK ON OFF (ON)
(SPAN) 200 (kHz)
(BW) 1 (kHz)
AVG BW AUTO MAN (MAN) 30 (Hz)
(MKR) More 1 of 3 MK TRACK ON OFF (OFF)
(SGL SWP)
```

Wait for the completion of a sweep, then press $(\overline{MKR} \rightarrow)$ MARKER \rightarrow HIGH.

Record the MKR amplitude reading in the Noise Sideband Worksheet as the Carrier Amplitude.

3. Press the following EMC analyzer keys to measure the noise sideband level at +10 kHz:

```
More 1 of 3 More 2 of 3
MARKER Δ 10 (kHz)
(MKR) MARKER NORMAL
```

Record the MKR amplitude reading in the Noise Sideband Worksheet as the Noise Sideband Level at +10 kHz.

4. Press the following EMC analyzer keys to measure the noise sideband level at $-10~\mathrm{kHz}$:

```
\begin{array}{ll} (\overline{\text{MKR}} \longrightarrow \text{MARKER} \longrightarrow \text{HIGH} \\ \\ \text{More 1 of 3 More 2 of 3} \\ \\ \text{MARKER } \Delta = -10 \ (\overline{\text{kHz}}) \\ \\ (\overline{\text{MKR}}) \ \text{MARKER NORMAL} \end{array}
```

Record the MKR amplitude reading in the Noise Sideband Worksheet as the **Noise Sideband Level at** -10 kHz.

- 5. Record the more positive value, either Noise Sideband Level at +10 kHz or Noise Sideband Level at -10 kHz from the Noise Sideband Worksheet as the **Maximum Noise Sideband Level at** ± 10 kHz.
- 6. Calculate the Noise Sideband Suppression at 10 kHz by subtracting the Carrier Amplitude from the Maximum Noise Sideband Level at ± 10 kHz. Use the equation below.

 $Noise\ Sideband\ Suppression\ =\ Maximum\ Noise\ Sideband\ Level\ -\ Carrier\ Amplitude$

7. Record the Noise Sideband Suppression at 10 kHz in the performance verification test record as **TR Entry 1**. The suppression should be \leq -60 dBc.

Part 2: Noise Sideband Suppression at 20 kHz

1. Press the following EMC analyzer keys to measure the noise sideband level at +20 kHz:

```
MKR MARKER Δ 20 kHz
MARKER NORMAL
```

Record the MKR amplitude reading in the Noise Sideband Worksheet as the **Noise Sideband Level at +20 kHz**.

2. Press the following EMC analyzer keys to measure the noise sideband level at -20 kHz:

```
\begin{array}{ll} (\overline{\text{MKR}} \longrightarrow \overline{\text{MARKER}} \longrightarrow \overline{\text{HIGH}} \\ \\ \text{More 1 of 3 More 2 of 3} \\ \\ \text{MARKER } \Delta = -20 \ (\overline{\text{kHz}}) \end{array}
```

2.26 Performance Verification Tests

(MKR) MARKER NORMAL

Record the MKR amplitude reading in the Noise Sideband Worksheet as the Noise Sideband Level at -20 kHz.

- 3. Record the more positive value, either Noise Sideband Level at +20 kHz or Noise Sideband Level at -20 kHz from the Noise Sideband Worksheet as the Maximum Noise Sideband Level at ± 20 kHz.
- 4. Calculate the Noise Sideband Suppression at 20 kHz by subtracting the Carrier Amplitude from the Maximum Noise Sideband Level at ±20 kHz. Use the equation below.
 - $Noise\ Sideband\ Suppression\ =\ Maximum\ Noise\ Sideband\ Level\ -\ Carrier$ Amplitude
- 5. Record the Noise Sideband Suppression at 20 kHz in the performance verification test record as **TR Entry 2**. The suppression should be <-70 dBc.

Part 3: Noise Sideband Suppression at 30 kHz

1. Press the following EMC analyzer keys to measure the noise sideband level at +30 kHz:

(MKR) MARKER Δ 30 (kHz) MARKER NORMAL

Record the MKR amplitude reading in the Noise Sideband Worksheet as the Noise Sideband Level at +30 kHz.

2. Press the following EMC analyzer keys to measure the noise sideband level at -30 kHz:

(MKR →) MARKER → HIGH More 1 of 3 More 2 of 3 MARKER $\Delta -30$ (kHz) (MKR) MARKER NORMAL

Record the MKR amplitude reading in the Noise Sideband Worksheet as the Noise Sideband Level at -30 kHz.

3. Record the more positive value, either Noise Sideband Level at +30 kHz or Noise Sideband Level at -30 kHz from the Noise Sideband Worksheet as the Maximum Noise Sideband Level at ± 30 kHz.

4. Calculate the Noise Sideband Suppression at 30 kHz by subtracting the Carrier Amplitude from the Maximum Noise Sideband Level at ± 30 kHz. Use the equation below.

 $Noise\ Sideband\ Suppression = Maximum\ Noise\ Sideband\ Level-Carrier\ Amplitude$

5. Record the Noise Sideband Suppression at 30 kHz in the performance verification test record as **TR Entry 3**. The suppression should be ≤ -75 dBc.

Noise Sideband Worksheet

Description	Measurement
Carrier Amplitude	$-$ dB μ V
Noise Sideband Level at + 10 kHz	$-$ dB μ V
Noise Sideband Level at -10 kHz	$-$ dB μ V
Maximum Noise Sideband Level at ±10 kHz	$-$ dB μ V
Noise Sideband Level at +20 kHz	$-$ dB μ V
Noise Sideband Level at -20 kHz	$-$ dB μ V
Maximum Noise Sideband Level at ±20 kHz	$-$ dB μ V
Noise Sideband Level at +30 kHz	$-$ dB μ V
Noise Sideband Level at -30 kHz	$-$ dB μ V
Maximum Noise Sideband Level at ±30 kHz	$_{}$ dB μ V

Note that the IF bandwidth is normalized to 1 Hz as follows:

 $1~Hz~noise\text{-}power = (noise\text{-}power~in~dBc) - (10 \times log[IF~BW])$

For example, -60 dBc in a 1 kHz IF bandwidth is normalized to -90 dBc/Hz.

2.28 Performance Verification Tests

7. System Related Sidebands, HP 8590 EM-Series

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

A 500 MHz CW signal is applied to the input of the EMC analyzer. The marker functions are used to measure the amplitude of the carrier and the amplitude of any system related sidebands >30 kHz above and below the carrier. System related sidebands are any internally generated line related, power supply related or local oscillator related sidebands.

There are no related adjustment procedures for this performance test.

Equipment Required

Signal generator Cable, Type N, 183 cm (72 in)

Additional Equipment for Option 026

Adapter, APC 3.5 (f) to Type N (f)

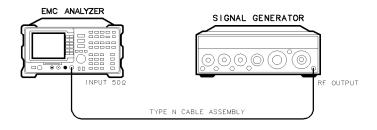


Figure 2-7. System Related Sidebands Test Setup

Procedure

1. Set the signal generator controls as follows:

FREQUENCY	0 MHz
OUTPUT LEVEL	
AM	OFF
FM	OFF
COUNTER	INT

xu111ce

7.	System	Related	Sidebands,	HP	8590	EM-Series
----	--------	---------	------------	----	------	------------------

RFON

2. Connect the equipment as shown in Figure 2-7.

Option 026 only: Use the APC adapter to connect the cable to the EMC analyzer input.

3. Press PRESET on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer to measure the system related sideband above the signal by pressing the following keys:

```
FREQUENCY 500 (MHz)
(SPAN 10 (MHz)
(MKR → MKR → HIGH
(MKR More 1 of 3 MK TRACK ON OFF (ON)
(SPAN 200 kHz)
(BW) 1 (kHz)
AVG BW AUTO MAN (MAN) 30 (Hz)
```

4. Allow the EMC analyzer to stabilize for approximately 1 minute, then press the following keys:

```
(MKR) More 1 of 3 MK TRACK ON OFF (OFF)

(FREQUENCY) CF STEP AUTO MAN (MAN) 130 (kHz)
(SGL SWP)
```

5. Wait for the completion of the sweep, then press the following EMC analyzer keys:

```
\begin{array}{ll} (\overline{MKR} \longrightarrow MKR \longrightarrow HIGH \\ \hline \text{More 1 of 3 More 2 of 3 MARKER $\Delta$.} \\ \hline (\overline{FREQUENCY}) \\ \hline (\overline{\uparrow}) \text{ (step-up key)} \end{array}
```

- 6. Measure the system related sideband above the signal by pressing (SGL SWP) on the EMC analyzer. Wait for the completion of a new sweep, then press $(MKR \rightarrow)$ MKR \rightarrow HIGH.
- 7. Record the Marker-Δ Amplitude as **TR Entry 1** of the performance verification test record.

The system related sideband above the signal should be > 65 dBc.

2.30 Performance Verification Tests

7. System Related Sidebands, HP 8590 EM-Series

8.	Set the EMC analyzer to measure the system related sideband below the signal by pressing the following EMC analyzer keys:
	(step-down key) (step-down key)
9.	Measure the system related sideband below the signal by pressing (SGL SWP). Wait for the completion of a new sweep, then press (MKR \rightarrow MKR \rightarrow HIGH.
	Record the Marker- Δ Amplitude as TR Entry 2 of the performance verification test record.
	The system related sideband below the signal should be $>65~\mathrm{dBc}.$

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

For testing each frequency span, two synthesized sources are used to provide two precisely-spaced signals. The EMC analyzer marker functions are used to measure this frequency difference and the marker reading is compared to the specification.

Equipment Required

Synthesized Sweeper Synthesizer/Level Generator Signal Generator Power Splitter Adapter, Type N (m) to Type N (m) Adapter, Type N (f) to APC 3.5 (f) Cable, Type N, 183 cm (72 in) Cable, Type N, 152 cm (60 in)

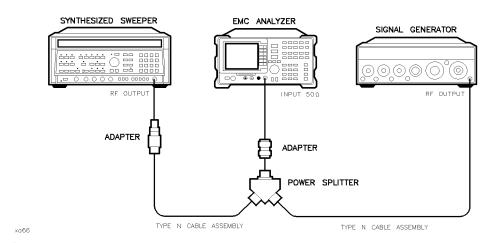


Figure 2-8.
1800 MHz Frequency Span Readout Accuracy Test Setup, HP 8591EM

Procedure

This performance verification test consists of two parts:

Part 1: 1800 MHz Frequency Span Readout Accuracy

Part 2: 10.1 MHz to 10 kHz Frequency Span Readout Accuracy

Perform "Part 1: 1800 MHz Frequency Span Readout Accuracy" before performing "Part 2: 10.1 MHz to 10 kHz Frequency Span Readout Accuracy."

Part 1: 1800 MHz Frequency Span Readout Accuracy

- 1. Connect the equipment as shown in Figure 2-8. Note that the power splitter is used as a combiner.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish.
- 3. Press INSTRUMENT PRESET on the synthesized sweeper and set the controls as follows:

CW	1700 MH	ĺz

4. On the signal generator, set the controls as follows:

FREQUENCY (LOCKED MODE)	200 MHz
CW OUTPUT	0 dBm

- 5. Adjust the EMC analyzer center frequency, if necessary, to place the lower frequency on the second vertical graticule line (one division from the left-most graticule line).
- 6. On the EMC analyzer, press (SGL SWP). Wait for the completion of a new sweep, then press the following keys:

```
(MKR →) MARKER → HIGH
More 1 of 3 More 2 of 3 MARKER \Delta
More 3 of 3 NEXT PEAK
```

The two markers should be on the signals near the second and tenth vertical graticule lines (the first graticule line is the left-most).

- 7. Press More 1 of 3 More 2 of 3 MARKER Δ , then continue pressing More 3 of 3 NEXT PK RIGHT until the marker Δ is on the right-most signal (1700 MHz).
- 8. Record the MKR Δ frequency reading as **TR Entry 1** of the performance verification test record.

The MKR Δ reading should be between 1446 MHz and 1554 MHz.

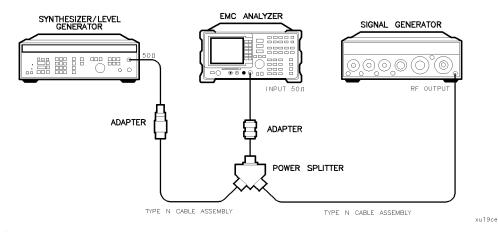


Figure 2-9.
10.1 MHz to 10 kHz Frequency Span Readout Accuracy Test Setup,
HP 8591EM

Part 2: 10.1 MHz to 10 kHz Frequency Span Readout Accuracy

Perform "Part 1: 1800 MHz Frequency Span Readout Accuracy" before performing this procedure.

- 1. Connect the equipment as shown in Figure 2-9. Note that the power splitter is used as a combiner.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

2.34 Performance Verification Tests

3. Press INSTRUMENT PRESET on the synthesized sweeper, then set the controls as follows:

$\mathbf{C}\mathbf{W}$				 	 	 	 		 	 		 	 	 	74	MH:	Z
POV	VER	LEV	VEL	 		 	 	 	 		 	 	 	 	-5	dBn	ı

4. Set the synthesizer/level generator controls as follows:

FREQUENCY	66	MHz
AMPLITUDE		dBm

- 5. Adjust the EMC analyzer center frequency to center the two signals on the display.
- 6. On the EMC analyzer, press (SGL SWP). Wait for the completion of a new sweep, then press the following keys:

```
(MKR \rightarrow) MARKER \rightarrow HIGH
More 1 of 3 More 2 of 3 MARKER \Delta
More 3 of 3 NEXT PEAK
```

The two markers should be on the signals near the second and tenth vertical graticule lines (the first graticule line is the left-most).

- 7. Record the MKR-Δ frequency reading in the performance verification test record as TR Entry 2. The MKR-Δ frequency reading should be within the limits shown.
- 8. Press (MKR), More 1 of 3, then MARKER ALL OFF on the EMC analyzer.
- 9. Change the equipment to the next settings listed in Table 2-4.
- 10. On the EMC analyzer, press (SGL SWP). Wait for the completion of a new sweep, then press the following keys:

```
(MKR \rightarrow) MARKER \rightarrow HIGH
More 1 of 3 More 2 of 3 MARKER \Delta
More 3 of 3 NEXT PEAK
```

- 11. Record the MKR- Δ frequency reading in the performance verification test record.
- 12. Repeat steps 8 through 11 for the remaining EMC analyzer span settings through TR Entry 6 (refer to Table 2-4).

13. Set the EMC analyzer to measure the frequency span accuracy at 1 kHz by pressing the following keys:

MKR More 1 of 3 MARKER ALL OFF (BW) 30 (Hz)

- 14. Change to the next EMC analyzer span setting listed in Table 2-4 (**TR Entry 7**). Be sure to set the synthesized sweeper CW and synthesizer/level generator frequencies as shown in the table.
- 15. On the EMC analyzer, press (SGL SWP). Wait for the completion of a new sweep, then press the following keys:

(MKR \rightarrow) MARKER \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ More 3 of 3 NEXT PEAK

- 16. Record the MKR-Δ frequency reading in **TR Entry 7** of the performance verification test record.
- 17. Repeat steps 15 and 16 for the 300 Hz EMC analyzer span setting.
- 18. Verify that the $300~\mathrm{Hz}$ span setting is within $225~\mathrm{Hz}$ to $255~\mathrm{Hz}$.

Table 2-4. Frequency Span Readout Accuracy

EMC Analyzer Span Setting	Synthesizer/Level Generator Frequency	Synthesized Sweeper Frequency	MKR-Δ Reading				
	MHz	MHz	Minimum	TR Entry	Maximum		
10.10 MHz	66.000	74.000	7.70 MHz	2	8.30 MHz		
10.00 MHz	66.000	74.000	7.80 MHz	3	8.20 MHz		
100.00 kHz	69.960	70.040	78.00 kHz	4	82.00 kHz		
99.00 kHz	69.960	70.040	78.00 kHz	5	82.06 kHz		
10.00 kHz	69.996	70.004	7.80 kHz	6	8.20 kHz		
1.00 kHz	69.9996	70.0004	0.78 kHz	7	0.82 kHz		
300.00 Hz ¹	69.99988	70.00012	225.00 Hz	_	255.00 Hz		

¹ This is not an EMC analyzer specification; however, the 300 Hz span is tested to $\pm 5\,$ % to keep the narrow bandwidth accuracy and residual FM measurement uncertainty at a minimum. If the 300 Hz span accuracy is >5% the additional measurement uncertainty may need to be included for the bandwidth accuracy and residual FM measurement uncertainties.

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

For testing each frequency span, two synthesized sources are used to provide two precisely-spaced signals. The EMC analyzer marker functions are used to measure this frequency difference and the marker reading is compared to the specification.

Equipment Required

Synthesized sweeper Synthesizer/level generator Signal generator Power splitter Adapter, Type N (m) to Type N (m) Adapter, Type N (f) to APC 3.5 (f) Cable, APC 3.5, 91 cm (36 in) Cable, Type N, 183 cm (72 in) Cable, Type N, 152 cm (60 in) or Adapter, APC 3.5 (f) to Type N (f)

Additional Equipment for Option 026

Adapter, APC 3.5 (f) to Type N (f)

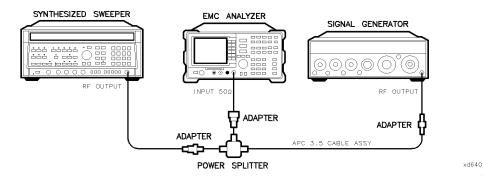


Figure 2-10. 1800 MHz Frequency Span Readout Accuracy Test Setup HP 8593EM, HP 8595EM, and HP 8596EM

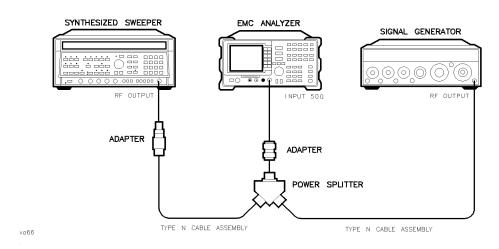


Figure 2-11. Frequency Span Readout Test Setup, HP 8594EM

Procedure

This performance verification test consists of two parts:

Part 1: 1800 MHz Frequency Span Readout Accuracy

Part 2: 10.1 MHz to 10 kHz Frequency Span Readout Accuracy

Perform "Part 1: 1800 MHz Frequency Span Readout Accuracy" before performing "Part 2: 10.1 MHz to 10 kHz Frequency Span Readout Accuracy."

Part 1: 1800 MHz Frequency Span Readout Accuracy

- 1. Connect the equipment as shown in Figure 2-10 (Figure 2-11 for HP 8594EM). Note that the power splitter is used as a combiner.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 900 (MHz) (SPAN) 1800 (MHz)

3. Press INSTRUMENT PRESET on the synthesized sweeper and set the controls as follows:

4. On the signal generator, set the controls as follows:

- 5. Adjust the EMC analyzer center frequency, if necessary, to place the lower frequency on the second vertical graticule line (one division from the left-most graticule line).
- 6. On the EMC analyzer, press (SGL SWP).

Wait for the completion of a new sweep, then press:

The two markers should be on the signals near the second and tenth vertical graticule lines (the first graticule line is the left-most).

- 7. Press More 1 of 3 More 2 of 3 MARKER Δ More 3 of 3, then continue pressing NEXT PK RIGHT until the marker Δ is on the right-most signal.
- 8. Record the MKR Δ frequency reading as **TR Entry 1** of the performance verification test record.

The MKR reading should be within the 1446 MHz and 1554 MHz.

2.40 Performance Verification Tests

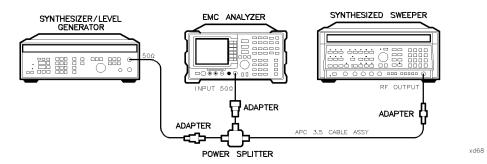


Figure 2-12. 10.1 MHz to 10 kHz Frequency Span Readout Accuracy Test Setup, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

Part 2: 10.1 MHz to 10 kHz Frequency Span Readout Accuracy

Perform "Part 1: 1800 MHz Frequency Span Readout Accuracy" before performing this procedure.

- 1. Connect the equipment as shown in Figure 2-12. Note that the Power Splitter is used as a combiner.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

3. Press INSTRUMENT PRESET on the synthesized sweeper, then set the controls as follows:

CW	 74 MHz
POWER LEVEL	 5 dBm

4. Set the synthesizer/level generator controls as follows:

FREQUENCY	
AMPLITUDE	0 dBm

- 5. Adjust the EMC analyzer center frequency to center the two signals on the display.
- 6. On the EMC analyzer, press (SGL SWP). Wait for the completion of a new sweep, then press the following keys:

The two markers should be on the signals near the second and tenth vertical graticule lines (the first graticule line is the left-most).

- 7. Record the MKR- Δ frequency reading in the performance verification test record as **TR Entry 2**. The MKR- Δ frequency reading should be within the limits shown.
- 8. Press (MKR), More 1 of 3, MARKER ALL OFF on the EMC analyzer.
- 9. Change the equipment to the next settings listed in Table 2-5.
- 10. On the EMC analyzer, press (SGL SWP). Wait for the completion of a new sweep, then press the following keys:

- 11. Record the MKR- Δ frequency reading in the performance verification test record.
- 12. Repeat steps 8 through 11 for the remaining EMC analyzer span settings through **TR Entry 6** (refer to Table 2-5).
- 13. Set the EMC analyzer to measure the frequency span accuracy at 1 kHz by pressing the following keys:

(MKR) More 1 of 3 MARKER ALL OFF (BW) 30 (Hz)

If necessary, adjust the center frequency to display the two signals.

- 14. Change to the next EMC analyzer span setting listed in Table 2-5 (**TR Entry 7**). Be sure to set the synthesized sweeper CW and synthesizer/level generator frequencies as shown in the table.
- 15. On the EMC analyzer, press (SGL SWP). Wait for the completion of a new sweep, then press the following keys:

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

2.42 Performance Verification Tests

More 1 of 3 More 2 of 3 MARKER Δ More 3 of 3 NEXT PEAK

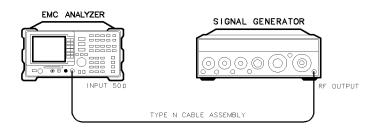
- 16. Record the MKR-Δ frequency reading in **TR Entry 7** of the performance verification test record.
- 17. Repeat steps 15 and 16 for the 300 Hz EMC analyzer span setting.
- 18. Verify that the 300 Hz span setting is within 225 Hz to 255 Hz.

Table 2-5. Frequency Span Readout Accuracy

EMC Analyzer Span Setting	Synthesizer/Level Generator Frequency	Synthesized Sweeper Frequency	MKR-Δ Reading				
	MHz	MHz	Min.	TR Entry	Max.		
10.10 MHz	66.000	74.000	7.70 MHz	2	8.30 MHz		
10.00 MHz	66.000	74.000	7.80 MHz	3	8.20 MHz		
100.00 kHz	69.960	70.040	78.00 kHz	4	82.00 kHz		
99.00 kHz	69.960	70.040	78.00 kHz	5	82.00 kHz		
10.00 kHz	69.996	70.004	7.80 kHz	6	8.20 kHz		
1.00 kHz	69.9996	70.0004	0.78 kHz	7	0.82 kHz		
300.00 Hz ¹	69.99988	70.00012	225.00 Hz	_	255.00 Hz		

¹ This is not an EMC analyzer specification; however, the 300 Hz span is tested to $\pm 5\,$ % to keep the narrow bandwidth accuracy and residual FM measurement uncertainty at a minimum. If the 300 Hz span accuracy is >5% the additional measurement uncertainty may need to be included for the bandwidth accuracy and residual FM measurement uncertainties.

10. Residual FM, HP 8591EM


This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

This test measures the inherent short-term instability of the EMC analyzer LO system. With the analyzer in zero span, a stable signal is applied to the input and slope-detected on the linear portion of the IF bandwidth filter skirt. Any instability in the LO transfers to the IF signal in the mixing process. The test determines the slope of the IF filter in hertz per decibel (Hz/dB) and then measures the signal amplitude variation caused by the residual FM. Multiplying these two values yields the residual FM in hertz. The narrow bandwidth test uses a 300 Hz span. This span is not specified, however, it is tested in "Frequency Span Accuracy."

There are no related adjustment procedures for this performance test.

Equipment Required

Signal generator Cable, Type N, 183 cm (72 in)

xu110ce

Figure 2-13. Residual FM Test Setup, HP 8591EM

Procedure

This performance test consists of two parts:

Part 1: Residual FM

Part 2: Narrow Bandwidth Residual FM

Part 1: Residual FM

Determining the IF Filter Slope

- 1. Connect the equipment as shown in Figure 2-13.
- 2. Set the signal generator controls as follows:

3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 500 (MHz)
(SPAN) 1 (MHz)
(AMPLITUDE) 98 (\mathrm{dB}\mu\mathrm{V})
SCALE LOG LIN (LOG) 1 (\mathrm{dB})
(BW) 1 (\mathrm{kHz})
(MKR \rightarrow) MKR \rightarrow HIGH
(MKR) More 1 of 3 MK TRACK ON OFF (ON)
(SPAN) 10 (\mathrm{kHz})
```

4. Wait for the AUTO ZOOM message to disappear, then press the following EMC analyzer keys:

```
\begin{array}{c} (\overline{MKR} \longrightarrow More \ 1 \ of \ 3 \ MARKER \longrightarrow REF \ LVL \\ \hline (\overline{MKR}) \ MARKER \ 1 \ ON \ OFF \ (OFF) \\ \hline (\overline{SGL} \ SWP) \\ \hline (\overline{MKR} \longrightarrow MKR \longrightarrow HIGH \ More \ 1 \ of \ 3 \ More \ 2 \ of \ 3 \ MARKER \ \Delta \\ \end{array}
```

If you have difficulty achieving the ± 0.1 dB setting, then make the following EMC analyzer settings:

```
(SPAN) 5 (kHz)
(BW) AVG BW AUTO MAN (MAN) 30 (Hz)
```

5. Rotate the EMC analyzer knob counterclockwise until the MKR- Δ amplitude reads -1 dB ± 0.1 dB. Press MKR, MARKER Δ . Rotate the knob counterclockwise until the MKR- Δ amplitude reads -4 dB ± 0.1 dB.

10. Residual FM, HP 8591EM

6. Divide the MKR- Δ frequency in hertz by the MKR- Δ amplitude in dB to obtain the slope of the IF bandwidth filter.

For example, if the MKR- Δ frequency is 1.08 kHz and the MKR- Δ amplitude is 3.92 dB, the slope would be equal to 275.5 Hz/dB. Record the result below:

Slope	Hz/c	dВ
DIODC	 112/	u

Measuring the Residual FM

7. On the EMC analyzer, press:

(MKR) More 1 of 3 MARKER ALL OFF $(MKR \rightarrow) MKR \rightarrow HIGH$ More 1 of 3 More 2 of 3 MARKER Δ

- 8. Rotate the knob counterclockwise until the MKR- Δ amplitude reads $-3 \text{ dB} \pm 0.1 \text{ dB}$.
- 9. On the EMC analyzer, press the following keys:

(MKR) MARKER NORMAL $(MKR \rightarrow)$ MARKER \rightarrow CF (SGL SWP) (BW) AVG BW AUTO MAN (MAN) 1 (kHz) (SPAN) 0 (Hz)(SWEEP/TRIG) 100 (ms)(SGL SWP)

Note

The displayed trace should be about three divisions below the reference level. If it is not, press (SWEEP/TRIG), SWEEP CONT SGL (CONT), (FREQUENCY), and use the knob to place the displayed trace about three divisions below the reference level. Press (SGL SWP).

10. On the EMC analyzer, press ($\overline{MKR} \rightarrow$), MORE 1 of 3, MARKER \rightarrow PK-PK. Read the MKR-Δ amplitude, take its absolute value, and record the result as the Deviation.

Deviation _____ dB

11. Calculate the Residual FM by multiplying the Slope recorded in step 6 by the Deviation recorded in step 10.

Record this value as **TR Entry 1** of the performance verification test record. The residual FM should be less than 250 Hz.

Continue with "Part 2: Narrow Bandwidth Residual FM."

10. Residual FM, HP 8591EM

Part 2: Narrow Bandwidth Residual FM

The following procedure is an additional test for testing the residual FM of EMC analyzers in narrow bandwidths. Perform "Part 1: Residual FM" before performing this procedure.

Determining the IF Filter Slope

1. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
\begin{array}{l} \begin{array}{l} \text{(FREQUENCY)} \ 500 \ \text{(MHz)} \\ \hline \text{(SPAN)} \ 1 \ \text{(MHz)} \\ \hline \text{(AMPLITUDE)} \ 98 \ \text{(dB$\mu$V)} \\ \text{SCALE LOG LIN (LOG)} \ 1 \ \text{(dB)} \\ \hline \text{(MKR} \rightarrow \text{MKR} \rightarrow \text{HIGH} \\ \hline \text{(MKR)} \ \text{More} \ 1 \ \text{of} \ 3 \ \text{MK TRACK ON OFF (ON)} \\ \hline \text{(SPAN)} \ 300 \ \text{(Hz)} \end{array}
```

2. Wait for the AUTO ZOOM message to disappear. Press the following EMC analyzer keys:

```
MKR → More 1 of 3 MARKER → REF LVL

MKR MARKER 1 ON OFF (OFF)

BW 30 (Hz)

(SGL SWP)
```

3. Wait for the completion of a new sweep on the EMC analyzer, then press:

- 4. Rotate the EMC analyzer knob counterclockwise until the MKR- Δ amplitude reads -1 dB ± 0.2 dB. Press MARKER Δ . Rotate the knob counterclockwise until the MKR- Δ amplitude reads -4 dB ± 0.3 dB.
- 5. Divide the MKR- Δ frequency (in hertz) by the MKR- Δ amplitude (in dB) to obtain the slope of the IF bandwidth filter.

For example, if the MKR- Δ frequency is 1.08 kHz and the MKR- Δ amplitude is 3.92 dB, the slope would be equal to 275.5 Hz/dB. Record the result below:

2.48 Performance Verification Tests

10.	Residual	FM,	HP	8591EM
	Slope			Hz/dB

10. Residual FM, HP 8591EM

Measuring the Residual FM

6. On the EMC analyzer, press the following keys:

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

(MKR) MARKER 1 ON OFF (OFF)

(SPAN) ZERO SPAN

(SWEEP/TRIG) SWP TIME AUTO MAN (MAN) 300 (ms)

(FREQUENCY)

- 7. Rotate the EMC analyzer knob until the displayed trace is approximately 3 divisions below the reference level, then press (SGL SWEEP).
- 8. On the EMC analyzer, press $(MKR \rightarrow)$, More 1 of 3, MARKER \rightarrow PK-PK. Read the MKR- Δ amplitude, take its absolute value, and record the result as the Deviation.

Deviation	_ dB
-----------	------

9. Calculate the Residual FM by multiplying the Slope recorded in step 5 by the Deviation recorded in step 8.

Record this value as **TR Entry 2** of the performance verification test record. The residual FM should be less than 30 Hz.

The "Residual FM" performance test is now complete.

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

This test measures the inherent short-term instability of the EMC analyzer LO system. With the analyzer in zero span, a stable signal is applied to the input and slope-detected on the linear portion of the IF bandwidth filter skirt. Any instability in the LO transfers to the IF signal in the mixing process. The test determines the slope of the IF filter in hertz per decibel (Hz/dB) and then measures the signal amplitude variation caused by the residual FM. Multiplying these two values yields the residual FM in hertz. The narrow bandwidth test uses a 300 Hz span. This span is not specified, however, it is tested in "Frequency Span Accuracy."

There are no related adjustment procedures for this performance test.

Equipment Required

Signal generator Cable, Type N, 183 cm (72 in)

Additional Equipment for Option 026

Adapter, APC 3.5 (f) to Type N (f)

Procedure

This performance verification test consists of two parts:

Part 1: Residual FM

Part 2: Narrow Bandwidth Residual FM

Part 1: Residual FM

Determining the IF Filter Slope

1. Connect the equipment as shown in Figure 2-14.



Figure 2-14.
Residual FM Test Setup,
HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

xd64

2. Set the signal generator controls as follows:

3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

FREQUENCY 500 (MHz) (SPAN) 1 (MHz) (AMPLITUDE) 98 (dB μ V) (SCALE LOG LIN (LOG) 1 (dB) (BW) 1 (kHz) (MKR \rightarrow MKR \rightarrow HIGH (MKR More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 10 (kHz)

4. Wait for the AUTO ZOOM message to disappear, then press the following EMC analyzer keys:

2.52 Performance Verification Tests

 $(\overline{MKR} \rightarrow)$ More 1 of 3 MARKER \rightarrow REF LVL

(MKR) MARKER 1 ON OFF (OFF)

(SGL SWP)

 $(\overline{MKR} o)$ MKR o HIGH More 1 of 3 More 2 of 3 MARKER Δ

If you have difficulty achieving the ± 0.1 dB setting, then make the following EMC analyzer settings:

(SPAN) 5 (kHz)

(BW) AVG BW AUTO MAN (MAN) 30 (Hz)

- 5. Rotate the EMC analyzer knob counterclockwise until the MKR-Δ amplitude reads -1 dB ± 0.1 dB. Press (MKR) MARKER Δ . Rotate the knob counterclockwise until the MKR- Δ amplitude reads -4 dB ± 0.1 dB.
- 6. Divide the MKR- Δ frequency (in hertz) by the MKR- Δ amplitude (in dB) to obtain the slope of the IF bandwidth filter.

For example, if the MKR-Δ frequency is 1.08 kHz and the MKR-Δ amplitude is 3.92 dB, the slope would be equal to 275.5 Hz/dB.

Record the result below:

Slope	F	lz/	d.	E
-------	---	-----	----	---

Measuring the Residual FM

7. On the EMC analyzer, press:

 $\begin{tabular}{ll} \hline MKR & More 1 of 3 MARKER ALL OFF \\ \hline MKR & → MKR & → HIGH \\ \hline More 1 of 3 More 2 of 3 MARKER Δ \\ \hline \end{tabular}$

- 8. Rotate the knob counterclockwise until the MKR- Δ amplitude reads -3 dB ± 0.1 dB.
- 9. On the EMC analyzer, press the following keys:

MKR MARKER NORMAL

MKR → MARKER → CF

(SGL SWP)

(BW) 1 (kHz)

(SPAN) 0 (Hz)

(SWEEP/TRIG) 100 (ms)

(SGL SWP)

Note

The displayed trace should be about three divisions below the reference level. If it is not, press (SWEEP/TRIG), SWEEP CONT SGL (CONT), (FREQUENCY), and use the knob to place the displayed trace about three divisions below the reference level. Press (SGL SWP).

10. On the EMC analyzer, press $MKR \rightarrow$, More 1 of 3, MARKER \rightarrow PK-PK. Read the MKR- Δ amplitude, take its absolute value, and record the result as the Deviation.

Deviation _____ dB

11. Calculate the Residual FM by multiplying the Slope recorded in step 6 by the Deviation recorded in step 10.

Record this value as **TR Entry 1** of the performance verification test record. The residual FM should be less than 250 Hz.

Continue with "Part 2: Narrow Bandwidth Residual FM."

2.54 Performance Verification Tests

Part 2: Narrow Bandwidth Residual FM

The following procedure is an additional test for testing the residual FM of EMC analyzers in Narrow bandwidths. Perform "Part 1: Residual FM" before performing this procedure.

Determining the IF Filter Slope

1. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 500 (MHz)
(SPAN) 1 (MHz)
(AMPLITUDE) 98 (dB\mu V)
SCALE LOG LIN (LOG) 1 (dB)
(MKR \rightarrow) MKR \rightarrow HIGH
(MKR) More 1 of 3 MK TRACK ON OFF (ON)
(SPAN) 300 (Hz)
```

2. Wait for the AUTO ZOOM message to disappear, then press the following EMC analyzer keys:

```
(\overline{MKR} \rightarrow) More 1 of 3 MARKER \rightarrowREF LVL
(MKR) MARKER 1 ON OFF (OFF)
(BW) 30 (Hz)
(SGL SWP)
```

3. Wait for the completion of a new sweep, then press:

```
(MKR \rightarrow) MKR \rightarrow HIGH
More 1 of 3 More 2 of 3 MARKER \Delta
```

- 4. Rotate the EMC analyzer knob counterclockwise until the MKR-Δ amplitude reads $-1~\mathrm{dB} \pm 0.2~\mathrm{dB}$. Press MARKER Δ . Rotate the knob counterclockwise until the MKR- Δ amplitude reads -4 dB ± 0.3 dB.
- 5. Divide the MKR-Δ frequency (in hertz) by the MKR-Δ amplitude (in dB) to obtain the slope of the IF bandwidth filter.

For example, if the MKR- Δ frequency is 1.08 kHz and the MKR- Δ amplitude is 3.92 dB, the slope would be equal to 275.5 Hz/dB. Record the result below:

11.	Residual	FM, HP	8593EM,	HP	8594EM,	HP	8595EM,	and HP	8596EM
							Slo	pe	Hz/dB

Measuring the Residual FM

6. On the EMC analyzer, press the following keys:

(SWEEP/TRIG) SWEEP CONT SGL (CONT) (MKR) MARKER 1 ON OFF (OFF) (SPAN) ZERO SPAN (SWEEP/TRIG) SWP TIME AUTO MAN (MAN) 300 (ms) (FREQUENCY)

- 7. Rotate the EMC analyzer knob until the displayed trace is approximately 3 divisions below the reference level, then press (SGL SWEEP).
- 8. On the EMC analyzer, press $(\overline{MKR} \rightarrow)$, More 1 of 3, MARKER \rightarrow PK-PK. Read the MKR- Δ amplitude, take its absolute value, and record the result as the Deviation.

Deviation	dB
THEVIALION	(11)

9. Calculate the Residual FM by multiplying the Slope recorded in step 5 by the Deviation recorded in step 8.

Record this value as **TR Entry 2** of the performance verification test record. The residual FM should be less than 30 Hz.

The "Residual FM" performance verification test is now complete.

12. Sweep Time Accuracy, HP 8590 EM-Series

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

This test uses a synthesizer function generator to amplitude modulate a 500 MHz CW signal from another signal generator. The EMC analyzer demodulates this signal in zero span to display the response in the time domain. The marker delta frequency function on the EMC analyzer is used to read out the sweep time accuracy.

If you are testing an EMC analyzer equipped with Option 101 or Option 301, also perform the "Fast Time Domain Sweeps" test for the specific EMC analyzer model.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesizer/function generator Signal generator Cable, Type N, 152 cm (60 in) Cable, BNC, 120 cm (48 in)

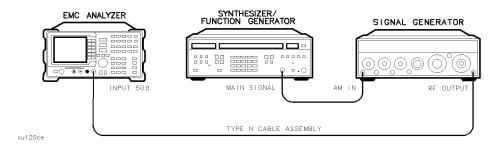


Figure 2-15. Sweep Time Accuracy Test Setup

12. Sweep Time Accuracy, HP 8590 EM-Series

Procedure

- 1. Set the signal generator to output a 500 MHz, -10 dBm, CW signal. Set the AM and FM controls to off.
- 2. Set the synthesizer/function generator to output a 500 Hz, +5 dBm triangle waveform signal.
- 3. Connect the equipment as shown in Figure 2-15.
- 4. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 500 (MHz)
(SPAN) 10 (MHz)
(MKR \rightarrow) MKR \rightarrow HIGH
(MKR) More 1 of 3 MK TRACK ON OFF (ON)
(SPAN) 50 (kHz)
```

5. Wait for the AUTO ZOOM routine to finish, then press the following EMC analyzer keys:

```
(SPAN) ZERO SPAN
(BW) 3 (MHz)
(SWEEP) 20 (ms)
(AMPLITUDE) SCALE LOG LIN (LIN)
```

- 6. Adjust signal amplitude for a midscreen display.
- 7. Set the signal generator AM switch to the AC position.
- 8. On the EMC analyzer, press (SWEEP/TRIG) Trigger VIDEO, then adjust the video trigger so that the EMC analyzer is sweeping.
- 9. On the EMC analyzer, press (SGL SWP). After the completion of the sweep, press $(\overline{MKR} \rightarrow)$ MKR \rightarrow HIGH. If necessary, press NEXT PK LEFT until the marker is on the left-most signal. This is the "marked signal."
- $10.\ \mathrm{Press}$ More 1 of 3 More 2 of 3 MARKER DELTA More 3 of 3 and then press NEXT PK RIGHT eight times so the marker delta is on the eighth signal peak from the "marked signal."

Record the marker Δ reading as **TR Entry 1** in the performance verification test record.

12. Sweep Time Accuracy, HP 8590 EM-Series

11. Change the EMC analyzer's sweep time setting and the synthesizer/function generator's frequency for the next TR entry listed in Table 2-6. Then repeat steps 9 and 10 for the TR entry.

Table 2-6. Sweep Time Accuracy

EMC Analyzer Sweep Time Setting	Synthesizer/Function Generator Frequency		TR Entry (MKR Δ)	Maximum Reading
20 ms	500.0 Hz	15.4 ms	1	16.6 ms
100 ms	100.0 Hz	77.0 ms	2	83.0 ms
1 s	10.0 Hz	770.0 ms	3	830.0 ms
10 s	1.0 Hz	7.7 s	4	8.3 s

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

A 50 MHz CW signal is applied to the INPUT 50 Ω of the analyzer through two step attenuators. The attenuators increase the effective amplitude range of the source. The amplitude of the source is decreased in 10 dB steps and the analyzer marker functions are used to measure the amplitude difference between steps. The source's internal attenuator is used as the reference standard. The test is performed in both log and linear amplitude scales.

Equipment Required

Synthesizer/level generator Attenuator, 1 dB step Attenuator, 10 dB step Cable, BNC, 122 cm (48 in) Cable, BNC, 20 cm (9 in) Adapter, Type N (m) to BNC (f) Adapter, Type BNC (m) to BNC (m)

Additional Equipment for Option 026

Adapter, APC 3.5 (f) to Type N (f)

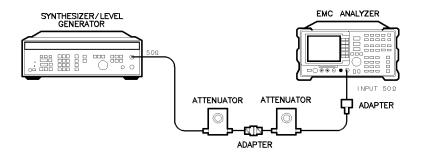


Figure 2-16. Scale Fidelity Test Setup

Performance Verification Tests 2.61

Procedure

Log Scale

1. Set the synthesizer/level generator controls as follows:

FREQUENCY 5	0 MHz
AMPLITUDE+ 10	o dBm
AMPTD INCR	.05 dB
OUTPUT	50Ω

- 2. Connect the equipment as shown in Figure 2-16. Set the 10 dB step attenuator to 10 dB attenuation and the 1 dB step attenuator to 0 dB attenuation.
- 3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
FREQUENCY 50 (MHz) (SPAN) 10 (MHz) (MKR \rightarrow MARKER \rightarrow HIGH (MKR) More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 50 (kHz)
```

Wait for the auto zoom routine to finish, then set the IF bandwidth and the averaging bandwidth by pressing the following keys:

```
BW)

IF BW AUTO MAN (MAN) 3 (kHz)

AVG BW AUTO MAN (MAN) 30 (Hz)
```

- 4. If necessary, adjust the 1 dB step attenuator attenuation until the MKR amplitude reads between 106 dB μ V and 107 dB μ V.
- 5. On the synthesizer/level generator, press AMPLITUDE and use the increment keys to adjust the amplitude until the EMC analyzer MKR amplitude reads 107 dB μ V ± 0.05 dB.

It may be necessary to decrease the resolution of the amplitude increment of the synthesizer/level generator to 0.01 dB to obtain a MKR reading of 107 dB μ V ± 0.05 dB.

2.62 Performance Verification Tests

- 6. On the EMC analyzer, press $(MKR \rightarrow)$, MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
- 7. Set the synthesizer/level generator AMPTD INCR to 4 dB.
- 8. On the synthesizer/level generator, press AMPLITUDE, then increment down to step the synthesizer/level generator to the next lowest nominal amplitude listed in Table 2-7.
- 9. Record the Actual MKR Δ amplitude reading in the performance verification test record as indicated by Table 2-7. The MKR amplitude should be within the limits shown.
- 10. Repeat steps 8 through 9 for the remaining Synthesizer/Level Generator Nominal Amplitudes listed in Table 2-7.
- 11. For each Actual MKR Δ reading recorded in Table 2-7, subtract the previous Actual MKR Δ reading. Add 4 dB to the number and record the result as the incremental error in the performance verification test record as indicated by Table 2-7. The incremental error should not exceed 0.4 dB/4 dB.

Table 2-7. Cumulative and Incremental Error, Log Mode

Synthesizer/Level Generator Nominal Amplitude	dB from Ref Level (nominal)	Cu (M	TR Entry (Incremental Error)		
		Min. (dB)	Actual (dB)	Max. (dB)	TR Entry
+ 10 dBm	0	0 (Ref)	0 (Ref)	0 (Ref)	0 (Ref)
+ 6 dBm	-4	-4.34	1	-3.66	18
+2 dBm	-8	-8.38	2	-7.62	19
-2 dBm	-12	-12.42	3	-11.58	20
-6 dBm	-16	-16.46	4	- 15.54	21
-10 dBm	-20	-20.50	5	- 19.50	22
-14 dBm	-24	-24.54	6	-23.46	23
-18 dBm	-28	-28.58	7	-27.42	24
−22 dBm	-32	-32.62	8	-31.38	25
-26 dBm	-36	-36.66	9	-35.34	26
-30 dBm	-40	-40.70	10	-39.30	27
-34 dBm	-44	-44.74	11	-43.26	28
-38 dBm	-48	-48.78	12	-47.22	29
-42 dBm	-52	-52.82	13	-51.18	30
-46 dBm	-56	-56.86	14	-55.14	31
-50 dBm	-60	-60.90	15	-59.10	32
-54 dBm	-64	-64.94	16	-63.06	N/A
-58 dBm	-68	-68.98	17	-67.02	N/A

12. Press the following EMC analyzer keys:

$$\overline{\rm BW}$$
 IF BW AUTO MAN (MAN) $300~\overline{\rm Hz}$ $\overline{\rm SPAN}$ $10~\overline{\rm kHz}$

13. Repeat steps 4 through 11 for the narrow IF bandwidths. Record the results as indicated by Table 2-8.

The scale fidelity in log mode is complete for EMC analyzers. Continue with step 14.

2.64 Performance Verification Tests

Table 2-8. Cumulative and Incremental Error, Log Mode for Narrow Bandwidths

Synthesizer/Level Generator Nominal Amplitude	dB from Ref Level (nominal)	Cu (M	TR Entry (Incremental Error)		
		Min. (dB)	Actual (dB)	Max. (dB)	TR Entry
+ 10 dBm	0	0 (Ref)	0 (Ref)	0 (Ref)	0 (Ref)
+ 6 dBm	-4	-4.44	33	-3.56	50
+2 dBm	-8	-8.48	34	-7.52	51
-2 dBm	-12	-12.52	35	-11.48	52
-6 dBm	-16	-16.56	36	- 15.44	53
-10 dBm	-20	-20.60	37	- 19.40	54
-14 dBm	-24	-24.64	38	-23.36	55
-18 dBm	-28	-28.68	39	-27.32	56
−22 dBm	-32	-32.72	40	-31.28	57
-26 dBm	-36	-36.76	41	-35.24	58
-30 dBm	-40	-40.80	42	-39.20	59
-34 dBm	-44	-44.84	43	-43.16	60
-38 dBm	-48	-48.88	44	- 47.12	61
-42 dBm	-52	-52.92	45	-51.08	62
-46 dBm	-56	-56.96	46	-55.04	63
-50 dBm	-60	-61.00	47	-59.00	64
-54 dBm	-64	-65.04	48	-62.96	N/A
-58 dBm	-68	-69.08	49	-66.92	N/A

Linear Scale

14. Set the synthesizer/level generator controls as follows:

AMPLITUDE	+10 dBm
AMPTD INCR	0.05 dB

15. Set the 1 dB step attenuator to 0 dB attenuation.

16. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(AMPLITUDE) SCALE LOG LIN (LIN)

More 1 of 3 Amptd Units Volts

(FREQUENCY) 50 (MHz)

(SPAN) 10 (MHz)

(MKR —) MARKER — HIGH

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

(SPAN) 50 (KHz)
```

Wait for the auto zoom routine to finish, then set the IF bandwidth and the averaging bandwidth by pressing the following keys:

BW IF BW AUTO MAN (MAN) 3 (kHz) AVG BW AUTO MAN (MAN) 30 (Hz)

- 17. If necessary, adjust the 1 dB step attenuator attenuation until the MKR reads approximately 223.6 mV. It may be necessary to decrease the resolution of the amplitude increment of the synthesizer/level generator to 0.01 dB to obtain a MKR reading of 223.6 mV \pm 0.4 mV.
- 18. On the synthesizer/level generator, press AMPLITUDE, then use the increment keys to adjust the amplitude until the EMC analyzer MKR amplitude reads 223.6 mV ± 0.4 mV.
- 19. On the EMC analyzer, press $(MKR \rightarrow)$, MARKER \rightarrow HIGH, (MKR), More 1 of 3, MK TRACK ON OFF (OFF).
- 20. Set the synthesizer/level generator amplitude increment to 3 dB.
- 21. On the synthesizer/level generator, press AMPLITUDE, then increment down to step the synthesizer/level generator to the next lowest nominal amplitude listed in Table 2-9.
- 22. Record the MKR amplitude reading in the performance verification test record as indicated in Table 2-9. The MKR amplitude should be within the limits shown.
- 23. Repeat steps 21 and 22 for the remaining Synthesizer/Level Generator Nominal Amplitudes listed in Table 2-9.

2.66 Performance Verification Tests

Table 2-9. Scale Fidelity, Linear Mode

Synthesizer/Level	% of	MKR Reading				
Generator Nominal Amplitude	Ref Level (nominal)	Min. (mV)	TR Entry	Max. (mV)		
+ 10 dBm	100	0 (Ref)	0 (Ref)	0 (Ref)		
+7 dBm	70.7	151.59	65	165.01		
+ 4 dBm	50	105.36	66	118.78		
+ 1 dBm	35.48	72.63	67	86.05		
-2 dBm	25	49.46	68	62.88		

24. Press the following EMC analyzer keys:

(BW) IF BW AUTO MAN (MAN)
$$300~\mathrm{(Hz)}$$
 (SPAN) $10~\mathrm{(kHz)}$

25. Repeat steps 17 through 22 for the narrow IF bandwidths. Record the results as indicated in Table 2-10.

The scale fidelity in linear mode is complete. Continue with step 26.

Table 2-10. Scale Fidelity, Linear Mode for Narrow Bandwidths

Synthesizer/Level	% of	MKR Reading			
Generator Nominal Amplitude	Ref Level (nominal)	Min. (mV)	TR Entry	Max. (mV)	
+ 10 dBm	100	0 (Ref)	0 (Ref)	0 (Ref)	
+7 dBm	70.7	151.59	69	165.01	
+ 4 dBm	50	105.36	70	118.78	
+ 1 dBm	35.48	72.63	71	86.05	
-2 dBm	25	49.46	72	82.88	

Log to Linear Switching

	8
26.	Set the 10 dB step attenuator to 10 dB attenuation and the 1 dB step attenuator to 0 dB attenuation.
27.	Set the synthesizer controls as follows:
	FREQUENCY 50 MHz AMPLITUDE +6 dBm
28.	On the EMC analyzer, press (PRESET), then wait for the preset routine to finish.
29.	Set the EMC analyzer by pressing the following keys:
	(FREQUENCY) 50 (MHz) (SPAN) 10 (MHz) (BW) 300 (kHz) (MKR → MARKER → HIGH More 1 of 3 MARKER → REF LVL
	More 2 of 3 More 3 of 3 MARKER → HIGH
30.	Record the peak marker reading in Log mode below.
	Log Mode Amplitude Reading $\mathrm{d}\mathrm{B}\mu\mathrm{V}$
31.	Press (AMPLITUDE) SCALE LOG LIN (LIN) to change the scale to linear.
32.	Press $(MKR \rightarrow)$, MARKER \rightarrow HIGH, then record the peak marker amplitude reading in linear mode.
	Linear Mode Amplitude Reading ${ m d}{ m B}\mu{ m V}$
33.	Subtract the Linear Mode Amplitude Reading from the Log Mode Amplitude Reading, then record this value as the Log/Linear Error.

34. If the Log/Linear Error is less than 0 dB, record this value as **TR Entry 73** in the performance verification test record. The absolute value of the

Log/Linear Error_____dB

2.68 Performance Verification Tests

reading should be less than 0.25 dB. If the Log/Linear Error is greater than 0 dB, continue with the next step.

35. On the EMC analyzer, press the following keys:

```
More 1 of 3 MARKER → REF LVL
More 2 of 3 More 3 of 3 MARKER \rightarrow HIGH
```

36. Record the peak marker amplitude reading in linear mode.

Linear Mode Amplitude Reading dB μ V

37. On the EMC analyzer, press the following keys:

$$(\overline{\text{AMPLITUDE}})$$
 SCALE LOG LIN (LOG)
 $(\overline{\text{MKR}} \rightarrow)$ MARKER \rightarrow HIGH

38. Record the peak marker reading in Log mode below.

Log Mode Amplitude Reading dB μ V

39. Subtract the Log Mode Amplitude Reading from the Linear Mode Amplitude Reading, then record this value as the Linear/Log Error.

Linear/Log Error_____ dB

- 40. Record the Linear/Log Error as **TR Entry 73** in the performance verification test record. The absolute value of the reading should be less than 0.25 dB.
- 41. Press the following EMC analyzer keys:

42. Repeat steps 29 through 39 for the narrow bandwidths. Record the results in the performance verification test record as TR Entry 74.

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

A 50 MHz CW signal is applied to the INPUT 50 Ω of the EMC analyzer through two step attenuators. The attenuators increase the effective amplitude range of the source. The amplitude of the source is decreased in 10 dB steps and the EMC analyzer marker functions are used to measure the amplitude difference between steps. The source's internal attenuator is used as the reference standard. The test is performed in both log and linear amplitude scales.

It is only necessary to test reference levels as low as 17 dB μ V (with 10 dB attenuation) since lower reference levels are a function of the EMC analyzer microprocessor manipulating the trace data. There is no error associated with the trace data manipulation.

Equipment Required

Synthesizer/level generator Attenuator, 1 dB steps Attenuator, 10 dB steps Cable, BNC 122 cm (48 in) (two required) Adapter, Type N (m) to BNC (f) Adapter, BNC (m) to BNC (m)

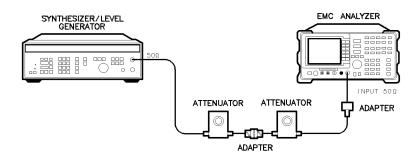


Figure 2-17. Reference Level Accuracy Test Setup, HP 8591EM

Procedure

Log Scale

1. Set the synthesizer/level generator controls as follows:

FREQUENCY 50) MHz
AMPLITUDE10	dBm
AMPTD INCR	10 dB
OUTPUT	$.50~\Omega$

- 2. Connect the equipment as shown in Figure 2-17. Set the 10 dB step attenuator to 10 dB attenuation and the 1 dB step attenuator to 0 dB attenuation.
- 3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 50 (MHz)
(SPAN) 10 (MHz)
(MKR \rightarrow) MARKER \rightarrow HIGH
(MKR) More 1 of 3 MK TRACK ON OFF (ON)
(SPAN) 50 (kHz)
(\overline{AMPLITUDE}) 87 (\overline{+dB\mu V}) SCALE LOG LIN (LOG) 1 (\overline{dB})
(BW) 3 (kHz) AVG BW AUTO MAN (MAN) 30 (Hz)
```

- 4. Set the 1 dB step attenuator to place the signal peak one to two dB (one to two divisions) below the reference level.
- 5. On the EMC analyzer, press the following keys:

```
(SGL SWP)
(\overline{MKR} 	o) MARKER 	o HIGH More 1 of 3 More 2 of 3 MARKER \Delta
```

- 6. Set the synthesizer/level generator amplitude and EMC analyzer reference level according to Table 2-11. At each setting, press (SGL SWP) on the EMC analyzer.
- 7. Record the MKR Δ amplitude reading in the performance verification test record as indicated in Table 2-11. The MKR Δ reading should be within the limits shown.

Table 2-11. Reference Level Accuracy, Log Mode

Synthesizer/Level Generator Amplitude	EMC Analyzer Reference Level	MKR Δ Reading (dB)		
(dBm)	$(\mathbf{d}\mathbf{B}\mu\mathbf{V})$	Min.	TR Entry	Max.
- 10	87	0 (Ref)	0 (Ref)	0 (Ref)
0	97	-0.4	1	+0.4
+ 10	107	-0.5	2	+0.5
-20	77	-0.4	3	+0.4
- 30	67	-0.5	4	+0.5
- 40	57	-0.8	5	+0.8
- 50	47	-1.0	6	+ 1.0
-60	37	-1.1	7	+ 1.1
-7 0	27	-1.2	8	+ 1.2
-80	17	-1.3	9	+ 1.3

Linear Scale

- 8. Set the synthesizer/level generator amplitude to -10 dBm.
- 9. Set the 1 dB step attenuator to 0 dB attenuation.
- 10. Set the EMC analyzer controls as follows:

(AMPLITUDE) 87 (+dBµV)

SCALE LOG LIN (LIN)

(AMPLITUDE) More 1 of 3 Amptd Units dBµV

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

(MKR) More 1 of 3 MARKER ALL OFF

- 11. Set the 1 dB step attenuator to place the signal peak one to two divisions below the reference level.
- 12. On the EMC analyzer, press the following keys:

 $\begin{array}{c} \underline{(SGL\ SWP)} \\ \hline (MKR \longrightarrow) \ MARKER \longrightarrow \ HIGH \ More\ 1 \ of\ 3 \ More\ 2 \ of\ 3 \ MARKER\ \Delta \end{array}$

2.72 Performance Verification Tests

(MKR) More 1 of 3 MK TRACK ON OFF (OFF)

- 13. Set the synthesizer/level generator amplitude and EMC analyzer reference level according to Table 2-12. At each setting, press (SGL SWP) on the EMC analyzer.
- 14. Record the MKR Δ amplitude reading in Table 2-12. The MKR Δ reading should be within the limits shown.

Table 2-12. Reference Level Accuracy, Linear Mode

Synthesizer/Level Generator Amplitude	EMC Analyzer Reference Level	MKR Δ Reading (dB)		
(dBm)	$(\mathbf{d}\mathbf{B}\mu\mathbf{V})$	Min.	TR Entry	Max.
- 10	87	0 (Ref)	0 (Ref)	0 (Ref)
0	97	-0.4	10	+ 0.4
+ 10	107	-0.5	11	+ 0.5
-20	77	-0.4	12	+ 0.4
-30	67	-0.5	13	+ 0.5
-40	57	-0.8	14	+ 0.8
-50	47	-1.0	15	+ 1.0
-60	37	-1.1	16	+ 1.1
- 70	27	-1.2	17	+ 1.2
-80	17	-1.3	18	+ 1.3

Narrow Bandwidths

15. Press the following EMC analyzer keys:

(AMPLITUDE) 87 ($+dB\mu V$) SCALE LOG LIN (LOG) 1 (dB) (BW) IF BW AUTO MAN (MAN) 300 (Hz)

(SPAN) 10 (kHz)

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

- 16. Set the synthesizer/level generator to -10 dBm.
- 17. Repeat steps 4 through 6, using Table 2-13 for the narrow IF bandwidths.

18. Record the MKR Δ amplitude reading in the performance verification test record as indicated in Table 2-13. The MKR Δ reading should be within the limits shown.

Table 2-13.
Reference Level Accuracy,
Log Mode for Narrow IF Bandwidths

Synthesizer/Level Generator Amplitude	EMC Analyzer Reference Level	MKR Δ Reading (dB)		
(dBm)	(dB μ V)	Min.	TR Entry	Max.
-10	87	0 (Ref)	0 (Ref)	0 (Ref)
0	97	-0.4	19	+0.4
+ 10	107	-0.5	20	+0.5
-20	77	-0.4	21	+0.4
-30	67	-0.5	22	+0.5
-40	57	-0.8	23	+0.8
-50	47	-1.1	24	+ 1.1
-60	37	-1.2	25	+ 1.2
-70	27	-1.3	26	+ 1.3
-80	17	-1.4	27	+ 1.4

- 19. Repeat steps 8 through 13, using Table 2-14 for the narrow IF bandwidths.
- 20. Record the MKR Δ amplitude reading in the performance verification test record as indicated in Table 2-14. The MKR Δ reading should be within the limits shown.

Table 2-14. Reference Level Accuracy, Linear Mode for Narrow IF Bandwidths

Synthesizer/Level Generator Amplitude	EMC Analyzer Reference Level	MKR Δ Reading (dB)		
(dBm)	(dB μ V)	Min.	TR Entry	Max.
-10	87	0 (Ref)	0 (Ref)	0 (Ref)
0	97	-0.4	28	+0.4
+ 10	107	-0.5	29	+ 0.5
-20	77	-0.4	30	+ 0.4
-30	67	-0.5	31	+ 0.5
-40	57	-0.8	32	+ 0.8
-50	47	-1.1	33	+ 1.1
-60	37	-1.2	34	+ 1.2
- 70	27	-1.3	35	+ 1.3
-80	17	-1.4	36	+ 1.4

15. Reference Level Accuracy, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

A 50 MHz CW signal is applied to the INPUT 50 Ω of the EMC analyzer through two step attenuators. The attenuators increase the effective amplitude range of the source. The amplitude of the source is decreased in 10 dB steps and the EMC analyzer marker functions are used to measure the amplitude difference between steps. The source internal attenuator is used as the reference standard. The test is performed in both log and linear amplitude scales.

It is only necessary to test reference levels as low as 17 db μ V (with 10 dB attenuation) since lower reference levels are a function of the EMC analyzer microprocessor manipulating the trace data. There is no error associated with the trace data manipulation.

Equipment Required

Synthesizer/level generator Attenuator, 1 dB steps Attenuator, 10 dB steps Cable, BNC 122 cm (48 in) (two required) Adapter, Type N (m) to BNC (f) Adapter, BNC (m) to BNC (m)

Additional Equipment for Option 026

Adapter, APC 3.5 (f) to Type N (f) Adapter, BNC (f) to SMA (m)

15. Reference Level Accuracy, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

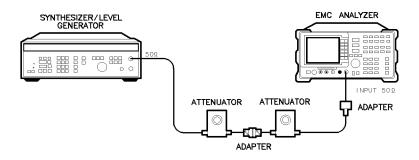


Figure 2-18.

Reference Level Accuracy Test Setup,
HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

Procedure

Log Scale

1. Set the synthesizer/level generator controls as follows:

FREQUENCY 50) MHZ
AMPLITUDE10) dBm
AMPTD INCR	10 dB
OUTPUT	50 Ω

- 2. Connect the equipment as shown in Figure 2-18. Set the 10 dB step attenuator to 10 dB attenuation and the 1 dB step attenuator to 0 dB attenuation.
- 3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
FREQUENCY 50 (MHz) (SPAN) 10 (MHz) (MKR \rightarrow MARKER \rightarrow HIGH (MKR) More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 50 (kHz) (AMPLITUDE) 87 (+dB\muV) SCALE LOG LIN (LOG) 1 (BW) 3 (kHz) AVG BW AUTO MAN (MAN) 30 (Hz)
```

xa68

15. Reference Level Accuracy, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

- 4. Set the 1 dB step attenuator to place the signal peak one to two dB (one to two divisions) below the reference level.
- 5. On the EMC analyzer, press the following keys:

(SGL SWP) $(MKR \rightarrow)$ MARKER \rightarrow HIGH
More 1 of 3 More 2 of 3 MARKER Δ

- 6. Set the synthesizer/level generator amplitude and EMC analyzer reference level according to Table 2-15.
- 7. At each setting, press (SGL SWP) on the EMC analyzer.
- 8. Record the MKR Δ amplitude reading in the performance verification test record as indicated in Table 2-15. The MKR Δ reading should be within the limits shown.
- 9. Repeat steps 6 through 8 for each entry in Table 2-15.

Table 2-15. Reference Level Accuracy, Log Mode

Synthesizer/Level Generator Amplitude	EMC Analyzer Reference Level	MKR Δ Reading (dB)		
(dBm)	$(\mathbf{d}\mathbf{B}\mu\mathbf{V})$	Min.	TR Entry	Max.
- 10	87	0 (Ref)	0 (Ref)	0 (Ref)
0	97	-0.4	1	+0.4
+ 10	107	-0.5	2	+ 0.5
-20	77	-0.4	3	+ 0.4
-30	67	-0.5	4	+ 0.5
-40	57	-0.8	5	+ 0.8
-50	47	-1.0	6	+ 1.0
-60	37	-1.1	7	+ 1.1
- 70	27	-1.2	8	+ 1.2
-80	17	-1.3	9	+ 1.3

15. Reference Level Accuracy, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

Linear Scale

- 10. Set the synthesizer/level generator amplitude to -10 dBm.
- 11. Set the 1 dB step attenuator to 0 dB attenuation.
- 12. Set the EMC analyzer controls as follows:

```
(AMPLITUDE) 87 (+dB\mu V)
SCALE LOG LIN (LIN)
(AMPLITUDE) More 1 of 3 Amptd Units (+dB\mu V)
(SWEEP/TRIG) SWEEP CONT SGL (CONT)
(MKR) More 1 of 3 MARKER ALL OFF
```

- 13. Set the 1 dB step attenuator to place the signal peak one to two divisions below the reference level.
- 14. On the EMC analyzer, press the following keys:

```
(SGL SWP)
(MKR \rightarrow) MARKER \rightarrow HIGH
More 1 of 3 More 2 of 3 MARKER \Delta
```

- 15. Set the synthesizer/level generator amplitude and EMC analyzer reference level according to Table 2-16.
- 16. At each setting, press (SGL SWP) on the EMC analyzer.
- 17. Record the MKR Δ amplitude reading in the performance verification test record as indicated in Table 2-16. The MKR Δ reading should be within the limits shown.
- 18. Repeat steps 15 through 17 for each entry in Table 2-16.

$15. \ Reference\ Level\ Accuracy,\ HP\ 8593EM,\ HP\ 8594EM,\ HP\ 8595EM,\ and\ HP\ 8596EM$

Table 2-16. Reference Level Accuracy, Linear Mode

Synthesizer/Level Generator Amplitude	EMC Analyzer Reference Level	MKR Δ Reading (dB)		(dB)
(dBm)	$(\mathbf{d}\mathbf{B}\mu\mathbf{V})$	Min.	TR Entry	Max.
- 10	87	0 (Ref)	0 (Ref)	0 (Ref)
0	97	-0.4	10	+0.4
+ 10	107	-0.5	11	+0.5
-20	77	-0.4	12	+0.4
-30	67	-0.5	13	+ 0.5
- 40	57	-0.8	14	+0.8
– 50	47	-1.0	15	+ 1.0
- 60	37	-1.1	16	+ 1.1
- 70	27	-1.2	17	+ 1.2
-80	17	-1.3	18	+ 1.3

Narrow Bandwidths

19. Press the following EMC analyzer keys:

(AMPLITUDE) 87 ($+dB\mu V$) SCALE LOG LIN (LOG) 1 (BW) IF BW AUTO MAN (MAN) 300 (Hz) (SPAN) 10 (kHz) (SWEEP/TRIG) SWEEP CONT SGL (CONT)

- 20. Set the synthesizer/level generator to -10 dBm.
- 21. Set the 1 dB step attenuator to place the signal peak one to two dB (one to two divisions) below the reference level.
- 22. On the EMC analyzer, press the following keys:

 $\begin{array}{c} \underline{(SGL\ SWP)} \\ \hline (MKR \longrightarrow) \ MARKER \longrightarrow \ HIGH \\ \hline More\ 1\ of\ 3\ More\ 2\ of\ 3\ MARKER\ \Delta \end{array}$

2.80 Performance Verification Tests

15. Reference Level Accuracy, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

- 23. Set the synthesizer/level generator amplitude and EMC analyzer reference level according to Table 2-17.
- 24. At each setting, press (SGL SWP) on the EMC analyzer.
- 25. Record the MKR Δ amplitude reading in the performance verification test record as indicated in Table 2-17. The MKR Δ reading should be within the limits shown.
- 26. Repeat steps 23 through 25 for each entry in Table 2-17.

Table 2-17. Reference Level Accuracy, Log Mode for Narrow Bandwidths

Synthesizer/Level Generator Amplitude	EMC Analyzer Reference Level	MKR Δ Reading (dB)		
(dBm)	$(\mathbf{d}\mathbf{B}\mu\mathbf{V})$	Min.	TR Entry	Max.
- 10	87	0 (Ref)	0 (Ref)	0 (Ref)
0	97	-0.4	19	+ 0.4
+ 10	107	-0.5	20	+ 0.5
- 20	77	-0.4	21	+ 0.4
-30	67	-0.5	22	+ 0.5
-4 0	57	-0.8	23	+ 0.8
- 50	47	-1.1	24	+ 1.1
-60	37	-1.2	25	+ 1.2
- 70	27	-1.3	26	+ 1.3
-80	17	-1.4	27	+ 1.4

- 27. Repeat steps 10 through 16 for the narrow bandwidths, using Table 2-18.
- 28. Record the MKR Δ amplitude reading in the performance verification test record as indicated in Table 2-18. The MKR Δ reading should be within the limits shown.

15. Reference Level Accuracy, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

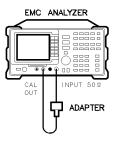
Table 2-18. Reference Level Accuracy, Linear Mode for Narrow Bandwidths

Synthesizer/Level Generator Amplitude	EMC Analyzer Reference Level	MKR Δ Reading (dB)		
(dBm)	$(\mathbf{d}\mathbf{B}\mu\mathbf{V})$	Min.	TR Entry	Max.
- 10	87	0 (Ref)	0 (Ref)	0 (Ref)
0	97	-0.4	28	+ 0.4
+ 10	107	-0.5	29	+ 0.5
-20	77	-0.4	30	+0.4
-30	67	-0.5	31	+ 0.5
- 40	57	-0.8	32	+ 0.8
- 50	47	-1.1	33	+ 1.1
-60	37	-1.2	34	+ 1.2
-7 0	27	-1.3	35	+ 1.3
-80	17	-1.4	36	+ 1.4

16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties, HP 8590 EM-Series

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

To measure the absolute amplitude calibration uncertainty the input signal is measured after the self-calibration routine is finished.


To measure the resolution (IF) bandwidth switching uncertainty an amplitude reference is taken with the bandwidth set to 3 kHz using the marker-delta function. The bandwidth is changed to settings between 3 MHz and 1 kHz and the amplitude variation is measured at each setting and compared to the specification. The span is changed as necessary to maintain approximately the same aspect ratio.

Equipment Required

Cable, BNC, 23 cm (9 in) Adapter, Type N (m) to BNC (f)

Additional Equipment for Option 026

Adapter, APC 3.5 (f) to Type N (f)

xc623

Figure 2-19. Uncertainty Test Setup

16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties, HP 8590 EM-Series

Absolute Amplitude Uncertainty

- 1. Connect the CAL OUT to the EMC analyzer input using the BNC cable and adapter, as shown in Figure 2-19.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer controls by pressing the following keys:

```
SPAN 10 MHz

MKR → MARKER → HIGH

MKR More 1 of 3 MK TRACK ON OFF (ON)

FREQUENCY 300 MHz

SPAN 50 kHz

BW 3 kHz

AVG BW AUTO MAN (MAN) 300 Hz

(AMPLITUDE 87 (+dBμV)

SCALE LOG LIN (LIN)

(For HP 8594EM, HP 8595EM, and HP 8596EM only)

More 1 of 3 More 2 of 3 COUPLE AC DC (DC)
```

3. Press (MKR →), MARKER → HIGH, then record the marker reading in **TR Entry 1** of the performance verification test record.

The marker reading should be within 86.85 and 87.15 dB μ V.

Resolution (IF) Bandwidth Switching Uncertainty

4. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer controls by pressing the following keys:

```
FREQUENCY 300 (MHz) (SPAN) 10 (MHz) (MKR \rightarrow MARKER \rightarrow HIGH (MKR) More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 50 (kHz) (AMPLITUDE) 87 (\rightarrow dB\mu\nu) SCALE LOG LIN (LOG) 1 (dB) (BW) 3 (kHz) AVG BW AUTO MAN (MAN) 1 (kHz)
```

2.84 Performance Verification Tests

16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties, HP 8590 EM-Series

5. Press (AMPLITUDE) and use the knob to adjust the reference level until the signal appears one division below the reference level, then press the following keys:

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ (MKR) More 1 of 3 MK TRACK ON OFF (ON)

6. Set the EMC analyzer resolution (IF) bandwidth and span according to Table 2-19.

Table 2-19. Resolution (IF) Bandwidth Switching Uncertainty

EMC Analyzer		MKR A TR	K Amplitu	de Reading
IF BW Setting	SPAN Setting	Min. (dB)	TR Entry	Max. (dB)
3 kHz	50 kHz	0 (Ref)	0 (Ref)	0 (Ref)
1 kHz	50 kHz	-0.5	2	+ 0.5
9 kHz	50 kHz	-0.4	3	+0.4
10 kHz	50 kHz	-0.4	4	+0.4
30 kHz	500 kHz	-0.4	5	+0.4
100 kHz	500 kHz	-0.4	6	+0.4
120 kHz	500 kHz	-0.4	7	+0.4
300 kHz	5 MHz	-0.4	8	+ 0.4
1 MHz	10 MHz	-0.4	9	+0.4
3 MHz	10 MHz	-0.4	10	+ 0.4

7. Press $(MKR \rightarrow)$, MARKER \rightarrow HIGH, then record the MKR \triangle TRK amplitude reading in the performance verification test record as indicated in Table 2-19.

The amplitude reading should be within the limits shown.

- 8. Repeat steps 6 through 7 for each of the remaining bandwidth and span settings listed in Table 2-19.
- 9. Press the following EMC analyzer keys:

16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties, HP 8590 EM-Series

SPAN 50 kHz

BW 3 kHz

MKR \rightarrow MARKER \rightarrow HIGH

More 1 of 3 More 2 of 3 MARKER Δ MKR) More 1 of 3 MK TRACK ON OFF (ON)

- 10. Set the bandwidth and span according to Table 2-20.
- 11. Press (MKR \rightarrow), MARKER \rightarrow HIGH, then record the MKR Δ TRK amplitude reading in the performance verification test record as indicated in Table 2-20.

The amplitude reading should be within the limits shown.

12. Repeat steps 10 through 11 for each of the remaining bandwidth and span settings listed in Table 2-20.

Table 2-20.
Resolution (IF) Bandwidth Switching Uncertainty for Narrow Bandwidths

EMC Analyzer		MKR A TR	K Amplitu	de Reading
IF BW Setting	SPAN Setting	Min. (dB)	TR Entry	Max. (dB)
3 kHz	50 kHz	0 (Ref)	0 (Ref)	0 (Ref)
300 Hz	1 kHz	-0.6	11	+ 0.6
200 Hz	1 kHz	-0.6	12	+ 0.6
100 Hz	1 kHz	-0.6	13	+ 0.6
30 Hz	1 kHz	-0.6	14	+ 0.6

Note that it is normal for the 200 Hz bandwidth shape to have a dip in the center of the response.

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

The output of a synthesizer/level generator is connected to the input of the EMC analyzer. Measurements are performed in zero span to reduce the measurement uncertainty.

The frequency of the synthesizer/level generator is set to the center of the bandwidth-filter response. The synthesizer output is then reduced in amplitude by either 3 dB or 6 dB to determine the reference point. A marker reference is set and the synthesizer output is increased to its previous level.

The frequency of the synthesizer is reduced then recorded when the resulting marker amplitude matches the previously set marker reference. The synthesizer frequency is increased so that it is tuned on the opposite point on the skirt of the filter response. The frequency is once again recorded and the difference between the two frequencies is compared to the specification.

Equipment Required

Synthesizer/level generator Cable, BNC, 122 cm (48 in) Adapter, Type N (m) to BNC (f)

Additional Equipment for Option 026

Adapter, APC 3.5 (f) to Type N (f)

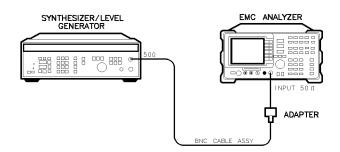


Figure 2-20. Resolution (IF) Bandwidth Accuracy Test Setup

Procedure

1. Connect the equipment as shown in Figure 2-20.

3 dB Bandwidths

2. Set the synthesizer/level generator controls as follows:

AMPLITUDE		0 dBm
AMPTD INCR) 	. 3 dB
FREQUENCY	5	0 MHz

3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 50 (MHz)
(SPAN) ZERO SPAN
(BW) 3 (MHz)
AVG BW AUTO MAN (MAN) 30 (Hz)
(AMPLITUDE) SCALE LOG LIN (LOG) 1 (dB)
```

- 4. On the synthesizer/level generator, set MANUAL TUNE ON/OFF to ON.
- 5. On the EMC analyzer, press MKR.
- 6. Adjust the frequency of the synthesizer/level generator for a maximum marker reading.

It will be necessary to adjust the MANUAL TUNE DIGIT resolution on the synthesizer/level generator for the best compromise between tuning speed and resolution.

2.88 Performance Verification Tests

xc612

Adjust the synthesizer/level generator amplitude to place the peak of the signal at or below the top graticule.

- 7. On the synthesizer/level generator, press AMPLITUDE and INCR (I) (step-down key).
- 8. Press MARKER Δ on the EMC analyzer.
- 9. On the synthesizer/level generator, press INCR (1) (step-up key).
- 10. On the synthesizer/level generator, press FREQUENCY. Lower the frequency of the synthesizer/level generator by adjusting the knob until the marker delta amplitude is 0.0 ± 0.05 dB.
- 11. Record the synthesizer/level generator frequency readout in column 1 of Table 2-21.
- 12. Using the synthesizer/level generator knob, raise the frequency so that the marker-delta amplitude is maximum. Continue increasing the frequency until the marker reads 0.0 ± 0.05 dB.
- 13. Record the synthesizer/level generator frequency readout in column 2 of Table 2-21.
- 14. Adjust the synthesizer/level generator frequency for maximum amplitude.
- 15. Repeat steps 5 through 14 for each of the RES BW settings listed in Table 2-21.
- 16. Subtract the Synthesizer Lower Frequency from the Synthesizer Upper Frequency. Record the difference as the Resolution Bandwidth Accuracy, in the performance verification test record as indicated in Table 2-21.

 $RES\ BW\ Accuracy = Upper\ Frequency - Lower\ Frequency$

Table 2-21. 3 dB Resolution (IF) Bandwidth Accuracy

EMC Analyzer RES BW	Column 1 Synthesizer Lower Frequency	Column 2 Synthesizer Upper Frequency	TR Entry
3 MHz			. 1
300 kHz	-		. 2
100 kHz			3
30 kHz			4
10 kHz			5
3 kHz			6
1 kHz			7

6 dB EMI Bandwidths

- 17. Set the synthesizer/level generator AMPTD INCR to 6 dB.
- 18. On the EMC analyzer, press the following keys:

(BW) 9 kHz EMI BW

(MKR) MARKER NORMAL

- 19. On the synthesizer/level generator, press FREQUENCY. Adjust the frequency for a maximum marker reading.
- 20. On the synthesizer/level generator, press AMPLITUDE and INCR (step-down key).
- 21. Press MARKER Δ on the EMC analyzer.
- 22. On the synthesizer/level generator, press INCR (1) (step-up key).
- 23. On the synthesizer/level generator, press FREQUENCY. Lower the frequency of the synthesizer/level generator by adjusting the knob until the marker-delta amplitude is 0.0 ± 0.05 dB.
- 24. Record the synthesizer/level generator frequency readout in column 1 of Table 2-22.

2.90 Performance Verification Tests

- 25. Using the synthesizer/level generator knob, increase the frequency so that the marker-delta amplitude is maximum. Continue increasing the frequency until the marker reads 0.0 ± 0.05 dB.
- 26. Record the synthesizer/level generator frequency readout in column 2 of Table 2-22.
- 27. Adjust the synthesizer/level generator frequency for maximum marker amplitude.
- 28. Repeat steps 18 through 26 for the 120 kHz EMI bandwidth ((BW) 120 kHz EMI BW) and the 1 MHz EMI bandwidth ((BW) 1 (MHz)).
- 29. Subtract the Synthesizer Lower Frequency from the Synthesizer Upper Frequency, Record the difference as the Resolution Bandwidth Accuracy, in the performance verification test record as indicated in Table 2-22.

 $RES\ BW\ Accuracy = Upper\ Frequency - Lower\ Frequency$

Table 2-22. EMI Resolution (IF) Bandwidth Accuracy

EMC Analyzer RES BW	Column 1 Synthesizer Lower Frequency	Column 2 Synthesizer Upper Frequency	TR Entry
9 kHz			8
120 kHz			9
1 MHz			10

30. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 50 (MHz) (SPAN) 1 (MHz) $(MKR \rightarrow)$ MARKER \rightarrow HIGH MKR More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 1 (kHz)

Wait for the auto zoom routine to finish, then press the following keys:

(MKR) MARKER 1 ON OFF (OFF)

(AUX/USER) More 1 of 3 3 dB POINTS
(AMPLITUDE) SCALE LOG LIN (LOG) 1 (dB)
(BW) 300 (Hz)

- 31. Set the EMC analyzer bandwidth and span according to Table 2-23.
- 32. Press (SGL SWP). Record the −3 dB POINTS: readout in the performance verification test record as indicated in Table 2-23.
- 33. Repeat steps 31 through 32 for each of the bandwidth settings listed in Table 2-23.

Table 2-23.
Resolution (IF) Bandwidth Accuracy for Narrow
Bandwidths

Resolution (IF) Bandwidth	Frequency Span	TR Entry (-3 dB Readout)
300 Hz	1 kHz	11
100 Hz	1 kHz	12
30 Hz	300 Hz	13

6 dB EMI 200 Hz Bandwidths

It is normal for the 200 Hz bandwidth shape to have a dip in the center of the response.

34. Press the following EMC analyzer keys:

35. Press (SGL SWP). Record the −6 dB POINTS: readout in the performance verification test record as **TR Entry 14**.

18. Calibrator Amplitude Accuracy, HP 8590 EM-Series

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

This test measures the accuracy of the EMC analyzer CAL OUT signal. The first part of the test characterizes the insertion loss of a Low Pass Filter (LPF) and 10 dB Attenuator. The harmonics of the CAL OUT signal are suppressed with the LPF before the amplitude accuracy is measured using a power meter.

Calibrator Frequency is not included in this procedure because it is a function of the Frequency Reference (CAL OUT Frequency = 300 MHz ± [300 MHz × Frequency Reference]). Perform the Frequency Reference Accuracy test to verify the CAL OUT frequency.

Equipment Required

Synthesized sweeper

Measuring receiver (used as a power meter)

Power meter

Power sensor, low power with a 50 MHz reference attenuator

Power sensor, 100 kHz to 1800 MHz

Power splitter

10 dB Attenuator, Type N (m to f), dc-12.4 GHz

Filter, low pass (300 MHz)

Cable, Type N, 152 cm (60 in)

Adapter, APC 3.5 (f) to Type N (f)

Adapter, Type N (f) to BNC (m) (two required)

Adapter, Type N (m) to BNC (f)

Procedure

This performance verification test consists of two parts:

Part 1: LPF, Attenuator and Adapter Insertion Loss Characterization

Part 2: Calibrator Amplitude Accuracy

Perform "Part 1: LPF, Attenuator and Adapter Insertion Loss Characterization" before "Part 2: Calibrator Amplitude Accuracy."

A worksheet is provided at the end of this procedure for calculating the corrected insertion loss and the calibrator amplitude accuracy.

18. Calibrator Amplitude Accuracy, HP 8590 EM-Series

Part 1: LPF, Attenuator and Adapter Insertion Loss Characterization

1. Zero and calibrate the measuring receiver and 100 kHz to 1800 MHz power sensor in LOG mode as described in the measuring receiver operation manual.

CAUTION

Do not attempt to calibrate the low-power power sensor without the reference attenuator or damage to the low-power power sensor will occur.

- 2. Zero and calibrate the power meter and low-power power sensor, as described in the power meter operation manual.
- 3. Press INSTRUMENT PRESET on the synthesized sweeper, then set the controls as follows:

CW	$.300~\mathrm{MHz}$
POWER LEVEL	-15 dBm

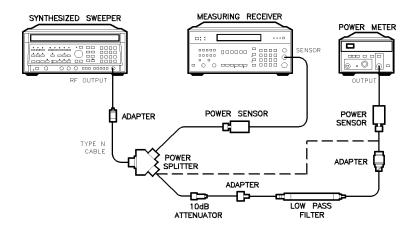


Figure 2-21. LPF Characterization

xu12ce

4. Connect the equipment as shown in Figure 2-21. Connect the low-power power sensor directly to the power splitter (bypass the LPF, attenuator, and

2.94 Performance Verification Tests

18. Calibrator Amplitude Accuracy, HP 8590 EM-Series

- adapters). Wait for the power sensor to settle before proceeding with the next step.
- 5. On the measuring receiver, press RATIO mode. The power indication should
- 6. On the power meter, press the dB REF mode key. The power indication should be 0 dB.
- 7. Connect the LPF, attenuator and adapters as shown in Figure 2-21.
- 8. Record the measuring receiver reading in dB in the worksheet as the Mismatch Error. This is the relative error due to mismatch.
- 9. Record the power meter reading in dB in the worksheet as the Uncorrected Insertion Loss. This is the relative uncorrected insertion loss of the LPF, attenuator and adapters.
- 10. Subtract the Mismatch Error (step 8) from the Uncorrected Insertion Loss (step 9). This is the corrected insertion loss. Record this value in the worksheet as the Corrected Insertion Loss.

Example: If the Mismatch Error is +0.3 dB and the Uncorrected Insertion Loss is -10.2 dB, subtract the mismatch error from the insertion loss to yield a corrected reading of −10.5 dB.

Part 2: Calibrator Amplitude Accuracy

Perform "Part 1: LPF, Attenuator and Adapter Insertion Loss Characterization" before performing this procedure.

18. Calibrator Amplitude Accuracy, HP 8590 EM-Series

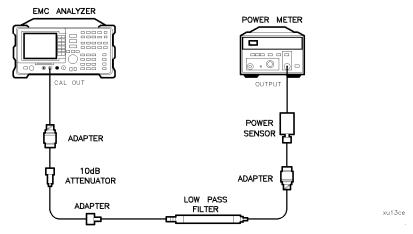


Figure 2-22. Calibrator Amplitude Accuracy Test Setup

- 11. Connect the equipment as shown in Figure 2-22. The EMC analyzer should be positioned so that the setup of the adapters, LPF and attenuator do not bind. It may be necessary to support the center of gravity of the devices.
- 12. On the power meter, press the dBm mode key. Record the Power Meter Reading in dBm in the worksheet as the Power Meter Reading.
- 13. Subtract the Corrected Insertion Loss (step 10) from the Power Meter Reading (step 12).

CAL OUT Power = Power Meter Reading - Corrected Insertion Loss Example: If the Corrected Insertion Loss is -10.0 dB, and the power meter reading is -30 dB, then (-30 dB) - (-10.0 dB) = -20 dB

14. Record this value as **TR Entry 1** of the performance verification test record as the CAL OUT power. The CAL OUT should be -20 dBm ± 0.4 dB.

18. Calibrator Amplitude Accuracy, HP 8590 EM-Series Calibrator Amplitude Accuracy Worksheet

Description	Measurement
Mismatch Error	dB
Uncorrected Insertion Loss	dB
Corrected Insertion Loss	dB
Power Meter Reading	dBm

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The output of the synthesized sweeper is fed through a power splitter to a power sensor and the EMC analyzer. The synthesized sweeper's power level is adjusted at 300 MHz to place the displayed signal at the EMC analyzer center horizontal graticule line. The measuring receiver, used as a power meter, is placed in RATIO mode. At each new sweeper frequency and EMC analyzer center frequency setting, the sweeper's power level is adjusted to place the signal at the center horizontal graticule line. The measuring receiver displays the inverse of the frequency response relative to 300 MHz (CAL OUT frequency).

Equipment Required

Synthesized sweeper
Measuring receiver (used as a power meter)
Synthesizer/level generator
Power sensor, 100 kHz to 1800 MHz
Power splitter
Adapter, Type N (f) to APC 3.5 (f)
Adapter, Type N (m) to Type N (m)
Adapter, Type N (m) to BNC (f)
Cable, BNC, 122 cm (48 in)
Cable, Type N, 183 cm (72 in)

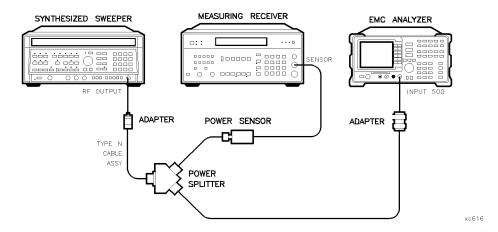


Figure 2-23. Frequency Response Test Setup, ≥50 MHz, HP 8591EM

Frequency Response, ≥50 MHz

- 1. Zero and calibrate the measuring receiver and 100 kHz to 1800 MHz power sensor in log mode as described in the measuring receiver operation manual.
- 2. Connect the equipment as shown in Figure 2-23.
- 3. Press INSTRUMENT PRESET on the synthesized sweeper. Set the synthesized sweeper controls as follows:

CW300 MH	Z
FREQ STEP	Z
POWER LEVEL –8 dBr	n

4. On the EMC analyzer, press (PRESET) and wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 300 (MHz)
CF STEP AUTO MAN (MAN) 50 (MHz)
(SPAN) 5 (MHz)
(AMPLITUDE) 97 (+dB\mu V)
SCALE LOG LIN (LOG) 1 (dB)
(BW) 1 (MHz)
AVG BW AUTO MAN (MAN) 3 (kHz)
(\overline{MKR} \rightarrow) MARKER \rightarrow HIGH
```

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

- 5. Adjust the synthesized sweeper power level for a MKR-TRK amplitude reading of 93 dB μ V ± 0.05 dB.
- 6. Set the sensor Cal Factor on the measuring receiver, then press RATIO.
- 7. Set the synthesized sweeper CW to 50 MHz.
- 8. Press (FREQUENCY) 50 (MHz) on the EMC analyzer.
- 9. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.05 dB.
- 10. Set the sensor Cal Factor on the measuring receiver, then record the negative of the power ratio displayed on the measuring receiver in column 2 of Table 2-24 as the Error Relative to 300 MHz at 50 MHz.
- 11. Set the synthesized sweeper CW to 100 MHz.
- 12. Press (FREQUENCY) 100 (MHz) on the EMC analyzer.
- 13. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.05 dB.
- 14. Set the sensor Cal Factor on the measuring receiver, then record the negative of the power ratio displayed on the measuring receiver in column 2 of Table 2-24 as the Error Relative to 300 MHz at 100 MHz.
- 15. On the synthesized sweeper, press CW, and (step-up key), then on the EMC analyzer, press (FREQUENCY), and (tep-up key).
- 16. Record the negative of the power ratio displayed on the measuring receiver in column 2 of Table 2-24.
- 17. Repeat steps 15 through 16 for each new frequency, entering the power sensor Cal Factor into the measuring receiver for each frequency setting as indicated in Table 2-24.

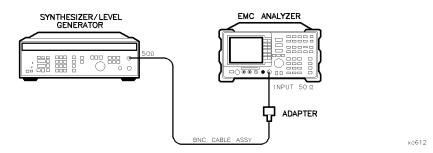


Figure 2-24. Frequency Response Test Setup, <50 MHz, HP 8591EM

Frequency Response, ≤50 MHz

18. Using a cable, connect the synthesizer/level generator directly to the INPUT 50 Ω . Refer to Figure 2-24.

Set the synthesizer/level generator controls as follows:

FREQUENCY	50 MHz
AMPLITUDE	15 dBm
AMPTD INCR	$0.05~\mathrm{dB}$

19. On the EMC analyzer, press the following keys:

```
\begin{array}{l} {\rm (FREQUENCY)} \ 50 \ ({\rm MHz}) \\ {\rm (SPAN)} \ 10 \ ({\rm MHz}) \\ {\rm (BW)} \ 3 \ ({\rm kHz}) \ {\rm AVG} \ {\rm BW} \ {\rm AUTO} \ {\rm MAN} \ ({\rm MAN}) \ 10 \ ({\rm kHz}) \\ {\rm (MKR} \ \longrightarrow \ {\rm MARKER} \ \longrightarrow \ {\rm HIGH} \\ {\rm (MKR)} \ {\rm More} \ 1 \ {\rm of} \ 3 \ {\rm MK} \ {\rm TRACK} \ {\rm ON} \ {\rm OFF} \ ({\rm ON}) \\ {\rm (SPAN)} \ 100 \ ({\rm kHz}) \\ \end{array}
```

Wait for the AUTO ZOOM routine to finish.

- 20. Adjust the synthesizer/level generator amplitude until the MKR-TRK reads 93 dB μ V. This corresponds to the amplitude at 50 MHz recorded in step 11. Record the synthesizer/level generator amplitude in column 2 of Table 2-25 for Synthesizer/Level Generator Amplitude at 50 MHz.
- 21. On the EMC analyzer, press (MKR \rightarrow MARKER \rightarrow HIGH, More 1 of 3 More 2 of 3 MARKER Δ .

- 22. Set the EMC analyzer and the synthesizer/level generator to the next frequency settings listed in Table 2-25.
- 23. At each frequency, adjust the synthesizer/level generator amplitude for a MKR- Δ -TRK amplitude reading of 0.00 \pm 0.05 dB.
- 24. Record the synthesizer/level generator amplitude setting in column 2 of Table 2-25 as the synthesizer/level generator amplitude.
- 25. Repeat steps 22 through 24 for each frequency setting listed in Table 2-25.
- 26. For each of the frequencies in Table 2-25, subtract the Synthesizer/Level Generator Amplitude (column 2) from the Synthesizer/Level Generator Amplitude at 50 MHz recorded in step 19. Record the result as the Response Relative to 50 MHz (column 3) of Table 2-25.
- 27. Add to each of the Response Relative to 50 MHz entries in Table 2-25 the Error Relative to 300 MHz at 50 MHz recorded in step 11. Record the results as the Response Relative to 300 MHz (column 4) in Table 2-25.

Test Results

Perform the following steps to verify the frequency response of the EMC analyzer.

CL I	tary 201.
1.	Enter the most positive number from Table 2-25, column 4:
	dB
2.	Enter the most positive number from Table 2-24, column 2:
	dB
3.	Record the more positive of numbers from steps 1 and 2 in TR Entry 1 of the performance verification test record.
4.	Enter the most negative number from Table 2-25, column 4:
	dB
5.	Enter the most negative number from Table 2-24, column 2:
	dB
6.	Record the more negative of numbers from steps 4 and 5 in TR Entry 2 of the performance verification test record.

7. Subtract the results of step 6 from the results of step 3. Record this value in **TR Entry 3** of the performance verification test record.

2-102 Performance Verification Tests

The result should be less than 2.0 dB.

The absolute values in steps 3 and 6 should be less than 1.5 dB.

Table 2-24. Frequency Response Errors Worksheet

Column 1 EMC Analyzer Frequency (MHz)	Column 2 Error Relative to 300 MHz (dB)	Column 3 CAL FACTOR Frequency (GHz)	Column 1 EMC Analyzer Frequency (MHz)	Column 2 Error Relative to 300 MHz (dB)	Column 3 CAL FACTOR Frequency (GHz)
50		0.03	950		1.0
100		0.1	1000		1.0
150		0.1	1050		1.0
200		0.3	1100		1.0
250		0.3	1150		1.0
300 (Ref)		0.3	1200		1.0
350		0.3	1250		1.0
400		0.3	1300		1.0
450		0.3	1350		1.0
500		0.3	1400		1.0
550		1.0	1450		1.0
600		1.0	1500		1.0
650		1.0	1550		2.0
700		1.0	1600		2.0
750		1.0	1650		2.0
800		1.0	1700		2.0
850		1.0	1750		2.0
900		1.0	1800		2.0

Table 2-25. Frequency Response, \leq 50 MHz Worksheet

Column 1 EMC Analyzer Frequency	Column 2 Synthesizer/Level Generator Amplitude (dBm)	Column 3 Response Relative to 50 MHz	Column 4 Response Relative to 300 MHz
50 MHz		0 (Ref)	
20 MHz			
10 MHz			
5 MHz			
1 MHz			
200 kHz			
50 kHz			
9 kHz			

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

The output of the synthesized sweeper is fed through a power splitter to a power sensor and the EMC analyzer. The synthesized sweeper power level is adjusted at 300 MHz to place the displayed signal at the analyzer center horizontal graticule line. The measuring receiver, used as a power meter, is placed in RATIO mode. At each new synthesized sweeper frequency and analyzer center frequency setting, the synthesized sweeper power level is adjusted to place the signal at the center horizontal graticule line. The measuring receiver displays the inverse of the frequency response relative to 300 MHz (CAL OUT frequency).

Equipment Required

Synthesized sweeper Measuring receiver (used as a power meter) Synthesizer/Level generator Power sensor, 50 MHz to 26.5 GHz Power splitter Termination, 50Ω Adapter, Type N (m) to APC 3.5 (m) Adapter, Type N (f) to BNC (f) Adapter, 3.5 mm (f) to 3.5mm (f) Adapter, Type BNC (f) to SMA (m) Cable, BNC, 122 cm (48 in) Cable, APC 3.5, 91 cm (36 in)

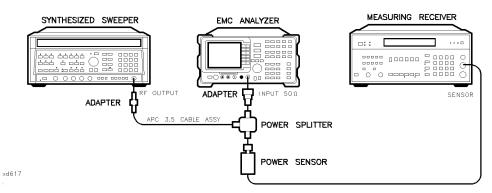


Figure 2-25. Frequency Response Test Setup, ≥50 MHz, HP 8593EM

Procedure

- 1. Zero and calibrate the measuring receiver and 50 MHz to 26.5 GHz power sensor in LOG mode as described in the measuring receiver operation manual.
- 2. Connect the equipment as shown in Figure 2-25.
- 3. Press instrument preset on the synthesized sweeper. Set the synthesized sweeper controls as follows:

CW	300 MHz
FREQ STEP	100 MHz
POWER LEVEL	_8 dBm

4. On the EMC analyzer, press PRESET, then wait for the preset routine to finish. Press the following analyzer keys:

```
FREQUENCY More 1 of 2 Band Lock 0-2.9 Gz BAND 0

FREQUENCY 300 MHz

CF STEP AUTO MAN (MAN) 100 MHz

SPAN 10 MHz

AMPLITUDE REF LVL 97 + dB \( \psi \)

SCALE LOG LIN (LOG) 1 dB

BW IF BW AUTO MAN (MAN) 1 MHz

AVG BW AUTO MAN (MAN) 10 KHz
```

2.106 Performance Verification Tests

- 5. On the EMC analyzer, press $(MKR \rightarrow MARKER \rightarrow HIGH, (MKR), More 1 of 3, and MK TRACK ON OFF (ON).$
- 6. Adjust the synthesized sweeper power level for a MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 7. Press RATIO on the measuring receiver.

Frequency Response, Band 0, \geq 50 MHz

- 8. Set the synthesized sweeper CW FREQUENCY to 50 MHz.
- 9. On the EMC analyzer, press (FREQUENCY) 50 (MHz).
- 10. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 11. Record the negative of the power ratio displayed on the measuring receiver in column 2 of Table 2-26 as the Measuring Receiver Reading at 50 MHz.
- 12. Set the synthesized sweeper CW FREQUENCY to 100 MHz.
- 13. On the EMC analyzer, press (FREQUENCY) 100 (MHz).
- 14. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 15. Record the negative of the power ratio displayed on the measuring receiver in Table 2-26 as the Measuring Receiver Reading.
- 16. On the synthesized sweeper, press (CW), and (↑) (step up) key and on the EMC analyzer, press (FREQUENCY), (↑) (step up) key to step through the remaining frequencies listed in Table 2-26.
- 17. At each new frequency repeat steps 13 through 15, entering the power sensor Cal Factor into the measuring receiver as indicated in Table 2-26.

Frequency Response, Band 1

18. Press the following EMC analyzer keys:

```
FREQUENCY More 1 of 2 Band Lock 2.75-6.5 BAND 1

FREQUENCY 2.75 GHz

SPAN 10 (MHz)

BW IF BW AUTO MAN (MAN) 1 (MHz)

AVG BW AUTO MAN (MAN) 10 (kHz)

MKR → MARKER → HIGH

MKR More 1 of 3 MK TRACK ON OFF (ON)
```

- 19. Set the synthesized sweeper CW to 2.75 GHz.
- 20. On the EMC analyzer, press (AMPLITUDE), More 1 of 3, and PRESEL PEAK.
- 21. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 22. Record the negative of the power ratio displayed on the measuring receiver in Table 2-27, column 2.
- 23. Set the synthesized sweeper CW and the EMC analyzer Center Frequency to 2.8 GHz. Repeat steps 20 through 22.
- 24. On the synthesized sweeper, press CW, and (step up) key, then on the EMC analyzer, press (FREQUENCY), (step up) key to step through the remaining frequencies listed in Table 2-27.
- 25. At each new frequency repeat steps 19 through 21, entering the power sensor Cal Factor into the measuring receiver as indicated in Table 2-27.

Frequency Response, Band 2

26. Press the following EMC analyzer keys:

```
FREQUENCY More 1 of 2 Band Lock 6.0-12.8 BAND 2

FREQUENCY 6.0 GHz

CF STEP AUTO MAN (MAN) 200 MHz

SPAN 10 MHz

BW IF BW AUTO MAN (MAN) 1 MHz

AVG BW AUTO MAN (MAN) 10 kHz

MKR → MARKER → HIGH

MKR More 1 of 3 MK TRACK ON OFF (ON)
```

- 27. Set the synthesized sweeper CW to 6.0 GHz.
- 28. On the EMC analyzer, press (AMPLITUDE), More 1 of 3, and PRESEL PEAK.
- 29. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 30. Record the negative of the power ratio displayed on the measuring receiver in Table 2-28, column 2.
- 31. On the synthesized sweeper, press (w), and (t) (step up) key, then on the EMC analyzer, press (FREQUENCY), and (t) (step up) key to step through the remaining frequencies listed in Table 2-28.
- 32. At each new frequency repeat steps 28 through 30, entering the power sensor Cal Factor into the measuring receiver as indicated in Table 2-28.

Frequency Response, Band 3

33. On the EMC analyzer, press the following keys:

FREQUENCY More 1 of 2 Band Lock 12.4-19. BAND 3
FREQUENCY 12.4 GHz
SPAN 10 MHz
BW IF BW AUTO MAN (MAN) 1 MHz
AVG BW AUTO MAN (MAN) 10 KHz
MKR — MARKER — HIGH
MKR More 1 of 3 MK TRACK ON OFF (ON)

- 34. Set the synthesized sweeper CW to 12.4 GHz.
- 35. On the EMC analyzer, press (AMPLITUDE), More 1 of 3, and PRESEL PEAK.
- 36. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 37. Record the negative of the power ratio displayed on the measuring receiver in Table 2-29, column 2.
- 38. On the synthesized sweeper, press CW, and (step up), then on the EMC analyzer, press (FREQUENCY), (step up) to step through the remaining frequencies listed in Table 2-29.
- 39. At each new frequency repeat steps 35 through 37, entering the power sensor Cal Factor into the measuring receiver as indicated in Table 2-29.

Frequency Response, Band 4

40. On the EMC analyzer, press the following keys:

(FREQUENCY) More 1 of 2 Band Lock 19.1-22 BAND 4 (FREQUENCY) 19.1 (GHz) CF STEP AUTO MAN (MAN) 100 (MHz) (For Option 026 or 027 only, press: 200 (MHz)) (SPAN) 5 (MHz) (BW) IF BW AUTO MAN (MAN) 1 (MHz) AVG BW AUTO MAN (MAN) 10 (kHz) $(MKR \rightarrow)$ MARKER \rightarrow HIGH (MKR) More 1 of 3 MK TRACK ON OFF (ON)

- 41. Set the synthesized sweeper CW to 19.1 GHz.
- 42. On the EMC analyzer, press (AMPLITUDE), More 1 of 3, and PRESEL PEAK.
- 43. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 44. Record the negative of the power ratio displayed on the measuring receiver in Table 2-30, column 2 (Option 026 or 027 only: use Table 2-31, column 2.)
- 45. On the synthesized sweeper, press CW, and () (step up) key, then on the EMC analyzer, press (FREQUENCY), (1) (step up) key to step through the remaining frequencies listed in Table 2-30.
- 46. At each new frequency repeat steps 42 through 44, entering the power sensor Cal Factor into the measuring receiver as indicated in Table 2-30, column 2.

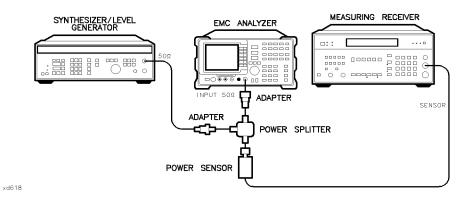


Figure 2-26. Frequency Response Test Setup, <50 MHz, HP 8593EM

Frequency Response, Band 0, <50 MHz

47. Set the synthesizer/level generator controls as follows:

FREQUENCY	
AMPLITUDE	8 dBm
AMPTD INCR	0.05 dB

48. On the EMC analyzer, press the following keys:

MKR More 1 of 3 MARKER ALL OFF

(FREQUENCY) More 1 of 2 Band Lock BND LOCK ON OFF (OFF)

(FREQUENCY) 50 (MHz) (SPAN) 10 (MHz)

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

(MKR) More 1 of 3 MKR TRACK ON OFF (ON)

(SPAN) 100 (kHz)

(BW) IF BW AUTO MAN (MAN) 10 (kHz)

49. Connect the equipment as shown if Figure 2-26, with the power sensor connected to power splitter.

Option 026 or 027 only: Connect the power splitter to the analyzer input directly.

50. Enter the power sensor 50 MHz Cal Factor into the measuring receiver.

2.112 Performance Verification Tests

- 51. Adjust the synthesizer/level generator amplitude until the measuring receiver display reads the same value as recorded in step 11. Record the amplitude displayed on the synthesizer/level generator in column 2 of Table 2-32.
- 52. Replace the 50 MHz to 26.5 GHz power sensor with the 50 Ω termination.
- 53. On the EMC analyzer, press the following key:

```
(\overline{MKR} \rightarrow) MARKER \rightarrow HIGH

More 1 of 3 More 2 of 3 MARKER \Delta

(\overline{MKR}) More 1 of 3 MK TRACK ON OFF (ON)
```

- 54. Set the EMC analyzer center frequency and the synthesizer frequency to the frequencies listed in Table 2-32.
- 55. At each frequency, adjust the synthesizer/level generator amplitude for a MKR Δ -TRK amplitude reading of 0.00 dB ± 0.05 dB. Record the amplitude displayed on the synthesizer/level generator in column 2 of Table 2-32 as the Synthesizer/Level Generator Amplitude.
- 56. For each of the frequencies in Table 2-32, subtract the Synthesizer/Level Generator Amplitude Reading (column 2) from the Synthesizer/Level Generator Amplitude Setting (50 MHz) recorded in step 51. Record the result as the Response Relative to 50 MHz (column 3) of Table 2-32.
- 57. Add to each of the Response Relative to 50 MHz entries in Table 2-32 the measuring receiver Reading for 50 MHz listed in Table 2-26. Record the results as the Response Relative to 300 MHz (column 4) in Table 2-32.

Test Results

Frequency Response, Band 0

1. Enter the most positive number from Table 2-32, column 4: _____ dB

2. Enter the most positive number from Table 2-26, column 2: ${\rm dB}$

- 3. Enter the more positive of numbers from step 1 and step 2 as **TR Entry 1** of the performance verification test record (absolute referenced to 300 MHz).
- 4. Enter the most negative number from Table 2-32, column 4:

_____ dB

5. Enter the most negative number from Table 2-26, column 2:

_____ dB

- 6. Enter the more negative of numbers from step 4 and step 5 as **TR Entry 2** of the performance verification test record.
- 7. Subtract step 6 from step 3. Enter this value as **TR Entry 3** of the performance verification test record (relative flatness).

Frequency Response, Band 1

- 1. Enter the most positive number from Table 2-27, column 2, as **TR Entry 4** of the performance verification test record.
- 2. Enter the most negative number from Table 2-27, column 2, as **TR Entry 5** of the performance verification test record.
- 3. Subtract step 2 from step 1. Enter this value as **TR Entry 6** of the performance verification test record.

Frequency Response, Band 2

- 1. Enter the most positive number from Table 2-28, column 2, as **TR Entry 7** of the performance verification test record.
- 2. Enter the most negative number from Table 2-28, column 2, as **TR Entry 8** of the performance verification test record.
- 3. Subtract step 2 from step 1. Enter this value as **TR Entry 9** of the performance verification test record.

2-114 Performance Verification Tests

Frequency Response, Band 3

- 1. Enter the most positive number from Table 2-29, column 2, as **TR Entry 10** of the performance verification test record.
- 2. Enter the most negative number from Table 2-29, column 2, as **TR Entry 11** of the performance verification test record.
- 3. Subtract step 2 from step 1. Enter this value as **TR Entry 12** of the performance verification test record.

Frequency Response, Band 4

Option 026 or 027 only: Proceed to "Frequency Response, Band 4 for Option 026 or 027" if the EMC analyzer is equipped with Option 026 or 027.

- 1. Enter the most positive number from Table 2-30, column 1, as **TR Entry 13** of the performance verification test record.
- 2. Enter the most negative number from Table 2-30, column 2, as **TR Entry 14** of the performance verification test record.
- 3. Subtract step 2 from step 1. Enter this value as **TR Entry 15** of the performance verification test record.

Frequency Response, Band 4 for Option 026 or 027

- 1. Enter the most positive number from Table 2-31, column 2, as **TR Entry 13** of the performance verification test record.
- 2. Enter the most negative number from Table 2-31, column 2, as **TR Entry 14** of the performance verification test record.
- 3. Subtract step 2 from step 1. Enter this value as **TR Entry 15** of the performance verification test record.

Table 2-26. Frequency Response Band 0, $\geq\!50~\text{MHz}$

Column 1 Frequency (MHz)	Column 2 Measuring Receiver Reading (dB)	Column 3 CAL FACTOR Frequency (GHz)	Column 1 Frequency (MHz)	Column 2 Measuring Receiver Reading (dB)	Column 3 CAL FACTOR Frequency (GHz)
50		0.05	1500		2.0
100		0.05	1600		2.0
200		0.05	1700		2.0
300		0.05	1800		2.0
400		0.05	1900		2.0
500		0.05	2000		2.0
600		0.05	2100		2.0
700		0.05	2200		2.0
800		0.05	2300		2.0
900		0.05	2400		2.0
1000		0.05	2500		3.0
1100		2.0	2600		3.0
1200		2.0	2700		3.0
1300		2.0	2800		3.0
1400		2.0	2900		3.0

Table 2-27. Frequency Response Band 1

Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)	Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)
2.75		3.0	4.7		5.0
2.8		3.0	4.8		5.0
2.9		3.0	4.9		5.0
3.0		3.0	5.0		5.0
3.1		3.0	5.1		5.0
3.2		3.0	5.2		5.0
3.3		3.0	5.3		5.0
3.4		3.0	5.4		5.0
3.5		4.0	5.5		6.0
3.6		4.0	5.6		6.0
3.7		4.0	5.7		6.0
3.8		4.0	5.8		6.0
3.9		4.0	5.9		6.0
4.0		4.0	6.0		6.0
4.1		4.0	6.1		6.0
4.2		4.0	6.2		6.0
4.3		4.0	6.3		6.0
4.4		4.0	6.4		6.0
4.5		5.0	6.5		6.0
4.6		5.0			

Table 2-28. Frequency Response Band 2

Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)	Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)
6.0		6.0	9.6		10.0
6.2		6.0	9.8		10.0
6.4		6.0	10.0		10.0
6.6		7.0	10.2		10.0
6.8		7.0	10.4		10.0
7.0		7.0	10.6		11.0
7.2		7.0	10.8		11.0
7.4		7.0	11.0		11.0
7.6		8.0	11.2		11.0
7.8		8.0	11.4		11.0
8.0		8.0	11.6		12.0
8.2		8.0	11.8		12.0
8.4		8.0	12.0		12.0
8.6		9.0	12.2		12.0
8.8		9.0	12.4		12.0
9.0		9.0	12.6		13.0
9.2		9.0	12.8		13.0
9.4		9.0			

Table 2-29. Frequency Response Band ${\bf 3}$

Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)	Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)
12.4		12.0	16.0		16.0
12.6		13.0	16.2		16.0
12.8		13.0	16.4		16.0
13.0		13.0	16.6		17.0
13.2		13.0	16.8		17.0
13.4		13.0	17.0		17.0
13.6		14.0	17.2		17.0
13.8		14.0	17.4		17.0
14.0		14.0	17.6		18.0
14.2		14.0	17.8		18.0
14.4		14.0	18.0		18.0
14.6		15.0	18.2		18.0
14.8		15.0	18.4		18.0
15.0		15.0	18.6		19.0
15.2		15.0	18.8		19.0
15.4		15.0	19.0		19.0
15.6		16.0	19.2		19.0
15.8		16.0	19.4		19.0

Table 2-30. Frequency Response Band 4

Column1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)	Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)
19.1		19.0	20.6		21.0
19.2		19.0	20.7		21.0
19.3		19.0	20.8		21.0
19.4		19.0	20.9		21.0
19.5		20.0	21.0		21.0
19.6		20.0	21.1		21.0
19.7		20.0	21.2		21.0
19.8		20.0	21.3		21.0
19.9		20.0	21.4		21.0
20.0		20.0	21.5		22.0
20.1		20.0	21.6		22.0
20.2		20.0	21.7		22.0
20.3		20.0	21.8		22.0
20.4		20.0	21.9		22.0
20.5		21.0	22.0		22.0

Table 2-31. Frequency Response Band 4, Option 026 or 027

	1				T
Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)	Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)
19.1		19.0	22.9		23.0
19.3		19.0	23.1		23.0
19.5		20.0	23.3		23.0
19.7		20.0	23.5		24.0
19.9		20.0	23.7		24.0
20.1		20.0	23.9		24.0
20.3		20.0	24.1		24.0
20.5		21.0	24.3		24.0
20.7		21.0	24.5		25.0
20.9		21.0	24.7		25.0
21.1		21.0	24.9		25.0
21.3		21.0	25.1		25.0
21.5		22.0	25.3		25.5
21.7		22.0	25.5		25.5
21.9		22.0	25.7		25.5
22.1		22.0	25.9		26.0
22.3		22.0	26.1		26.0
22.5		23.0	26.3		26.5
22.7		23.0	26.5		26.5

Table 2-32. Frequency Response Band 0, $<50\ MHz$

Column 1 EMC Analyzer Synthesizer/Level Generator Frequency	Column 2 Synthesizer/Level Generator Amplitude (dBm)	Column 3 Response Relative to 50 MHz	Column 4 Response Relative to 300 MHz
50 MHz		0 (Reference)	
20 MHz			
10 MHz			
5 MHz			
1 MHz			
200 kHz			
50 kHz			

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

The RF INPUT coupling is first set to the dc coupled mode. The output of the synthesized sweeper is fed through a power splitter to a power sensor and the EMC analyzer. The synthesized sweeper's power level is adjusted at 300 MHz to place the displayed signal at the analyzer center horizontal graticule line. The measuring receiver, used as a power meter, is placed in RATIO mode. At each new sweeper frequency and analyzer center frequency setting, the sweeper's power level is adjusted to place the signal at the center horizontal graticule line. The measuring receiver displays the inverse of the frequency response relative to 300 MHz (CAL OUT frequency).

Equipment Required

Synthesized sweeper Measuring receiver (used as a power meter) Synthesizer/level generator Power sensor, 50 MHz to 2.9 GHz Power splitter Termination, 50Ω Adapter, Type N (m) to APC 3.5 (m) Adapter, Type N (f) to APC 3.5 (m) Adapter, 3.5 mm (f) to 3.5mm (f) Cable, BNC, 122 cm (48 in) Cable, APC 3.5, 91 cm (36 in)

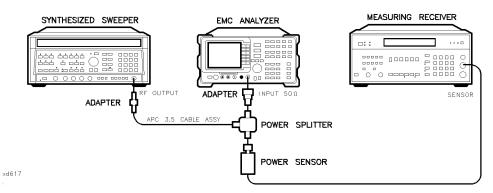


Figure 2-27. Frequency Response Test Setup, ≥50 MHz, HP 8594EM

Procedure

- 1. Zero and calibrate the measuring receiver and 50 MHz to 2.9 GHz power sensor in log mode as described in the measuring receiver operation manual.
- 2. Connect the equipment as shown in Figure 2-27.
- 3. Press (INSTR PRESET) on the synthesized sweeper, then set the controls as follows:

CW3	00 MHz
FREQ STEP	00 MHz
POWER LEVEL	-8 dBm

4. On the EMC analyzer, press (PRESET). Wait for the preset to finish, then set the EMC analyzer controls by pressing the following keys:

```
(FREQUENCY) 300 (MHz)

CF STEP AUTO MAN (MAN) 100 (MHz)

(SPAN) 5 (MHz)

(AMPLITUDE) 97 (+dBµV)

SCALE LOG LIN (LOG) 1 (dB)

(AMPLITUDE) More 1 of 3 More 2 of 3 COUPLE AC DC (DC)

(BW) 1 (MHz)

AVG BW AUTO MAN (MAN) 10 (kHz)
```

5. On the EMC analyzer, press $(MKR \rightarrow MARKER \rightarrow HIGH, (MKR) MK TRACK ON OFF (ON).$

2.124 Performance Verification Tests

- 6. Adjust the synthesized sweeper power level for a MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 7. Set the power sensor cal factor for the measuring receiver, then press RATIO.
- 8. Set the synthesized sweeper CW to 50 MHz.
- 9. Press (FREQUENCY), 50 (MHz) on the EMC analyzer.
- 10. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 11. Set the power sensor cal factor for the measuring receiver, then record the power ratio displayed on the measuring receiver below. Record the negative of the power ratio in Table 2-33.

Measuring Receiver Reading at 50 MHz _____ dB

- 12. Set the synthesized sweeper CW to 100 MHz.
- 13. Press (FREQUENCY), 100 (MHz) on the EMC analyzer.
- 14. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 15. Set the power sensor cal factor for the measuring receiver, then record the negative of the power ratio displayed on the measuring receiver in Table 2-33 as the Measuring Receiver Reading at 100 MHz.
- 16. On the synthesized sweeper, press CW, and (1) (step up) key.

17. On the EMC analyzer, press (FREQUENCY), (†) (step up) key to step through the remaining frequencies listed in Table 2-33.

At each new frequency repeat steps 14 through 16, entering the power sensor's Cal Factor into the measuring receiver as indicated in Table 2-33.

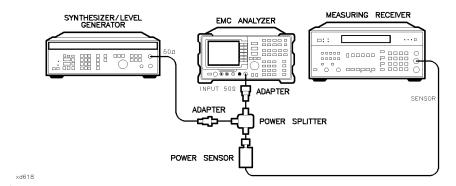


Figure 2-28. Frequency Response Test Setup, <50 MHz, HP 8594EM

- 18. Connect the equipment as shown in Figure 2-28, with the power sensor connected to power splitter.
- 19. Set the synthesizer/level generator controls as follows:

FREQUENCY 5	0 MHz
AMPLITUDE	8 dBm
AMPTD INCR	.05 dB

20. On the EMC analyzer, press $\boxed{\text{MKR}}$, More 1 of 3, MARKER ALL OFF, then set the controls by pressing the following keys:

```
(FREQUENCY) 50 (MHz)
(SPAN) 100 (kHz)
(BW) 10 (kHz)
```

- 21. Enter the power sensor's 50 MHz Cal Factor into the measuring receiver.
- 22. Adjust the synthesizer/level generator amplitude until the measuring receiver display reads the same value as recorded in step 11. Record the synthesizer/level generator amplitude here and in Table 2-34.

Synthesizer/Level Generator Amplitude Setting (50 MHz) _____ dBm

- 23. Replace the power sensor with the 50 Ω termination.
- 24. Press the following EMC analyzer keys:

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

(MKR) MARKER A

- 25. Set the EMC analyzer center frequency and the synthesizer/level generator frequency to the frequencies listed in Table 2-34. At each frequency, adjust the synthesizer/level generator amplitude for a MKR Δ -TRK amplitude reading of 0.00 ± 0.05 dB. Record the synthesizer/level generator amplitude setting in Table 2-34 as the Synthesizer/Level Generator Amplitude.
- 26. For each of the frequencies in Table 2-34, subtract the Synthesizer/Level Generator Amplitude Reading (column 2) from the Synthesizer/Level Generator Amplitude Setting (50 MHz) recorded in step 20. Record the result as the Response Relative to 50 MHz (column 3) of Table 2-34.
- 27. Add to each of the Response Relative to 50 MHz entries in Table 2-34 the Measuring Receiver Reading for 50 MHz listed in Table 2-33. Record the results as the Response Relative to 300 MHz (column 4) in Table 2-34.
- 28. Record the test results in the performance verification test record by performing the following steps:
 a. Enter the most positive number from Table 2-34, column 4:
 ______ dB
 b. Enter the most positive number from Table 2-33, column 2:
 ______ dB
 - c. Enter the more positive of numbers from (a) and (b) as TR Entry 1 of the performance verification test record. (Absolute referenced to 300 MHz.)
 - d. Enter the most negative number from Table 2-34, column 4:
 _____ dB
 - e. Enter the most negative number from Table 2-33, column 2:
 - f. Enter the more negative of numbers from (d) and (e) as **TR Entry 2** of the performance verification test record.
 - g. Subtract (f) from (c), then enter this value as **TR Entry 3** of the performance verification test record. (Relative flatness.)

2-128 Performance Verification Tests

Table 2-33. Frequency Response, $\geq 50~MHz$

Column 1 Frequency (MHz)	Column 2 Measuring Receiver Reading (dB)	Column 3 CAL FACTOR Frequency (GHz)	Column 1 Frequency (MHz)	Column 2 Measuring Receiver Reading (dB)	Column 3 CAL FACTOR Frequency (GHz)
50		0.05	1500		2.0
100		0.05	1600		2.0
200		0.05	1700		2.0
300		0.05	1800		2.0
400		0.05	1900		2.0
500		0.05	2000		2.0
600		0.05	2100		2.0
700		0.05	2200		2.0
800		0.05	2300		2.0
900		0.05	2400		2.0
1000		0.05	2500		3.0
1100		2.0	2600		3.0
1200		2.0	2700		3.0
1300		2.0	2800		3.0
1400		2.0	2900		3.0

Table 2-34. Frequency Response, <50 MHz

Column 1 EMC Analyzer Synthesizer/Level Generator Frequency	Column 2 Synthesizer Level Generator Amplitude (dBm)	Column 3 Response Relative to 50 MHz	Column 4 Response Relative to 300 MHz
50 MHz		0 (Reference)	
20 MHz			
10 MHz			
5 MHz			
1 MHz			
200 kHz			
50 kHz			

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

The output of the synthesized sweeper is fed through a power splitter to a power sensor and the EMC analyzer. The synthesized sweeper power level is adjusted at 300 MHz to place the displayed signal at the analyzer center horizontal graticule line. The measuring receiver, used as a power meter, is placed in RATIO mode. At each new synthesized sweeper frequency and analyzer center frequency setting, the synthesized sweeper power level is adjusted to place the signal at the center horizontal graticule line. The measuring receiver displays the inverse of the frequency response relative to 300 MHz (CAL OUT frequency).

Equipment Required

Synthesized sweeper Measuring receiver (used as a power meter) Synthesizer/Level generator Power sensor, 50 MHz to 6.5 GHz Power splitter Termination, 50Ω Adapter, Type N (m) to APC 3.5 (m) Adapter, Type N (f) to BNC (f) Adapter, 3.5 mm (f) to 3.5mm (f) Adapter, Type BNC (f) to SMA (m) Cable, BNC, 122 cm (48 in) Cable, APC 3.5, 91 cm (36 in)

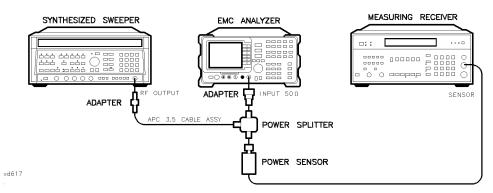


Figure 2-29. Frequency Response Test Setup, ≥50 MHz, HP 8595EM

Procedure

- 1. Zero and calibrate the measuring receiver and 50 MHz to 6.5 GHz power sensor in LOG mode as described in the measuring receiver operation manual.
- 2. Connect the equipment as shown in Figure 2-29.
- 3. Press instrument preset on the synthesized sweeper. Set the synthesized sweeper controls as follows:

CW	300 MHz
FREQ STEP	100 MHz
POWER LEVEL	_8 dBm

4. On the EMC analyzer, press PRESET, then wait for the preset routine to finish. Press the following analyzer keys:

```
FREQUENCY More 1 of 2 Band Lock 0-2.9 Gz BAND 0

FREQUENCY 300 MHz

CF STEP AUTO MAN (MAN) 100 MHz

SPAN 10 MHz

AMPLITUDE REF LVL 97 (+dB\(\psi\) V

AMPLITUDE More 1 of 3 More 2 of 3 COUPLE AC DC (DC)

SCALE LOG LIN (LOG) 1 dB

BW IF BW AUTO MAN (MAN) 1 MHz

AVG BW AUTO MAN (MAN) 10 kHz
```

2.132 Performance Verification Tests

- 5. On the EMC analyzer, press $(\underline{MKR} \rightarrow \underline{MARKER} \rightarrow \underline{HIGH}, (\underline{MKR}),$ More 1 of 3, and MK TRACK ON OFF (ON).
- 6. Adjust the synthesized sweeper power level for a MKR-TRK amplitude reading of 93 dB $\mu V \pm 0.1$ dB.
- 7. Press RATIO on the measuring receiver.

Frequency Response, Band 0, \geq 50 MHz

- 8. Set the synthesized sweeper CW FREQUENCY to 50 MHz.
- 9. Set the EMC analyzer CENTER FREQUENCY to 50 MHz.
- 10. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 11. Record the power ratio displayed on the measuring receiver below, then record the negative of this value in column 2 of Table 2-35 as the Measuring Receiver Reading at 50 MHz.

Measuring Receiver Reading at 50 MHz____dB

- 12. Set the synthesized sweeper CW FREQUENCY to 100 MHz.
- 13. Set the EMC analyzer CENTER FREQUENCY to 100 MHz.
- 14. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 15. Record the negative of the power ratio displayed on the measuring receiver in Table 2-35 as the measuring receiver Reading.
- 16. On the synthesized sweeper, press (CW), and (\(\frac{1}{2}\) (step up) key and on the EMC analyzer, press (\(\frac{FREQUENCY}{2}\)), (\(\frac{1}{2}\) (step up) key to step through the remaining frequencies listed in Table 2-35.
- 17. At each new frequency repeat steps 13 through 15, entering the power sensor Cal Factor into the measuring receiver as indicated in Table 2-35.

Frequency Response, Band 1

18. Press the following EMC analyzer keys:

```
FREQUENCY More 1 of 2 Band Lock 2.75-6.5 BAND 1

FREQUENCY 2.75 GHz

SPAN 10 (MHz)

BW IF BW AUTO MAN (MAN) 1 (MHz)

AVG BW AUTO MAN (MAN) 10 (kHz)

(MKR → MARKER → HIGH

(MKR More 1 of 3 MK TRACK ON OFF (ON)
```

- 19. Set the synthesized sweeper CW to 2.75 GHz.
- 20. On the EMC analyzer, press (AMPLITUDE), More 1 of 3, and PRESEL PEAK.
- 21. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 22. Record the negative of the power ratio displayed on the measuring receiver in Table 2-36, column 2.
- 23. Set the synthesized sweeper CW and the EMC analyzer Center Frequency to 2.8 GHz. Repeat steps 20 through 22.
- 24. On the synthesized sweeper, press CW, and (step up) key, then on the EMC analyzer, press (FREQUENCY), (step up) key to step through the remaining frequencies listed in Table 2-36.
- 25. At each new frequency, repeat steps 20 through 22, entering the power sensor Cal Factor into the measuring receiver as indicated in Table 2-36.

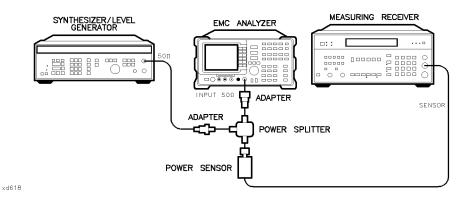


Figure 2-30. Frequency Response Test Setup, <50 MHz, HP 8595EM

Frequency Response, Band 0, <50 MHz

26. Set the synthesizer/level generator controls as follows:

FREQUENCY	50 MHz
AMPLITUDE	−8 dBm
AMPTD INCR	$0.05~\mathrm{dB}$

- 27. Connect the equipment as shown if Figure 2-30, with the power sensor connected to power splitter.
- 28. On the EMC analyzer, press the following keys:

```
MKR MARKER 1 ON OFF (OFF)

(FREQUENCY) More 1 of 2 Band Lock BND LOCK ON OFF (OFF)

(FREQUENCY) 50 (MHz)

(SPAN) 10 (MHz)

(MKR —) MARKER — HIGH

(MKR) More 1 of 3 MKR TRACK ON OFF (ON)

(SPAN) 100 (KHz)

(BW) IF BW AUTO MAN (MAN) 10 (KHz)
```

- 29. Enter the power sensor 50 MHz Cal Factor into the measuring receiver.
- 30. Adjust the synthesizer/level generator amplitude until the measuring receiver display reads the same value as recorded in step 11. Record the synthesizer/level generator amplitude in Table 2-37.

- 31. Replace the power sensor with the 50 Ω termination.
- 32. On the EMC analyzer, press the following key:

- 33. Set the EMC analyzer center frequency and the synthesizer frequency to the frequencies listed in Table 2-37.
- 34. At each frequency, adjust the synthesizer/level generator amplitude for a MKR Δ -TRK amplitude reading of 0.00 ± 0.05 dB. Record the synthesizer/level generator Amplitude Setting in Table 2-37 as the synthesizer/level generator Amplitude.
- 35. For each of the frequencies in Table 2-37, subtract the synthesizer/level generator Amplitude Reading (column 2) from the synthesizer/level generator Amplitude Setting (50 MHz) recorded in step 50. Record the result as the Response Relative to 50 MHz (column 3) of Table 2-37.
- 36. Add to each of the Response Relative to 50 MHz entries in Table 2-37 the measuring receiver Reading for 50 MHz listed in Table 2-35. Record the results as the Response Relative to 300 MHz (column 4) in Table 2-37.

Test Results

F	requency Response, Band 0
1.	Enter the most positive number from Table 2-37, column 4: dB
2.	Enter the most positive number from Table 2-35, column 2: dB
3.	Enter the more positive of numbers from step 1 and step 2 as TR Entry 1 of the performance verification test record (absolute referenced to 300 MHz).
4.	Enter the most negative number from Table 2-37, column 4: dB
5.	Enter the most negative number from Table 2-35, column 2: dB
6.	Enter the more negative of numbers from step 4 and step 5 as TR Entry 2 of the performance verification test record.
7.	Subtract step 6 from step 3. Enter this value as TR Entry 3 of the

Frequency Response, Band 1

- 1. Enter the most positive number from Table 2-36, column 2, as **TR Entry 4** of the performance verification test record.
- 2. Enter the most negative number from Table 2-36, column 2, as **TR Entry 5** of the performance verification test record.
- 3. Subtract step 2 from step 1. Enter this value as **TR Entry 6** of the performance verification test record.

performance verification test record (relative flatness).

Table 2-35. Frequency Response Band 0, ${\geq}50~\text{MHz}$

Column 1 Frequency (MHz)	Column 2 Measuring Receiver Reading (dB)	Column 3 CAL FACTOR Frequency (GHz)	Column 1 Frequency (MHz)	Column 2 Measuring Receiver Reading (dB)	Column 3 CAL FACTOR Frequency (GHz)
50		0.05	1500		2.0
100		0.05	1600		2.0
200		0.05	1700		2.0
300		0.05	1800		2.0
400		0.05	1900		2.0
500		0.05	2000		2.0
600		0.05	2100		2.0
700		0.05	2200		2.0
800		0.05	2300		2.0
900		0.05	2400		2.0
1000		0.05	2500		3.0
1100		2.0	2600		3.0
1200		2.0	2700		3.0
1300		2.0	2800		3.0
1400		2.0	2900		3.0

Table 2-36. Frequency Response Band 1

Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)	Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)
2.75		3.0	4.7		5.0
2.8		3.0	4.8		5.0
2.9		3.0	4.9		5.0
3.0		3.0	5.0		5.0
3.1		3.0	5.1		5.0
3.2		3.0	5.2		5.0
3.3		3.0	5.3		5.0
3.4		3.0	5.4		5.0
3.5		4.0	5.5		6.0
3.6		4.0	5.6		6.0
3.7		4.0	5.7		6.0
3.8		4.0	5.8		6.0
3.9		4.0	5.9		6.0
4.0		4.0	6.0		6.0
4.1		4.0	6.1		6.0
4.2		4.0	6.2		6.0
4.3		4.0	6.3		6.0
4.4		4.0	6.4		6.0
4.5		5.0	6.5		6.0
4.6		5.0			

Table 2-37. Frequency Response Band 0, $<50\ MHz$

Column 1 EMC Analyzer Synthesizer/Level Generator Frequency	Column 2 Synthesizer/Level Generator Amplitude (dBm)	Column 3 Response Relative to 50 MHz	Column 4 Response Relative to 300 MHz
50 MHz		0 (Reference)	
20 MHz			
10 MHz			
5 MHz			
1 MHz			
200 kHz			
50 kHz			

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

The output of the synthesized sweeper is fed through a power splitter to a power sensor and the EMC analyzer. The synthesized sweeper power level is adjusted at 300 MHz to place the displayed signal at the analyzer center horizontal graticule line. The measuring receiver, used as a power meter, is placed in RATIO mode. At each new synthesized sweeper frequency and analyzer center frequency setting, the synthesized sweeper power level is adjusted to place the signal at the center horizontal graticule line. The measuring receiver displays the inverse of the frequency response relative to 300 MHz (CAL OUT frequency).

Equipment Required

Synthesized sweeper Measuring receiver (used as a power meter) Synthesizer/Level generator Power sensor, 50 MHz to 12.8 GHz Power splitter Termination, 50Ω Adapter, Type N (m) to APC 3.5 (m) Adapter, Type N (f) to BNC (f) Adapter, 3.5 mm (f) to 3.5mm (f) Adapter, Type BNC (f) to SMA (m) Cable, BNC, 122 cm (48 in) Cable, APC 3.5, 91 cm (36 in)

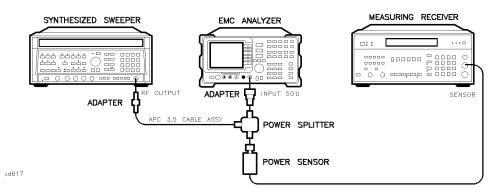


Figure 2-31. Frequency Response Test Setup, ≥50 MHz, HP 8596EM

Procedure

- 1. Zero and calibrate the measuring receiver and 50 MHz to 12.8 GHz power sensor in LOG mode as described in the measuring receiver operation manual.
- 2. Connect the equipment as shown in Figure 2-31.
- 3. Press instrument preset on the synthesized sweeper. Set the synthesized sweeper controls as follows:

CW	300 MHz
FREQ STEP	100 MHz
POWER LEVEL	_8 dBm

4. On the EMC analyzer, press PRESET, then wait for the preset routine to finish. Press the following analyzer keys:

```
FREQUENCY More 1 of 2 Band Lock 0-2.9 Gz BAND 0

FREQUENCY 300 MHz

CF STEP AUTO MAN (MAN) 100 MHz

SPAN 10 MHz

AMPLITUDE REF LVL 97 (+dB \( \nu\) V

SCALE LOG LIN (LOG) 1 dB

BW IF BW AUTO MAN (MAN) 1 MHz

AVG BW AUTO MAN (MAN) 10 kHz
```

2-142 Performance Verification Tests

- 5. On the EMC analyzer, press $(MKR \rightarrow)$ MARKER \rightarrow HIGH, (MKR), More 1 of 3, and MK TRACK ON OFF (ON).
- 6. Adjust the synthesized sweeper power level for a MKR-TRK amplitude reading of 93 dB $\mu V \pm 0.1$ dB.
- 7. Press RATIO on the measuring receiver.

Frequency Response, Band 0, \geq 50 MHz

- 8. Set the synthesized sweeper CW FREQUENCY to 50 MHz.
- 9. Set the EMC analyzer CENTER FREQUENCY to 50 MHz.
- 10. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 11. Record the power ratio displayed on the measuring receiver below, then record the negative of this value in column 2 of Table 2-38 as the Measuring Receiver Reading at 50 MHz.

Measuring Receiver Reading at 50 MHz____dB

- 12. Set the synthesized sweeper CW FREQUENCY to 100 MHz.
- 13. Set the EMC analyzer CENTER FREQUENCY to 100 MHz.
- 14. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 15. Record the negative of the power ratio displayed on the measuring receiver in Table 2-38 as the measuring receiver Reading.
- 16. On the synthesized sweeper, press (CW), and (\(\frac{1}{4}\)) (step up) key and on the EMC analyzer, press (\(\frac{FREQUENCY}{2}\)), (\(\frac{1}{4}\)) (step up) key to step through the remaining frequencies listed in Table 2-38.
- 17. At each new frequency repeat steps 13 through 15, entering the power sensor Cal Factor into the measuring receiver as indicated in Table 2-38.

Frequency Response, Band 1

18. Press the following EMC analyzer keys:

```
FREQUENCY More 1 of 2 Band Lock 2.75-6.5 BAND 1

FREQUENCY 2.75 GHz

SPAN 10 (MHz)

BW IF BW AUTO MAN (MAN) 1 (MHz)

AVG BW AUTO MAN (MAN) 10 (kHz)

MKR → MARKER → HIGH

MKR More 1 of 3 MK TRACK ON OFF (ON)
```

- 19. Set the synthesized sweeper CW to 2.75 GHz.
- 20. On the EMC analyzer, press (AMPLITUDE), More 1 of 3, and PRESEL PEAK.
- 21. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 22. Record the negative of the power ratio displayed on the measuring receiver in Table 2-39, column 2.
- 23. Set the synthesized sweeper CW and the EMC analyzer Center Frequency to 2.8 GHz. Repeat steps 20 through 22.
- 24. On the synthesized sweeper, press CW, and (step up) key, then on the EMC analyzer, press (FREQUENCY), (step up) key to step through the remaining frequencies listed in Table 2-39.
- 25. At each new frequency repeat steps 20 through 22, entering the power sensor Cal Factor into the measuring receiver as indicated in Table 2-39.

Frequency Response, Band 2

26. Press the following EMC analyzer keys:

```
FREQUENCY More 1 of 2 Band Lock 6.0-12.8 BAND 2

FREQUENCY 6.0 GHz

CF STEP AUTO MAN (MAN) 200 MHz

SPAN 10 MHz

BW IF BW AUTO MAN (MAN) 1 MHz

AVG BW AUTO MAN (MAN) 10 kHz

MKR → MARKER → HIGH

MKR More 1 of 3 MK TRACK ON OFF (ON)
```

- 27. Set the synthesized sweeper CW to 6.0 GHz.
- 28. On the EMC analyzer, press (AMPLITUDE), More 1 of 3, and PRESEL PEAK.
- 29. Adjust the synthesized sweeper power level for an EMC analyzer MKR-TRK amplitude reading of 93 dB μ V ± 0.1 dB.
- 30. Record the negative of the power ratio displayed on the measuring receiver in Table 2-40, column 2.
- 31. On the synthesized sweeper, press (w), and (t) (step up) key, then on the EMC analyzer, press (FREQUENCY), and (t) (step up) key to step through the remaining frequencies listed in Table 2-40.
- 32. At each new frequency repeat steps 28 through 30, entering the power sensor Cal Factor into the measuring receiver as indicated in Table 2-40.

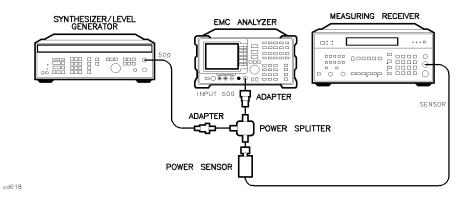


Figure 2-32. Frequency Response Test Setup, <50 MHz, HP 8596EM

Frequency Response, Band 0, <50 MHz

33. Set the synthesizer/level generator controls as follows:

FREQUENCY	. 50 MHz
AMPLITUDE	$-8 \mathrm{dBm}$
AMPTD INCR	0.05 dB

- 34. Connect the equipment as shown if Figure 2-32, with the power sensor connected to power splitter.
- 35. On the EMC analyzer, press the following keys:

MKR MARKER 1 ON OFF (OFF)

(FREQUENCY) More 1 of 2 Band Lock BND LOCK ON OFF (OFF)

(FREQUENCY) 50 (MHz)

(SPAN) 10 (MHz)

(MKR → MARKER → HIGH

(MKR) More 1 of 3 MKR TRACK ON OFF (ON)

(SPAN) 100 (KHz)

(BW) IF BW AUTO MAN (MAN) 10 (KHz)

- 36. Enter the power sensor 50 MHz Cal Factor into the measuring receiver.
- 37. Adjust the synthesizer/level generator amplitude until the measuring receiver display reads the same value as recorded in step 11. Record the synthesizer/level generator amplitude in Table 2-41.

2-146 Performance Verification Tests

- 38. Replace the 50 MHz to 12.8 GHz power sensor with the 50 Ω termination.
- 39. On the EMC analyzer, press the following key:

 $(\overline{MKR} \rightarrow)$ MARKER \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ (\overline{MKR}) More 1 of 3 MK TRACK ON OFF (ON)

- 40. Set the EMC analyzer center frequency and the synthesizer frequency to the frequencies listed in Table 2-41.
- 41. At each frequency, adjust the synthesizer/level generator amplitude for a MKR Δ -TRK amplitude reading of 0.00 \pm 0.05 dB. Record the synthesizer/level generator Amplitude Setting in Table 2-41 as the synthesizer/level generator Amplitude.
- 42. For each of the frequencies in Table 2-41, subtract the synthesizer/level generator Amplitude Reading (column 2) from the synthesizer/level generator Amplitude Setting (50 MHz) recorded in step 37. Record the result as the Response Relative to 50 MHz (column 3) of Table 2-41.
- 43. Add to each of the Response Relative to 50 MHz entries in Table 2-41 the measuring receiver Reading for 50 MHz listed in Table 2-38. Record the results as the Response Relative to 300 MHz (column 4) in Table 2-41.

Test Results

Frequency Response, Band 0

1.	Enter the most positive number from Table 2-41, column 4: dB
2.	Enter the most positive number from Table 2-38, column 2: dB
3.	Enter the more positive of numbers from step 1 and step 2 as TR Entry 1 of the performance verification test record (absolute referenced to 300 MHz).
4.	Enter the most negative number from Table 2-41, column 4:

2 3	3. Frequency Response, HP 8596EM
	dB
5.	Enter the most negative number from Table 2-38, column 2: dB
6.	Enter the more negative of numbers from step 4 and step 5 as TR Entry 2 of the performance verification test record

7. Subtract step 6 from step 3. Enter this value as **TR Entry 3** of the performance verification test record (relative flatness).

Frequency Response, Band 1

- 1. Enter the most positive number from Table 2-39, column 2, as **TR Entry 4** of the performance verification test record.
- 2. Enter the most negative number from Table 2-39, column 2, as **TR Entry 5** of the performance verification test record.
- 3. Subtract step 2 from step 1. Enter this value as **TR Entry 6** of the performance verification test record.

Frequency Response, Band 2

- 1. Enter the most positive number from Table 2-40, column 2, as **TR Entry 7** of the performance verification test record.
- 2. Enter the most negative number from Table 2-40, column 2, as **TR Entry 8** of the performance verification test record.
- 3. Subtract step 2 from step 1. Enter this value as **TR Entry 9** of the performance verification test record.

Table 2-38. Frequency Response Band 0, ${\geq}50~\text{MHz}$

Column 1 Frequency (MHz)	Column 2 Measuring Receiver Reading (dB)	Column 3 CAL FACTOR Frequency (GHz)	Column 1 Frequency (MHz)	Column 2 Measuring Receiver Reading (dB)	Column 3 CAL FACTOR Frequency (GHz)
50		0.05	1500		2.0
100		0.05	1600		2.0
200		0.05	1700		2.0
300		0.05	1800		2.0
400		0.05	1900		2.0
500		0.05	2000		2.0
600		0.05	2100		2.0
700		0.05	2200		2.0
800		0.05	2300		2.0
900		0.05	2400		2.0
1000		0.05	2500		3.0
1100		2.0	2600		3.0
1200		2.0	2700		3.0
1300		2.0	2800		3.0
1400		2.0	2900		3.0

Table 2-39. Frequency Response Band 1

Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)	Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)
2.75		3.0	4.7		5.0
2.8		3.0	4.8		5.0
2.9		3.0	4.9		5.0
3.0		3.0	5.0		5.0
3.1		3.0	5.1		5.0
3.2		3.0	5.2		5.0
3.3		3.0	5.3		5.0
3.4		3.0	5.4		5.0
3.5		4.0	5.5		6.0
3.6		4.0	5.6		6.0
3.7		4.0	5.7		6.0
3.8		4.0	5.8		6.0
3.9		4.0	5.9		6.0
4.0		4.0	6.0		6.0
4.1		4.0	6.1		6.0
4.2		4.0	6.2		6.0
4.3		4.0	6.3		6.0
4.4		4.0	6.4		6.0
4.5		5.0	6.5		6.0
4.6		5.0			

Table 2-40. Frequency Response Band $\bf 2$

Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)	Column 1 Frequency (GHz)	Column 2 Measuring Receiver Reading (dB) Preselector Peaked	Column 3 CAL FACTOR Frequency (GHz)
6.0		6.0	9.6		10.0
6.2		6.0	9.8		10.0
6.4		6.0	10.0		10.0
6.6		7.0	10.2		10.0
6.8		7.0	10.4		10.0
7.0		7.0	10.6		11.0
7.2		7.0	10.8		11.0
7.4		7.0	11.0		11.0
7.6		8.0	11.2		11.0
7.8		8.0	11.4		11.0
8.0		8.0	11.6		12.0
8.2		8.0	11.8		12.0
8.4		8.0	12.0		12.0
8.6		9.0	12.2		12.0
8.8		9.0	12.4		12.0
9.0		9.0	12.6		13.0
9.2		9.0	12.8		13.0
9.4		9.0			

23. Frequency Response, HP 8596EM

Table 2-41. Frequency Response Band 0, $<50\ MHz$

Column 1 EMC Analyzer Synthesizer/Level Generator Frequency	Column 2 Synthesizer/Level Generator Amplitude (dBm)	Column 3 Response Relative to 50 MHz	Column 4 Response Relative to 300 MHz
50 MHz		0 (Reference)	
20 MHz			
10 MHz			
5 MHz			
1 MHz			
200 kHz			
50 kHz			

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

A synthesized source and the EMC analyzer are set to the same frequency and the amplitude of the source is set to -20 dBm (87 dB μ V). A marker-amplitude reference is set on the EMC analyzer. The source is then tuned to several different frequencies where image responses could occur. At each source frequency, the source amplitude is set to -20 dBm and the amplitude of the response, if any, is measured using the EMC analyzer marker function. The marker-amplitude difference is then compared to the specification.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized sweeper Measuring receiver (used as a power meter) Power sensor, 100 kHz to 1800 MHz Adapter, Type N (f) to APC 3.5 (f) Adapter, Type N (f) to Type N (f) Cable, Type N, 183 cm (72 in)

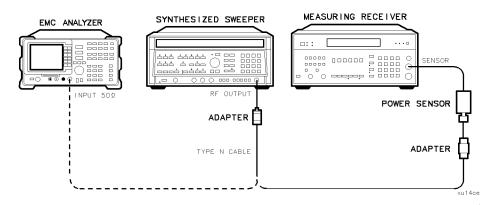


Figure 2-33. Other Input Related Spurious Responses Test Setup, HP 8591EM

Procedure

- 1. Zero and calibrate the measuring receiver and power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor's 542.8 MHz Cal Factor into the measuring receiver.
- 2. Press INSTRUMENT PRESET on the synthesized sweeper and set the controls as follows:

CW		 	 542.8 MHz
POWER I	EVEL	 	 20 dBm

- 3. Connect the equipment as shown in Figure 2-33. Connect the output of the synthesized sweeper to the power sensor.
- 4. Adjust the synthesized sweeper power level for a $-20~\mathrm{dBm} \pm 0.1~\mathrm{dB}$ reading on the measuring receiver.
- 5. On the synthesized sweeper, press SAVE 1.
- 6. Enter the power sensor's Cal Factor for 1142.8 MHz into the measuring receiver.
- 7. Set the CW frequency on the synthesized sweeper to 1142.8 MHz.
- 8. Adjust the synthesized sweeper power level for a $-20~dBm \pm 0.1~dB$ reading on the measuring receiver.
- 9. On the synthesized sweeper, press SAVE 2.
- 10. Enter the power sensor's Cal Factor for 500 MHz into the measuring receiver.
- 11. Set the CW frequency on the synthesized sweeper to 500 MHz.
- 12. Adjust the synthesized sweeper power level for a $-20~\mathrm{dBm} \pm 0.1~\mathrm{dB}$ reading on the measuring receiver.
- 13. Connect the synthesized sweeper to the RF INPUT of the EMC analyzer as shown in Figure 2-33.
- 14. On the EMC analyzer, press (PRESET), then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 500~{\rm MHz}
(SPAN) 10~{\rm (MHz)}
(AMPLITUDE) 97~{\rm (dB}\,\mu{\rm V})
```

2-154 Performance Verification Tests

 $(MKR \rightarrow) MKR \rightarrow HIGH$

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

(SPAN) 200 (kHz)

15. Wait for the AUTO ZOOM message to disappear. Press the following EMC analyzer keys:

 $(\overline{MKR} \rightarrow)$ MKR \rightarrow HIGH

 $(MKR \rightarrow)$ More 1 of 3 MARKER \rightarrow REF LVL

(MKR) More 1 of 3 MK TRACK ON OFF (OFF)

 $(\overline{MKR} \rightarrow)$ MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ

(AMPLITUDE) ((step-down key)

(SGL SWP)

- 16. For each of the frequencies listed in Table 2-42, do the following:
 - a. Set the synthesized sweeper to the listed CW frequency by pressing (RECALL) 1 for a CW frequency of 542.8 MHz or (RECALL) 2 for a CW frequency of 1142.8 MHz.
 - b. Press (SGL SWP) and wait for the completion of a new sweep.
 - ^C· On the EMC analyzer, press $\boxed{\text{MKR}} \rightarrow \text{MKR} \rightarrow \text{HIGH}$ and record the marker-delta amplitude reading in Table 2-42 as the Actual MKR Δ Amplitude.

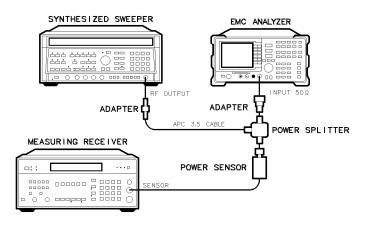
The Actual MKR Δ Amplitude should be greater than the Minimum MKR Δ Amplitude listed in the table below.

Note that the Minimum MKR Δ Amplitude is 10 dB more positive than the specification. This is due to the 10 dB change in reference level made in step 15.

Table 2-42. Image Responses

Synthesized Sweeper CW Frequency	TR Entry	Actual MKR Δ Amplitude (dBc)	Minimum MKR Δ Amplitude (dBc)
542.8 MHz	1		55
1142.8 MHz	2		55

17. Record both of the Actual MKR Δ Amplitude readings listed in Table 2-42 into the performance verification test record.


This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

A synthesized source and the EMC analyzer are set to the same frequency and the amplitude of the source is set to 0 dBm (107 dB μ V). A marker-amplitude reference is set on the EMC analyzer. The source is then tuned to several different frequencies which should generate image, multiple, and out-of-band responses. At each source frequency, the source amplitude is set to 0 dBm and the amplitude of the response, if any, is measured using the EMC analyzer marker function. The marker-amplitude difference is then compared to the specification.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized sweeper Measuring receiver (used as a power meter) Power sensor, 50 MHz to 26.5 GHz Power splitter Adapter, Type N (m) to APC 3.5 (m) Adapter, APC 3.5 (f) to APC 3.5 (f) Cable, APC 3.5, 91 cm (36 in)

xd619

Figure 2-34.
Other Input Related Spurious Responses Test Setup, HP 8593EM

Procedure

Band 0

- 1. Zero and calibrate the measuring receiver and power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor 2 GHz Cal Factor into the measuring receiver.
- 2. Press INSTRUMENT PRESET on the synthesized sweeper and set the controls as follows:

CW	 	2000 MHz
POWER LEVEL	 	4 dBm

- 3. Connect the equipment as shown in Figure 2-34. Connect the output of the synthesizer to the power sensor.
 - Option 026 only: Connect the power splitter to the EMC analyzer input directly. Do not use an adapter to connect the power splitter to the EMC analyzer.
- 4. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 2.0 (GHz)

2.158 Performance Verification Tests

(SPAN) 1 (MHz) (AMPLITUDE) REF LVL 97 ($\overline{\rm dB}\mu V$) ATTEN AUTO MAN (MAN) 0 ($\overline{\rm dB}$)

- 5. Adjust the synthesized sweeper power level for a -10 dBm ± 0.1 dB reading on the measuring receiver.
- 6. On the EMC analyzer, press the following keys:

 $(MKR \rightarrow)$ MKR \rightarrow HIGH (MKR) More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 200 (kHz)

Wait for the AUTO ZOOM message to disappear. Press the following EMC analyzer keys:

 $\begin{array}{l} (\mbox{MKR} \rightarrow \mbox{MKR} \rightarrow \mbox{HIGH} \\ (\mbox{MKR} \rightarrow \mbox{More 1 of 3 MARKER} \rightarrow \mbox{REF LVL} \\ (\mbox{MKR} \mbox{More 1 of 3 MK TRACK ON OFF (OFF)} \\ (\mbox{MKR} \rightarrow \mbox{MKR} \rightarrow \mbox{HIGH More 1 of 3 More 2 of 3 MARKER } \Delta \\ (\mbox{AMPLITUDE}) \mbox{ } (\mbox{step-down key}) \\ (\mbox{SGL SWP}) \end{array}$

- 7. For each of the Band 0 frequencies listed in Table 2-43, do the following:
 - a. Set the synthesized sweeper to the listed CW frequency.
 - b. Enter the appropriate power sensor CAL Factor into the measuring receiver.
 - c. Set the synthesized sweeper power level for $-10~\mathrm{dBm}$ reading on the measuring receiver.
 - d. Press (SGL SWP) and wait for the completion of a new sweep.
 - e. On the EMC analyzer, press (MKR \rightarrow) MKR \rightarrow HIGH and record the marker-delta amplitude reading in Table 2-43 as the Actual MKR Δ Amplitude.

The Actual MKR Δ Amplitude should be greater than the Minimum MKR Δ Amplitude listed in Table 2-43.

Note that the Minimum MKR Δ Amplitude is 10 dB more positive than the specification. This is due to the 10 dB change in reference level made in step 6.

8. Press the following EMC analyzer keys:

MKR More 1 of 3 MARKER ALL OFF

DISPLAY HOLD

(AUTO COUPLE) AUTO ALL

(SPAN) 1 (MHz)

(AMPLITUDE) REF LVL 97 ($dB\mu V$)

ATTEN AUTO MAN (MAN) O (dB)

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

Band 1

- 9. On the EMC analyzer, press (FREQUENCY), 4, (GHz).
- 10. Set the synthesized sweeper CW to 4 GHz.
- 11. Enter the power sensor 4 GHz CAL Factor into the measuring receiver.
- 12. Press the following EMC analyzer keys:

MKR → MKR → HIGH

(AMPLITUDE) More 1 of 3 PRESEL PEAK

Wait for the CAL: PEAKING message to disappear, then press:

MKR More 1 of 3 MARKER ALL OFF

13. Repeat steps 5 through 8 for the synthesized sweeper CW frequencies listed in Table 2-43 for Band 1.

Band 2

- 14. On the EMC analyzer, press (FREQUENCY), 9, (GHz).
- 15. Set the synthesized sweeper CW to 9 GHz.
- 16. Enter the power sensor 9 GHz CAL Factor into the measuring receiver.
- 17. Press the following EMC analyzer keys:

(MKR → MKR → HIGH (AMPLITUDE) More 1 of 3 PRESEL PEAK

Wait for the CAL: PEAKING message to disappear, then press:

(MKR) More 1 of 3 MARKER ALL OFF

18. Repeat steps 5 through 8 for the synthesized sweeper CW frequencies listed in Table 2-43 for Band 2.

Band 3

- 19. On the EMC analyzer, press (FREQUENCY), 15, (GHz).
- 20. Set the synthesized sweeper CW to 15 GHz.
- 21. Enter the power sensor 15 GHz CAL Factor into the measuring receiver.
- 22. Press the following EMC analyzer keys:

(MKR → MKR → HIGH (AMPLITUDE) More 1 of 3 PRESEL PEAK

Wait for the CAL: PEAKING message to disappear, then press:

MKR More 1 of 3 MARKER ALL OFF

23. Repeat steps 5 through 8 for the synthesized sweeper CW frequencies listed in Table 2-43 for Band 3.

Band 4

- 24. On the EMC analyzer, press (FREQUENCY), 21, (GHz).
- 25. Set the synthesized sweeper CW to 21 GHz.
- 26. Enter the power sensor 21 GHz CAL Factor into the measuring receiver.
- 27. Press the following EMC analyzer keys:

```
MKR → MKR → HIGH
(AMPLITUDE) More 1 of 3 PRESEL PEAK
```

Wait for the CAL: PEAKING message to disappear, then press:

```
(MKR) More 1 of 3 MARKER ALL OFF
```

28. Repeat steps 5 through 8 for the synthesized sweeper CW frequencies listed in Table 2-43 for Band 4.

Band 4 for Option 026 or 027

Perform this section only if you EMC analyzer is equipped with Option 026 or Option 027.

- 29. On the EMC analyzer, press (FREQUENCY), 24, (GHz).
- 30. Set the synthesized sweeper CW to 24 GHz.
- 31. Enter the power sensor 24 GHz CAL Factor into the measuring receiver.
- 32. Press the following EMC analyzer keys:

```
MKR → MKR → HIGH
(AMPLITUDE) More 1 of 3 PRESEL PEAK
```

Wait for the CAL: PEAKING message to disappear, then press:

```
(MKR) More 1 of 3 MARKER ALL OFF
```

33. Repeat steps 5 through 8 for the synthesized sweeper CW frequencies listed in Table 2-43 for Band 4 for Option 026 or Option 027.

2-162 Performance Verification Tests

Specification Summary

- 1. Record the maximum Actual MKR Δ Amplitude from Table 2-43 for Band 0 as **TR Entry 1** of the performance verification test record.
- 2. Record the maximum Actual MKR Δ Amplitude from Table 2-43 for Bands 1, 2, and 3 as TR Entry 2 of the performance verification test record.
- 3. Record the maximum Actual MKR Δ Amplitude from Table 2-43 for Band 4 as **TR Entry 3** of the performance verification test record.

Option 026 or 027 only: Record the maximum Actual MKR Δ Amplitude from Table 2-43 for band 4, Option 026 or 027 as **TR Entry 3** of the performance verification test record.

Table 2-43. Other Input Related Spurious Worksheet

Band	EMC Analyzer Center Frequency (GHz)	Synthesized Sweeper CW Frequency (MHz)	Actual MKR Δ Amplitude (dBc)	Minimum MKR Δ Amplitude (dBc)
0	2.0	2042.8*		55
	2.0	2642.8*		55
	2.0	9842.8†		55
	2.0	7921.4^{\dagger}		55
	2.0	1820.8 [‡]		55
	2.0	278.5 [‡]		55
1	4.0	4042.8*		55
	4.0	4642.8*		55
	4.0	8321.4^{\dagger}		55
	4.0	3742.9 [‡]		55
2	9.0	9042.8*		55
	9.0	9642.8*		55
	9.0	4982.1^{\dagger}		55
	9.0	9342.8 [‡]		55
3	15.0	15042.8*		55
	15.0	15642.8*		55
	15.0	4785.8†		55
	15.0	15669.65 [‡]		55
4	21.0	21042.8*		50
	21.0	21642.8*		50
	21.0	5008.95 [†]		55
	21.0	21342.8 [‡]		50
4	24	24042.8*		50
Option 026	24	24642.8*		50
or	24	11839.3 [†]		55
Option 027	24	20019.65‡		50
* Imaga Pas				1

^{*} Image Response

[†] Out-of-Band Response

[†] Multiple Response

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

A synthesized source and the EMC analyzer are set to the same frequency and the amplitude of the source is set to 0 dBm (107 dBµV). A marker amplitude reference is set on the analyzer. The source is then tuned to several different frequencies which should generate image, multiple, and out-of-band responses. At each source frequency, the source amplitude is set to 0 dBm and the amplitude of the response, if any, is measured using the analyzer marker function. The marker amplitude difference is then compared to the specification.

There are no related adjustment procedures for this performance verification test.

Equipment Required

Synthesized sweeper Measuring receiver (used as a power meter) Power sensor, 50 MHz to 2.9 GHz Power splitter Adapter, Type N (m) to APC 3.5 (m) Adapter, APC 3.5 (f) to APC 3.5 (f) Cable, APC 3.5, 91 cm (36 in)

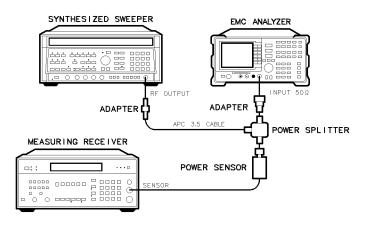


Figure 2-35.
Other Input Related Spurious Responses Test Setup, HP 8594EM

xd619

Procedure

- 1. Zero and calibrate the measuring receiver and power sensor in log mode (power reads out in dBm). Enter the power sensor 2 GHz Cal Factor into the measuring receiver.
- 2. Press INSTR PRESET on the synthesized sweeper, then set the controls as follows:

CW		 	 	. 2000 MHz
POV	WER LEVEL			-4 dBm

- 3. Connect the equipment as shown in Figure 2-35.
- 4. On the EMC analyzer, press (PRESET) and wait for the preset to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 2.0 (GHz) (SPAN) 1 (MHz) (AMPLITUDE) 97 (AB\muV) ATTEN AUTO MAN (MAN) 0 (AB)
```

- 5. Adjust the synthesized sweeper power level for a -10 dBm ± 0.1 dB reading on the measuring receiver.
- 6. On the EMC analyzer, press the following keys:

$$(MKR \rightarrow) MKR \rightarrow HIGH$$

2-166 Performance Verification Tests

Wait for the AUTO ZOOM message to disappear. Press the following analyzer keys:

- 7. For each of the frequencies listed in Table 2-44 for a center frequency of 2.0 GHz, do the following:
 - a. Set the synthesized sweeper to the listed CW frequency.
 - b. Enter the appropriate power sensor Cal Factor into the measuring receiver.
 - c. Set the synthesized sweeper power level for a $-10~\mathrm{dBm}$ reading on the measuring receiver.
 - d. Press (SGL SWP) and wait for completion of a new sweep.
 - e. On the EMC analyzer, press $(\overline{MKR} \rightarrow MKR \rightarrow HIGH)$ and record the MKR Δ amplitude reading in Table 2-44 as the Actual MKR Δ Amplitude.

The Actual MKR Δ Amplitude should be greater than the Minimum MKR Δ Amplitude listed in the table.

Note that the Minimum MKR Δ Amplitude is 10 dB more positive than the specification. This is due to the 10 dB change in reference level made in step 6.

8. Record the maximum Actual MKR Δ Amplitude from Table 2-44 as **TR Entry 1** of the performance verification test record.

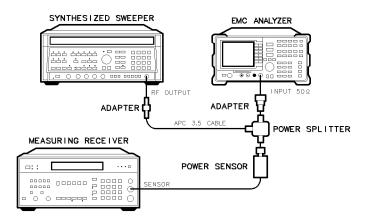
Table 2-44. Other Input Related Spurious Worksheet

EMC Analyzer Center Frequency (GHz)	Synthesized Sweeper CW Frequency (MHz)	Actual MKR Δ Amplitude (dBc)	Minimum MKR Δ Amplitude (dBc)
2.0	2042.8^*		55
2.0	2642.8^*		55
2.0	9842.8^{\dagger}		55
2.0	7921.4^{\dagger}		55
2.0	1820.8 [‡]		55
2.0	278.5^{\ddagger}		55

^{*} Image Response

[†] Out-of-Band Response

[‡] Multiple Response


This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

A synthesized source and the EMC analyzer are set to the same frequency and the amplitude of the source is set to 0 dBm (107 dB μ V). A marker-amplitude reference is set on the EMC analyzer. The source is then tuned to several different frequencies which should generate image, multiple, and out-of-band responses. At each source frequency, the source amplitude is set to 0 dBm and the amplitude of the response, if any, is measured using the EMC analyzer marker function. The marker-amplitude difference is then compared to the specification.

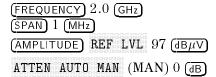
There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized sweeper Measuring receiver (used as a power meter) Power sensor, 50 MHz to 6.5 GHz Power splitter Adapter, Type N (m) to APC 3.5 (m) Adapter, APC 3.5 (f) to APC 3.5 (f) Cable, APC 3.5, 91 cm (36 in)

xd619

Figure 2-36.
Other Input Related Spurious Responses Test Setup, HP 8595EM


Procedure

Band 0

- 1. Zero and calibrate the measuring receiver and power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor 2 GHz Cal Factor into the measuring receiver.
- 2. Press INSTRUMENT PRESET on the synthesized sweeper and set the controls as follows:

CW	 	2000 MHz
POWER LEVEL	 	–4 dBm

- 3. Connect the equipment as shown in Figure 2-36. Connect the output of the synthesizer to the power sensor.
- 4. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

2.170 Performance Verification Tests

- 5. Adjust the synthesized sweeper power level for a -10 dBm ± 0.1 dB reading on the measuring receiver.
- 6. On the EMC analyzer, press the following keys:

```
\begin{array}{ll} (\overline{\rm MKR} \to {\rm MKR} \to {\rm HIGH} \\ \hline (\overline{\rm MKR}) \ {\rm More} \ 1 \ {\rm of} \ 3 \ {\rm MK} \ {\rm TRACK} \ {\rm ON} \ {\rm OFF} \ ({\rm ON}) \\ \hline ({\rm SPAN}) \ 200 \ (\overline{\rm kHz}) \end{array}
```

Wait for the AUTO ZOOM message to disappear. Press the following EMC analyzer keys:

```
\begin{array}{l} (\mbox{MKR} \rightarrow \mbox{MKR} \rightarrow \mbox{HIGH} \\ (\mbox{MKR} \rightarrow \mbox{More 1 of 3 MARKER} \rightarrow \mbox{REF LVL} \\ (\mbox{MKR} \rightarrow \mbox{MKR} \rightarrow \mbox{HIGH More 1 of 3 More 2 of 3 MARKER } \Delta \\ (\mbox{AMPLITUDE}) (\mbox{Step-down key}) \\ (\mbox{SGL SWP}) \end{array}
```

- 7. For each of the frequencies listed in Table 2-45, do the following:
 - a. Set the synthesized sweeper to the listed CW frequency.
 - b. Enter the appropriate power sensor CAL Factor into the measuring receiver.
 - c. Set the synthesized sweeper power level for -10 dBm reading on the measuring receiver.
 - d. Press (SGL SWP) and wait for the completion of a new sweep.
 - e. On the EMC analyzer, press (MKR \rightarrow) MKR \rightarrow HIGH and record the marker-delta amplitude reading in Table 2-45 as the Actual MKR Δ Amplitude.

The Actual MKR Δ Amplitude should be greater than the Minimum MKR Δ Amplitude listed in Table 2-45.

Note that the Minimum MKR Δ Amplitude is 10 dB more positive than the specification. This is due to the 10 dB change in reference level made in step 6.

8. Press the following EMC analyzer keys:

MKR MARKER 1 ON OFF (OFF)

(DISPLAY) HOLD

(AUTO COUPLE) AUTO ALL

(SPAN) 1 (MHz)

(AMPLITUDE) REF LVL 97 (dBµV)

ATTEN AUTO MAN (MAN) 0 (dB)

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

Band 1

- 9. On the EMC analyzer, press (FREQUENCY), 4, (GHz).
- 10. Set the synthesized sweeper CW to 4 GHz.
- 11. Enter the power sensor 4 GHz CAL Factor into the measuring receiver.
- 12. Press the following EMC analyzer keys:

```
MKR → MKR → HIGH

(AMPLITUDE) More 1 of 3 PRESEL PEAK
```

Wait for the CAL: PEAKING message to disappear, then press:

MKR More 1 of 3 MARKER ALL OFF

13. Repeat steps 5 through 8 for the synthesized sweeper CW frequencies listed in Table 2-45 for Band 1.

Specification Summary

- 1. Record the maximum Actual MKR Δ Amplitude from Table 2-45 for Band 0 as **TR Entry 1** of the performance verification test record.
- 2. Record the maximum Actual MKR Δ Amplitude from Table 2-45 for Bands 1 as **TR Entry 2** of the performance verification test record.

2.172 Performance Verification Tests

Table 2-45. Other Input Related Spurious Worksheet

Band	EMC Analyzer Center Frequency (GHz)	Synthesized Sweeper CW Frequency (MHz)	Actual MKR Δ Amplitude (dBc)	Minimum MKR Δ Amplitude (dBc)
0	2.0	2042.8^*		55
	2.0	2642.8^*		55
	2.0	9842.8^{\dagger}		55
	2.0	7921.4^{\dagger}		55
	2.0	1820.8 [‡]		55
	2.0	278.5^{\ddagger}		55
1	4.0	4042.8^*		55
	4.0	4642.8^*		55
	4.0	8321.4^{\dagger}		55
	4.0	3742.9^{\ddagger}		55

^{*} Image Response
† Out-of-Band Response
‡ Multiple Response

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

A synthesized source and the EMC analyzer are set to the same frequency and the amplitude of the source is set to 0 dBm (107 dB μ V). A marker-amplitude reference is set on the EMC analyzer. The source is then tuned to several different frequencies which should generate image, multiple, and out-of-band responses. At each source frequency, the source amplitude is set to 0 dBm and the amplitude of the response, if any, is measured using the EMC analyzer marker function. The marker-amplitude difference is then compared to the specification.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized sweeper Measuring receiver (used as a power meter) Power sensor, 50 MHz to 12.8 GHz Power splitter Adapter, Type N (m) to APC 3.5 (m) Adapter, APC 3.5 (f) to APC 3.5 (f) Cable, APC 3.5, 91 cm (36 in)

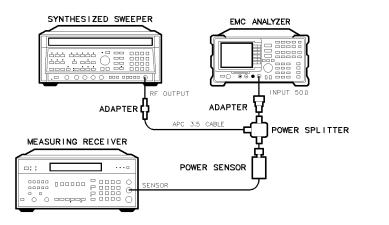
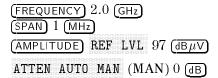


Figure 2-37.
Other Input Related Spurious Responses Test Setup, HP 8596EM


Procedure

Band 0

- 1. Zero and calibrate the measuring receiver and power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor 2 GHz Cal Factor into the measuring receiver.
- 2. Press INSTRUMENT PRESET on the synthesized sweeper and set the controls as follows:

CW		 	 2000 MHz
POV	WER LEVEI	 	 $\dots \dots -4 dBm$

- 3. Connect the equipment as shown in Figure 2-37. Connect the output of the synthesizer to the power sensor.
- 4. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

Performance Verification Tests 2.175

xd619

- 5. Adjust the synthesized sweeper power level for a -10 dBm ± 0.1 dB reading on the measuring receiver.
- 6. On the EMC analyzer, press the following keys:

Wait for the AUTO ZOOM message to disappear. Press the following EMC analyzer keys:

- 7. For each of the frequencies listed in Table 2-46, do the following:
 - a. Set the synthesized sweeper to the listed CW frequency.
 - Enter the appropriate power sensor CAL Factor into the measuring receiver,
 - c. Set the synthesized sweeper power level for −10 dBm reading on the measuring receiver.
 - d. Press (SGL SWP) and wait for the completion of a new sweep.
 - e. On the EMC analyzer, press (MKR \rightarrow MKR \rightarrow HIGH and record the marker-delta amplitude reading in Table 2-46 as the Actual MKR Δ Amplitude.

The Actual MKR Δ Amplitude should be greater than the Minimum MKR Δ Amplitude listed in Table 2-46.

Note that the Minimum MKR Δ Amplitude is 10 dB more positive than the specification. This is due to the 10 dB change in reference level made in step 6.

8. Press the following EMC analyzer keys:

MKR MARKER 1 ON OFF (OFF)

(DISPLAY) HOLD

(AUTO COUPLE) AUTO ALL

(SPAN) 1 (MHz)

(AMPLITUDE) REF LVL 97 (dB \(\text{DV} \)

ATTEN AUTO MAN (MAN) 0 (dB)

(SWEEP) SWEEP CONT SGL (CONT)

Band 1

- 9. On the EMC analyzer, press (FREQUENCY), 4, (GHz).
- 10. Set the synthesized sweeper CW to 4 GHz.
- 11. Enter the power sensor 4 GHz CAL Factor into the measuring receiver.
- 12. Press the following EMC analyzer keys:

```
(MKR → MKR → HIGH
(AMPLITUDE) More 1 of 3 PRESEL PEAK
```

Wait for the CAL: PEAKING message to disappear, then press:

MKR More 1 of 3 MARKER ALL OFF

13. Repeat steps 5 through 8 for the synthesized sweeper CW frequencies listed in Table 2-46 for Band 1.

Band 2

- 14. On the EMC analyzer, press (FREQUENCY), 9, (GHz).
- 15. Set the synthesized sweeper CW to 9 GHz.
- 16. Enter the power sensor 9 GHz CAL Factor into the measuring receiver.
- 17. Press the following EMC analyzer keys:

```
(\overline{MKR} \rightarrow) MKR \rightarrow HIGH
(\overline{AMPLITUDE}) More 1 of 3 PRESEL PEAK
```

Wait for the CAL: PEAKING message to disappear, then press:

MKR More 1 of 3 MARKER ALL OFF

18. Repeat steps 5 through 8 for the synthesized sweeper CW frequencies listed in Table 2-46 for Band 2.

Specification Summary

- 1. Record the maximum Actual MKR Δ Amplitude from Table 2-46 for Band 0 as **TR Entry 1** of the performance verification test record.
- 2. Record the maximum Actual MKR Δ Amplitude from Table 2-46 for Bands 1 and 2 as TR Entry 2 of the performance verification test record.

Table 2-46. Other Input Related Spurious Worksheet

Band	EMC Analyzer Center Frequency (GHz)	Synthesized Sweeper CW Frequency (MHz)	Actual MKR Δ Amplitude (dBc)	Minimum MKR Δ Amplitude (dBc)
0	2.0	2042.8^*		55
	2.0	2642.8^*		55
	2.0	9842.8^{\dagger}		55
	2.0	7921.4^{\dagger}		55
	2.0	1820.8^{\ddagger}		55
	2.0	278.5 [‡]		55
1	4.0	4042.8^*		55
	4.0	4642.8^*		55
	4.0	8321.4^{\dagger}		55
	4.0	3742.9^{\ddagger}		55
2	9.0	9042.8*		55
	9.0	9642.8^*		55
	9.0	4982.1^{\dagger}		55
	9.0	9342.8 [‡]		55

Image Response

[†] Out-of-Band Response

[‡] Multiple Response

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

This test is performed in two parts. Part 1 measures second harmonic distortion; part 2 measures third order intermodulation distortion.

To test second harmonic distortion, a 50 MHz low pass filter is used to filter the source output, ensuring that harmonics read by the EMC analyzer are internally generated and not coming from the source. To measure the distortion products, the power at the mixer is set 25 dB higher than specified. New test limits have been developed based on this higher power.

With -45 dBm at the input mixer and the distortion products suppressed by 70 dBc, the equivalent Second Order Intercept (SOI) is +25 dBm (-45 dBm + 70 dBc). Therefore, with -20 dBm at the mixer, and the distortion products suppressed by 45 dBc, the equivalent SOI is also +25 dBm (-20 dBm + 45 dBc).

For third order intermodulation distortion, two signals are combined in a directional bridge (for isolation) and are applied to the EMC analyzer input. The power level of the two signals is 8 dB higher than specified, so the distortion products should be suppressed by 16 dB less than specified. In this manner, the equivalent third order intercept (TOI) is measured.

With two -30 dBm signals at the input mixer and the distortion products suppressed by 70 dBc, the equivalent TOI is +5 dBm (-30 dBm + 70 dBc/2). However, if two -22 dBm signals are present at the input mixer and the distortion products are suppressed by 54 dBc, the equivalent TOI is also +5 dBm (-22 dBm + 54 dBc/2).

Performing the test with a higher power level maintains the measurement integrity while reducing both test time and the dependency upon the source's noise sideband performance.

Equipment Required

Synthesizer/level generator Synthesized sweeper Measuring receiver (used as a power meter) Power sensor, 100 kHz to 1800 MHz 50 MHz low pass filter Directional bridge Cable, BNC, 120 cm (48 in) (two required) Adapter, Type N (f) to APC 3.5 (f) Adapter, Type N (f) to BNC (m) Adapter, Type N (m) to BNC (f) Adapter, Type N (m) to BNC (m)

Procedure

This performance verification test consists of two parts:

Part 1: Second Harmonic Distortion, 30 MHz

Part 2: Third Order Intermodulation Distortion, 50 MHz

Perform "Part 1: Second Harmonic Distortion, 30 MHz" before performing "Part 2: Third Order Intermodulation Distortion, 50 MHz."

Part 1: Second Harmonic Distortion, 30 MHz

1. Set the synthesizer level generator controls as follows:

FREQUENCY	, 	.30 MHz
AMPLITUDE		-10 dBm

2. Connect the equipment as shown in Figure 2-38.

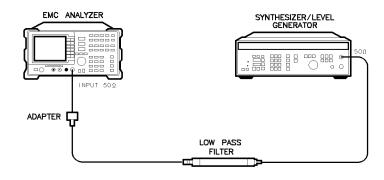


Figure 2-38.
Second Harmonic Distortion Test Setup, 30 MHz, HP 8591EM

3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 30 (MHz) (SPAN) 10 (MHz) (AMPLITUDE) 97 (+dB\muV) (MKR \rightarrow MARKER \rightarrow HIGH (MKR) More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 1 (MHz)
```

4. Wait for the AUTO ZOOM message to disappear, then press the following EMC analyzer keys:

MKR More 1 of 3 MK TRACK ON OFF (OFF)
$$\overline{\rm BW}$$
 30 $\overline{\rm kHz}$

- 5. Adjust the synthesizer level generator amplitude to place the peak of the signal at the reference level (97 dB μ V).
- 6. Set the EMC analyzer control as follows:

7. Wait for two sweeps to finish, then press the following EMC analyzer keys:

2-182 Performance Verification Tests

More 1 of 3 MKR \rightarrow CF STEP (MKR) MARKER Δ (FREQUENCY)

8. Press the \bigcirc , (step-up key) on the EMC analyzer to step to the second harmonic (at 60 MHz). Press \bigcirc MARKER \rightarrow HIGH. Record the MKR \triangle Amplitude reading in the performance verification test record as **TR Entry 1**.

Part 2: Third Order Intermodulation Distortion, 50 MHz

- 1. Zero and calibrate the measuring receiver and 100 kHz to 1800 MHz power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor's 50 MHz Cal Factor into the measuring receiver.
- 2. Connect the equipment as shown in Figure 2-39 with the output of the directional bridge connected to the 100 kHz to 1.8 GHZ power sensor.

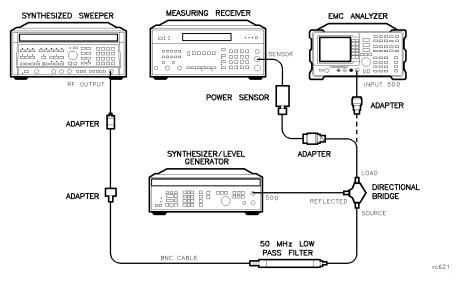


Figure 2-39.
Third Order Intermodulation Distortion Test Setup, HP 8591EM

3. Press INSTRUMENT PRESET on the synthesized sweeper. Set the synthesized sweeper controls as follows:

POWER LEVEL6 dBn	n
CW50 MH:	Z
RF OFI	_

4. Set the synthesizer/level generator controls as follows:

FREQUENCY	50.050 MHz
AMPLITUDE	−6 dBm
50 $\Omega/75$ Ω SWITCH	RF output)

5. On the EMC analyzer, press PRESET, then wait until the preset routine is finished. Set the EMC analyzer by pressing the following keys:

```
FREQUENCY 50 (MHz) (SPAN) 10 (MHz) (AMPLITUDE) 97 (+dB\muV) (MKR \rightarrow MARKER \rightarrow HIGH More 1 of 3 PEAK EXCURSN 3 (dB) (DISPLAY) More 1 of 2 THRESHLD ON OFF (ON) 17 dB\muV
```

- 6. On the synthesized sweeper, set RF on. Adjust the power level until the measuring receiver reads -12 dBm ± 0.05 dB.
- 7. Disconnect the 100 kHz to 4.2 GHZ power sensor from the directional bridge. Connect the directional bridge directly to the EMC analyzer RF INPUT using an adapter (do not use a cable).
- 8. On the EMC analyzer, press the following keys:

Wait for the AUTO ZOOM message to disappear, then press the following EMC analyzer keys:

```
\fbox{MKR} More 1 of 3 MK TRACK ON OFF (OFF) \fbox{MKR} \rightarrow \r MARKER \rightarrow HIGH More 1 of 3 MARKER \rightarrowREF LVL
```

9. On the synthesized level generator, set the 50 $\Omega/75~\Omega$ switch to the 50 Ω position (RF on). Adjust the amplitude until the two signals are displayed at the same amplitude.

2-184 Performance Verification Tests

10. If necessary, adjust the EMC analyzer center frequency until the two signals are centered on the display, then set the EMC analyzer by pressing the following keys:

11. Press $(\overline{MKR} \rightarrow)$, MARKER \rightarrow HIGH, then press $(\overline{DISPLAY})$, DSP LINE ON OFF (ON). Set the display line to a value 54 dB below the current reference level setting.

The third order intermodulation distortion products should appear 50 kHz below the lower frequency signal and 50 kHz above the higher frequency signal. Their amplitude should be less than the display line. See Figure 2-40.

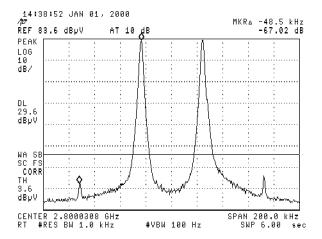


Figure 2-40. Third Order Intermodulation Distortion, HP 8591EM

- 12. If the distortion products can be seen, proceed as follows:
 - a. On the EMC analyzer, press $(MKR \rightarrow)$, MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - b. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion product.
 - c. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.
- 13. If the distortion products cannot be seen, proceed as follows:
 - a. On both the synthesized sweeper and the synthesized level generator, increase the POWER LEVEL by 5 dB. Distortion products should now be visible at this higher power level.
 - b. On the EMC analyzer, press $(\overline{MKR} \rightarrow)$, MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - C. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion products.
 - d. On both the synthesized sweeper and the synthesizer level generator, reduce the power level by 5 dB and wait for the completion of a new sweep.
 - e. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

This test is performed in four parts. The first two parts measure the second harmonic distortion; the last two parts measure the third order intermodulation distortion. Second harmonic distortion and third order intermodulation distortion is checked in both low band (50 kHz to 2.9 GHz) and high band (2.75 to 22 GHz).

To test second harmonic distortion, 50 MHz and 4.4 GHz low pass filters are used to filter the source output, ensuring that harmonics read by the analyzer are internally generated and not coming from the source. The distortion products are measured using the EMC analyzer marker functions.

For third order intermodulation distortion, two signals are combined in a directional coupler (for isolation) and are applied to the EMC analyzer input. The power level of the two signals is 8 dB higher than specified, so the distortion products should be suppressed by 16 dB less than specified. In this manner, the equivalent Third Order Intercept (TOI) is measured.

With two -30 dBm signals at the input mixer and the distortion products suppressed by 70 dBc, the equivalent TOI is +5 dBm (-30 dBm + 70 dBc/2). However, if two -22 dBm signals are present at the input mixer and the distortion products are suppressed by 54 dBc, the equivalent TOI is also +5 dBm (-22 dBm + 54 dBc/2).

Performing the test with a higher power level maintains the measurement integrity while reducing both test time and the dependency upon the source noise sideband performance.

Equipment Required

Synthesized sweeper (two required)
Measuring receiver (used as a power meter)
Power sensor, 50 MHz to 26.5 GHz
Power splitter
Low pass filter, 50 MHz
Low pass filter, 4.4 GHz
Directional coupler
Cable, APC 3.5, 91 cm (36 in) (two required)
Cable, BNC, 120 cm (48 in)

Adapter, Type N (m) to APC 3.5 (m) Adapter, APC 3.5 (f) to APC 3.5 (f) (two required) Adapter, Type N (m) to BNC (f) Adapter, Type N (m) to APC 3.5 (f)

Additional Equipment for Option 026

Adapter, BNC (f) to SMA (m)

Adapter, Type N (f) to BNC (m)

Procedure

This performance verification test consists of four parts:

Part 1: Second Harmonic Distortion, <2.9 GHz Part 2: Second Harmonic Distortion, >2.9 GHz

Part 3: Third Order Intermodulation Distortion, <2.9 GHz

Part 4: Third Order Intermodulation Distortion, >2.9 GHz

Part 1: Second Harmonic Distortion, <2.9 GHz

1. Press (PRESET) on the synthesized sweeper, then set the controls as follows:

$\mathbf{C}\mathbf{W}$		 	 0 MHz
POV	WER LEVEL	 	 0 dBm

2. Connect the equipment as shown in Figure 2-41.

Option 026 only: Use the BNC to SMA adapter with an APC 3.5 (f) to (f) adapter.

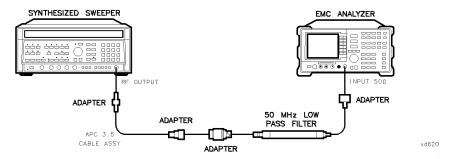


Figure 2-41. Second Harmonic Distortion Test Setup, HP 8593EM

2-188 Performance Verification Tests

3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 30 (MHz)
(SPAN) 1 (MHz)
(AMPLITUDE) REF LVL 77 dB \(\mu \) V
(BW) IF BW AUTO MAN (MAN) 30 (kHz)

- 4. Adjust the synthesized sweeper power level to place the peak of the signal displayed on the EMC analyzer at the reference level of 77 dB μ V.
- 5. Press the following EMC analyzer keys:

BW IF BW AUTO MAN (MAN) 1 (kHz)

AVG BW AUTO MAN (MAN) 100 (Hz)

6. Wait for two sweeps to finish, then press the following EMC analyzer keys:

(MKR o MARKER o HIGHMore 1 of 3 MKR o CF STEP (MKR) MARKER Δ (FREQUENCY)

- 7. Press the f (step up) key on the EMC analyzer to step to the second harmonic (at 60 MHz). Set the reference level to 57 dB μ V.
- 8. Wait for one full sweep, then press $(\overline{MKR} \rightarrow)$ MARKER \rightarrow HIGH.
- 9. Record the MKR Δ Amplitude reading as **TR Entry 1** of the performance verification test record. The amplitude reading should be less than the specified limit.

Note that the maximum MKR Δ Amplitude Reading is 20 dB higher than the specification. This is a result of changing the reference level from 77 dB μ V to 57 dB μ V.

Part 2: Second Harmonic Distortion, >2.9 GHz

10. Zero and calibrate the measuring receiver and 50 MHz to 26.5 GHz power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor 3 GHz Cal Factor into the measuring receiver.

- 11. Measure the noise level at 5.6 GHz using the following steps:
 - a. Remove any cable or adapters from the EMC analyzer INPUT 50 Ω .
 - b. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 5.6 (GHz) (SPAN) ZERO SPAN

(AMPLITUDE) REF LVL $67 \text{ dB}\mu\text{V}$

(BW) IF BW AUTO MAN (MAN) 1 (kHz)

AVG BW AUTO MAN (MAN) 30 (Hz)

More 1 of 2 VID AVG ON OFF (ON) 10 (ENTER)

(SWEEP/TRIG) SWP TIME AUTO MAN (MAN) 5.0 (sec)

- c. Press (SGL SWP). Wait until AVG 10 is displayed along the left side of the CRT display.
- d. Press (MKR -) MARKER -> HIGH on the EMC analyzer and record the marker amplitude reading as the Noise Level at 5.6 GHz in Table 2-47.
- 12. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

FREQUENCY More 1 of 2 Band Lock 2.75-6.5 BAND 1
FREQUENCY 2.8 GHz
SPAN 10 MHz

13. Connect the equipment as shown in Figure 2-42, with the output of the synthesized sweeper connected to the input of the power splitter, and the power splitter outputs connected to the EMC analyzer and the power sensor.

Option 026 only: Use the BNC to SMA adapter with an APC 3.5 (f) to (f) adapter.

14. On the synthesized sweeper, press the preset key, then set the controls as follows:

CW	 2.8 GHz
POWER LEVEL	 0 dBm

2-190 Performance Verification Tests

15. On the EMC analyzer, press the following keys:

```
(MKR → MARKER → HIGH
(AMPLITUDE) More 1 of 3 PRESEL PEAK
```

Wait for the peaking message to disappear.

- 16. Press (MKR \rightarrow) MARKER \rightarrow HIGH, More 1 of 3 More 2 of 3 MARKER Δ , then record the measuring receiver reading at 2.8 GHz in Table 2-47.
- 17. Set the synthesized sweeper CW to 5.6 GHz.
- 18. Press the following EMC analyzer keys:

```
\begin{array}{l} \hbox{(FREQUENCY)} \ 5.6 \ \hbox{(GHz)} \\ \hbox{(MKR} \longrightarrow \hbox{MARKER} \ \longrightarrow \hbox{HIGH} \\ \hbox{(AMPLITUDE)} \ \hbox{More} \ 1 \ \hbox{of} \ 3 \ \hbox{PRESEL PEAK} \end{array}
```

Wait for the peaking message to disappear.

```
(MKR \rightarrow) MARKER \rightarrow HIGH
(MKR) More 1 of 3 MK TRACK ON OFF (ON)
```

- 19. Adjust the synthesized sweeper power level until the Marker Δ Amplitude reads 0 dB ± 0.20 dB.
- 20. Enter the power sensor 6 GHz Cal Factor into the measuring receiver.
- 21. Record the Measuring Receiver Reading at 5.6 GHz in Table 2-47.
- 22. Subtract the Measuring Receiver Reading at 5.6 GHz from the Measuring Receiver Reading at 2.8 GHz, then record this value as the Frequency Response Error (**FRE**) in Table 2-47. For example, if the Measuring Receiver Reading at 5.6 GHz is -6.45 dBm and the Measuring Receiver Reading at 2.8 GHz is -7.05 dBm, the Frequency Response Error would be -7.05 dBm (-6.45 dBm) = -0.60 dB.

Measuring Receiver Reading at $2.8~\mathrm{GHz}-\mathrm{Measuring}$ Receiver Reading at $5.6~\mathrm{GHz}=\mathrm{FRE}$

Table 2-47. Second Harmonic Distortion Worksheet

Description	Measurement
Noise Level at 5.6 GHz	dB μ V
Measuring Receiver Reading at 2.8 GHz	dBm
Measuring Receiver Reading at 5.6 GHz	dBm
Frequency Response Error (FRE)	dB
Distortion-limited Specification	dBc
Noise-limited Specification	dBc

- 23. Calculate the desired maximum marker amplitude reading as follows:
 - a. Add the Frequency Response Error (FRE) to -60 dBc (specification is -100 dBc, but reference level will be changed by 40 dB to yield the required dynamic range), then record as the Distortion-limited Specification in Table 2-47.

Distortion-limited Specification = -60 dBc + FRE

b. Subtract 67 dB μ V (reference level setting) from Noise Level at 5.6 GHz, then record in Table 2-47.

Noise-limited Specification = Noise Level at 5.6 GHz - 67 dB μ V

c. Record the more positive of the values recorded in steps a. and b. above as **TR Entry 2** of the performance verification test record. For example, if the value in step a. is -59 dBc and the value in step b. is -61 dBc, record -59 dBc.

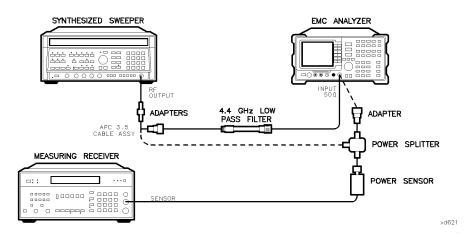


Figure 2-42.
Second Harmonic Distortion Test Setup, >2.9 GHz, HP 8593EM

- 24. Connect the equipment as shown in Figure 2-42 with the filter in place.
- 25. Set the synthesized sweeper controls as follows:

26. Set the EMC analyzer by pressing the following keys:

Wait for the peaking message to disappear.

```
MKR More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 100 (kHz)
```

- 27. Adjust the synthesized sweeper power level for an EMC analyzer marker amplitude reading of $107 \text{ dB}\mu\text{V} \pm 0.2 \text{ dB}$.
- 28. On the EMC analyzer, press the following keys:

MKR More 1 of 3 MK TRACK ON OFF (OFF)

MKR \rightarrow MARKER \rightarrow HIGH

More 1 of 3 More 2 of 3 MARKER Δ (FREQUENCY) 5.6 GHz
(SPAN 10 MHz)

- 29. Remove the filter and connect the synthesized sweeper output directly to the EMC analyzer INPUT 50 Ω .
- 30. On the EMC analyzer, press the following keys:

MKR → MARKER → HIGH
(AMPLITUDE) More 1 of 3 PRESEL PEAK

Wait for the peaking message to disappear.

MKR More 1 of 3 MK TRACK ON OFF (ON) SPAN $100 \, (\mathrm{kHz})$

- 31. Reinstall the filter between the synthesized sweeper output and the EMC analyzer INPUT 50 Ω .
- 32. Set the EMC analyzer by pressing the following keys:

(AMPLITUDE) REF LVL 67 dB μ V
(BW) AVG BW AUTO MAN (MAN) 30 (Hz)

More 1 of 2 VID AVG ON OFF (ON) 10 (ENTER)
(SGL SWP)

Wait until AVG 10 is displayed along the left side of the CRT display.

33. Press (MKR → MARKER → HIGH, then record the Marker Amplitude Reading as **TR Entry 3** of the performance verification test record.

The Marker Amplitude Reading should be more negative than the specification previously recorded as **TR Entry 2** of the performance verification test record.

2-194 Performance Verification Tests

Part 3: Third Order Intermodulation Distortion, <2.9 GHz

- 34. Zero and calibrate the measuring receiver and 50 MHz to 26.5 GHz power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor 3 GHz Cal Factor into the measuring receiver.
- 35. Connect the equipment as shown in Figure 2-43 with the input of the directional coupler connected to the power sensor.

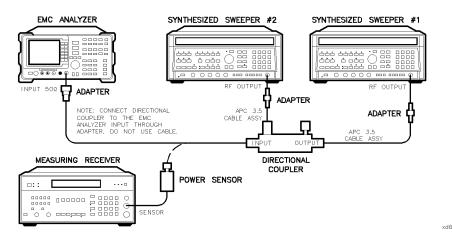


Figure 2-43.
Third-Order Intermodulation Distortion Test Setup, HP 8593EM

36. Press instrument preset on each synthesized sweeper. Set each of the synthesized sweeper controls as follows:

POV	VER LEVEL15 dBn	N
$\mathbf{C}\mathbf{W}$	(synthesized sweeper #1)2.800 GH	Z
$\mathbf{C}\mathbf{W}$	(synthesized sweeper #2)2.80005 GH	Z
RF	OFI	3

37. On the EMC analyzer, press (PRESET), then wait until the preset routine is finished. Set the controls as follows:

(FREQUENCY) 2.8 (GHz) (SPAN) 1 (MHz)

(AMPLITUDE) REF LVL $97~{
m dB}\mu{
m V}$

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH More 1 of 3 PEAK EXCURSN 3 (dB)

(DISPLAY) More 1 of 2 THRESHLD ON OFF (ON) 17 $dB\mu V$

- 38. On synthesized sweeper #1, set RF on. Adjust the power level until the measuring receiver reads -12 dBm ± 0.05 dB.
- 39. Disconnect the power sensor from the directional coupler. Connect the directional coupler directly to the EMC analyzer INPUT 50 Ω using an adapter (do not use a cable).

Option 026 only: Connect the directional coupler directly to the EMC analyzer INPUT 50 Ω .

40. On the EMC analyzer, press the following keys:

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

MKR More 1 of 3 MK TRACK ON OFF (ON)

(SPAN) 200 (kHz)

Wait for the AUTO ZOOM message to disappear.

(MKR) More 1 of 3 MK TRACK ON OFF (OFF)

(FREQUENCY) (↑ (step-up key)

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

More 1 of 3 MARKER \rightarrow REF LVL

41. On synthesized sweeper #2, set RF on. Adjust the power level until the two signals are displayed at the same amplitude.

If necessary, adjust the EMC analyzer center frequency until the two signals are centered on the display.

42. Set the EMC analyzer by pressing the following keys:

(BW) IF BW AUTO MAN (MAN) 1 (kHz)

AVG BW AUTO MAN (MAN) 100 (Hz)

43. Press the following analyzer keys:

Set the display line to a value 54 dB below the current reference level setting.

44. The third-order intermodulation distortion products should appear 50 kHz below the lower frequency signal and 50 kHz above the higher frequency signal. Their amplitude should be less than the display line. See Figure 2-44.

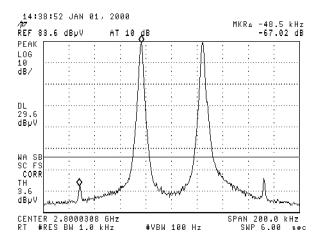


Figure 2-44. Third Order Intermodulation Distortion, HP 8593EM

- 45. If the distortion products can be seen, proceed as follows:
 - a. On the EMC analyzer, press (MKR \rightarrow), MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - b. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion product.
 - c. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.
- 46. If the distortion products cannot be seen, proceed as follows:
 - a. On both the synthesized sweeper and the synthesized level generator, increase the POWER LEVEL by 5 dB. Distortion products should now be visible at this higher power level.
 - b. On the EMC analyzer, press $(\overline{MKR} \rightarrow)$, MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - C. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion products.
 - d. On both the synthesized sweeper and the synthesizer level generator, reduce the power level by 5 dB and wait for the completion of a new sweep.
 - e. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.

Part 4: Third Order Intermodulation Distortion, >2.9 GHz

- 47. Enter the Power Sensor 4 GHz Cal Factor into the measuring receiver.
- 48. Disconnect the directional coupler from the EMC analyzer, then connect the power sensor to the output of the directional coupler.
- 49. Set each of the synthesized sweeper controls as follows:

POWER LEVEL	−15 dBm
CW (synthesized sweeper #1)	4.000 GHz
CW (synthesized sweeper #2)	$4.00005~\mathrm{GHz}$
RF	OFF

50. On the EMC analyzer, press (PRESET), then wait until the preset routine is finished. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 4.0 (GHz) (SPAN) 1 (MHz) (AMPLITUDE) REF LVL 97 dB μ V (MKR \rightarrow) MARKER \rightarrow HIGH More 1 of 3 PEAK EXCURSN 3 (dB) (DISPLAY) More 1 of 2 THRESHLD ON OFF 17 dB μ V

- 51. On synthesized sweeper #1, set RF on. Adjust the power level until the measuring receiver reads -12 dBm ± 0.05 dB.
- 52. Disconnect the power sensor from the directional coupler. Connect the directional coupler directly to the EMC analyzer INPUT 50 Ω using an adapter (do not use a cable).

Option 026 only: Connect the directional coupler directly to the EMC analyzer INPUT 50 Ω .

53. On the EMC analyzer, press the following:

MKR → MARKER → HIGH
(AMPLITUDE) More 1 of 3 PRESEL PEAK

Wait for the peaking message to disappear.

MKR More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 200 (kHz)

Wait for the AUTO ZOOM message to disappear, then press the following EMC analyzer keys:

MKR More 1 of 3 MK TRACK ON OFF (OFF)

(FREQUENCY) ↑ (step-up key)

(MKR → MARKER → HIGH

More 1 of 3 MARKER → REF LVL

54. On synthesized sweeper #2, set RF on. Adjust the power level until the two signals are displayed at the same amplitude.

If necessary, adjust the EMC analyzer center frequency until the two signals are centered on the display.

55. Set the EMC analyzer by pressing the following keys:

BW IF BW AUTO MAN (MAN) 1 kHz

AVG BW AUTO MAN (MAN) 100 (Hz)

- 56. Press (MKR → MARKER → HIGH, More 1 of 3 More 2 of 3 MARKER Δ then set the DISPLAY LINE to a value 54 dB below the current reference level setting. The third-order intermodulation distortion products should appear 50 kHz below the lower frequency signal and 50 kHz above the higher frequency signal. Their amplitude should be less than the display line. See Figure 2-44.
- 57. If the distortion products can be seen, proceed as follows:
 - a. On the EMC analyzer, press $(MKR \rightarrow)$, MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - b. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion product.
 - c. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.
- 58. If the distortion products cannot be seen, proceed as follows:
 - a. On both the synthesized sweeper and the synthesized level generator, increase the POWER LEVEL by 5 dB. Distortion products should now be visible at this higher power level.
 - b. On the EMC analyzer, press $(\overline{MKR} \rightarrow)$, MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - C. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion products.
 - d. On both the synthesized sweeper and the synthesizer level generator, reduce the power level by 5 dB and wait for the completion of a new sweep.
 - e. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

This test is performed in two parts. The first part measures second harmonic distortion; the second part measures third order intermodulation distortion.

To test second harmonic distortion, a 50 MHz low pass filter is used to filter the source output, ensuring that harmonics read by the analyzer are internally generated and not coming from the source. The distortion products are measured using the analyzer marker functions.

For third order intermodulation distortion, two signals are combined in a directional coupler (for isolation) and are applied to the analyzer input. The power level of the two signals is 8 dB higher than specified, so the distortion products should be suppressed by 16 dB less than specified. In this manner, the equivalent Third Order Intercept (TOI) is measured.

With two -30 dBm signals at the input mixer and the distortion products suppressed by 70 dBc, the equivalent TOI is +5 dBm (-30 dBm + 70 dBc/2). However, if two -22 dBm signals are present at the input mixer and the distortion products are suppressed by 54 dBc, the equivalent TOI is also +5 dBm (-22 dBm + 54 dBc/2). Performing the test with a higher power level maintains the measurement integrity while reducing both test time and the dependency upon the source's noise sideband performance.

Equipment Required

Synthesized sweeper (two required) Measuring receiver (used as a power meter) Power sensor, 50 MHz to 2.9 GHz Low pass filter, 50 MHz Directional coupler Cable, APC 3.5, 91 cm (36 in) (two required) Cable, BNC, 120 cm (48 in) Adapter, Type N (m) to APC 3.5 (m) Adapter, APC 3.5 (f) to APC 3.5 (f) (two required) Adapter, Type N (m) to BNC (f) Adapter, Type N (m) to APC 3.5 (f) Adapter, Type N (f) to BNC (m)

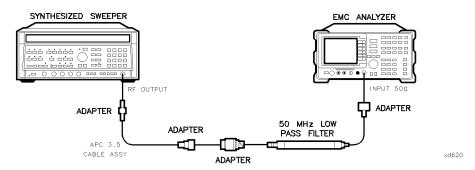


Figure 2-45. Second Harmonic Distortion Test Setup, HP 8594EM

Procedure

Second Harmonic Distortion

1. Press PRESET on the synthesized sweeper, then set the controls as follows:

- 2. Connect the equipment as shown in Figure 2-45.
- 3. Press (PRESET) on the EMC analyzer, then wait for the preset to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 30 (MHz) (SPAN) 1 (MHz) (AMPLITUDE) 77 (+dB\muV) (BW) 30 (kHz)
```

- 4. Adjust the synthesized sweeper power level to place the peak of the signal at the reference level (77 dB μ V).
- 5. Set the EMC analyzer by pressing the following keys:

6. Wait for two sweeps to finish, then press the following EMC analyzer keys:

$$\begin{picture}(c){\hline MKR} & \longrightarrow & MARKER & \longrightarrow & HIGH \\ More 1 of 3 & MKR & \longrightarrow & CF & STEP \\ \end{picture}$$

2.202 Performance Verification Tests

MKR MARKER Δ (FREQUENCY)

- 8. Record the MKR Δ Amplitude reading as **TR Entry 1** of the performance verification test record.

Note that the maximum MKR Δ Amplitude Reading is 20 dB higher than the specification. This is a result of changing the reference level from 77 dB μ V to 57 dB μ V.

Third Order Intermodulation Distortion

- 9. Zero and calibrate the measuring receiver and 50 MHz to 2.9 GHz power sensor combination in log mode (RF power readout in dBm). Enter the power sensor 3 GHz Cal Factor into the measuring receiver.
- 10. Connect the equipment as shown in Figure 2-46 with the input of the directional coupler connected to the power sensor.

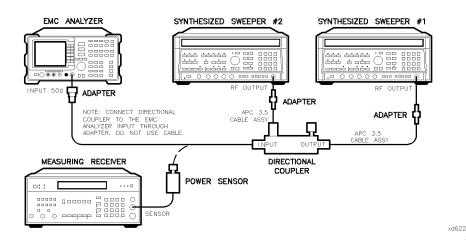


Figure 2-46.
Third-Order Intermodulation Distortion Test Setup, HP 8594EM

11. Press INSTR PRESET on each synthesized sweeper. Set each of the synthesized sweeper controls as follows:

POWER LEVEL	15 dBm
CW (synthesized sweeper #1)	2.800 GHz
CW (synthesized sweeper #2)	2.80005 GHz
RF	OFF

12. On the EMC analyzer, press (PRESET) and wait until the preset routine is finished. Press the following EMC analyzer keys:

```
(FREQUENCY) 2.8 (GHz) (SPAN) 1 (MHz) (AMPLITUDE) 97 (+dB\muV) (MKR \rightarrow MARKER \rightarrow HIGH More 1 of 3 PEAK EXCURSN 3 (dB) (DISPLAY) More 1 of 2 THRESHLD ON OFF (ON) 17 (+dB\muV)
```

- 13. On synthesized sweeper #1, set RF on. Adjust the power level until the measuring receiver reads -12 dBm ± 0.05 dB.
- 14. Disconnect the power sensor from the directional coupler. Connect the directional coupler directly to the EMC analyzer INPUT 50 Ω using an adapter (do not use a cable).
- 15. On the EMC analyzer, press the following keys:

Wait for the AUTO ZOOM message to disappear, then press the following EMC analyzer keys:

```
\begin{array}{ll} \hline \text{MKR} \text{ More 1 of 3} & \text{MK TRACK ON OFF (OFF)} \\ \hline \hline \text{FREQUENCY} & & \\ \hline \end{array} \text{ (step-up key)} \\ \hline \hline \text{MKR} & \rightarrow & \text{MARKER} & \rightarrow & \text{HIGH} \\ \hline \text{More 1 of 3} & \text{MARKER} & \rightarrow & \text{REF LVL} \\ \hline \end{array}
```

- 16. On synthesized sweeper #2, set RF on. Adjust the power level until the two signals are displayed at the same amplitude.
- 17. If necessary, adjust the EMC analyzer Center Frequency until the two signals are centered on the display. Press the following EMC analyzer keys:

2.204 Performance Verification Tests

BW 1 kHz AVG BW AUTO MAN (MAN) 100 (Hz)
$$(MKR \longrightarrow MARKER \longrightarrow HIGH More 1 of 3 More 2 of 3 MARKER \Delta (DISPLAY) DSP LINE ON OFF (ON)$$

Set the display line to a value 54 dB below the current reference level setting.

18. The third-order intermodulation distortion products should appear 50 kHz below the lower frequency signal and 50 kHz above the higher frequency signal. Their amplitude should be less than the display line. See Figure 2-47.

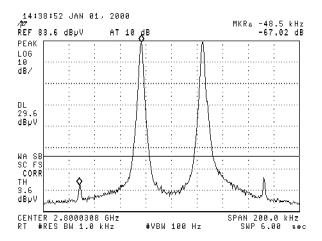


Figure 2-47. Third Order Intermodulation Distortion, HP 8594EM

- 19. If the distortion products can be seen, proceed as follows:
 - a. On the EMC analyzer, press (MKR \rightarrow), MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - b. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion product.
 - c. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.
- 20. If the distortion products cannot be seen, proceed as follows:
 - a. On both the synthesized sweeper and the synthesized level generator, increase the POWER LEVEL by 5 dB. Distortion products should now be visible at this higher power level.
 - b. On the EMC analyzer, press $(\overline{MKR} \rightarrow)$, MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - C. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion products.
 - d. On both the synthesized sweeper and the synthesizer level generator, reduce the power level by 5 dB and wait for the completion of a new sweep.
 - e. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

This test is performed in four parts. The first two parts measure the second harmonic distortion; the last two parts measure the third order intermodulation distortion. Second harmonic distortion and third order intermodulation distortion is checked in both low band (50 kHz to 2.9 GHz) and high band (2.75 to 6.5 GHz).

To test second harmonic distortion, 50 MHz and 4.4 GHz low pass filters are used to filter the source output, ensuring that harmonics read by the analyzer are internally generated and not coming from the source. The distortion products are measured using the EMC analyzer marker functions.

For third order intermodulation distortion, two signals are combined in a directional coupler (for isolation) and are applied to the analyzer input. The power level of the two signals is 8 dB higher than specified, so the distortion products should be suppressed by 16 dB less than specified. In this manner, the equivalent Third Order Intercept (TOI) is measured.

With two -30 dBm signals at the input mixer and the distortion products suppressed by 70 dBc, the equivalent TOI is +5 dBm (-30 dBm +70 dBc/2). However, if two -22 dBm signals are present at the input mixer and the distortion products are suppressed by 54 dBc, the equivalent TOI is also +5 dBm (-22 dBm +54 dBc/2). Performing the test with a higher power level maintains the measurement integrity while reducing both test time and the dependency upon the source noise sideband performance.

Equipment Required

Synthesized sweeper (two required)
Measuring receiver (used as a power meter)
Power sensor, 50 MHz to 6.5 GHz
Power splitter
Low pass filter, 50 MHz
Low pass filter, 4.4 GHz
Directional coupler
Cable, APC 3.5, 91 cm (36 in) (two required)
Cable, BNC, 120 cm (48 in)
Adapter, Type N (m) to APC 3.5 (m)

```
Adapter, APC 3.5 (f) to APC 3.5 (f) (two required)
Adapter, Type N (m) to BNC (f)
Adapter, Type N (m) to APC 3.5 (f)
Adapter, Type N (f) to BNC (m)
```

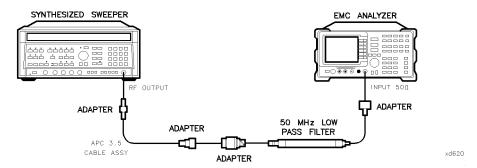
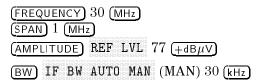


Figure 2-48. Second Harmonic Distortion Test Setup, HP 8595EM

Procedure

This performance verification test consists of four parts:


- Part 1: Second Harmonic Distortion, <2.9 GHz
- Part 2: Second Harmonic Distortion, >2.9 GHz
- Part 3: Third Order Intermodulation Distortion, <2.9 GHz
- Part 4: Third Order Intermodulation Distortion, >2.9 GHz

Part 1: Second Harmonic Distortion, <2.9 GHz

1. Press (PRESET) on the synthesized sweeper, then set the controls as follows:

$\mathbf{C}\mathbf{W}$.	 	 	2
		30 dBm	

- 2. Connect the equipment as shown in Figure 2-48.
- 3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

2.208 Performance Verification Tests

- 4. Adjust the synthesized sweeper power level to place the peak of the signal displayed on the EMC analyzer at the reference level (77 dB μ V).
- 5. Press the following EMC analyzer keys:

```
BW IF BW AUTO MAN (MAN) 1 (kHz)
AVG BW AUTO MAN (MAN) 100 (Hz)
```

6. Wait for two sweeps to finish, then press the following EMC analyzer keys:

```
\begin{array}{ll} (\begin{tabular}{ll} \hline MKR & \longrightarrow & MARKER & \to & HIGH \\ \hline More 1 of 3 & MKR & \to & CF & STEP \\ \hline (MKR) & MARKER & \Delta & \\ \hline (FREQUENCY) & & \\ \end{array}
```

- 7. Press the \bigcirc (step up) key on the EMC analyzer to step to the second harmonic (at 60 MHz). Set the reference level to $-57~\mathrm{dB}\mu\mathrm{V}$.
- 8. Wait for one full sweep, then press $(MKR \rightarrow)$ MARKER \rightarrow HIGH.
- 9. Record the MKR Δ Amplitude reading as **TR Entry 1** of the performance verification test record. The amplitude reading should be less than the specified limit.

Note that the maximum MKR Δ Amplitude Reading is 20 dB higher than the specification. This is a result of changing the reference level from 77 dB μ V to 57 dB μ V.

Part 2: Second Harmonic Distortion, >2.9 GHz

- 10. Zero and calibrate the measuring receiver and 50 MHz to 6.5 GHz power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor 3 GHz Cal Factor into the measuring receiver.
- 11. Measure the noise level at 5.6 GHz using the following steps:
 - a. Remove any cable or adapters from the EMC analyzer INPUT 50 Ω .

b. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 5.6 (GHz)

(SPAN) ZERO SPAN

(AMPLITUDE) REF LVL $67 (\pm dB\mu V)$

(BW) IF BW AUTO MAN (MAN) 1 (kHz)

AVG BW AUTO MAN (MAN) 30 (Hz)

(TRACE) More 1 of 4 More 2 of 4 VID AVG ON OFF (ON) 10 (ENTER)

(SWEEP/TRIG) SWP TIME AUTO MAN (MAN) 5.0 (sec)

- c. Press (SGL SWP). Wait until AVG 10 is displayed along the left side of the CRT display.
- d. Press (MKR → MARKER → HIGH on the EMC analyzer and record the marker amplitude reading as the Noise Level at 5.6 GHz in Table 2-48.
- 12. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(SPAN) Band Lock 2.75-6.5 BAND 1

(FREQUENCY) 2.8 (GHz)

(SPAN) 10 (MHz)

- 13. Connect the equipment as shown in Figure 2-49, with the output of the synthesized sweeper connected to the input of the power splitter, and the power splitter outputs connected to the EMC analyzer and the power sensor.
- 14. On the synthesized sweeper, press preset, then set the controls as follows:

15. On the EMC analyzer, press the following keys:

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

(AMPLITUDE) More 1 of 3 PRESEL PEAK

Wait for the peaking message to disappear.

2.210 Performance Verification Tests

- 16. Press (MKR \rightarrow MARKER \rightarrow HIGH, More 1 of 3 More 2 of 3 MARKER Δ , then record the power meter reading at 2.8 GHz in Table 2-48.
- 17. Set the synthesized sweeper CW to 5.6 GHz.
- 18. Press the following EMC analyzer keys:

```
\begin{array}{c} \hline \text{FREQUENCY} \ 5.6 \ \hline \text{GHz} \\ \hline \text{MKR} \longrightarrow \text{MARKER} \rightarrow \text{HIGH} \\ \hline \\ \hline \text{AMPLITUDE} \ \text{More 1 of 3 PRESEL PEAK} \\ \hline \end{array}
```

Wait for the peaking message to disappear.

```
(\overline{MKR} \rightarrow) MARKER \rightarrow HIGH
(\overline{MKR}) More 1 of 3 MK TRACK ON OFF (ON)
```

- 19. Adjust the synthesized sweeper power level until the Marker Δ Amplitude reads 0 dB ± 0.20 dB.
- 20. Enter the power sensor 6 GHz Cal Factor into the power meter.
- 21. Record the Power Meter Reading at 5.6 GHz in Table 2-48.
- 22. Subtract the Power Meter Reading at 5.6 GHz from the Power Meter Reading at 2.8 GHz, then record this value as the Frequency Response Error (FRE) in Table 2-48.

For example, if the Power Meter Reading at $5.6~\mathrm{GHz}$ is $-6.45~\mathrm{dBm}$ and the Power Meter Reading at $2.8~\mathrm{GHz}$ is $-7.05~\mathrm{dBm}$, the Frequency Response Error would be $-7.05~\mathrm{dBm} - (-6.45~\mathrm{dBm}) = -0.60~\mathrm{dB}$.

Power Meter Reading at $2.8~\mathrm{GHz}$ – Power Meter Reading at $5.6~\mathrm{GHz}$ = FRE

Table 2-48. Second Harmonic Distortion Worksheet

Description	Measurement
Noise Level at 5.6 GHz	dB μ V
Power Meter Reading at 2.8 GHz	dBm
Power Meter Reading at 5.6 GHz	dBm
Frequency Response Error (FRE)	dB
Distortion-limited Specification	dBc
Noise-limited Specification	dBc

- 23. Calculate the desired maximum marker amplitude reading as follows:
 - a. Add the Frequency Response Error (FRE) to -60 dBc (specification is -100 dBc, but reference level will be changed by 40 dB to yield the required dynamic range), then record the Distortion-limited Specification in Table 2-48.

Distortion-limited Specification = -60 dBc + FRE

b. Subtract 67 dB μ V (reference level setting) from Noise Level at 5.6 GHz, then record in Table 2-48.

Noise-limited Specification = Noise Level at 5.6 GHz + 67 $dB\mu V$

c. Record the more positive of the values recorded in a and b above as **TR Entry 2** of the performance verification test record. For example, if the value in a is -59 dBc and the value in b is -61 dBc, record -59 dBc.

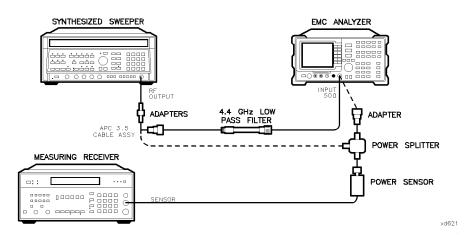


Figure 2-49.
Second Harmonic Distortion Test Setup, >2.9 GHz, HP 8595EM

- 24. Connect the equipment as shown in Figure 2-49 with the filter in place.
- 25. Set the synthesized sweeper controls as follows:

$\mathbf{C}\mathbf{W}$. 2.8 GHz
POV	ER LEVEL	0 dBm

26. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 2.8 (GHz)

(MKR) MARKERS OFF

(MKR →) MARKER → HIGH

(AMPLITUDE) More 1 of 3 PRESEL PEAK

Wait for the peaking message to disappear.

MKR More 1 of 3 MK TRACK ON OFF (ON)

(SPAN) 100 (kHz)

- 27. Adjust the synthesized sweeper power level for an EMC analyzer marker amplitude reading of 107 dB μ V ± 0.2 dB.
- 28. On the EMC analyzer, press the following keys:

(MKR) More 1 of 3 MK TRACK ON OFF (OFF)

 $\mbox{MKR} \rightarrow \mbox{MARKER} \rightarrow \mbox{HIGH}$ More 1 of 3 More 2 of 3 MARKER Δ

(FREQUENCY) 5.6 (GHz)

(SPAN) 10 (MHz)

- 29. Remove the filter and connect the synthesized sweeper output directly to the EMC analyzer INPUT 50 Ω .
- 30. On the EMC analyzer, press the following keys:

(MKR →) MARKER → HIGH

(AMPLITUDE) More 1 of 3 PRESEL PEAK

Wait for the peaking message to disappear.

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

(SPAN) 100 (kHz)

31. Reinstall the filter between the synthesized sweeper output and the EMC analyzer INPUT 50 Ω .

32. Set the EMC analyzer by pressing the following keys:

```
(AMPLITUDE) REF LVL 67 (+dB\mu V)
(BW) AVG BW AUTO MAN (MAN) 30 (Hz)
(TRACE) More 1 of 4 More 2 of 4 VID AVG ON OFF (ON) 10 (ENTER)
(SGL SWP)
```

Wait until AVG 10 is displayed along the left side of the CRT display.

33. Press MARKER — HIGH, then record the Marker Amplitude Reading as **TR Entry 3** of the performance verification test record.

The Marker Amplitude Reading should be more negative than the Specification previously recorded as **TR Entry 2** of the performance verification test record.

Part 3: Third Order Intermodulation Distortion, <2.9 GHz

- 34. Zero and calibrate the measuring receiver and 50 MHz to 6.5 GHz power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor 3 GHz Cal Factor into the measuring receiver.
- 35. Connect the equipment as shown in Figure 2-50 with the input of the directional coupler connected to the power sensor.

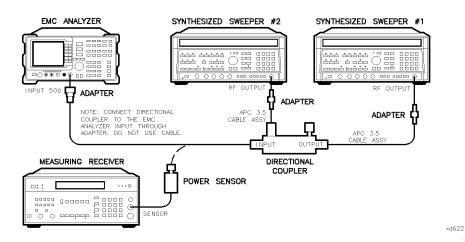


Figure 2-50.
Third-Order Intermodulation Distortion Test Setup, HP 8595EM

36. Press instrument preset on each synthesized sweeper. Set each of the synthesized sweeper controls as follows:

POWER LEVEL	dBm
CW (synthesized sweeper #1)	GHz
CW (synthesized sweeper #2)	GHz
RF	OFF

37. On the EMC analyzer, press (PRESET), then wait until the preset routine is finished. Set the controls as follows:

```
(FREQUENCY) 2.8 GHz

(SPAN) 1 (MHz)

(AMPLITUDE) REF LVL 97 (+dB\mu V)

(MKR \rightarrow) MARKER \rightarrow HIGH More 1 of 3 PEAK EXCURSN 3 (dB)

(DISPLAY) More 1 of 2 THRESHLD ON OFF (ON) 17 (+dB\mu V)
```

- 38. On synthesized sweeper #1, set RF on. Adjust the power level until the measuring receiver reads -12 dBm ± 0.05 dB.
- 39. Disconnect the power sensor from the directional coupler. Connect the directional coupler directly to the EMC analyzer INPUT 50 Ω using an adapter (do not use a cable).

2.216 Performance Verification Tests

40. On the EMC analyzer, press the following keys:

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

(SPAN) 200 (kHz)

Wait for the AUTO ZOOM message to disappear.

MKR More 1 of 3 MK TRACK ON OFF (OFF)

(FREQUENCY) (↑ (step-up key)

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

More 1 of 3 MARKER \rightarrow REF LVL

41. On synthesized sweeper #2, set RF on. Adjust the power level until the two signals are displayed at the same amplitude.

If necessary, adjust the EMC analyzer center frequency until the two signals are centered on the display.

42. Set the EMC analyzer by pressing the following keys:

(BW) IF BW AUTO MAN (MAN) 1 (kHz)

AVG BW AUTO MAN (MAN) 100 (Hz)

43. Press the following analyzer keys:

 $(\overline{MKR} \rightarrow)$ MARKER \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ

(DISPLAY) DSP LINE ON OFF (ON)

Set the display line to a value 54 dB below the current reference level setting.

44. The third-order intermodulation distortion products should appear 50 kHz below the lower frequency signal and 50 kHz above the higher frequency signal. Their amplitude should be less than the display line. See Figure 2-51.

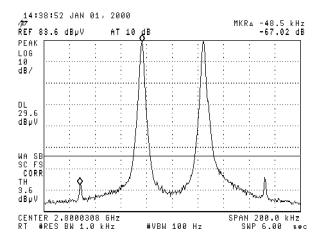


Figure 2-51. Third Order Intermodulation Distortion, HP 8595EM

- 45. If the distortion products can be seen, proceed as follows:
 - a. On the EMC analyzer, press (MKR \rightarrow), MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - b. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion product.
 - c. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.

- 46. If the distortion products cannot be seen, proceed as follows:
 - a. On both the synthesized sweeper and the synthesized level generator, increase the POWER LEVEL by 5 dB. Distortion products should now be visible at this higher power level.
 - b. On the EMC analyzer, press $(MKR \rightarrow)$, MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - C. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion products.
 - d. On both the synthesized sweeper and the synthesizer level generator, reduce the power level by 5 dB and wait for the completion of a new sweep.
 - e. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.

Part 4: Third Order Intermodulation Distortion, >2.9 GHz

- 47. Enter the Power Sensor 4 GHz Cal Factor into the measuring receiver.
- 48. Disconnect the directional coupler from the EMC analyzer, then connect the power sensor to the output of the directional coupler.
- 49. Set each of the synthesized sweeper controls as follows:

POWER LEVEL	m
CW (synthesized sweeper #1)4.000 GH	Ιz
CW (synthesized sweeper #2)4.00005 GH	Ιz
RFOF	F

50. On the EMC analyzer, press (PRESET), then wait until the preset routine is finished. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 4.0 (GHz) (SPAN) 1 (MHz) (BW) REF LVL 97 (+dB\mu V) (MKR \rightarrow MARKER \rightarrow HIGH More 1 of 3 PEAK EXCURSN 3 (dB) (DISPLAY) THRESHLD ON OFF 17 (+dB\mu V)
```

51. On synthesized sweeper #1, set RF on. Adjust the power level until the measuring receiver reads -12 dBm ± 0.05 dB.

- 52. Disconnect the power sensor from the directional coupler. Connect the directional coupler directly to the EMC analyzer INPUT 50 Ω using an adapter (do not use a cable).
- 53. On the EMC analyzer, press the following key:

```
MKR → MARKER → HIGH
(AMPLITUDE) More 1 of 3 PRESEL PEAK
```

Wait for the peaking message to disappear.

```
MKR More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 200 (kHz)
```

Wait for the AUTO ZOOM message to disappear, then press the following EMC analyzer keys:

```
MKR More 1 of 3 MK TRACK ON OFF (OFF)

(FREQUENCY) (↑↑ (step-up key)

(MKR → MARKER → HIGH

More 1 of 3 MARKER → REF LVL
```

54. On synthesized sweeper #2, set RF on. Adjust the power level until the two signals are displayed at the same amplitude.

If necessary, adjust the EMC analyzer center frequency until the two signals are centered on the display.

55. Set the EMC analyzer by pressing the following keys:

```
BW IF BW AUTO MAN (MAN) 1 kHz

AVG BW AUTO MAN (MAN) 100 (Hz)
```

^{56.} Press $\boxed{\text{MKR}} \rightarrow \text{MARKER} \rightarrow \text{HIGH}$, More 1 of 3 More 2 of 3 MARKER Δ then set the DISPLAY LINE to a value 54 dB below the current reference level setting.

The third-order intermodulation distortion products should appear 50 kHz below the lower frequency signal and 50 kHz above the higher frequency signal. Their amplitude should be less than the display line. See Figure 2-51.

- 57. If the distortion products can be seen, proceed as follows:
 - a. On the EMC analyzer, press (MKR \rightarrow), MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - b. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion product.
 - c. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.
- 58. If the distortion products cannot be seen, proceed as follows:
 - a. On both the synthesized sweeper and the synthesized level generator, increase the POWER LEVEL by 5 dB. Distortion products should now be visible at this higher power level.
 - b. On the EMC analyzer, press (MKR \rightarrow), MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - C. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion products.
 - d. On both the synthesized sweeper and the synthesizer level generator, reduce the power level by 5 dB and wait for the completion of a new sweep.
 - e. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

This test is performed in four parts. The first two parts measure the second harmonic distortion; the last two parts measure the third order intermodulation distortion. Second harmonic distortion and third order intermodulation distortion is checked in both low band (50 kHz to 2.9 GHz) and high band (2.75 to 12.8 GHz).

To test second harmonic distortion, 50 MHz and 4.4 GHz low pass filters are used to filter the source output, ensuring that harmonics read by the analyzer are internally generated and not coming from the source. The distortion products are measured using the EMC analyzer marker functions.

For third order intermodulation distortion, two signals are combined in a directional coupler (for isolation) and are applied to the analyzer input. The power level of the two signals is 8 dB higher than specified, so the distortion products should be suppressed by 16 dB less than specified. In this manner, the equivalent Third Order Intercept (TOI) is measured.

With two -30 dBm signals at the input mixer and the distortion products suppressed by 70 dBc, the equivalent TOI is +5 dBm (-30 dBm +70 dBc/2). However, if two -22 dBm signals are present at the input mixer and the distortion products are suppressed by 54 dBc, the equivalent TOI is also +5 dBm (-22 dBm +54 dBc/2). Performing the test with a higher power level maintains the measurement integrity while reducing both test time and the dependency upon the source noise sideband performance.

Equipment Required

Synthesized sweeper (two required)
Measuring receiver (used as a power meter)
Power sensor, 50 MHz to 12.8 GHz
Power splitter
Low pass filter, 50 MHz
Low pass filter, 4.4 GHz
Directional coupler
Cable, APC 3.5, 91 cm (36 in) (two required)
Cable, BNC, 120 cm (48 in)
Adapter, Type N (m) to APC 3.5 (m)

2.222 Performance Verification Tests

```
Adapter, APC 3.5 (f) to APC 3.5 (f) (two required)
Adapter, Type N (m) to BNC (f)
Adapter, Type N (m) to APC 3.5 (f)
Adapter, Type N (f) to BNC (m)
```

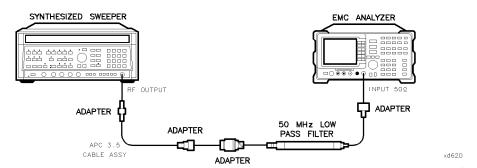


Figure 2-52. Second Harmonic Distortion Test Setup, HP 8596EM

Procedure

This performance verification test consists of four parts:

- Part 1: Second Harmonic Distortion, <2.9 GHz
- Part 2: Second Harmonic Distortion, >2.9 GHz
- Part 3: Third Order Intermodulation Distortion, <2.9 GHz
- Part 4: Third Order Intermodulation Distortion, >2.9 GHz

Part 1: Second Harmonic Distortion, <2.9 GHz

1. Press (PRESET) on the synthesized sweeper, then set the controls as follows:

CW	. 30 MHz
POWER LEVEL	

- 2. Connect the equipment as shown in Figure 2-52.
- 3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 30 (MHz) (SPAN) 1 (MHz) (AMPLITUDE) REF LVL 77 (+dB\muV) (BW) IF BW AUTO MAN (MAN) 30 (kHz)
```

- 4. Adjust the synthesized sweeper power level to place the peak of the signal displayed on the EMC analyzer at the reference level (77 dB μ V).
- 5. Press the following EMC analyzer keys:

```
BW IF BW AUTO MAN (MAN) 1 kHz
AVG BW AUTO MAN (MAN) 100 (Hz)
```

6. Wait for two sweeps to finish, then press the following EMC analyzer keys:

```
\begin{array}{ll} (MKR \longrightarrow MARKER \longrightarrow HIGH \\ More 1 of 3 MKR \longrightarrow CF STEP \\ \hline (MKR) MARKER \Delta \\ \hline (FREQUENCY) \end{array}
```

- 7. Press the \bigcirc (step up) key on the EMC analyzer to step to the second harmonic (at 60 MHz). Set the reference level to 57 dB μ V.
- 8. Wait for one full sweep, then press $(MKR \rightarrow)$ MARKER \rightarrow HIGH.
- 9. Record the MKR Δ Amplitude reading as **TR Entry 1** of the performance verification test record. The amplitude reading should be less than the specified limit.

Note that the maximum MKR Δ Amplitude Reading is 20 dB higher than the specification. This is a result of changing the reference level from 77 dB μ V to 57 dB μ V.

Part 2: Second Harmonic Distortion, >2.9 GHz

- 10. Zero and calibrate the measuring receiver and 50 MHz to 12.8 GHz power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor 3 GHz Cal Factor into the measuring receiver.
- 11. Measure the noise level at 5.6 GHz using the following steps:
 - a. Remove any cable or adapters from the EMC analyzer INPUT 50 Ω .

b. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 5.6 (GHz)

(SPAN) ZERO SPAN

(AMPLITUDE) REF LVL $67 (\pm dB\mu V)$

(BW) IF BW AUTO MAN (MAN) 1 (kHz)

AVG BW AUTO MAN (MAN) 30 (Hz)

TRACE More 1 of 4 More 2 of 4 VID AVG ON OFF (ON) 10 (ENTER)

(SWEEP/TRIG) SWP TIME AUTO MAN (MAN) 5.0 (sec)

- c. Press (SGL SWP). Wait until AVG 10 is displayed along the left side of the CRT display.
- d. Press $(MKR \rightarrow)$ MARKER \rightarrow HIGH on the EMC analyzer and record the marker amplitude reading as the Noise Level at 5.6 GHz in Table 2-49.
- 12. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) More 1 of 2 Band Lock 2.75-6.5 BAND 1 (FREQUENCY) 2.8 (GHz) (SPAN) 10 (MHz)

- 13. Connect the equipment as shown in Figure 2-53, with the output of the synthesized sweeper connected to the input of the power splitter, and the power splitter outputs connected to the EMC analyzer and the power sensor.
- 14. On the synthesized sweeper, press preset, then set the controls as follows:

15. On the EMC analyzer, press the following keys:

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

[AMPLITUDE] More 1 of 3 PRESEL PEAK

Wait for the peaking message to disappear.

- 16. Press (MKR \rightarrow) MARKER \rightarrow HIGH, More 1 of 3 More 2 of 3 MARKER Δ , then record the power meter reading at 2.8 GHz in Table 2-49.
- 17. Set the synthesized sweeper CW to 5.6 GHz.
- 18. Press the following EMC analyzer keys:

 $\begin{array}{c} \underline{\text{FREQUENCY}} \ 5.6 \ \underline{\text{GHz}} \\ \underline{\text{MKR}} \longrightarrow \underline{\text{MARKER}} \longrightarrow \underline{\text{HIGH}} \\ \underline{\text{AMPLITUDE}} \ \underline{\text{More 1 of 3 PRESEL PEAK}} \end{array}$

Wait for the peaking message to disappear.

 $\begin{picture}(c){\hline MKR} \longrightarrow MARKER \longrightarrow HIGH \\ \hline \begin{picture}(c){\hline MKR}\end{picture} More 1 of 3 MK TRACK ON OFF (ON) \\ \hline \end{picture}$

- 19. Adjust the synthesized sweeper power level until the Marker Δ Amplitude reads 0 dB ± 0.20 dB.
- 20. Enter the power sensor 6 GHz Cal Factor into the power meter.
- 21. Record the Power Meter Reading at 5.6 GHz in Table 2-49.
- 22. Subtract the Power Meter Reading at 5.6 GHz from the Power Meter Reading at 2.8 GHz, then record this value as the Frequency Response Error (FRE) in Table 2-49. For example, if the Power Meter Reading at 5.6 GHz is -6.45 dBm and the Power Meter Reading at 2.8 GHz is -7.05 dBm, the Frequency Response Error would be -7.05 dBm (-6.45 dBm) = -0.60 dB.

Power Meter Reading at $2.8~\mathrm{GHz}$ – Power Meter Reading at $5.6~\mathrm{GHz}$ = FRE

Table 2-49. Second Harmonic Distortion Worksheet

Description	Measurement
Noise Level at 5.6 GHz	dB_\(\mu\) V
Power Meter Reading at 2.8 GHz	dBm
Power Meter Reading at 5.6 GHz	dBm
Frequency Response Error (FRE)	dB
Distortion-limited Specification	dBc
Noise-limited Specification	dBc

- 23. Calculate the desired maximum marker amplitude reading as follows:
 - a. Add the Frequency Response Error (FRE) to -60 dBc (specification is -100 dBc, but reference level will be changed by 40 dB to yield the required dynamic range), then record as the Distortion-limited Specification in Table 2-49.

Distortion-limited Specification = -60 dBc + FRE

b. Subtract 67 dB μ V (reference level setting) from Noise Level at 5.6 GHz, then record in Table 2-49.

Noise-limited Specification = Noise Level at 5.6 GHz + 67 $dB\mu V$

c. Record the more positive of the values recorded in a and b above as **TR Entry 2** of the performance verification test record. For example, if the value in a is -59 dBc and the value in b is -61 dBc, record -59 dBc.

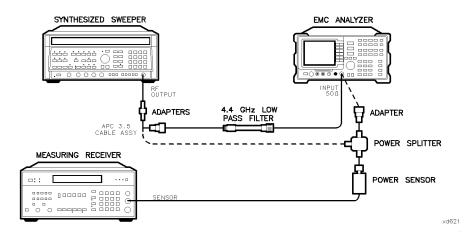


Figure 2-53.
Second Harmonic Distortion Test Setup, >2.9 GHz, HP 8596EM

- 24. Connect the equipment as shown in Figure 2-53 with the filter in place.
- 25. Set the synthesized sweeper controls as follows:

CW	. 2.8 GHz
POWER LEVEL	0 dBm

2-228 Performance Verification Tests

26. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 2.8 (GHz)

(MKR) More 1 of 3 MARKER ALL OFF

 $(\overline{MKR} \rightarrow)$ MARKER \rightarrow HIGH

(AMPLITUDE) More 1 of 3 PRESEL PEAK

Wait for the peaking message to disappear.

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

(SPAN) 100 (kHz)

- 27. Adjust the synthesized sweeper power level for an EMC analyzer marker amplitude reading of 107 dB μ V ± 0.2 dB.
- 28. On the EMC analyzer, press the following keys:

(MKR) More 1 of 3 MK TRACK ON OFF (OFF)

 $(\overline{MKR} o)$ MARKER o HIGH More 1 of 3 More 2 of 3 MARKER Δ

(FREQUENCY) 5.6 (GHz)

(SPAN) 10 (MHz)

- 29. Remove the filter and connect the synthesized sweeper output directly to the EMC analyzer INPUT 50 Ω .
- 30. On the EMC analyzer, press the following keys:

 $(MKR \rightarrow) MARKER \rightarrow HIGH$

(AMPLITUDE) More 1 of 3 PRESEL PEAK

Wait for the peaking message to disappear.

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

(SPAN) 100 (kHz)

31. Reinstall the filter between the synthesized sweeper output and the EMC analyzer INPUT 50 Ω .

32. Set the EMC analyzer by pressing the following keys:

```
(AMPLITUDE) REF LVL 67 (+dB\mu V)
(BW) AVG BW AUTO MAN (MAN) 30 (+z)
(TRACE) More 1 of 4 More 2 of 4 VID AVG ON OFF (ON) 10 (ENTER)
(SGL SWP)
```

Wait until AVG 10 is displayed along the left side of the CRT display.

33. Press (MKR → MARKER → HIGH, then record the Marker Amplitude Reading as **TR Entry 3** of the performance verification test record.

The Marker Amplitude Reading should be more negative than the Specification previously recorded as **TR Entry 2** of the performance verification test record.

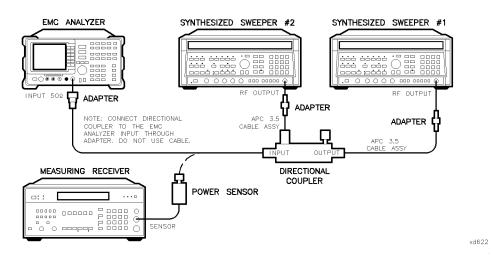


Figure 2-54.
Third-Order Intermodulation Distortion Test Setup, HP 8596EM

Part 3: Third Order Intermodulation Distortion, <2.9 GHz

34. Zero and calibrate the measuring receiver and 50 MHz to 12.8 GHz power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor 3 GHz Cal Factor into the measuring receiver.

2.230 Performance Verification Tests

- 35. Connect the equipment as shown in Figure 2-54 with the input of the directional coupler connected to the power sensor.
- 36. Press instrument preset on each synthesized sweeper. Set each of the synthesized sweeper controls as follows:

37. On the EMC analyzer, press (PRESET), then wait until the preset routine is finished. Set the controls as follows:

```
FREQUENCY 2.8 GHz

SPAN 1 (MHz)

(AMPLITUDE REF LVL 97 (+dB\muV)

(MKR \rightarrow MARKER \rightarrow HIGH More 1 of 3 PEAK EXCURSN 3 dB)

(DISPLAY) More 1 of 2 THRESHLD ON OFF (ON) 17 (+dB\muV)
```

- 38. On synthesized sweeper #1, set RF on. Adjust the power level until the measuring receiver reads -12 dBm ± 0.05 dB.
- 39. Disconnect the power sensor from the directional coupler. Connect the directional coupler directly to the EMC analyzer INPUT 50 Ω using an adapter (do not use a cable).
- 40. On the EMC analyzer, press the following keys:

Wait for the AUTO ZOOM message to disappear.

41. On synthesized sweeper #2, set RF on. Adjust the power level until the two signals are displayed at the same amplitude.

If necessary, adjust the EMC analyzer center frequency until the two signals are centered on the display.

42. Set the EMC analyzer by pressing the following keys:

43. Press the following analyzer keys:

Set the display line to a value 54 dB below the current reference level setting.

44. The third-order intermodulation distortion products should appear 50 kHz below the lower frequency signal and 50 kHz above the higher frequency signal. Their amplitude should be less than the display line. See Figure 2-55.

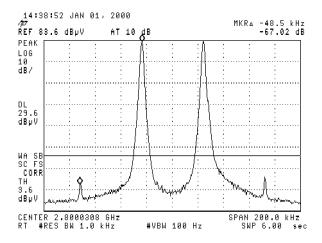


Figure 2-55. Third Order Intermodulation Distortion, HP 8596EM

2-232 Performance Verification Tests

- 45. If the distortion products can be seen, proceed as follows:
 - a. On the EMC analyzer, press (MKR \rightarrow), MARKER \rightarrow HIGH , More 1 of 3 , More 2 of 3 , and MARKER Δ .
 - b. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion product.
 - c. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.
- 46. If the distortion products cannot be seen, proceed as follows:
 - a. On both the synthesized sweeper and the synthesized level generator, increase the POWER LEVEL by 5 dB. Distortion products should now be visible at this higher power level.
 - b. On the EMC analyzer, press (MKR \rightarrow), MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - C. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion products.
 - d. On both the synthesized sweeper and the synthesizer level generator, reduce the power level by 5 dB and wait for the completion of a new sweep.
 - e. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.

Part 4: Third Order Intermodulation Distortion, >2.9 GHz

- 47. Enter the Power Sensor 4 GHz Cal Factor into the measuring receiver.
- 48. Disconnect the directional coupler from the EMC analyzer, then connect the power sensor to the output of the directional coupler.
- 49. Set each of the synthesized sweeper controls as follows:

POWER LEVEL15 dBm
CW (synthesized sweeper #1)4.000 GHz
CW (synthesized sweeper #2)
RFOFF

50. On the EMC analyzer, press (PRESET), then wait until the preset routine is finished. Set the EMC analyzer by pressing the following keys:

FREQUENCY 4.0 GHz

SPAN 1 (MHz)

(AMPLITUDE) REF LVL 97 (+dB μ V)

(MKR \rightarrow) MARKER \rightarrow HIGH More 1 of 3 PEAK EXCURSN 3 (dB)

(DISPLAY) More 1 of 2 THRESHLD ON OFF 17 (+dB μ V)

- 51. On synthesized sweeper #1, set RF on. Adjust the power level until the measuring receiver reads -12 dBm ± 0.05 dB.
- 52. Disconnect the power sensor from the directional coupler. Connect the directional coupler directly to the EMC analyzer INPUT 50 Ω using an adapter (do not use a cable).
- 53. On the EMC analyzer, press the following key:

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH $(\overline{AMPLITUDE})$ More 1 of 3 PRESEL PEAK

Wait for the peaking message to disappear.

MKR More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 200 (kHz)

Wait for the AUTO ZOOM message to disappear, then press the following EMC analyzer keys:

MKR More 1 of 3 MK TRACK ON OFF (OFF)

(FREQUENCY) (↑↑ (step-up key)

(MKR → MARKER → HIGH

More 1 of 3 MARKER → REF LVL

54. On synthesized sweeper #2, set RF on. Adjust the power level until the two signals are displayed at the same amplitude.

If necessary, adjust the EMC analyzer center frequency until the two signals are centered on the display.

2.234 Performance Verification Tests

- 55. Set the EMC analyzer by pressing the following keys:
 - BW IF BW AUTO MAN (MAN) 1 (kHz)

 AVG BW AUTO MAN (MAN) 100 (Hz)
- ^{56.} Press $\boxed{\text{MKR} \rightarrow \text{MARKER}} \rightarrow \text{HIGH}$, More 1 of 3 More 2 of 3 MARKER \triangle then set the DISPLAY LINE to a value 54 dB below the current reference level setting.

The third-order intermodulation distortion products should appear 50 kHz below the lower frequency signal and 50 kHz above the higher frequency signal. Their amplitude should be less than the display line. See Figure 2-55.

- 57. If the distortion products can be seen, proceed as follows:
 - a. On the EMC analyzer, press $(MKR \rightarrow)$, MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - b. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion product.
 - c. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.
- 58. If the distortion products cannot be seen, proceed as follows:
 - a. On both the synthesized sweeper and the synthesized level generator, increase the POWER LEVEL by 5 dB. Distortion products should now be visible at this higher power level.
 - b. On the EMC analyzer, press $(MKR \rightarrow)$, MARKER \rightarrow HIGH, More 1 of 3, More 2 of 3, and MARKER Δ .
 - C. Press More 3 of 3 then repeatedly press NEXT PEAK until the active marker is on the highest distortion products.
 - d. On both the synthesized sweeper and the synthesizer level generator, reduce the power level by 5 dB and wait for the completion of a new sweep.
 - e. Record the MKR Δ amplitude reading as **TR Entry 2** of the performance verification test record. The MKR Δ reading should be less than -54 dBc.

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

Gain compression is measured by applying two signals, separated by 3 MHz. First, the test places a -20 dBm (87 dB μ V) signal at the input of the EMC analyzer (the EMC analyzer reference level is also set to 87 dB μ V). Then, a 0 dBm (107 dB μ V) signal is applied to the EMC analyzer, overdriving its input. The decrease in the first signal's amplitude (gain compression) caused by the second signal is the measured gain compression.

For the narrow bandwidth part of this test, the signals are separated by 10 kHz, then the first signal is kept 10 dB below the reference level.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized sweeper
Synthesizer/level generator
Measuring receiver (used as a power meter)
Power sensor, 100 kHz to 1800 MHz
Directional bridge
Cable, BNC, 120 cm (48 in) (two required)
Adapter, Type N (f) to BNC (m)
Adapter, Type N (m) to BNC (m)
Adapter, Type N (f) to APC 3.5 (f)
Adapter, Type N (m) to BNC (f)

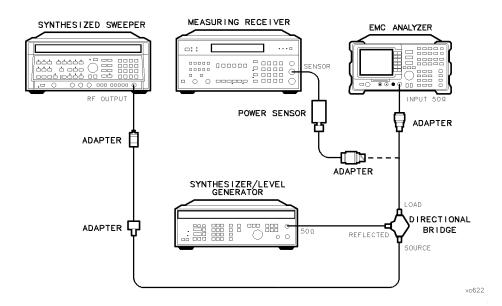


Figure 2-56. Gain Compression Test Setup, HP 8591EM

Procedure

- 1. Zero and calibrate the measuring receiver and power sensor combination in log mode (power reads out in dBm) as described in the measuring receiver operation manual. Enter the power sensor's 50 MHz Cal Factor into the measuring receiver.
- 2. Connect the equipment as shown in Figure 2-56, with the load of the directional bridge connected to the power sensor.
- 3. Press INSTRUMENT PRESET on the synthesized sweeper, then set the controls as follows:

CW	
4. Set the synthesized/level generator controls as follows:	
CW50 M	ΙΗz

5. On the EMC analyzer, press (PRESET), then wait for the preset routine to finish. Press the EMC analyzer keys as follows:

(FREQUENCY) 50 (MHz) (SPAN) 20 (MHz) (AMPLITUDE) 87 ($\mathrm{dB}\mu\mathrm{V}$) SCALE LOG LIN (LOG) 1 (BW) 300 (kHz)

- 6. On the synthesized sweeper, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to off.
- 7. On the synthesizer/level generator, set the 50 $\Omega/75~\Omega$ switch to 50 Ω .

Note that the power level applied to the EMC analyzer input is $10~\mathrm{dB}$ greater than the specification to account for the $10~\mathrm{dB}$ attenuation setting. A power level of $0~\mathrm{dBm}$ at the EMC analyzer input yields $-10~\mathrm{dBm}$ at the input mixer.

- 8. Disconnect the power sensor from the directional bridge and connect the directional bridge to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.
- 9. On the EMC analyzer, press the following keys:

Wait for the AUTO ZOOM routine to finish.

- 10. On the synthesizer/level generator, adjust the amplitude to place the signal 1 dB below the EMC analyzer reference level.
- 11. On the EMC analyzer, press (MKR \rightarrow MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 12. On the synthesized sweeper, set RF to ON.
- 13. On the EMC analyzer, press (MKR o) MKR o HIGH, then NEXT PEAK.

The active marker should be on the lower amplitude signal and not on the signal that is off the top of the screen. If it is not on the lower amplitude signal, reposition the marker to this peak using the EMC analyzer knob.

2.238 Performance Verification Tests

14. Read the MKR Δ amplitude and record in the performance verification test record as TR Entry 1. The absolute value of this amplitude should be less than 0.5 dB.

Narrow Bandwidth

- 15. Remove the EMC analyzer from the directional bridge and reconnect the measuring receiver power sensor to the directional bridge as shown in Figure 2-56.
- 16. Press INSTRUMENT PRESET on the synthesized sweeper, then set the controls as follows:

CW	 	50.010 MHz
POWER LEVEL	 	6 dBm

17. Set the synthesized/level generator controls as follows:

FREQUENCY	. 50 MHz
AMPLITUDE	-14 dBm
$50 \Omega/75 \Omega$ SWITCH	output)

- 18. On the synthesized sweeper, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to OFF.
- 19. On the synthesizer/level generator, set the 50 $\Omega/75~\Omega$ switch to 50 Ω .
- 20. Disconnect the power sensor from the directional bridge and connect the directional bridge to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.
- 21. On the EMC analyzer, press (PRESET), then wait for the preset routine to finish. Press the EMC analyzer keys as follows:

```
(FREQUENCY) 50 (MHz)
(SPAN) 10 (MHz)
(\overline{\mathsf{AMPLITUDE}}) 97 (\overline{\mathsf{dB}\mu\mathsf{V}})
MKR → MKR → HIGH
(MKR) More 1 of 3 MK TRACK ON OFF (ON)
(SPAN) 2 (kHz)
```

Wait for the auto zoom routine to finish.

22. On the synthesizer/level generator, adjust the amplitude to place the signal 10 dB below the EMC analyzer reference level.

- 23. On the EMC analyzer, press (SGL SWP), then wait for the completion of a new sweep. Press (MKR \rightarrow MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 24. On the synthesized sweeper, set RF to ON.
- 25. On the EMC analyzer, press (SGL SWP), then wait for the completion of a new sweep. Press (MKR \rightarrow MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 26. Read the MKR Δ amplitude and record in the performance verification test record as **TR Entry 2**.

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

This performance verification test measures gain compression in both low band and high band. Two signals, separated by 3 MHz, are used. First, the test places a -30 dBm (77 dB μ V) signal at the input of the EMC analyzer (the EMC analyzer reference level is also set to 77 dB μ V). Then, a 0 dBm (107 db μ V) signal is applied to the EMC analyzer, overdriving its input. The decrease in the first signal's amplitude (gain compression) caused by the second signal is the measured gain compression.

For the narrow bandwidth part of this test, the signals are separated by 10 kHz, then the first signal is kept 10 dB below the reference level.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized sweeper (two required) Measuring receiver (used as a power meter) Power sensor, 50 MHz to 26.5 GHz Directional coupler Cable, APC 3.5, 91 cm (36 in) (two required) Adapter, Type N (m) to APC 3.5 (m) (not required for Option 026) Adapter, APC 3.5 (f) to APC 3.5 (f) (two required)

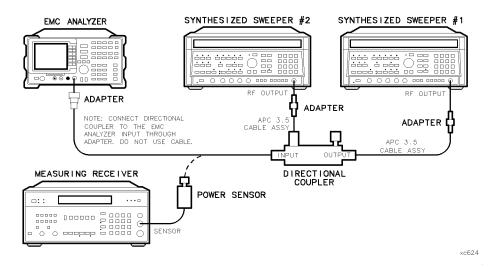


Figure 2-57. Gain Compression Test Setup, HP 8593EM

Procedure

Gain Compression, <2.9 GHz

- 1. Zero and calibrate the measuring receiver and 50 MHz to 26.5 GHz power sensor combination in log mode (power reads out in dBm) as described in the measuring receiver operation manual. Enter the power sensor 2 GHz Cal Factor into the measuring receiver.
- 2. Connect the equipment as shown in Figure 2-57, with the output of the directional coupler connected to the power sensor.
- 3. Press INSTRUMENT PRESET on both synthesized sweepers.
- 4. Set synthesized sweeper #1 controls as follows:

CW	 2.003 GHz
DOWED I EVEL	 $0 dP_{m}$

5. Set synthesized sweeper #2 controls as follows:

CW	. 2.0 GHz
AMPLITUDE	-14 dBm

6. On the EMC analyzer, press (PRESET), then wait for the preset routine to finish. Press the EMC analyzer keys as follows:

```
(FREQUENCY) 2.0 (GHz)
(SPAN) 20 (MHz)
(AMPLITUDE) REF LVL 77 (dB\mu V)
SCALE LOG LIN (LOG) 1 (dB)
(BW) IF BW AUTO MAN (MAN) 300 (kHz)
```

7. On synthesized sweeper #1, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to off.

The power level applied to the EMC analyzer input is 10 dB greater than the specification to account for the 10 dB attenuation setting. A power level of 0 dBm at the EMC analyzer input yields -10 dBm at the input mixer.

8. Disconnect the power sensor from the directional coupler and connect the directional coupler to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.

Option 026 only: Connect the directional coupler to the EMC analyzer directly.

9. On the EMC analyzer, press the following keys:

Wait for the AUTO ZOOM routine to finish.

- 10. On synthesized sweeper #2, adjust the power level to place the signal 1 dB below the EMC analyzer reference level.
- 11. On the EMC analyzer, press (MKR \rightarrow MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 12. On synthesized sweeper #1, set RF to ON.
- 13. On the EMC analyzer, press (MKR → MKR → HIGH, then NEXT PEAK.

 The active marker should be on the lower amplitude signal and not on the signal that is off the top of the screen. If it is not on the lower amplitude signal, reposition the marker to this peak using the EMC analyzer knob.
- 14. Read the MKR Δ amplitude and record in the performance verification test record as **TR Entry 1**. The absolute value of this amplitude should be less than 0.5 dB.

Gain Compression, >2.9 GHz

- 15. Disconnect the directional coupler from the EMC analyzer input, then connect the directional coupler to the power sensor.
- 16. Set the EMC analyzer by pressing the following key:

```
(FREQUENCY) 4.0 (GHz)
(SPAN) 20 (MHz)
(MKR) More 1 of 3 MARKER ALL OFF
```

17. Set synthesized sweeper #1 controls as follows:

CW	4.003	GHz
POWER LEVEL	9 (dDm

18. Set synthesized sweeper #2 controls as follows:

CW	4.0 GHz
	14 dBm

- 19. Enter the power sensor CAL Factor into the measuring receiver.
- 20. On synthesized sweeper #1, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to off.
- 21. Disconnect the power sensor from the directional coupler and connect the directional coupler to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.
- 22. On the EMC analyzer, press the following keys:

$$(MKR \rightarrow) MKR \rightarrow HIGH$$

Wait for the signal to be centered on screen.

Wait for the CAL: PEAKING message to disappear.

$$(\overline{SPAN})$$
 10 (\overline{MHz})

Wait for the AUTO ZOOM message to disappear.

- 23. On synthesized sweeper #2, adjust the power level to place the signal 1 dB below the EMC analyzer reference level.
- 24. On the EMC analyzer, press (MKR \rightarrow MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 25. On synthesized sweeper #1, set RF to ON.
- 26. On the EMC analyzer, press $(MKR \rightarrow)$ MKR \rightarrow HIGH, then NEXT PEAK.

The active marker should be on the lower amplitude signal and not on the signal that is off the top of the screen. If it is not on the lower amplitude signal, reposition the marker to this peak using the EMC analyzer knob.

27. Read the MKR Δ amplitude and record in the performance verification test record as **TR Entry 2**. The absolute value of this amplitude should be less than or equal to 0.5 dB.

Narrow Bandwidth

- 28. Remove the EMC analyzer from the directional coupler and reconnect the measuring receiver power sensor to the directional coupler as shown in Figure 2-57.
- 29. Press INSTRUMENT PRESET on both synthesized sweepers.
- 30. Set synthesized sweeper #1 controls as follows:

CW	 	2.000 010 MHz

31. Set synthesized sweeper #2 controls as follows:

CW
POWER LEVEL14 dBm
RF

- 32. On synthesized sweeper #1, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to OFF.
- 33. On synthesized sweeper #2, set the RF to ON.
- 34. Disconnect the power sensor from the directional coupler and connect the directional coupler to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.
- 35. On the EMC analyzer, press PRESET, then wait for the preset routine to finish. Press the EMC analyzer keys as follows:

```
(FREQUENCY) 2.0 (GHz) (SPAN) 10 (MHz) (AMPLITUDE) 97 (dB\muV) (MKR \rightarrow MKR \rightarrow HIGH (MKR) More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 2 (kHz)
```

Wait for the AUTO ZOOM message to disappear.

36. On synthesized sweeper #2, adjust the amplitude to place the signal 10 dB below the EMC analyzer reference level.

2.246 Performance Verification Tests

- 37. On the EMC analyzer, press (SGL SWP), then wait for the completion of a new sweep. Press (MKR \rightarrow) MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 38. On synthesized sweeper #1, set RF to ON.
- 39. On the EMC analyzer, press (SGL SWP), then wait for the completion of a new sweep. Press (MKR \rightarrow) MKR \rightarrow HIGH, MARKER Δ .
- 40. Read the MKR Δ amplitude and record in the performance verification test record as **TR Entry 3**.

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

This performance verification test measures gain compression. Two signals, separated by 3 MHz, are used. First, the test places a $-30~\mathrm{dBm}$ (77 dB μ V) signal at the input of the EMC analyzer (the EMC analyzer reference level is also set to 77 dB μ V). Then, a 107 dB μ V signal is applied to the EMC analyzer, overdriving its input. The decrease in the first signal's amplitude (gain compression) caused by the second signal is the measured gain compression.

For the narrow bandwidth part of this test, the signals are separated by 10 kHz, then the first signal is kept 10 dB below the reference level.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized sweeper (two required)
Measuring receiver (used as a power meter)
Power sensor, 50 MHz to 2.9 GHz
Directional coupler
Cable, APC 3.5, 91 cm (36 in) (two required)
Adapter, Type N (m) to APC 3.5 (m)
Adapter, APC 3.5 (f) to APC 3.5 (f) (two required)

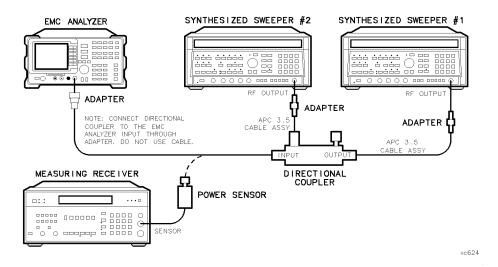


Figure 2-58. Gain Compression Test Setup, HP 8594EM

Procedure

Gain Compression, <2.9 GHz

- 1. Zero and calibrate the measuring receiver and the power sensor combination in log mode (power reads out in dBm) as described in the measuring receiver operation manual. Enter the power sensor 2 GHz Cal Factor into the measuring receiver.
- 2. Connect the equipment as shown in Figure 2-58, with the output of the directional coupler connected to the power sensor.
- 3. Press INSTRUMENT PRESET on both synthesized sweepers.
- 4. Set synthesized sweeper #1 controls as follows:

CWPOWER LEVEL	
5. Set synthesized sweeper #2 controls as follows:	
CW	

6. On the EMC analyzer, press (PRESET), then wait for the preset routine to finish. Press the EMC analyzer keys as follows:

```
FREQUENCY 2.0 GHz (SPAN) 20 (MHz) (AMPLITUDE) REF LVL 77 ({\tt dB}\mu{\tt V}) SCALE LOG LIN (LOG) 1 ({\tt dB}) (BW) IF BW AUTO MAN (MAN) 300 (kHz)
```

7. On synthesized sweeper #1, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to off.

The power level applied to the EMC analyzer input is 10 dB greater than the specification to account for the 10 dB attenuation setting. A power level of 0 dBm at the EMC analyzer input yields -10 dBm at the input mixer.

- 8. Disconnect the power sensor from the directional coupler and connect the directional coupler to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.
- 9. On the EMC analyzer, press the following keys:

```
\begin{array}{ll} (MKR \longrightarrow MKR \longrightarrow HIGH \\ \hline (MKR) \mbox{ More 1 of 3 MK TRACK ON OFF (ON)} \\ \hline (SPAN) \mbox{ 10 } (MHz) \end{array}
```

Wait for the AUTO ZOOM routine to finish.

- 10. On synthesized sweeper #2, adjust the power level to place the signal 1 dB below the EMC analyzer reference level.
- 11. On the EMC analyzer, press (MKR \rightarrow MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 12. On synthesized sweeper #1, set RF to ON.
- 13. On the EMC analyzer, press $(MKR \rightarrow)$ MKR \rightarrow HIGH, then NEXT PEAK.

The active marker should be on the lower amplitude signal and not on the signal that is off the top of the screen. If it is not on the lower amplitude signal, reposition the marker to this peak using the EMC analyzer knob.

14. Read the MKR Δ amplitude and record in the performance verification test record as **TR Entry 1**. The absolute value of this amplitude should be less than 0.5 dB.

Narrow Bandwidth

- 15. Remove the EMC analyzer from the directional coupler and reconnect the measuring receiver power sensor to the directional coupler as shown in Figure 2-58.
- 16. Press INSTRUMENT PRESET on both synthesized sweepers.
- 17. Set synthesized sweeper #1 controls as follows:

CW	2.000 010 GHz
POWER LEVEL	0 dBm

18. Set synthesized sweeper #2 controls as follows:

CW
POWER LEVEL14 dBm
RFOFF

- 19. On synthesized sweeper #1, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to OFF.
- 20. On synthesized sweeper #2, set the RF to ON.
- 21. Disconnect the power sensor from the directional coupler and connect the directional coupler to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.
- 22. On the EMC analyzer, press (PRESET), then wait for the preset routine to finish. Press the EMC analyzer keys as follows:

```
\begin{array}{l} \text{(FREQUENCY)} \ 2.0 \ \text{(GHz)} \\ \text{(SPAN)} \ 10 \ \text{(MHz)} \\ \text{(AMPLITUDE)} \ 97 \ \text{(dB$\mu$V)} \\ \text{(MKR} \rightarrow \text{MKR} \rightarrow \text{HIGH} \\ \text{(MKR)} \ \text{More} \ 1 \ \text{of} \ 3 \ \text{MK} \ \text{TRACK ON OFF} \ \text{(ON)} \\ \text{(SPAN)} \ 2 \ \text{(kHz)} \end{array}
```

Wait for the AUTO ZOOM message to disappear.

23. On synthesized sweeper #2, adjust the amplitude to place the signal 10 dB below the EMC analyzer reference level.

- 24. On the EMC analyzer, press (SGL SWP), then wait for the completion of a new sweep. Press (MKR \rightarrow MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 25. On synthesized sweeper #1, set RF to ON.
- 26. On the EMC analyzer, press (SGL SWP), then wait for the completion of a new sweep. Press (MKR \rightarrow MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 27. Read the MKR Δ amplitude and record in the performance verification test record as **TR Entry 2**.

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

This performance verification test measures gain compression in both low band and high band. Two signals, separated by 3 MHz, are used. First, the test places a -30 dBm (77 dB μ V) signal at the input of the EMC analyzer (the EMC analyzer reference level is also set to 77 dB μ V). Then, a 0 dBm (107 dB μ V) signal is applied to the EMC analyzer, overdriving its input. The decrease in the first signal's amplitude (gain compression) caused by the second signal is the measured gain compression.

For the narrow bandwidth part of this test, the signals are separated by 10 kHz, then the first signal is kept 10 dB below the reference level.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized sweeper (two required) Measuring receiver (used as a power meter) Power sensor, 50 MHz to 6.5 GHz Directional coupler Cable, APC 3.5, 91 cm (36 in) (two required) Adapter, Type N (m) to APC 3.5 (m) Adapter, APC 3.5 (f) to APC 3.5 (f) (two required)

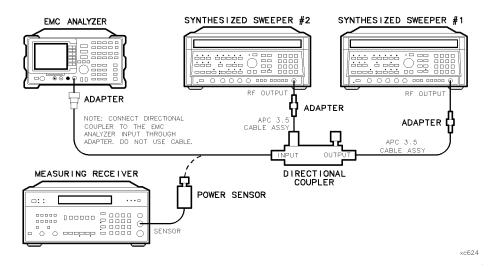


Figure 2-59. Gain Compression Test Setup, HP 8595EM

Procedure

Gain Compression, <2.9 GHz

- 1. Zero and calibrate the measuring receiver and 50 MHz to 6.5 GHz power sensor combination in log mode (power reads out in dBm) as described in the measuring receiver operation manual. Enter the power sensor 2 GHz Cal Factor into the measuring receiver.
- 2. Connect the equipment as shown in Figure 2-59, with the output of the directional coupler connected to the power sensor.
- 3. Press INSTRUMENT PRESET on both synthesized sweepers.
- 4. Set synthesized sweeper #1 controls as follows:

CW	003 GHz
POWER LEVEL	0 dBm
5. Set synthesized sweeper #2 controls as follows:	
CW	2.0 GHz
AMPLITUDE	-14 dBm

2.254 Performance Verification Tests

6. On the EMC analyzer, press (PRESET), then wait for the preset routine to finish. Press the EMC analyzer keys as follows:

```
(FREQUENCY) 2.0 (GHz)
(SPAN) 20 (MHz)
(AMPLITUDE) REF LVL 77 (dB\mu V)
SCALE LOG LIN (LOG) 1 (dB)
(BW) IF BW AUTO MAN (MAN) 300 (kHz)
```

7. On synthesized sweeper #1, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to off.

The power level applied to the EMC analyzer input is 10 dB greater than the specification to account for the 10 dB attenuation setting. A power level of 0 dBm at the EMC analyzer input yields -10 dBm at the input mixer.

- 8. Disconnect the power sensor from the directional coupler and connect the directional coupler to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.
- 9. On the EMC analyzer, press the following keys:

```
(MKR \rightarrow) MKR \rightarrow HIGH
(MKR) More 1 of 3 MK TRACK ON OFF (ON)
(SPAN) 10 (MHz)
```

Wait for the AUTO ZOOM routine to finish.

- 10. On synthesized sweeper #2, adjust the power level to place the signal 1 dB below the EMC analyzer reference level.
- 11. On the EMC analyzer, press $(\overline{MKR} \rightarrow)$ MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 12. On synthesized sweeper #1, set RF to ON.
- 13. On the EMC analyzer, press $(\overline{MKR} \rightarrow)$ MKR \rightarrow HIGH, then NEXT PEAK.

The active marker should be on the lower amplitude signal and not on the signal that is off the top of the screen. If it is not on the lower amplitude signal, reposition the marker to this peak using the EMC analyzer knob.

14. Read the MKR Δ amplitude and record in the performance verification test record as **TR Entry 1**. The absolute value of this amplitude should be less than 0.5 dB.

Gain Compression, >2.9 GHz

- 15. Disconnect the directional coupler from the EMC analyzer input, then connect the directional coupler to the power sensor.
- 16. Set the EMC analyzer by pressing the following key:

(FREQUENCY) 4.0 (GHz)

(SPAN) 20 (MHz)

(MKR) MARKER 1 ON OFF (OFF)

17. Set synthesized sweeper #1 controls as follows:

CW	$.4.003~\mathrm{GHz}$
POWER LEVEL	2 dBm

18. Set synthesized sweeper #2 controls as follows:

CW	.0 GHz
POWER LEVEL	

- 19. Enter the power sensor CAL Factor into the measuring receiver.
- 20. On synthesized sweeper #1, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to off.
- 21. Disconnect the power sensor from the directional coupler and connect the directional coupler to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.
- 22. On the EMC analyzer, press the following keys:

 $(MKR \rightarrow) MKR \rightarrow HIGH$

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

Wait for the signal to be centered on screen.

(AMPLITUDE) More 1 of 3 PRESEL PEAK

Wait for the CAL: PEAKING message to disappear.

(SPAN) 10 (MHz)

Wait for the AUTO ZOOM message to disappear.

2.256 Performance Verification Tests

- 23. On synthesized sweeper #2, adjust the power level to place the signal 1 dB below the EMC analyzer reference level.
- $^{24}\cdot$ On the EMC analyzer, press (MKR \to MKR \to HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 25. On synthesized sweeper #1, set RF to ON.
- 26. On the EMC analyzer, press $(MKR \rightarrow MKR \rightarrow HIGH)$, then NEXT PEAK. The active marker should be on the lower amplitude signal and not on the signal that is off the top of the screen. If it is not on the lower amplitude signal, reposition the marker to this peak using the EMC analyzer knob.
- 27. Read the MKR Δ amplitude and record in the performance verification test record as **TR Entry 2**. The absolute value of this amplitude should be less than or equal to 0.5 dB.

Narrow Bandwidth

- 28. Connect the equipment as shown in Figure 2-59.
- 29. Press INSTRUMENT PRESET on both synthesized sweepers.
- 30. Set synthesized sweeper #1 controls as follows:

CW2.000 010 G	ŀΗz
POWER LEVEL 0 dl	Bm

31. Set synthesized sweeper #2 controls as follows:

CW	Ηz
POWER LEVEL	
RF OF	F.

- 32. On synthesized sweeper #1, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to OFF.
- 33. On synthesized sweeper #2, set the RF to ON.
- 34. Disconnect the power sensor from the directional coupler and connect the directional coupler to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.
- 35. On the EMC analyzer, press (PRESET), then wait for the preset routine to finish. Press the EMC analyzer keys as follows:

(FREQUENCY) 2.0 (GHz)

Wait for the AUTO ZOOM message to disappear.

- 36. On synthesized sweeper #2, adjust the amplitude to place the signal 10 dB below the EMC analyzer reference level.
- 37. On the EMC analyzer, press (SGL SWP), then wait for the completion of a new sweep. Press (MKR \rightarrow) MKR \rightarrow HIGH.
- 38. On synthesized sweeper #1, set RF to ON.
- 39. On the EMC analyzer, press (SGL SWP), then wait for the completion of a new sweep. Press (MKR \rightarrow) MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 40. Read the MKR Δ amplitude and record in the performance verification test record as **TR Entry 3**.

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

This performance verification test measures gain compression in both low band and high band. Two signals, separated by 3 MHz, are used. First, the test places a -30 dBm (77 dB μ V) signal at the input of the EMC analyzer (the EMC analyzer reference level is also set to $dB\mu V$). Then, a 0 dBm (107 dB μV) signal is applied to the EMC analyzer, overdriving its input. The decrease in the first signal's amplitude (gain compression) caused by the second signal is the measured gain compression.

For the narrow bandwidth part of this test, the signals are separated by 10 kHz, then the first signal is kept 10 dB below the reference level.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesized sweeper (two required) Measuring receiver (used as a power meter) Power sensor, 50 MHz to 12.8 GHz Directional coupler Cable, APC 3.5, 91 cm (36 in) (two required) Adapter, Type N (m) to APC 3.5 (m) Adapter, APC 3.5 (f) to APC 3.5 (f) (two required)

38. Gain Compression, HP 8596EM

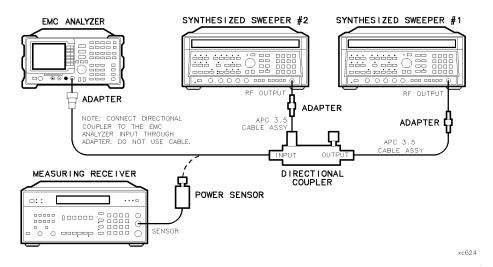


Figure 2-60. Gain Compression Test Setup, HP 8596EM

Procedure

Gain Compression, <2.9 GHz

- 1. Zero and calibrate the measuring receiver and 50 MHz to 12.8 GHz power sensor combination in log mode (power reads out in dBm) as described in the measuring receiver operation manual. Enter the power sensor 2 GHz Cal Factor into the measuring receiver.
- 2. Connect the equipment as shown in Figure 2-60, with the output of the directional coupler connected to the power sensor.
- 3. Press INSTRUMENT PRESET on both synthesized sweepers.
- 4. Set synthesized sweeper #1 controls as follows:

	CWPOWER LEVEL	
5.	. Set synthesized sweeper #2 controls as follows:	
	CWAMPLITIDE	2.0 GHz -14 dBm

2.260 Performance Verification Tests

6. On the EMC analyzer, press (PRESET), then wait for the preset routine to finish. Press the EMC analyzer keys as follows:

```
(FREQUENCY) 2.0 (GHz) (SPAN) 20 (MHz) (AMPLITUDE) REF LVL 77 (dB\muV) SCALE LOG LIN (LOG) 1 (dB) (BW) IF BW AUTO MAN (MAN) 300 (kHz)
```

7. On synthesized sweeper #1, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to off.

The power level applied to the EMC analyzer input is 10 dB greater than the specification to account for the 10 dB attenuation setting. A power level of 0 dBm at the EMC analyzer input yields -10 dBm at the input mixer.

- 8. Disconnect the power sensor from the directional coupler and connect the directional coupler to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.
- 9. On the EMC analyzer, press the following keys:

Wait for the AUTO ZOOM routine to finish.

- 10. On synthesized sweeper #2, adjust the power level to place the signal 1 dB below the EMC analyzer reference level.
- 11. On the EMC analyzer, press (MKR \rightarrow MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 12. On synthesized sweeper #1, set RF to ON.
- 13. On the EMC analyzer, press $(\underline{\mathsf{MKR}} \to \mathsf{MKR} \to \mathsf{HIGH}$, then NEXT PEAK.

The active marker should be on the lower amplitude signal and not on the signal that is off the top of the screen. If it is not on the lower amplitude signal, reposition the marker to this peak using the EMC analyzer knob.

38. Gain Compression, HP 8596EM

14. Read the MKR Δ amplitude and record in the performance verification test record as **TR Entry 1**. The absolute value of this amplitude should be less than 0.5 dB.

Gain Compression, >2.9 GHz

- 15. Disconnect the directional coupler from the EMC analyzer input, then connect the directional coupler to the power sensor.
- 16. Set the EMC analyzer by pressing the following key:

(FREQUENCY) 4.0 (GHz)

(SPAN) 20 (MHz)

(MKR) MARKER 1 ON OFF (OFF)

17. Set synthesized sweeper #1 controls as follows:

CW	4.003 GHz
POWER I EVEL	9 dRm

18. Set synthesized sweeper #2 controls as follows:

CW	4.0 GHz
POWER LEVEL	14 dBm

- 19. Enter the power sensor CAL Factor into the measuring receiver.
- 20. On synthesized sweeper #1, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to off.
- 21. Disconnect the power sensor from the directional coupler and connect the directional coupler to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.
- 22. On the EMC analyzer, press the following keys:

 $(MKR \rightarrow)$ MKR \rightarrow HIGH

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

Wait for the signal to be centered on screen.

(AMPLITUDE) More 1 of 3 PRESEL PEAK

Wait for the CAL: PEAKING message to disappear.

(SPAN) 10 (MHz)

Wait for the AUTO ZOOM message to disappear.

2.262 Performance Verification Tests

- 23. On synthesized sweeper #2, adjust the power level to place the signal 1 dB below the EMC analyzer reference level.
- $^{24}\cdot$ On the EMC analyzer, press (MKR \to MKR \to HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 25. On synthesized sweeper #1, set RF to ON.
- 26. On the EMC analyzer, press $(\overline{MKR} \rightarrow)$ MKR \rightarrow HIGH, then NEXT PEAK. The active marker should be on the lower amplitude signal and not on the signal that is off the top of the screen. If it is not on the lower amplitude signal, reposition the marker to this peak using the EMC analyzer knob.
- 27. Read the MKR Δ amplitude and record in the performance verification test record as **TR Entry 2**. The absolute value of this amplitude should be less than or equal to 0.5 dB.

Narrow Bandwidth

- 28. Remove the EMC analyzer from the directional coupler and reconnect the measuring receiver power sensor to the directional coupler as shown in Figure 2-60.
- 29. Press INSTRUMENT PRESET on both synthesized sweepers.
- 30. Set synthesized sweeper #1 controls as follows:

CW	.0 MHz
POWER LEVEL	0 dBm

31. Set synthesized sweeper #2 controls as follows:

CW
POWER LEVEL14 dBm
RFOFF

- 32. On synthesized sweeper #1, adjust the power level for a 0 dBm reading on the measuring receiver. Set RF to OFF.
- 33. On synthesized sweeper #2, set the RF to ON.
- 34. Disconnect the power sensor from the directional coupler and connect the directional coupler to the INPUT 50 Ω connector of the EMC analyzer using an adapter. Do not use a cable.

38. Gain Compression, HP 8596EM

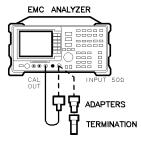
35. On the EMC analyzer, press (PRESET), then wait for the preset routine to finish. Press the EMC analyzer keys as follows:

```
(FREQUENCY) 50 (MHz) (SPAN) 10 (MHz) (AMPLITUDE) 97 (\mathrm{dB}\mu\mathrm{V}) (MKR \rightarrow MKR \rightarrow HIGH (MKR) More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 2 (kHz)
```

Wait for the AUTO ZOOM message to disappear.

- 36. On synthesized sweeper #2, adjust the amplitude to place the signal 10 dB below the EMC analyzer reference level.
- 37. On the EMC analyzer, press (SGL SWP), then wait for the completion of a new sweep. Press (MKR \rightarrow MKR \rightarrow HIGH More 1 of 3 More 2 of 3 MARKER Δ .
- 38. On synthesized sweeper #1, set RF to ON.
- 39. On the EMC analyzer, press (SGL SWP), then wait for the completion of a new sweep. Press (MKR \rightarrow) MKR \rightarrow HIGH.
- 40. Read the MKR Δ amplitude and record in the performance verification test record as **TR Entry 3**.

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.


This performance verification test measures the displayed average noise level within the frequency range specified. The EMC analyzer input is terminated in 50Ω .

The LO feedthrough is used as a frequency reference for these measurements. The test tunes the EMC analyzer frequency across the band, uses the marker to locate the frequency with the highest response, and then reads the average noise in zero span.

To reduce measurement uncertainty due to input attenuator switching and resolution bandwidth switching, a reference level offset is added. The CAL OUT signal is used as the amplitude reference for determining the amount of offset required. The offset is removed at the end of the test by pressing instrument preset.

Equipment Required

Termination, 50 Ω Cable, BNC, 23 cm (9 in) Adapter, Type N (m) to BNC (f)

xd625

Figure 2-61. Displayed Average Noise Level Test Setup, HP 8591EM

Procedure

- 1. Connect a cable from the CAL OUT to the INPUT 50 Ω of the EMC analyzer as shown in Figure 2-61.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) $300~{\rm (MHz)}$ (SPAN) $10~{\rm (MHz)}$ (AMPLITUDE) $87~{\rm dB}\mu{\rm V}$

ATTEN AUTO MAN (MAN) 0 (dB)

3. Press the following EMC analyzer keys:

Wait for the AUTO ZOOM message to disappear, then press the following keys:

(BW) 300 (Hz) AVG BW AUTO MAN (MAN) 30 (Hz) (MKR) More 1 of 3 MK TRACK ON OFF (OFF)

4. Press (SGL SWP), then wait for the completion of a new sweep. Press the following EMC analyzer keys:

MKR → MARKER → HIGH
(AMPLITUDE) More 1 of 3 More 2 of 3 REF LVL OFFSET

Subtract the MKR amplitude reading from 87 dB μ V and enter the result as the REF LVL OFFSET. For example, if the marker reads 86.79 dB μ V, enter -0.21 dB (87 dB μ V - 86.79 dB μ V = +0.21 dB).

REF LVL OFFSET _____ dB

5. Disconnect the cable from the INPUT 50 Ω connector of the EMC analyzer. Connect the 50 Ω termination to the EMC analyzer INPUT 50 Ω connector.

400 kHz

6. Press the following EMC analyzer keys:

```
FREQUENCY 400 (kHz)
(SPAN) 20 (kHz)
(AMPLITUDE) 37 \text{ dB}\mu\text{V}
(SWEEP/TRIG) SWEEP CONT SGL (CONT)
```

7. Press the following EMC analyzer keys:

```
(BW) 30 (Hz)
(TRACE) More 1 of 4 More 2 of 4
DETECTOR SMP PK (SMP) (For Options 101, 102, and 301:
DETECTOR PK SP NG (SP))
(SGL SWP)
```

Wait for the completion of a new sweep.

8. Press the following EMC analyzer keys:

```
(DISPLAY) DSP LINE ON OFF (ON)
```

Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

9. Record the display line amplitude setting as **TR Entry 1** of the performance verification test record as the noise level at 400 kHz. The average noise level should be less than the specified limit.

1 MHz

10. Press the following EMC analyzer keys:

Wait for the completion of a new sweep.

11. Press the following EMC analyzer keys:

```
(DISPLAY) DSP LINE ON OFF (ON)
```

Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

12. Record the display line amplitude setting as **TR Entry 2** of the performance verification test record as the noise level at 1 MHz. The average noise level should be less than the specified limit.

1 MHz to 1.5 GHz

13. Press the following EMC analyzer keys:

```
FREQUENCY START FREQ 1 (MHz) STOP FREQ 1.5 (GHz) BW 1 (MHz)

AVG BW AUTO MAN (MAN) 10 (kHz)

(SWEEP/TRIG) SWEEP CONT SGL (CONT)
```

If the IF overload message is displayed on the EMC analyzer, performing the next step should clear the message.

- 14. Press (FREQUENCY) and adjust the center frequency setting, if necessary, to place the LO feedthrough just off-screen to the left.
- 15. Press the following EMC analyzer keys:

```
SGL SWP)

(TRACE) CLEAR WRITE A

More 1 of 4 More 2 of 4 VID AVG ON OFF (ON) 10 (Hz)
```

Wait until AVG 10 is displayed to the left of the graticule (the EMC analyzer will take ten sweeps, then stop).

2.268 Performance Verification Tests

- 16. Press $(MKR \rightarrow MARKER \rightarrow HIGH)$ and record the MKR frequency as the Measurement Frequency in Table 2-50 for 1 MHz to 1.5 GHz.
- 17. Press the following EMC analyzer keys:

```
TRACE More 1 of 4 More 2 of 4 VID AVG ON OFF (OFF)

DETECTOR SMP PK (SMP) (For Options 101, 102, and 301:

DETECTOR PK SP NG (SP))

(AUTO COUPLE IF BW AUTO MAN (AUTO)

AVG BW AUTO MAN (AUTO)

(SPAN 20 kHz)

(FREQUENCY)
```

- 18. Set the center frequency to the Measurement Frequency recorded in Table 2-50 for 1 MHz to 1.5 GHz.
- 19. Press the following EMC analyzer keys:

```
(BW) 30 (Hz)
AVG BW AUTO MAN (MAN) 30 (Hz)
(SGL SWP)
```

Wait for the sweep to finish.

20. Press the following EMC analyzer keys:

```
(DISPLAY) DSP LINE ON OFF (ON)
```

Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

21. Record the display line amplitude setting as **TR Entry 3** of the performance verification test record. The average noise level should be less than the specified limit.

1.5 GHz to 1.8 GHz

22. Press the following EMC analyzer keys:

(AUTO COUPLE) IF BW AUTO MAN (AUTO)

AVG BW AUTO MAN (AUTO)

(SPAN) 10 (MHz)

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

(FREQUENCY) START FREQ 1.5 GHz STOP FREQ 1.8 GHz

23. Repeat steps 15 through 20 above for frequencies from 1.5 GHz to 1.8 GHz.

If the Displayed Average Noise at 1.8 GHz is at or out of specification, it is recommended that a known frequency source be used as a frequency marker. This ensures that testing is within 1.8 GHz.

24. Record the display line amplitude setting as **TR Entry 4** of the performance verification test record. The average noise level should be less than the specified limit.

Table 2-50. Displayed Average Noise Level

Frequency Range	Measurement Frequency	TR Entry (Displayed Average Noise Level)
400 kHz	400 kHz	1
1 MHz	1 MHz	2
	1 WIIIZ	_
1 MHz to 1.5 GHz		3
1.5 GHz to 1.8 GHz		4

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

This test measures the displayed average noise level in all five frequency bands. The EMC analyzer input is terminated in 50 Ω. In Band 0 (9 kHz to 2.9 GHz), the test first measures the average noise at 400 kHz and 1 MHz in zero span. The LO feedthrough is used as a frequency reference for these measurements. For the rest of Band 0 and for all of the remaining bands, the test tunes the analyzer frequency across the band, uses the marker to locate the frequency with the highest response, and then reads the average noise in zero span.

To reduce measurement uncertainty due to input attenuator switching and resolution bandwidth switching, a reference level offset is added. The CAL OUT signal is used as the amplitude reference for determining the amount of offset required. The offset is removed at the end of the test by pressing (PRESET).

Equipment Required

Cable, BNC, 23 cm (9 in) Termination, 50Ω Adapter, Type N (m) to BNC (f)

Additional Equipment for Option 026

Adapter, APC 3.5 (f) to APC 3.5 (f) Adapter, BNC (m) to SMA (f) Cable, Cal Comb

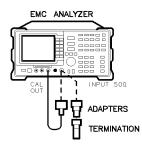


Figure 2-62. Displayed Average Noise Level Test Setup, HP 8593EM

Procedure

1. Connect a cable from the CAL OUT to the INPUT 50 Ω of the EMC analyzer as shown in Figure 2-62.

Option 026 only: Use the BNC to SMA adapter to connect the cal comb cable to CAL OUT. Use the APC 3.5 adapter to connect the cal cable to the INPUT 50 Ω .

2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 300~{\rm (MHz)}
(SPAN) 10~{\rm (MHz)}
(AMPLITUDE) 87~{\rm dB}\mu{\rm V}
ATTEN AUTO MAN (MAN) 0~{\rm dB}
```

3. Press the following EMC analyzer keys:

Wait for the AUTO ZOOM message to disappear, then press the following keys:

```
BW 300 Hz AVG BW AUTO MAN (MAN) 30 Hz
MKR More 1 of 3 MK TRACK ON OFF (OFF)
```

4. Press (SGL SWP), then wait for the completion of a new sweep. Press the following EMC analyzer keys:

2.272 Performance Verification Tests

xd625

$MKR \rightarrow M$	ARKER - HIGH		
AMPLITUDE	More 1 of 3	More 2 of 3	REF LVL OFFSET

Subtract the MKR amplitude reading from 87 dB μ V and enter the result as the REF LVL OFFSET. For example, if the marker reads 86.79 dB μ V, enter -0.21 dB (87 dB μ V - 86.79 dB μ V = +0.21 dB).

REF LVL OFFSET _____ dB

5. Disconnect the cable from the INPUT 50 Ω connector of the EMC analyzer. Connect the 50 Ω termination to the EMC analyzer INPUT 50 Ω connector.

400 kHz

6. Press the following EMC analyzer keys:

```
(FREQUENCY) 400 \, \mathrm{(kHz)} (SPAN) 20 \, \mathrm{(kHz)} (AMPLITUDE) 37 \, \mathrm{dB} \mu \mathrm{V} (SWEEP/TRIG) SWEEP CONT SGL (CONT)
```

7. Press the following EMC analyzer keys:

```
BW 30 (Hz)
TRACE More 1 of 4 More 2 of 4

DETECTOR SMP PK (SMP) (For Options 101, 102, and 301:
DETECTOR PK SP NG (SP))
(SGL SWP)
```

Wait for the completion of a new sweep.

8. Press the following EMC analyzer keys:

```
(DISPLAY) DSP LINE ON OFF (ON)
```

Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses.

9. Record the display line amplitude setting as **TR Entry 1** of the performance verification test record as the noise level at 400 kHz. The average noise level should be less than the specified limit.

1 MHz

10. Press the following EMC analyzer keys:

```
FREQUENCY 1 (MHz)
```

Wait for the completion of a new sweep.

11. Press the following EMC analyzer keys:

```
(DISPLAY) DSP LINE ON OFF (ON)
```

Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses.

2.274 Performance Verification Tests

12. Record the display line amplitude setting as **TR Entry 2** of the performance verification test record as the noise level at 1 MHz. The average noise level should be less than the specified limit.

1 MHz to 2.9 GHz

13. Press the following EMC analyzer keys:

FREQUENCY More 1 of 2 Band Lock 0-2.9 Gz BAND 0
FREQUENCY START FREQ 1 (MHz)
STOP FREQ 2.9 (MHz)
BW IF BW AUTO MAN (MAN) 1 (MHz)
AVG BW AUTO MAN (MAN) 10 (kHz)
(SWEEP/TRIG) SWEEP CONT SGL (CONT)

- 14. Press (FREQUENCY), then adjust the center frequency, if necessary, to place the LO feedthrough just off-screen to the left.
- 15. Press the following EMC analyzer keys:

SGL SWP)

(TRACE) CLEAR WRITE A

More 1 of 4 More 2 of 4 VID AVG ON OFF (ON) 10 (ENTER)

Wait until AVG 10 is displayed to the left of the graticule (the analyzer will take ten sweeps, then stop).

16. Press $(MKR \rightarrow MARKER \rightarrow HIGH)$ and record the MKR frequency as the Measurement Frequency in the appropriate band under test in Table 2-51.

17. Press the following EMC analyzer keys:

TRACE More 1 of 4 More 2 of 4 VID AVG ON OFF (OFF)

DETECTOR SMP PK (SMP) (For Options 101, 102, and 301:

DETECTOR PK SP NG (SP))

(AUTO COUPLE) IF BW AUTO MAN (AUTO)

AVG BW AUTO MAN (AUTO)

(SPAN) 10 (kHz)

(FREQUENCY)

Set CENTER FREQ to the Measurement Frequency recorded in Table 2-51 in the previous step, then press the following keys:

BW IF BW AUTO MAN (MAN) 30 (Hz)

AVG BW AUTO MAN (MAN) 30 (Hz)

18. Press (SGL SWP) on the EMC analyzer, then wait for a new sweep to finish. Press the following EMC analyzer keys:

(DISPLAY) DSP LINE ON OFF (ON)

Adjust the display line so that it is centered on the average noise trace, ignoring any residual responses.

Record the display line amplitude setting in the performance verification test record as indicated in Table 2-51. The average noise level should be less than the specified limit.

19. Press (MKR) and MARKER 1 ON OFF (OFF) to turn the marker off.

2.75 to 6.5 GHz

20. Press the following EMC analyzer keys:

FREQUENCY More 1 of 2 Band Lock 2.75-6.5 BAND 1

BW IF BW AUTO MAN (MAN) 1 (MHz)

AVG BW AUTO MAN (MAN) 10 (kHz)

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

21. Repeat steps 15 through 19 above for Band 1 (2.75 to 6.5 GHz).

6.0 to 12.8 GHz

22. Press the following EMC analyzer keys:

FREQUENCY More 1 of 2 Band Lock 6.0-12.8 BAND 2

BW IF BW AUTO MAN (MAN) 1 MHz

AVG BW AUTO MAN (MAN) 10 kHz

SWEEP/TRIG SWEEP CONT SGL (CONT)

23. Repeat steps 15 through 19 above for Band 2 (6.0 to 12.8 GHz).

12.4 to 19.4 GHz

24. Press the following EMC analyzer keys:

FREQUENCY More 1 of 2 Band Lock 12.4-19. BAND 3

BW IF BW AUTO MAN (MAN) 1 (MHz)

AVG BW AUTO MAN (MAN) 10 (kHz)

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

25. Repeat steps 15 through 19 above for Band 3 (12.4 to 19.4 GHz).

19.1 to 22 GHz

26. Press the following EMC analyzer keys:

(FREQUENCY) More 1 of 2 Band Lock 19.1-22 BAND 4

 $Option \ 026 \ or \ 027 \ only:$ (FREQUENCY) START FREQ $19.1 \ \text{GHz}$) STOP FREQ $22 \ \text{(GHz)}$

BW IF BW AUTO MAN (MAN) 1 MHz

AVG BW AUTO MAN (MAN) 10 kHz

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

27. Repeat steps 15 through 19 above for Band 4.

2.278 Performance Verification Tests

22 GHz to 26.5 GHz (Option 026 or 027 Only)

28. Press the following EMC analyzer keys:

(FREQUENCY) More 1 of 2 Band Lock 19.1 - 22 BAND 4 (FREQUENCY) START FREQ 22 (GHz) STOP FREQ 26.5 (GHz)

29. Set the EMC analyzer by pressing the following keys:

(BW) IF BW AUTO MAN (MAN) 1 (MHz) AVG BW AUTO MAN (MAN) 10 (kHz) (SWEEP/TRIG) SWEEP CONT SGL (CONT)

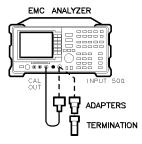
- 30. Repeat steps 15 through 19 for frequencies from 22 to 26.5 GHz.
- 31. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish.

Table 2-51. Displayed Average Noise Level Worksheet

Frequency Range	Measurement Frequency	Displayed Average Noise Level TR Entry
400 kHz	400 kHz	1
1 MHz	1 MHz	2
1 MHz to 2.9 GHz		3
2.75 to 6.5 GHz		4
6.0 to 12.8 GHz		5
12.4 to 19.4 GHz		6
19.1 to 22 GHz		7
19.1 to 26.5 GHz ¹		8

¹ Option 026 or 027 only

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.


This performance verification test measures the displayed average noise level within the frequency range specified. The EMC analyzer input is terminated in 50Ω .

The test tunes the EMC analyzer frequency across the band, uses the marker to locate the frequency with the highest response, and then reads the average noise in zero span.

To reduce measurement uncertainty due to input attenuator switching and resolution bandwidth switching, a reference level offset is added. The CAL OUT signal is used as the amplitude reference for determining the amount of offset required. The offset is removed at the end of the test by pressing instrument preset.

Equipment Required

Termination, 50 Ω Cable, BNC, 23 cm (9 in) Adapter, Type N (m) to BNC (f)

xd625

Figure 2-63. Displayed Average Noise Level Test Setup, HP 8594EM

Procedure

- 1. Connect a cable from the CAL OUT to the INPUT 50 Ω of the EMC analyzer as shown in Figure 2-63.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 300 (MHz) (SPAN) 10 (MHz) (AMPLITUDE) 87 (\pmdB\muV) ATTEN AUTO MAN (MAN) 0 (dB)
```

3. Press the following EMC analyzer keys:

```
\begin{array}{ll} (\mbox{MKR} \longrightarrow \mbox{MARKER} \rightarrow \mbox{HIGH} \\ \hline \mbox{MKR} \mbox{ More 1 of 3 MK TRACK ON OFF (ON)} \\ \hline \mbox{(SPAN)} 10 (\mbox{kHz}) \end{array}
```

Wait for the AUTO ZOOM message to disappear, then press the following keys:

```
(BW) 300 (Hz) AVG BW AUTO MAN (MAN) 30 (Hz) (MKR) More 1 of 3 MK TRACK ON OFF (OFF)
```

4. Press (SGL SWP), then wait for the completion of a new sweep. Press the following EMC analyzer keys:

```
(\overline{MKR} \rightarrow) MARKER \rightarrow HIGH (\overline{AMPLITUDE}) More 1 of 3 More 2 of 3 REF LVL OFFSET
```

Subtract the MKR amplitude reading from 87 dB μ V and enter the result as the REF LVL OFFSET. For example, if the marker reads 86.79 dB μ V, enter -0.21 dB (87 dB μ V - 86.79 dB μ V = +0.21 dB).

REF LVL OFFSET _____ dB

5. Disconnect the cable from the INPUT 50 Ω connector of the EMC analyzer. Connect the 50 Ω termination to the EMC analyzer INPUT 50 Ω connector.

400 kHz

6. Press the following EMC analyzer keys:

```
(FREQUENCY) 400 \text{ (kHz)}

(SPAN) 20 \text{ (kHz)}

(AMPLITUDE) 17 \text{ (+dB}\mu\text{V)}

(SWEEP/TRIG) SWEEP CONT SGL (CONT)
```

7. Press the following EMC analyzer keys:

```
BW 30 (Hz)

(TRACE) More 1 of 4 More 2 of 4

DETECTOR SMP PK (SMP) (For Options 101, 102, and 301:

DETECTOR PK SP NG (SP))

(SGL SWP)
```

Wait for the completion of a new sweep.

8. Press the following EMC analyzer keys:

```
(DISPLAY) DSP LINE ON OFF (ON)
```

Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

9. Record the display line amplitude setting as **TR Entry 1** of the performance verification test record as the noise level at 400 kHz. The average noise level should be less than the specified limit.

4 MHz

10. Press the following EMC analyzer keys:

Wait for the completion of a new sweep.

11. Press the following EMC analyzer keys:

Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

12. Record the display line amplitude setting as **TR Entry 2** of the performance verification test record as the noise level at 4 MHz. The average noise level should be less than the specified limit.

5 MHz to 2.9 GHz

13. Press the following EMC analyzer keys:

```
FREQUENCY START FREQ 5 MHz

STOP FREQ 2.9 GHz

BW 1 MHz

AVG BW AUTO MAN (MAN) 10 kHz

(SWEEP/TRIG) SWEEP CONT SGL (CONT)
```

- 14. Press (FREQUENCY) and adjust the start frequency setting, if necessary, to place the LO feedthrough just off-screen to the left.
- 15. Press the following EMC analyzer keys:

```
(SGL SWP)
(TRACE) CLEAR WRITE A
More 1 of 4 More 2 of 4 VID AVG ON OFF (ON) 10 (Hz)
```

Wait until AVG 10 is displayed to the left of the graticule (the EMC analyzer will take ten sweeps, then stop).

- 16. Press (MKR → MARKER → HIGH and record the MKR frequency as the Measurement Frequency in Table 2-52 for 5 MHz to 2.9 GHz.
- 17. Press the following EMC analyzer keys:

TRACE
More 1 of 4 More 2 of 4 VID AVG ON OFF (OFF)

DETECTOR SMP PK (SMP) (For Options 101, 102, and 301:

DETECTOR PK SP NG (SP))

AUTO COUPLE IF BW AUTO MAN (AUTO)

AVG BW AUTO MAN (AUTO)

SPAN 20 (kHz)

FREQUENCY

- 18. Set the center frequency to the Measurement Frequency recorded in Table 2-52 for 5 MHz to 2.9 GHz.
- 19. Press the following EMC analyzer keys:

BW) 30 (Hz)
AVG BW AUTO MAN (MAN) 30 (Hz)
(SGL SWP)

Wait for the sweep to finish.

20. Press the following EMC analyzer keys:

(DISPLAY) DSP LINE ON OFF (ON)

Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

21. Record the display line amplitude setting as **TR Entry 3** of the performance verification test record. The average noise level should be less than the specified limit.

Table 2-52. Displayed Average Noise Level Worksheet

Frequency Range	Measurement Frequency	TR Entry (Displayed Average Noise Level)
400 kHz	400 kHz	1
4 MHz	4 MHz	2
5 MHz to 2.9 GHz		3

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

This test measures the displayed average noise level in both frequency bands. The EMC analyzer input is terminated in 50 Ω . In Band 0 (9 kHz to 2.9 GHz), the test first measures the average noise at 400 kHz and 1 MHz in zero span. The LO feedthrough is used as a frequency reference for these measurements. For the rest of Band 0 and for all of the remaining bands, the test tunes the analyzer frequency across the band, uses the marker to locate the frequency with the highest response, and then reads the average noise in zero span.

To reduce measurement uncertainty due to input attenuator switching and resolution bandwidth switching, a reference level offset is added. The CAL OUT signal is used as the amplitude reference for determining the amount of offset required. The offset is removed at the end of the test by pressing (PRESET).

Equipment Required

Cable, BNC, 23 cm (9 in) Termination, 50 Ω Adapter, Type N (m) to BNC (f)

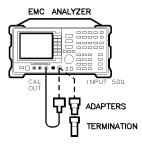


Figure 2-64. Displayed Average Noise Level Test Setup, HP 8595EM

Procedure

- 1. Connect a cable from the CAL OUT to the INPUT 50 Ω of the EMC analyzer as shown in Figure 2-64.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 300 (MHz) (SPAN) 10 (MHz) (AMPLITUDE) 87 (+dB μ V) ATTEN AUTO MAN (MAN) 0 (dB)

3. Press the following EMC analyzer keys:

 $\begin{array}{ll} (\overline{\rm MKR} \longrightarrow {\rm MARKER} \longrightarrow {\rm HIGH} \\ \hline (\overline{\rm MKR}) \ {\rm More} \ 1 \ {\rm of} \ 3 \ {\rm MK} \ {\rm TRACK} \ {\rm ON} \ {\rm OFF} \ ({\rm ON}) \\ \hline ({\rm SPAN}) \ 10 \ (\overline{\rm kHz}) \end{array}$

Wait for the AUTO ZOOM message to disappear, then press the following keys:

(BW) 300 (Hz) AVG BW AUTO MAN (MAN) 30 (Hz) (MKR) More 1 of 3 MK TRACK ON OFF (OFF)

4. Press (SGL SWP), then wait for the completion of a new sweep. Press the following EMC analyzer keys:

 $(\overline{MKR} \rightarrow)$ MARKER \rightarrow HIGH $(\overline{AMPLITUDE})$ More 1 of 3 More 2 of 3 REF LVL OFFSET

Subtract the MKR amplitude reading from 87 dB μ V and enter the result as the REF LVL OFFSET. For example, if the marker reads 86.79 dB μ V, enter -0.21 dB (87 dB μ V - 86.79 dB μ V = +0.21 dB).

REF LVL OFFSET _____ dB

5. Disconnect the cable from the INPUT 50 Ω connector of the EMC analyzer. Connect the 50 Ω termination to the EMC analyzer INPUT 50 Ω connector.

400 kHz

6. Press the following EMC analyzer keys:

```
(FREQUENCY) 400 \text{ (kHz)}

(SPAN) 20 \text{ (kHz)}

(AMPLITUDE) 37 \text{ (+dB}\mu\text{V)}

(SWEEP/TRIG) SWEEP CONT SGL (CONT)
```

7. Press the following EMC analyzer keys:

```
BW 30 (Hz)

(TRACE) More 1 of 4 More 2 of 4

DETECTOR SMP PK (SMP) (For Options 101, 102, and 301:

DETECTOR PK SP NG (SP))

(SGL SWP)
```

Wait for the completion of a new sweep.

8. Press the following EMC analyzer keys:

```
(DISPLAY) DSP LINE ON OFF (ON)
```

Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

9. Record the display line amplitude setting as **TR Entry 1** of the performance verification test record as the noise level at 400 kHz. The average noise level should be less than the specified limit.

1 MHz

10. Press the following EMC analyzer keys:

```
(FREQUENCY) 1 (MHz)
```

Wait for the completion of a new sweep.

11. Press the following EMC analyzer keys:

2.288 Performance Verification Tests

Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses (refer to the Residual Responses verification test for any suspect residuals).

12. Record the display line amplitude setting as **TR Entry 2** of the performance verification test record as the noise level at 1 MHz. The average noise level should be less than the specified limit.

1 MHz to 2.9 GHz

13. Press the following EMC analyzer keys:

FREQUENCY More 1 of 2 Band Lock 0-2.9 Gz BAND 0

FREQUENCY START FREQ 1 (MHz)

STOP FREQ 2.9 (MHz)

(BW) IF BW AUTO MAN (MAN) 1 (MHz)

AVG BW AUTO MAN (MAN) 10 (kHz)

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

- 14. Press (FREQUENCY), then adjust the center frequency, if necessary, to place the LO feedthrough just off-screen to the left.
- 15. Press the following EMC analyzer keys:

(SGL SWP)
(TRACE) CLEAR WRITE A
More 1 of 4 More 2 of 4 VID AVG ON OFF (ON) 10 (Hz)

Wait until AVG 10 is displayed to the left of the graticule (the analyzer will take ten sweeps, then stop).

16. Press (MKR → MARKER → HIGH and record the MKR frequency as the Measurement Frequency in the appropriate band under test in Table 2-53.

17. Press the following EMC analyzer keys:

TRACE
More 1 of 4 More 2 of 4 VID AVG ON OFF (OFF)

DETECTOR SMP PK (SMP) (For Options 101, 102, and 301:

DETECTOR PK SP NG (SP))

(AUTO COUPLE IF BW AUTO MAN (AUTO)

AVG BW AUTO MAN (AUTO)

(SPAN) 10 (kHz)

(FREQUENCY)

Set CENTER FREQ to the Measurement Frequency recorded in Table 2-53 in the previous step, then press the following keys:

BW IF BW AUTO MAN (MAN) 30 (Hz)

AVG BW AUTO MAN (MAN) 30 (Hz)

18. Press (SGL SWP) on the EMC analyzer, then wait for a new sweep to finish. Press the following EMC analyzer keys:

(DISPLAY) DSP LINE ON OFF (ON)

Adjust the display line so that it is centered on the average noise trace, ignoring any residual responses (refer to Residual Response verification test for any suspected residuals).

Record the display line amplitude setting in the performance verification test record as indicated in Table 2-53. The average noise level should be less than the specified limit.

19. Press (MKR) and MARKER 1 ON OFF (OFF) to turn the marker off.

2.75 to 6.5 GHz

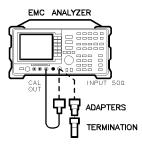
20. Press the following EMC analyzer keys:

(FREQUENCY) More 1 of 2 Band Lock 2.75-6.5 BAND 1 (BW) IF BW AUTO MAN (MAN) 1 (MHz) AVG BW AUTO MAN (MAN) 10 (kHz) (SWEEP/TRIG) SWEEP CONT SGL (CONT)

21. Repeat steps 15 through 19 above for Band 1 (2.75 to $6.5~\mathrm{GHz}$).

Table 2-53. Displayed Average Noise Level Worksheet

Frequency Range	Measurement Frequency	Displayed Average Noise Level TR Entry
400 kHz	400 kHz	1
1MHz	1 MHz	2
1 MHz to 2.9 GHz		3
2.75 to 6.5 GHz		4


This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

This test measures the displayed average noise level in all three frequency bands. The EMC analyzer input is terminated in 50 Ω . In Band 0 (9 kHz to 2.9 GHz), the test first measures the average noise at 400 kHz and 1 MHz in zero span. The LO feedthrough is used as a frequency reference for these measurements. For the rest of Band 0 and for all of the remaining bands, the test tunes the analyzer frequency across the band, uses the marker to locate the frequency with the highest response, and then reads the average noise in zero span.

To reduce measurement uncertainty due to input attenuator switching and resolution bandwidth switching, a reference level offset is added. The CAL OUT signal is used as the amplitude reference for determining the amount of offset required. The offset is removed at the end of the test by pressing (PRESET).

Equipment Required

Cable, BNC, 23 cm (9 in) Termination, 50 Ω Adapter, Type N (m) to BNC (f)

xd625

Figure 2-65. Displayed Average Noise Level Test Setup, HP 8596EM

Procedure

- 1. Connect a cable from the CAL OUT to the INPUT 50 Ω of the EMC analyzer as shown in Figure 2-65.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 300 \text{ (MHz)}
(SPAN) 10 \text{ (MHz)}
(AMPLITUDE) 87 \text{ (+dB}\mu\text{V)}
ATTEN AUTO MAN (MAN) 0 \text{ (dB)}
```

3. Press the following EMC analyzer keys:

```
\begin{array}{ll} (\mbox{MKR} \longrightarrow \mbox{MARKER} \longrightarrow \mbox{HIGH} \\ \hline \mbox{MKR} \mbox{ More 1 of 3 MK TRACK ON OFF (ON)} \\ \hline \mbox{(SPAN)} \mbox{ } 10 \mbox{ kHz} \\ \end{array}
```

Wait for the AUTO ZOOM message to disappear, then press the following keys:

```
(BW) 300 (Hz) AVG BW AUTO MAN (MAN) 30 (Hz) (MKR) More 1 of 3 MK TRACK ON OFF (OFF)
```

4. Press (SGL SWP), then wait for the completion of a new sweep. Press the following EMC analyzer keys:

```
(\overline{MKR} \rightarrow) MARKER \rightarrow HIGH (\overline{AMPLITUDE}) More 1 of 3 More 2 of 3 REF LVL OFFSET
```

Subtract the MKR amplitude reading from 87 dB μ V and enter the result as the REF LVL OFFSET. For example, if the marker reads 86.79 dB μ V, enter -0.21 dB (87 dB μ V - 86.79 dB μ V = +0.21 dB).

REF LVL OFFSET _____ dB

5. Disconnect the cable from the INPUT 50 Ω connector of the EMC analyzer. Connect the 50 Ω termination to the EMC analyzer INPUT 50 Ω connector.

400 kHz

6. Press the following EMC analyzer keys:

```
(FREQUENCY) 400 \text{ (kHz)}

(SPAN) 20 \text{ (kHz)}

(AMPLITUDE) 37 \text{ (+dB}\mu\text{V)}

(SWEEP/TRIG) SWEEP CONT SGL (CONT)
```

7. Press the following EMC analyzer keys:

```
BW 30 (Hz)

(TRACE) More 1 of 4 More 2 of 4

DETECTOR SMP PK (SMP) (For Options 101, 102, and 301:

DETECTOR PK SP NG (SP))

(SGL SWP)
```

Wait for the completion of a new sweep.

8. Press the following EMC analyzer keys:

```
(DISPLAY) DSP LINE ON OFF (ON)
```

Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses. Refer to the Residual Responses verification test for any suspect residuals.

9. Record the display line amplitude setting as **TR Entry 1** of the performance verification test record as the noise level at 400 kHz. The average noise level should be less than the specified limit.

1 MHz

10. Press the following EMC analyzer keys:

Wait for the completion of a new sweep.

11. Press the following EMC analyzer keys:

2.294 Performance Verification Tests

Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses. Refer to the Residual Responses verification test for any suspect residuals.

12. Record the display line amplitude setting as **TR Entry 2** of the performance verification test record as the noise level at 1 MHz. The average noise level should be less than the specified limit.

1 MHz to 2.9 GHz

13. Press the following EMC analyzer keys:

FREQUENCY More 1 of 2 Band Lock 0-2.9 Gz BAND 0

FREQUENCY START FREQ 1 (MHz)

STOP FREQ 2.9 GHz

(BW) IF BW AUTO MAN (MAN) 1 (MHz)

AVG BW AUTO MAN (MAN) 10 (kHz)

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

- 14. Press (FREQUENCY), then adjust the center frequency, if necessary, to place the LO feedthrough just off-screen to the left.
- 15. Press the following EMC analyzer keys:

(SGL SWP)
(TRACE) CLEAR WRITE A
More 1 of 4 More 2 of 4 VID AVG ON OFF (ON) 10 (Hz)

Wait until AVG 10 is displayed to the left of the graticule (the analyzer will take ten sweeps, then stop).

16. Press (MKR → MARKER → HIGH and record the MKR frequency as the Measurement Frequency in the appropriate band under test in Table 2-54.

43. Displayed Average Noise Level, HP 8596EM

17. Press the following EMC analyzer keys:

TRACE More 1 of 4 More 2 of 4 VID AVG ON OFF (OFF)
DETECTOR SMP PK (SMP) (For Options 101, 102, and 301:
DETECTOR PK SP NG (SP))

(AUTO COUPLE IF BW AUTO MAN (AUTO)

AVG BW AUTO MAN (AUTO)

(SPAN) 10 (kHz)
(FREQUENCY)

Set CENTER FREQ to the Measurement Frequency recorded in Table 2-54 in the previous step, then press the following keys:

BW IF BW AUTO MAN (MAN) 30 (Hz)

AVG BW AUTO MAN (MAN) 30 (Hz)

18. Press (SGL SWP) on the EMC analyzer, then wait for a new sweep to finish. Press the following EMC analyzer keys:

DISPLAY DSP LINE ON OFF (ON)

Adjust the display line so that it is centered on the average noise trace, ignoring any residual responses. Refer to Residual Response verification test for any suspected residuals.

Record the display line amplitude setting in the performance verification test record as indicated in Table 2-54. The average noise level should be less than the specified limit.

19. Press (MKR) and MARKER 1 ON OFF (OFF) to turn the marker off.

2.75 to 6.5 GHz

20. Press the following EMC analyzer keys:

(FREQUENCY) More 1 of 2 Band Lock 2.75-6.5 BAND 1 (BW) IF BW AUTO MAN (MAN) 1 (MHz)

AVG BW AUTO MAN (MAN) 10 (kHz)

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

Repeat steps 15 through 19 above for Band 1 (2.75 to 6.5 GHz).

2-296 Performance Verification Tests

43. Displayed Average Noise Level, HP 8596EM

6.0 to 12.8 GHz

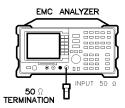
21. Press the followings EMC analyzer keys:

(FREQUENCY) More 1 of 2 Band Lock 6.0-12.8 BAND 2 (BW) IF BW AUTO MAN (MAN) 1 (MHz) AVG BW AUTO MAN (MAN) 10 (kHz) SWEEP/TRIG SWEEP CONT SGL (CONT)

22. Repeat steps 15 through 19 above for Band 2 (6.0 to 12.8 GHz).

Table 2-54. Displayed Average Noise Level Worksheet

Frequency Range	Measurement Frequency	Displayed Average Noise Level TR Entry
400 kHz	400 kHz	1
1MHz	1 MHz	2
1 MHz to 2.9 GHz		3
2.75 to 6.5 GHz		4
6.0 to 12.8 GHz		5


This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The EMC analyzer input is terminated and the EMC analyzer is swept from 150 kHz to 1 MHz. Then the EMC analyzer is swept in 10 MHz spans throughout the 1 MHz to 1.8 GHz range. Any responses above the specification are noted.

There are no related adjustment procedures for this performance test.

Equipment

Termination, 50 Ω

xc624

Figure 2-66. Residual Response Test Setup, HP 8591EM

Procedure

150 kHz to 1 MHz

- 1. Connect the termination to the EMC analyzer input as shown in Figure 2-66.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Press the following EMC analyzer keys:

2.298 Performance Verification Tests

3. Press (SGL SWP) and wait for a new sweep to finish. Look for any residual responses at or above the display line.

If a residual is suspected, press (SGL SWP) again. A residual response will persist on successive sweeps, but a noise peak will not. Note the frequency and amplitude of any residual responses above the display line and to the right of the marker in Table 2-55.

1 MHz to 1.8 GHz

- 4. Connect the 300 MHz CAL OUT to the RF INPUT.
- 5. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Press the following keys:

```
\begin{array}{l} \text{(FREQUENCY) } 300 \text{ (MHz)} \\ \text{(SPAN) } 10 \text{ (MHz)} \\ \text{(MKR} \rightarrow \text{MKR} \rightarrow \text{HIGH} \\ \text{(MKR) } \text{More 1 of 3 MK TRACK ON OFF (ON)} \\ \text{(SPAN) } 1 \text{ (kHz)} \\ \end{array}
```

6. Wait for the AUTO ZOOM message to disappear, then press the following EMC analyzer keys:

```
(BW) 300 (Hz) (SWEEP/TRIG) 1 (SEC) (AMPLITUDE) 87 (\overline{\rm dB}\mu V) ATTEN AUTO MAN (MAN) 0 (\overline{\rm dB})
```

7. Press the following EMC analyzer keys:

8. Record the marker- Δ reading below as the MEAS UNCAL Amplitude Error.

```
MEAS UNCAL Amplitude Error _____ dB
```

9. Remove the calibration cable from the EMC analyzer input.

- 10. Reconnect the termination to the EMC analyzer input as shown in Figure 2-66.
- 11. Press the following EMC analyzer keys:

 $\begin{array}{c} \text{(FREQUENCY) 5 (MHz)} \\ \text{(AMPLITUDE) 47 (dBμV)} \end{array}$

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

12. Press (FREQUENCY), then adjust the center frequency until the LO feedthrough (the "signal" near the left of the screen) is just off the left-most vertical graticule line. Press the following EMC analyzer keys:

Add 17 dB μ V to the MEAS UNCAL Amplitude Error (recorded in step 8), then set the display line to this value.

For example, if the amplitude error in step 8 is -19.5 dB, add 17 dB μ V to this value for a result of $-2.5~\mathrm{dB}\mu\mathrm{V}$. Enter $-2.5~\mathrm{dB}\mu\mathrm{V}$ as the display line value.

- 13. Press (SGL SWP) and wait for a new sweep to finish. Look for any residual responses at or above the display line.
 - If a residual is suspected, press (SGL SWP) again. A residual response will persist on successive sweeps, but a noise peak will not. Note the frequency and amplitude of any residual responses above the display line and to the right of the marker in Table 2-55.
- 14. Press (FREQUENCY), then ((step-up key) to step to the next frequency and repeat step 13.
- 15. Repeat step 14 until the range from 1 MHz to 1.8 GHz has been checked. (This requires 183 additional steps.)

Table 2-55. Residual Responses above Display Line Worksheet

Frequency (MHz)	${\bf Amplitude} \\ ({\bf dB}_{\mu}{\bf V})$

Confirming Residuals

16. Set the EMC analyzer center frequency to a residual frequency recorded in Table 2-55, the press the following keys:

PRESET

(AMPLITUDE) 47 ($_{\rm dB}\mu\rm{V}$) ATTEN AUTO MAN (MAN) 0 ($_{\rm dB}$)

(SPAN) 20 (kHz)

(SGL SWP)

(DISPLAY) DSP LINE ON OFF (ON) 17 ($_{\rm dB}\mu\rm{V}$)

17. Press (SGL SWP) and wait for a new sweep to finish. Look for any residual responses at or above the display line.

If a residual is suspected, press (SGL SWP) again. A residual response will persist on successive sweeps, but a noise peak will not. Note the frequency and amplitude of any residual responses above the display line and to the right of the marker in Table 2-56.

- 18. Repeat steps 16 through 17 for all residuals recorded in Table 2-55.
- 19. Record the highest residual from Table 2-56 as **TR Entry 1** in the performance verification test record. If no residuals are found, then record "N/A" in the performance verification test record.

Table 2-56.
Confirmed Residual Responses above Display Line

Frequency (MHz)	${\bf Amplitude} \\ ({\bf dB}_{\mu}{\bf V})$

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The EMC analyzer input is terminated and the EMC analyzer is swept from 150 kHz to 1 MHz. Then the EMC analyzer is swept in 10 MHz spans throughout the 1 MHz to 2.9 GHz range. Any responses above the specification are noted.

There are no related adjustment procedures for this performance test.

Equipment

Termination, 50 Ω Adapter, Type N (m) to APC 3.5 (f)

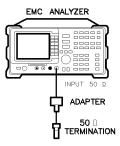


Figure 2-67. Residual Response Test Setup, HP 8594EM

Procedure

150 kHz to 1 MHz

- 1. Connect the termination to the EMC analyzer input as shown in Figure 2-67.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Press the following EMC analyzer keys:

```
(FREQUENCY)
START FREQ 150 (kHz)
STOP FREQ 1 (MHz)
(AMPLITUDE) 47 (dBµV) ATTEN AUTO MAN (MAN) 0 (dB)
```

Performance Verification Tests 2-303

xd626

BW 300 Hz AVG BW AUTO MAN (MAN) 300 Hz (DISPLAY) DSP LINE ON OFF (ON) 17 ($\overline{dB\mu V}$)

3. Press (SGL SWP) and wait for a new sweep to finish. Look for any residual responses at or above the display line.

If a residual is suspected, press (SGL SWP) again. A residual response will persist on successive sweeps, but a noise peak will not. Note the frequency and amplitude of any residual responses above the display line and to the right of the marker in Table 2-57.

1 MHz to 2.9 GHz

- 4. Connect the 300 MHz CAL OUT to the RF INPUT.
- 5. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Press the following keys:

 $\begin{array}{c} \hline \text{FREQUENCY} \ 300 \ \text{MHz} \\ \hline \text{SPAN} \ 10 \ \text{MHz} \\ \hline \text{MKR} \rightarrow \text{MKR} \rightarrow \text{HIGH} \\ \hline \text{MKR} \ \text{More} \ 1 \ \text{of} \ 3 \ \text{MK} \ \text{TRACK ON OFF} \ (\text{ON}) \\ \hline \text{SPAN} \ 1 \ \text{KHz} \\ \hline \end{array}$

6. Wait for the AUTO ZOOM message to disappear, then press the following EMC analyzer keys:

(BW) 300 (Hz) (SWEEP/TRIG) 1 (SEC) (AMPLITUDE) 87 (dB μ V) ATTEN AUTO MAN (MAN) 0 (dB)

7. Press the following EMC analyzer keys:

8. Record the marker-Δ reading below as the MEAS UNCAL Amplitude Error.

2-304 Performance Verification Tests

MEAS UNCAL Amplitude Error _____ dB

- 9. Remove the cable from the EMC analyzer input.
- 10. Reconnect the termination to the EMC analyzer input as shown in Figure 2-67.
- 11. Press the following EMC analyzer keys:

(FREQUENCY) 5 (MHz) (AMPLITUDE) 47 (dB μ V) (SWEEP/TRIG) SWEEP CONT SGL (CONT)

12. Press (FREQUENCY), then adjust the center frequency until the LO feedthrough (the "signal" near the left of the screen) is just off the left-most vertical graticule line. Press the following EMC analyzer keys:

(FREQUENCY) CF STEP AUTO MAN (MAN) 9.8 (MHz)
(DISPLAY) DSP LINE ON OFF (ON) 17 (dBµV)

Add 17 dB μ V to the MEAS UNCAL Amplitude Error (recorded in step 8), then set the display line to this value.

For example, if the amplitude error in step 8 is -19.5 dB, add 17 dB μ V to this value for a result of -2.5 dB μ V. Enter -2.5 dB μ V as the display line value.

13. Press (SGL SWP) and wait for a new sweep to finish. Look for any residual responses at or above the display line.

If a residual is suspected, press (SGL SWP) again. A residual response will persist on successive sweeps, but a noise peak will not. Note the frequency and amplitude of any residual responses above the display line and to the right of the marker in Table 2-57.

- 14. Press FREQUENCY, then (tstep-up key) to step to the next frequency and repeat step 13.
- 15. Repeat step 14 until the range from 1 MHz to 2.9 GHz has been checked. (This requires 295 additional steps.)

Table 2-57. Residual Responses above Display Line Worksheet

Confirming Residuals

16. Set the EMC analyzer center frequency to a residual frequency recorded in Table 2-57, the press the following keys:

PRESET

(AMPLITUDE) 47 ($dB\mu V$) ATTEN AUTO MAN (MAN) 0 (dB)

(SPAN) 20 (kHz)

(SGL SWP)

(DISPLAY) DSP LINE ON OFF (ON) 17 ($dB\mu V$)

17. Press (SGL SWP) and wait for a new sweep to finish. Look for any residual responses at or above the display line.

If a residual is suspected, press (SGL SWP) again. A residual response will persist on successive sweeps, but a noise peak will not. Note the frequency and amplitude of any residual responses above the display line and to the right of the marker in Table 2-57.

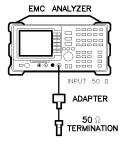
- 18. Repeat steps 16 through 17 for all residuals recorded in Table 2-58.
- 19. Record the highest residual from Table 2-58 as **TR Entry 1** in the performance verification test record. If no residuals are found, then record "N/A" in the performance verification test record.

Table 2-58.
Confirmed Residual Responses above Display Line

Frequency (MHz)	${\bf Amplitude} \\ ({\bf dB}_{\mu}{\bf V})$

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The EMC analyzer input is terminated and the EMC analyzer is swept from 150 kHz to 1 MHz. Then the EMC analyzer is swept in 10 MHz spans throughout the 1 MHz to 6.5 GHz range. Any responses above the specification are noted.


There are no related adjustment procedures for this performance test.

Equipment

Termination, 50 Ω Adapter, Type N (m) to APC 3.5 (f)

Additional Equipment for Option 026

Adapter, APC 3.5 (f) to APC 3.5 (f)

xd626

Figure 2-68.
Residual Response Test Setup,
HP 8593EM, HP 8595EM, and HP 8596EM

Procedure

150 kHz to 1 MHz

- 1. Connect the termination to the EMC analyzer input as shown in Figure 2-68.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Press the following EMC analyzer keys:

```
FREQUENCY More 1 of 2 Band Lock 0-2.9 Gz BAND 0

FREQUENCY

START FREQ 150 kHz

STOP FREQ 1 (MHz)

(AMPLITUDE 47 (dB\(\mu\)) ATTEN AUTO MAN (MAN) 0 (dB)

(BW) 300 (Hz)

AVG BW AUTO MAN (MAN) 300 (Hz)

(DISPLAY) DSP LINE ON OFF (ON) 17 (dB\(\mu\)V)
```

3. Press (SGL SWP) and wait for a new sweep to finish. Look for any residual responses at or above the display line.

If a residual is suspected, press (SGL SWP) again. A residual response will persist on successive sweeps, but a noise peak will not. Note the frequency and amplitude of any residual responses above the display line and to the right of the marker in Table 2-59.

1 MHz to 2.75 GHz

- 4. Connect the 300 MHz CAL OUT to the RF INPUT.
- 5. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Press the following keys:

```
FREQUENCY 300 (MHz) More 1 of 2 Band Lock BAND LOCK ON OFF (ON) (SPAN) 10 (MHz) (MKR \rightarrow MKR \rightarrow HIGH (MKR) More 1 of 3 MK TRACK ON OFF (ON) (SPAN) 1 (kHz)
```

Wait for the AUTO ZOOM message to disappear, then press

6. Press the following EMC analyzer keys:

```
BW 300 Hz (SWEEP/TRIG) 1 (SEC) (AMPLITUDE) 87 (dB\mu V) ATTEN AUTO MAN (MAN) 0 (dB)
```

7. Press the following EMC analyzer keys:

8. Record the marker-Δ reading below as the MEAS UNCAL Amplitude Error.

MEAS UNCAL Amplitude Error _____ dB

- 9. Remove the cable from the EMC analyzer input.
- 10. Reconnect the termination to the EMC analyzer input as shown in Figure 2-68.
- 11. Press the following EMC analyzer keys:

(FREQUENCY) 5 (MHz)
(AMPLITUDE) 47 (
$$dB\mu V$$
)

2.310 Performance Verification Tests

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

12. Press (FREQUENCY), then adjust the center frequency until the LO feedthrough (the "signal" near the left of the screen) is just off the left-most vertical graticule line. Press the following EMC analyzer keys:

```
(FREQUENCY) CF STEP AUTO MAN (MAN) 9.8 (MHz)
(DISPLAY) DSP LINE ON OFF (ON) 17 (dBµV)
```

Add 17 dB μ V to the MEAS UNCAL Amplitude Error (recorded in step 8), then set the display line to this value.

For example, if the amplitude error in step 8 is -19.5 dB, add 17 dB μ V to this value for a result of -2.5 dB μ V. Enter -2.5 dB μ V as the display line value.

13. Press (SGL SWP) and wait for a new sweep to finish. Look for any residual responses at or above the display line.

If a residual is suspected, press (SGL SWP) again. A residual response will persist on successive sweeps, but a noise peak will not. Note the frequency and amplitude of any residual responses above the display line and to the right of the marker in Table 2-59.

- 14. Press (FREQUENCY), then ((step-up key) to step to the next frequency and repeat step 13.
- 15. Repeat step 14 until the range from 1 MHz to 2.9 GHz has been checked. (This requires 295 additional steps.)

2.75 GHz to 6.5 GHz

16. Press the following EMC analyzer keys:

FREQUENCY Band Lock 2.75-6.5 BAND 1
SPAN 10 (MHz)
(SWEEP/TRIG 1 (SEC)
(FREQUENCY) 2755 (MHz)
(BW) 300 (Hz)

17. Press (SGL SWP) and wait for a new sweep to finish. Look for any residual responses at or above the display line.

If a residual is suspected, press (SGL SWP) again. A residual response will persist on successive sweeps, but a noise peak will not. Note the frequency and amplitude of any residual responses above the display line in Table 2-59.

- 18. Press (FREQUENCY), (step-up key), to step to the next frequency and repeat step 17.
- 19. Repeat step 18 until the range from 2.75 GHz to 6.5 GHz has been checked. (This requires 372 additional frequency steps.)

Table 2-59. Residual Responses above Display Line Worksheet

Frequency (MHz)	Amplitude $(\mathrm{dB}_{\mu}\mathrm{V})$		

Confirming Residuals

20. Set the EMC analyzer center frequency to a residual frequency recorded in Table 2-59, the press the following keys:

PRESET (AMPLITUDE) 47 ($_{\rm dB}\mu\rm{V}$) ATTEN AUTO MAN (MAN) 0 ($_{\rm dB}$) (SPAN) 20 (kHz) (SGL SWP) (DISPLAY) DSP LINE ON OFF (ON) 17 ($_{\rm dB}\mu\rm{V}$)

21. Press (SGL SWP) and wait for a new sweep to finish. Look for any residual responses at or above the display line.

2.312 Performance Verification Tests

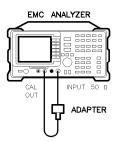
If a residual is suspected, press (SGL SWP) again. A residual response will persist on successive sweeps, but a noise peak will not. Note the frequency and amplitude of any residual responses above the display line and to the right of the marker in Table 2-59.

- 22. Repeat steps 20 through 21 for all residuals recorded in Table 2-60.
- 23. Record the highest residual from Table 2-60 as TR Entry 1 in the performance verification test record. If no residuals are found, then record "N/A" in the performance verification test record.

Table 2-60. Confirmed Residual Responses above Display Line

Frequency (MHz)	Amplitude $(\mathrm{dB}\mu\mathrm{V})$

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.


The CAL OUT signal is used to compare the amplitude level of a normal sweep time (20 ms) to a fast sweep time (18 ms) using the marker delta function.

A synthesizer/level generator is used to amplitude modulate a 500 MHz, CW signal from another signal generator. The EMC analyzer demodulates this signal in zero span to display the response in the time domain. The marker delta frequency function on the EMC analyzer is used to read out the sweep time.

There are no related adjustment procedures for this performance test.

Equipment Required

Synthesizer/level generator Signal generator Cable, BNC, 122 cm (48 in) Cable, BNC, 23 cm (9 in) Cable, Type N, 152 cm (60 in) Adapter, Type N (m) to BNC (f)

xc626

Figure 2-69. Fast Sweep Time Amplitude Accuracy Test Setup, HP 8591EM

Procedure

Fast Sweep Time Amplitude Accuracy

- 1. Connect the equipment as shown in Figure 2-69.
- 2. On the EMC analyzer, press (PRESET), then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
FREQUENCY 300 (MHz)
(SPAN 0 (Hz)
(SWEEP/TRIG) 20 (ms)
(AMPLITUDE) SCALE LOG/LIN (LIN)

REF LVL 25 (mV)
(MKR) More 1 of 3 More 2 of 3 MK NOISE ON OFF (ON)
(SGL SWP)
(MKR) MARKER Δ
```

3. Set the sweep time to 18 ms. Press $(\overline{SGL SWP})$ and read the MKR Δ amplitude. Record the marker- Δ reading as **TR Entry 1** of the performance verification test record. The amplitude should be within 1.007X and 0.993X.

Fast Sweep Time Accuracy

4. Connect the equipment as shown in Figure 2-70.

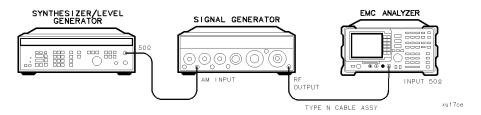


Figure 2-70. Fast Sweep Time Accuracy Test Setup, HP 8591EM

- 5. Set the signal generator to output a 300 MHz, -4 dBm, CW signal. Set the AM and FM controls to OFF.
- 6. Set the synthesizer/level generator to output a 556 Hz, +5 dBm, signal.

7. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Press the following EMC analyzer keys:

(FREQUENCY) 300 (MHz)
(SPAN) ZERO SPAN
(AMPLITUDE) SCALE LOG LIN (LIN)

- 8. Set the signal generator AM switch to the AC position. If necessary, adjust the output amplitude of the signal generator to position the top of the modulated waveform approximately one division below top screen.
- 9. Set the EMC analyzer controls by pressing the following keys:

10. Press the following EMC analyzer keys:

$$\begin{array}{c}
(\overline{SGL\ SWP}) \\
(\overline{MKR} \rightarrow) \ MKR \rightarrow HIGH
\end{array}$$

If necessary, press NEXT PEAK or NEXT PK LEFT until the marker is on the left-most complete signal peak. This is the "marked signal."

- 11. Press More 1 of 3 More 2 of 3 MARKER Δ , MARKER Δ , then press NEXT PK RIGHT until the marker Δ is on the eighth signal.
- 12. Record the MKR Δ frequency reading in the performance test record as shown in Table 2-61. The MKR reading should be within the limits shown.
- 13. Repeat steps 10 through 12 for the remaining sweep time settings listed in Table 2-61.

Table 2-61. Fast Sweep Time Accuracy

EMC Analyzer Sweep Time	Synthesizer/Function Generator Frequency		TR Entry (MKR Δ)
18 ms	556 Hz	14.04 ms	1
10 ms	1 kHz	7.8 ms	2
1.0 ms	10 kHz	$780~\mu\mathrm{s}$	3
$100~\mu \mathrm{s}$	100 kHz	$78~\mu\mathrm{s}$	4
$20~\mu\mathrm{s}$	500 kHz	$15.6~\mu\mathrm{s}$	5

48. Fast Time Domain Sweeps, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM Option 101 and Option 301

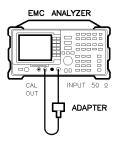
48. Fast Time Domain Sweeps, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM Option 101 and Option 301

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The CAL OUT signal is used to compare the amplitude level of a normal sweep time (20 ms) to a fast sweep time (18 ms) using the marker delta function.

A synthesizer/level generator is used to amplitude modulate a 500 MHz, CW signal from another signal generator. The EMC analyzer demodulates this signal in zero span to display the response in the time domain. The marker delta frequency function on the EMC analyzer is used to read out the sweep time.

There are no related adjustment procedures for this performance test.


Equipment Required

Synthesizer/level generator Signal generator Cable, BNC, 122 cm (48 in) Cable, BNC, 23 cm (9 in) Cable, Type N, 152 cm (60 in) Adapter, Type N (m) to BNC (f)

Additional Equipment for Option 026

Adapter, APC 3.5 (f) to Type N (f)

48. Fast Time Domain Sweeps, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM Option 101 and Option 301

xc628

Figure 2-71.
Fast Time Domain Sweeps Amplitude Accuracy Test Setup, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

Procedure

Fast Sweep Time Amplitude Accuracy

- 1. Connect the equipment as shown in Figure 2-71. Option 026 only: Use the APC to Type N adapter.
- 2. On the EMC analyzer, press (PRESET), then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

FREQUENCY 300 (MHz)

SPAN 0 (Hz)

SWEEP/TRIG 20 (ms)

AMPLITUDE SCALE LOG/LIN (LIN)

REF LVL 25 (mV)

MKR More 1 of 3 More 2 of 3 MK NOISE ON OFF (ON)

(SGL SWP)

(MKR) MARKER Δ

3. Set the sweep time to 18 ms. Press (SGL SWP) and read the MKR Δ amplitude. Record the marker- Δ reading as **TR Entry 1** of the performance verification test record. The amplitude should be within 1.007X and 0.993X.

48. Fast Time Domain Sweeps, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM Option 101 and Option 301

Fast Sweep Time Accuracy

4. Connect the equipment as shown in Figure 2-72. *Option 026 only:* Use the APC to Type N adapter.

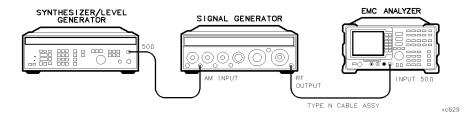


Figure 2-72.
Fast Sweep Time Accuracy Test Setup,
HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

- 5. Set the signal generator to output a 300 MHz, -4 dBm, CW signal. Set the AM and FM controls to OFF.
- 6. Set the synthesizer/level generator to output a 556 Hz, +5 dBm, signal.
- 7. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Press the following EMC analyzer keys:

- 8. Set the signal generator AM switch to the AC position. If necessary, adjust the output amplitude of the signal generator to position the top of the modulated waveform approximately one division below top screen.
- 9. Set the EMC analyzer controls by pressing the following keys:

10. Press the following EMC analyzer keys:

(SGL SWP)

2.320 Performance Verification Tests

48. Fast Time Domain Sweeps, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM Option 101 and Option 301

 $(\overline{MKR} \rightarrow) MKR \rightarrow HIGH$

If necessary, press NEXT PEAK or NEXT PK LEFT until the marker is on the left-most complete signal peak. This is the "marked signal."

- 11. Press More 1 of 3 More 2 of 3 MARKER Δ , MARKER Δ , then press NEXT PK RIGHT until the marker Δ is on the eighth signal.
- 12. Record the MKR Δ frequency reading in the performance verification test record as shown in Table 2-62. The MKR reading should be within the limits shown.
- 13. Repeat steps 10 through 12 for the remaining sweep time settings listed in Table 2-62.

Table 2-62. Fast Sweep Time Accuracy

EMC Analyzer Sweep Time	Synthesizer/Function Generator Frequency		TR Entry (MKR Δ)
18 ms	556 Hz	14.04 ms	1
10 ms	1 kHz	7.8 ms	2
1.0 ms	10 kHz	$780~\mu\mathrm{s}$	3
$100~\mu \mathrm{s}$	100 kHz	$78~\mu\mathrm{s}$	4
$20~\mu\mathrm{s}$	500 kHz	$15.6~\mu\mathrm{s}$	5

49. Absolute Amplitude, Vernier, and Power Sweep Accuracy, HP 8591EM Option 010

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The tracking generator output is connected to the EMC analyzer input and the tracking is adjusted at 300 MHz for a maximum signal level. A calibrated power sensor is then connected to the tracking generator output to measure the power level at 300 MHz.

The measuring receiver is set for RATIO mode so that future power level readings are in dB relative to the power level at -10 dBm. The output power level setting is decreased in 1 dB steps and the power level is measured at each step. The difference between the ideal and actual power levels is calculated at each step.

Since a power sweep is accomplished by stepping through the vernier settings, the peak-to-peak variation of the vernier accuracy is equal to the power sweep accuracy.

The related adjustment for this procedure is "Modulator Offset and Gain for Option 010, HP 8591EM."

Equipment Required

Measuring receiver Power sensor, 100 kHz to 1800 MHz Cable, Type N, 62 cm (24 in)

Procedure

1. Connect the Type N cable between the RF OUT 50 Ω and INPUT 50 Ω connectors on the EMC analyzer. See Figure 2-73.

49. Absolute Amplitude, Vernier, and Power Sweep Accuracy, HP 8591EM Option 010

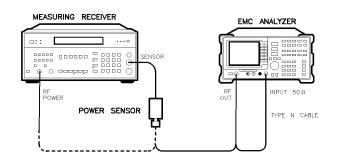


Figure 2-73.

Absolute Amplitude, Vernier, and Power Sweep Accuracy Test Setup, HP 8591EM

2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 300 (MHz)
(SPAN) ZERO SPAN
(MKR)
(AUX/USER) Track Gen
SRC PWR ON OFF (ON) 102 (dBµV)

- $^{3\cdot}$ On the EMC analyzer, press TRACKING PEAK. Wait for the PEAKING message to disappear.
- 4. Zero and calibrate the measuring receiver and 100 kHz to 1800 MHz power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor's 300 MHz Cal Factor into the measuring receiver.
- 5. Disconnect the Type N cable from the RF OUT 50 Ω and connect the 100 kHz to 1800 MHz power sensor to the RF OUT 50 Ω as shown in Figure 2-73.
- 6. On the EMC analyzer, press:

 $87 (\overline{\text{dB}\mu\text{V}}) (\overline{\text{SGL SWP}})$ (AUX/USER) Track Gen SRC ATN MAN AUTO (MAN)

49. Absolute Amplitude, Vernier, and Power Sweep Accuracy, HP 8591EM Option (49 .	Absolute An	aplitude, `	Vernier,	and Power	Sweep	Accuracy.	HP	8591EM	Option	. 0)1
---	-------------	-------------	-------------	----------	-----------	-------	-----------	----	--------	--------	-----	----

- 7. Subtract $-20 \text{ dBm } (87 \text{ dB}\mu\text{V})$ from the power level displayed on the measuring receiver and record the result as **TR Entry 1** of the performance verification test record as the Absolute Amplitude Accuracy.
- 8. On the EMC analyzer, press:

(AUX/USER) Track Gen SRC ATN MAN AUTO (MAN) $107 (\overline{dB\mu V})$ (SRC PWR) $97 (\overline{dB\mu V})$

- 9. Press RATIO on the measuring receiver. Power levels now readout in dB relative to the power level just measured at the -10~dBm (97 dB μ V) output power level setting.
- 10. Set the SRC POWER to the settings indicated in Table 2-63. At each setting, record the power level displayed on the measuring receiver in Table 2-63.
- 11. Calculate the absolute vernier accuracy by subtracting the SRC POWER setting and 10 dB from the Measured Power Level for each SRC POWER setting in Table 2-63.

Vernier Accuracy = Measured Power Level - SRC POWER - 10 dB Vernier Accuracy = Measured Power Level - SRC POWER + 38.76 dB

12. Locate the most positive and most negative absolute vernier accuracy values for SRC POWER levels greater than $-10~\mathrm{dBm}~(97~\mathrm{dB}\mu\mathrm{V})$ recorded in Table 2-63 and record in the performance verification test record the Positive Vernier Accuracy as **TR Entry 2** and the Negative Vernier Accuracy as **TR Entry 3**.

Positive Vernier Accuracy _____dB

Negative Vernier Accuracy _____dB

13. Locate the most positive and most negative Absolute Vernier Accuracy values for all SRC POWER levels in Table 2-63 and record below.

Positive Power Sweep Accuracy _____dB

Negative Power Sweep Accuracy ____dB

14. Calculate the power sweep accuracy by subtracting the Negative Power Sweep Accuracy recorded in the previous step from the Positive Power Sweep Accuracy recorded in the previous step. Record this value as

2-324 Performance Verification Tests

49. Absolute Amplitude, Vernier, and Power Sweep Accuracy, HP 8591EM Option 010

TR Entry 4 of the performance verification test record as the Power Sweep Accuracy.

 $Power\ Sweep\ Accuracy\ =\ Positive\ Power\ Sweep\ Accuracy\ -\ Negative\ Power\ Sweep\ Accu$

Table 2-63. Vernier Accuracy Worksheet

SRC POWER Setting (dBµV)	Measured Power Level (dB)	Vernier Accuracy (dB)
97	0 (Ref)	0 (Ref)
98		
99		
100		
101		
102		
103		
104		
105		
106		
92		
93		
94		
95		
96		

50. Absolute Amplitude Accuracy, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The tracking generator output is connected to the EMC analyzer INPUT 50 Ω and the tracking is adjusted at 300 MHz for a maximum signal level. A calibrated power sensor is then connected to the tracking generator output to measure the power level at 300 MHz.

The measuring receiver is then set into RATIO mode so that future power level readings will be in dB relative to the power level at 300 MHz. The output power level setting is decreased in 1 dB steps and the power level is measured at each step. The difference between the ideal and actual power levels is calculated at each step. The step-to-step error is also calculated.

The related adjustment for this performance verification test is the "Tracking Generator Power Level for Option 010, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM."

Equipment Required

Measuring receiver Power sensor, 100 kHz to 2.9 GHz Cable, Type N, 62 cm (24 in)

50. Absolute Amplitude Accuracy, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

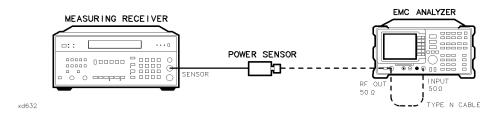


Figure 2-74.
Absolute Amplitude Accuracy Test Setup,
HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

Procedure

- 1. Connect the Type N cable between the RF OUT 50 Ω and INPUT 50 Ω connectors on the EMC analyzer. See Figure 2-74.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 300 (MHz) (SPAN) 0 (Hz)
(BW) IF BW AUTO MAN (MAN) 30 (kHz)
(MKR)
(AUX/USER) Track Gen SRC PWR ON OFF (ON) 102 (dB \( \psi \) V)
```

- 3. Press TRACKING PEAK on the EMC analyzer, then wait for the PEAKING message to disappear.
- 4. Zero and calibrate the measuring-receiver/power-sensor combination in log mode (power levels readout in dBm). Refer to the measuring receiver operation manual. Enter the power sensor 300 MHz Cal Factor into the measuring receiver.
- 5. Disconnect the Type N cable from the RF OUT 50 Ω and connect the 100 kHz to 2.9 GHz power sensor to the RF OUT 50 Ω . See Figure 2-74.
- 6. On the EMC analyzer, press:

```
SRC PWR ON OFF (ON) 87 (\overline{\text{dB}\mu\text{V}})
SRC PWR MAN AUTO (MAN) 91 (\overline{\text{dB}\mu\text{V}})
(SGL SWP)
```

50. Absolute Amplitude Accuracy, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

- 7. Record the power level displayed on the measuring receiver as the Absolute Amplitude Accuracy in the performance verification test record as **TR Entry 1**.
- 8. Press RATIO on the measuring receiver. Power levels will now readout in dB relative to the power level just measured at the 87 dB μ V (-20 dBm) output power level setting.
- 9. Set the EMC analyzer SRC POWER to the settings indicated in Table 2-64. At each setting, record the power level displayed on the measuring receiver.
- 10. Calculate the Absolute Vernier Accuracy by subtracting the SRC POWER setting (in dBm) from the Measured Power Level for each SRC POWER setting in Table 2-64.

 $Measured\ Power\ Level-SRC\ POWER-20=Absolute\ Vernier\ Accuracy$

For example: Where the SRC POWER = -21 dBm:

$$-0.9 - (-21) - 20 = 0.1$$

11. Calculate the Step-to-Step Accuracy for the $-17~dBm~(90~dB\mu V)$ to $-26~dBm~(81~dB\mu V)$ SRC POWER settings by subtracting the previous Absolute Vernier Accuracy from the current Absolute Vernier Accuracy.

Start by subtracting the Absolute Vernier Accuracy for the -17 dBm (90 dB μ V) SRC POWER setting from the Absolute Vernier Accuracy for the -18 dBm (89 dB μ V) setting.

Record this calculation in the Step-to-Step Accuracy column for SRC POWER $-18~dBm~(89~dB\mu V)$.

- 12. Locate the most positive Absolute Vernier Accuracy value in Table 2-64 and record as **TR Entry 2** of the performance verification test record.
- 13. Locate the most negative Absolute Vernier Accuracy value in Table 2-64 and record as **TR Entry 3** of the performance verification test record.
- 14. Locate the largest Step-to-Step Accuracy values in Table 2-64 and record as **TR Entry 4** of the performance verification test record.
- 15. Locate the smallest Step-to-Step Accuracy values in Table 2-64 and record as **TR Entry 5** of the performance verification test record.

50. Absolute Amplitude Accuracy, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010 Table 2-64. Vernier Accuracy

EMC Analyzer SRC POWER		Measured Power Level	Absolute Vernier Accuracy	Step-to-Step Accuracy		
$\mathbf{dB}\mu\mathbf{V}$	dBm	dB	dB	dB		
90	-17		_	N/A		
89	-18		-			
88	- 19		_ .			
87	-20	0 (Ref)	0 (Ref)			
86	-21		_ .			
85	-22		_ .			
84	-23		-			
83	-24		_ .			
82	-25		_ .			
81	-26		_			

51. Power Sweep Range, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The tracking generator output is connected to the EMC analyzer INPUT 50 Ω through a power splitter and the tracking is adjusted at 300 MHz for a maximum signal level. The other output of the power splitter is connected to a measuring receiver. The tracking generator is set to do a power sweep from 97 dB μ V to 106 dB μ V (-10 dBm to -1 dBm).

The markers are used to measure the displayed amplitude at the beginning and end of the sweep. The power sweep is then turned off and the power level of the tracking generator is adjusted until the displayed amplitude is the same as at the start of the sweep. This power level is measured on the measuring receiver and recorded. The tracking generator is then adjusted until the displayed amplitude is the same as at the end of the sweep. This power level is measured and recorded. The difference between the two measured power levels is calculated and recorded.

The related adjustment for this performance verification test is the "Tracking Generator Power Level for Option 010, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM."

Equipment Required

Measuring receiver Power sensor, 100 kHz to 2.9 GHz Power splitter Cable, Type N, 62 cm (24 in) Adapter, Type N (m) to Type N (m)

51. Power Sweep Range, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

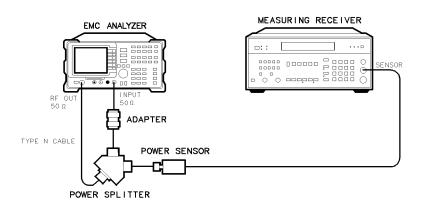


Figure 2-75.
Power Sweep Range Test Setup,
HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

xd631

51. Power Sweep Range, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

Procedure

- 1. Connect the equipment as shown in Figure 2-75. Do not connect the power sensor to the power splitter at this time.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) Band Lock 0-2.9 Gz BAND 0
The HP 8594EM does not need to be band locked.

(FREQUENCY) 300 (MHz)
(SPAN) 0 (Hz)
(BW) IF BW AUTO MAN (MAN) 30 (kHz)
(MKR)
(AUX/USER) Track Gen SRC PWR ON OFF (ON) 102 (dBµV)

- 3. On the EMC analyzer, press TRACKING PEAK, then wait for the PEAKING! message to disappear.
- 4. Zero and calibrate the power-sensor/measuring-receiver in log mode (power levels read out in dBm). Refer to the measuring receiver operation manual. Enter the power sensor 300 MHz Cal Factor into the measuring receiver. Connect the power sensor to the power splitter. See Figure 2-75.
- 5. On the EMC analyzer, press the following keys:

SRC PWR ON OFF (ON) 97 ($\overline{\text{dB}\mu\text{V}}$)
SRC ATN MAN AUTO (MAN) 0 ($\overline{\text{dB}}$)
PWR SWP ON OFF (ON) 10 ($\overline{\text{dB}}$)
(AMPLITUDE) SCALE LOG LIN (LOG) 2 ($\overline{\text{dB}}$)

Press REF LVL on the EMC analyzer, then adjust the reference level until the peak of the displayed ramp (along the right-most graticule) is one-half division down from the reference level.

- 6. Press MKR, MARKER NORMAL. Use the knob to place the marker at the left-most graticule line. The marker should read 0 picosecond. Press MARKER Δ .
- 7. Press (AUX/USER), Track Gen , PWR SWP ON OFF (OFF) to set power sweep off. The Δ MKR should read 0 dB \pm 0.1 dB. If it does not, press

2.332 Performance Verification Tests

51. Power Sweep Range, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

SRC PWR ON OFF (ON), and adjust the power level until the marker reads 0 $dB \pm 0.1 dB$.

- 8. Record the power level displayed on the measuring receiver as TR Entry 1 of the performance verification test record.
- 9. Press PWR SWP ON OFF (ON) to set power sweep on. Wait for completion of a new sweep.
- 10. Press (MKR), MARKER NORMAL. Use the knob to place the marker at the right-most graticule line. Press MARKER Δ.

51. Power Sweep Range, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

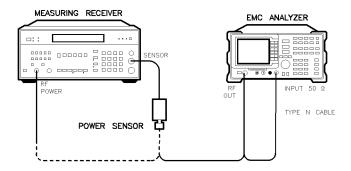
11. Press (AUX/USER), Track Gen , PWR SWP ON OFF (OFF) to set power sweep off. Press SRC PWR ON OFF (ON) and adjust the SRC POWER level until the Δ MKR reads -1 dB ± 0.1 dB.

Be sure to wait for the completion of a new sweep after each adjustment of the SRC POWER level.

- 12. Record the power level displayed on the measuring receiver as **TR Entry 2** of the performance verification test record.
- 13. Subtract Start Power Level (**TR Entry 1**) from the Stop Power Level (**TR Entry 2**) and record as the Power Sweep Range in the performance verification test record as **TR Entry 3**.

 $Power\ Sweep\ Range = Stop\ Power\ Level - Start\ Power\ Level$

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.


The tracking generator output is connected to the EMC analyzer input and the tracking is adjusted at 300 MHz for a maximum signal level. A calibrated power sensor is then connected to the tracking generator output to measure the power level at 300 MHz. The measuring receiver is set for RATIO mode so that future power level readings are in dB relative to the power level at 300 MHz.

The tracking generator is then stepped to several frequencies throughout its range. The output power difference relative to the power level at 300 MHz is measured at each frequency and recorded.

The related adjustment for this procedure is "Modulator Offset and Gain for Option 010, HP 8591EM."

Equipment Required

Measuring receiver Power sensor, 100 kHz to 1800 MHz Cable, Type N, 62 cm (24 in)

XC630

Figure 2-76. Tracking Generator Level Flatness Test Setup, HP 8591EM

Procedure

- 1. Connect the Type N cable between the RF OUT 50 Ω and INPUT 50 Ω connectors on the EMC analyzer. See Figure 2-76.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 300 (MHz)
CF STEP AUTO MAN (MAN) 100 (MHz)
(SPAN) ZERO SPAN
```

- 3. On the EMC analyzer, press (MKR), (AUX/USER), Track Gen, SRC PWR ON OFF (ON), and enter $102 (\overline{dB\mu V})$.
- 4. On the EMC analyzer, press TRACKING PEAK. Wait for the PEAKING message to disappear.
- 5. Zero and calibrate the measuring receiver and 100 kHz to 1800 MHz power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor's 300 MHz Cal Factor into the measuring receiver.
- 6. Disconnect the Type N cable from the RF OUT 50 Ω and connect the 100 kHz to 4.2 GHz power sensor to the RF OUT 50 $\Omega.$
- 7. On the EMC analyzer, press 96 ($\overline{dB\mu V}$), (SGL SWP).
- 8. Press RATIO on the measuring receiver. The measuring receiver readout is now in power levels relative to the power level at 300 MHz.
- 9. Set the EMC analyzer center frequency to 100 kHz. Press (SGL SWP).
- 10. Enter the appropriate power sensor Cal Factor into the measuring receiver as indicated in Table 2-65.
- 11. Record the power level displayed on the measuring receiver as the Level Flatness in Table 2-65.
- 12. Repeat steps 9 through 11 to measure the flatness at each center frequency setting listed in Table 2-65. The (step-up key) may be used to tune to center frequencies above 100 MHz.

Table 2-65. Tracking Generator Level Flatness Worksheet

Center Freq	Level Flatness (dB)	Cal Factor (MHz)	Center Freq	Level Flatness (dB)	Cal Factor (MHz)
100 kHz		0.1	600 MHz		300
300 kHz		0.3	700 MHz		1000
500 kHz		0.3	800 MHz		1000
1 MHz		1	900 MHz		1000
2 MHz		3	1000 MHz		1000
5 MHz		3	1100 MHz		1000
10 MHz		10	1200 MHz		1000
20 MHz		30	1300 MHz		1000
50 MHz		50	1400 MHz		1000
100 MHz		100	1500 MHz		2000
200 MHz		300	1600 MHz		2000
300 MHz	0 (Ref)	300	1700 MHz		2000
400 MHz		300	1800 MHz		2000
500 MHz		300			

13. Locate the most positive Level Flatness reading in Table 2-65 for the frequency ranges listed in Table 2-66 and record as the Maximum Flatness in the performance verification test record as shown in Table 2-66.

Table 2-66. Maximum Flatness

Description	TR Entry (Maximum Flatness	
100 kHz	1	
300 kHz to 5 MHz	2	
10 MHz to 1800 MHz	3	

14. Locate the most negative Level Flatness reading in Table 2-65 for the frequency ranges listed in Table 2-67 and record as the Minimum Flatness in the performance verification test record as shown in Table 2-67.

Table 2-67. Minimum Flatness

Description	TR Entry (Minimum Flatness)
100 kHz	4
300 kHz to 5 MHz	5
10 MHz to 1800 MHz	6

15. Press (PRESET) on the EMC analyzer.

53. Tracking Generator Level Flatness, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

The tracking generator output is connected to the EMC analyzer input and the tracking is adjusted at 300 MHz for a maximum signal level. A calibrated power sensor is then connected to the tracking generator output to measure the power level at 300 MHz. The measuring receiver is set for RATIO mode so that future power level readings are in dB relative to the power level at 300 MHz.

The tracking generator is then stepped to several frequencies throughout its range. The output power difference relative to the power level at 300 MHz is measured at each frequency and recorded.

For frequencies below 100 kHz, a digital voltmeter and precision 50 ohm termination are used to measure the power of the tracking generator output. The DVM is set to readout in dBm using the MATH function with R value set to 50 ohms. The dBm equation used is:

$$dBm = 10_{LOG} \left(\frac{\frac{E^2}{R}}{1mW} \right)$$

The DVM readout is corrected by making the readings relative to the 100 kHz reading from the power sensor.

The related adjustment for this procedure is "Tracking Generator Power Level for Option 010, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM."

Equipment Required

Measuring receiver Power sensor, 100 kHz to 2.9 GHz Cable, Type N, 62 cm (24 in) Digital voltmeter 50 Ohm termination Cable, BNC 91 cm (36 in) Adapter, BNC (f) to dual banana plug Adapter, Type N tee, (m)(f)(f)

53. Tracking Generator Level Flatness, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

Adapter, Type N (m) to BNC (f)

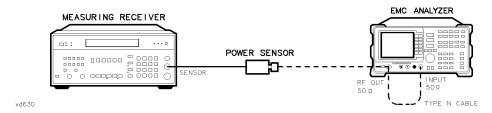


Figure 2-77.
Tracking Generator Level Flatness Test Setup,
HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

Procedure

- 1. Connect the Type N cable between the RF OUT 50 Ω and INPUT 50 Ω connectors on the EMC analyzer. See Figure 2-77.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

FREQUENCY Band Lock 0-2.9 Gz BAND 0
The HP 8594EM does not need to be band locked.

(FREQUENCY) 300 (MHz)
CF STEP AUTO MAN (MAN) 100 (MHz)
(SPAN) 0 (Hz)
(BW) IF BW AUTO MAN (MAN) 30 (kHz)

3. On the EMC analyzer, press the following keys:

(MKR) (AUX/USER) Track Gen SRC PWR ON OFF (ON) $102 (dB\mu V)$

- 4. On the EMC analyzer, press TRACKING PEAK. Wait for the PEAKING message to disappear.
- 5. Zero and calibrate the measuring receiver and 100 kHz to 2.9 GHz power sensor in log mode (power reads out in dBm), as described in the measuring receiver operation manual. Enter the power sensor 300 MHz Cal Factor into the measuring receiver.

2.340 Performance Verification Tests

53. Tracking Generator Level Flatness, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

- 6. Disconnect the Type N cable from the RF OUT 50 Ω and connect the 100 kHz to 2.9 GHz power sensor to the RF OUT 50 Ω .
- 7. On the EMC analyzer, press SRC PWR ON OFF (ON), 87 ($dB\mu V$), (SGL SWP).
- 8. Press RATIO on the measuring receiver. The measuring receiver readout is now in power levels relative to the power level at 300 MHz.
- 9. Set the EMC analyzer center frequency to 100 kHz. Press (SGL SWP).
- 10. Enter the appropriate power sensor Cal Factor into the measuring receiver as indicated in Table 2-68.
- 11. Record the power level displayed on the measuring receiver as the Level Flatness in Table 2-68.
- 12. Repeat steps 9 through 11 to measure the flatness at each center frequency setting listed in Table 2-68. The (1) (step-up key) may be used to tune to center frequencies above 100 MHz.

53. Tracking Generator Level Flatness, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

Table 2-68. Tracking Generator Level Flatness Worksheet

Center Frequency	Level Flatness (dB)	Cal Factor (MHz)	Center Frequency	Level Flatness (dB)	Cal Factor (MHz)
100 kHz		0.1	1000 MHz		1000
300 kHz		0.3	1100 MHz		1000
500 kHz		0.3	1200 MHz		1000
1 MHz		1	1300 MHz		1000
2 MHz		3	1400 MHz		1000
5 MHz		3	1500 MHz		2000
10 MHz		10	1600 MHz		2000
20 MHz		30	1700 MHz		2000
40 MHz		50	1800 MHz		2000
50 MHz		10	1900 MHz		2000
80 MHz		100	2000 MHz		2000
100 MHz		100	2100 MHz		2000
200 MHz		300	2200 MHz		2000
300 MHz		300	2300 MHz		2000
400 MHz		300	2400 MHz		2000
500 MHz		100	2500 MHz		3000
600 MHz		300	2600 MHz		3000
700 MHz		1000	2700 MHz		3000
800 MHz		1000	2800 MHz		3000
900 MHz		1000	2900 MHz		3000

13. Disconnect the Power Sensor from the RF OUT 50 Ω and connect the equipment as shown in Figure 2-78.

53. Tracking Generator Level Flatness, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

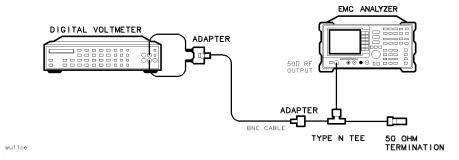


Figure 2-78. Tracking Generator Level Flatness, Center Frequency <100 kHz, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

53. Tracking Generator Level Flatness, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

14. Set the DVM to measure AC Volts. Press the following DVM keys so that it reads out in dBm:

- 15. Set the EMC analyzer center frequency to 9 kHz and press (SGL SWP). Record the DVM readout in column 2 of Table 2-69.
- 16. Repeat step 15 for all center frequencies listed in Table 2-69

Table 2-69.
Tracking Generator Level Flatness Worksheet, <100 kHz

Center Frequency	DVM Readout (dBm)	Corrected Level Flatness (dBm)
9 kHz		
20 kHz		
40 kHz		
60 kHz		
80 kHz		
100 kHz		

17.	Subtract the 100	kHz Level Flatness readout in Table 2-68 from the 100 kH	Ιz
	DVM Readout in	Table 2-69 and record as the DVM Offset at 100 kHz.	

18. For example, if the Level Flatness reading from Table 2-68 is +1.0 dB and the DVM Readout from Table 2-69 is -15.0 dBm, the DVM offset would be +16.0 dB.

$$(DVM) - (Power Meter) = DVM Offset$$

19. Add the DVM Offset from Step 16 to each of the DVM Readouts in Table 2-69 and record as the Corrected Level Flatness in column 3.

For example, if the DVM Readout from Table 2-69 is -15 dBm, and the DVM Offset is +16.0 dB, the corrected readout would be +1 dBm.

2.344 Performance Verification Tests

53. Tracking Generator Level Flatness, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

- 20. Locate the most positive Level Flatness readings in Table 2-68 and Table 2-69 and record these values as TR Entry 1 and TR Entry 2 of the performance verification test record.
- 21. Locate the most negative Level Flatness readings in Table 2-68 and Table 2-69 and record this value as TR Entry 3 and TR Entry 4 of the performance verification test record.

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The tracking generator output is connected to the EMC analyzer input and the tracking is adjusted at 300 MHz for a maximum signal level. The tracking generator output is then connected to the input of a microwave spectrum analyzer. The tracking generator is tuned to several different frequencies and the amplitude of the second and third harmonics relative to the fundamental are measured at each frequency.

There are no related adjustment procedures for this performance test.

Equipment Required

Spectrum analyzer, microwave Cable, Type N, 62 cm (24 in) Cable, BNC, 23 cm (9 in) Adapter, Type N (m) to BNC (f)

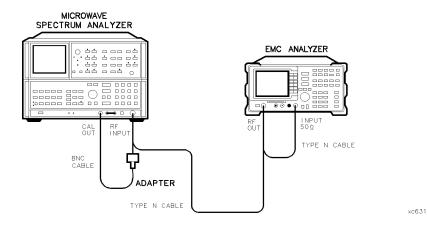


Figure 2-79. Harmonic Spurious Outputs Test Setup, HP 8591EM

Procedure

- 1. Connect the Type N cable between the RF OUT 50 Ω and INPUT 50 Ω connectors on the EMC analyzer. See Figure 2-79.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

```
(FREQUENCY) 300 (MHz)
(SPAN) ZERO SPAN
(MKR)
(AUX/USER) Track Gen SRC PWR ON OFF (ON) 102 (dB \( \psi \) V)
```

3. On the EMC analyzer, press TRACKING PEAK. Wait for the PEAKING message to disappear, then press the following keys:

```
107 (\overline{\text{dB}\mu\text{V}})
(FREQUENCY) 10 (\overline{\text{MHz}})
(SGL SWP)
```

It is only necessary to perform the next step if more than two hours have elapsed since a front-panel calibration of the microwave spectrum analyzer was performed.

The microwave spectrum analyzer should be allowed to warm up for at least 30 minutes before proceeding.

4. Perform a front-panel calibration of the microwave spectrum analyzer by performing the following steps:

Note that the following steps are for an HP 8566A/B microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

- a. Connect a BNC cable between the CAL OUTPUT and the RF INPUT.
- b. Press (2 22 GHz) (INSTR PRESET), (RECALL), 8. Adjust AMPTD CAL for a marker amplitude reading of -10 dBm.
- c. Press (RECALL), 9. Adjust FREQ ZERO for a maximum amplitude response.
- 5. Connect the Type N cable from the tracking generator output to the microwave spectrum analyzer RF INPUT as shown in Figure 2-79.
- 6. Set the microwave spectrum analyzer controls as follows:

CENTER FREQUENCY	 10 MF	Ξz
SPAN	100 kF	Τ7

REFERENCE LEVEL +5 dF	3m
RES BW30 k	Ηz
LOG dB/DIV	dB

7. Set up the microwave spectrum analyzer by performing the following steps:

Note that the following steps are for an HP 8566A/B microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

- a. Press PEAK SEARCH and SIGNAL TRACK (ON). Wait for the signal to be displayed at center screen.
- b. Press PEAK SEARCH, CF STEP SIZE 10 MHz, CENTER FREQUENCY, then SIGNAL TRACK (OFF).
- c. Press CENTER FREQUENCY and the step-up key to tune to the second harmonic. Press PEAK SEARCH. Record the marker amplitude reading in Table 2-70 as the 2nd Harmonic Level for the 10 MHz Tracking Generator Output Frequency.
- d. Perform this step only if the Tracking Generator Output Frequency is less than 600 MHz. Press CENTER FREQUENCY and the step-up key to tune to the third harmonic. Press PEAK SEARCH. Record the marker amplitude reading in Table 2-70 as the 3rd Harmonic Level for the 10 MHz Tracking Generator Output Frequency.
- e. Press MARKER (OFF).
- 8. Change the microwave spectrum analyzer center frequency to the next frequency listed in Table 2-70, then repeat step 7. Note that the microwave spectrum analyzer frequency is the same as the Tracking Generator Output Frequency ($STEP\ SIZE = TG\ FREQ$).

Table 2-70. Harmonic Spurious Responses Worksheet

Tracking Generator Frequency	2nd Harmonic Level (dBc)	3rd Harmonic Level (dBc)
10 MHz		
100 MHz		
300 MHz		
850 MHz		N/A

9. Locate the most positive 2nd Harmonic Level in Table 2-70 and record as **TR Entry 1** of the performance verification test record.

2-348 Performance Verification Tests

10. Locate the most positive 3rd Harmonic Level in Table 2-70 and record as TR Entry 2 of the performance verification test record.

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The tracking generator output is connected to the EMC analyzer input and the tracking is adjusted at 300 MHz for a maximum signal level. The tracking generator output is then connected to the input of a microwave spectrum analyzer. The tracking generator is tuned to several different frequencies and the amplitude of the second and third harmonics relative to the fundamental are measured at each frequency.

There are no related adjustment procedures for this performance verification test.

Equipment Required

Spectrum analyzer, microwave Cable, Type N, 62 cm (24 in) Cable, BNC, 23 cm (9 in) Adapter, Type N (m) to BNC (f)

Procedure

Note	It is only necessary to perform Step 1 if more than two hours have elapsed since a front-panel calibration of the microwave spectrum analyzer was performed.
	The microwave spectrum analyzer should be allowed to warm up for at least 30 minutes before proceeding.

1. Perform a front-panel calibration of the microwave spectrum analyzer by performing the following steps:

Note that the following steps are for an HP 8566A/B microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

a. Connect a BNC cable between the CAL OUTPUT and the RF INPUT.

2-350 Performance Verification Tests

- b. Press (2-22 GHz) (INSTR PRESET), (RECALL), 8. Adjust AMPTD CAL for a marker amplitude reading of -10 dBm.
- c. Press (RECALL), 9. Adjust FREQ ZERO for a maximum amplitude response.
- d. Press (SHIFT), (FREQUENCY SPAN) to start the 30 second internal error correction routine.
- e. When the CALIBRATING! message disappears, press (SHIFT), (START FREQ) to use the error correction factors just calculated.
- 2. Connect the Type N cable between the RF OUT 50 Ω and INPUT 50 Ω connectors on the EMC analyzer. See Figure 2-80.

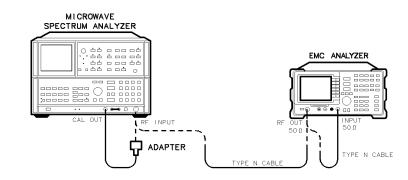


Figure 2-80. Harmonic Spurious Outputs Test Setup, HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) Band Lock 0-2.9 Gz BAND 0 (Except HP 8594EM) (FREQUENCY) 300 (MHz) (SPAN) (Hz) (BW) 30 (kHz) (MKR) (AUX/USER) Track Gen SRC PWR ON OFF (ON) 102 ($\overline{dB\mu V}$) TRACKING PEAK

Wait for the PEAKING message to disappear, then press the following keys:

```
SRC PWR ON OFF (ON) 106 \text{ } \overline{\text{dB}\mu\text{V}} (FREQUENCY) 300 \text{ } \overline{\text{kHz}} (SGL SWP)
```

- 4. Connect the Type N cable from the tracking generator output to the microwave spectrum analyzer RF INPUT as shown in Figure 2-80.
- 5. Set the microwave spectrum analyzer controls as follows:

CENTER FREQUENCY
SPAN
REFERENCE LEVEL +5 dBm
RES BW
LOG dB/DIV

6. Set up the microwave spectrum analyzer by performing the following steps:

Note that the following steps are for an HP 8566A/B microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

- a. Press PEAK SEARCH and SIGNAL TRACK (ON). Wait for the signal to be displayed at center screen.
- b. Press PEAK SEARCH, CF STEP SIZE 10 MHz, CENTER FREQUENCY, then SIGNAL TRACK (OFF).
- c. Press PEAK SEARCH, MKR/ $\Delta \rightarrow$ STP SIZE, MARKER Δ .
- d. Press CENTER FREQUENCY and (1) (step-up key) to tune to the second harmonic, then press PEAK SEARCH. (If the center frequency is greater than 2.5 GHz, press PRESEL PEAK, then wait for the PEAKING! message to disappear.)

Record the marker amplitude reading in Table 2-71 as the 2nd Harmonic Level for the 300 kHz Tracking Generator Output Frequency.

e. Press (f) (step-up key). If the Tracking Generator Output Frequency is less than 1 GHz. Press PEAK SEARCH. (If the center frequency is greater than 2.5 GHz, press PRESEL PEAK and wait for the PEAKING message to disappear.)

Record the marker amplitude reading in Table 2-71 as the 3rd Harmonic Level for the 300 kHz Tracking Generator Output Frequency.

- f. Press MARKER (OFF).
- 7. Change the tracking generator and microwave spectrum analyzer frequency to the next frequency listed in Table 2-71, then repeat step 6. Note that

2.352 Performance Verification Tests

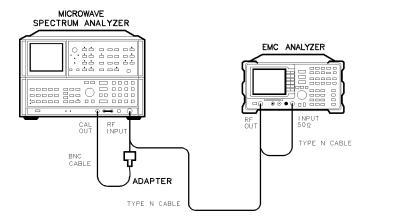
the microwave spectrum analyzer frequency is the same as the Tracking Generator Output Frequency.

- 8. Locate the 2nd Harmonic Level for 9 kHz in Table 2-71 and record as **TR Entry 1** of the performance verification record.
- 9. Locate the most positive 2nd Harmonic Level in Table 2-71 and record as TR Entry 2 of the performance verification test record.
- 10. Locate the 2nd Harmonic Level for 1.4 GHz in Table 2-71 and record as **TR Entry 3** of the performance verification test record.
- 11. Locate the 3rd Harmonic Level for 9 kHz in Table 2-71 and record as **TR Entry 4** of the performance verification record.
- 12. Locate the most positive 3rd Harmonic Level in Table 2-71 and record as **TR Entry 5** of the performance verification test record.

Table 2-71. Harmonic Spurious Responses Worksheet

Tracking Generator Frequency	2nd Harmonic Level (dBc)	3rd Harmonic Level (dBc)
9 kHz		
$25~\mathrm{kHz}$		
$300~\mathrm{kHz}$		
$100~\mathrm{MHz}$		
300 MHz		
900 MHz		
$1.4~\mathrm{GHz}$		N/A

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.


The tracking generator output is connected to the EMC analyzer input and the tracking is adjusted at 300 MHz for a maximum signal level. The tracking generator output is then connected to the input of a microwave spectrum analyzer. The tracking generator is set to several different output frequencies.

For each output frequency, several sweeps are taken on the microwave spectrum analyzer over different frequency spans and the highest displayed spurious response is measured in each span. Responses at the fundamental frequency of the tracking generator output or their harmonics are ignored. The amplitude of the highest spurious response is recorded.

There are no related adjustments for this performance test.

Equipment Required

Spectrum analyzer, microwave Cable, Type N, 62 cm (24 in) Cable, BNC, 23 cm (9 in) Adapter, Type N (m) to BNC (f)

xc631

Figure 2-81. Non-Harmonic Spurious Outputs Test Setup, HP 8591EM

Procedure

- 1. Connect the Type N cable between the RF OUT 50 Ω and INPUT 50 Ω connectors on the EMC analyzer. See Figure 2-81.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 300 (MHz)
(SPAN) ZERO SPAN
(BW) IF BW AUTO MAN (MAN) 30 (kHz)
(MKR)
(AUX/USER) Track Gen SRC PWR ON OFF (ON) 102 (dB \(\psi \) V)

- 3. On the EMC analyzer, press TRACKING PEAK, then wait for the PEAKING message to disappear.
- 4. On the EMC analyzer, press 0 (dBm) then (SGL SWP).

It is only necessary to perform the next step if more than 2 hours have elapsed since a front-panel calibration of the microwave spectrum analyzer has been performed.

The microwave spectrum analyzer should be allowed to warm up for at least 30 minutes before proceeding.

5. Perform a front-panel calibration of the microwave spectrum analyzer by performing the following steps:

Note that the following steps are for an HP 8566A/B microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

- a. Connect a BNC cable between CAL OUTPUT and RF INPUT.
- b. Press (2 22 GHz) (INSTR PRESET), (RECALL), 8. Adjust AMPTD CAL for a marker amplitude reading of -10 dBm.
- c. Press (RECALL), 9. Adjust FREQ ZERO for a maximum amplitude response.
- d. Press (SHIFT), (FREQUENCY SPAN) to start the 30 second internal error correction routine.
- e. Press (SHIFT), (START FREQ) to use the error correction factors just calculated.
- 6. Connect the Type N cable from the tracking generator output to the microwave spectrum analyzer RF INPUT as shown in Figure 2-81.

Measuring Fundamental Amplitudes

- 7. Set the EMC analyzer center frequency to the Fundamental Frequency listed in Table 2-72.
- 8. Set the microwave spectrum analyzer controls as follows:

SPAN	7
REFERENCE LEVEL+5 dBm	L
ATTEN	ì

- 9. Set the microwave spectrum analyzer CENTER FREQUENCY to the Fundamental Frequency listed in Table 2-72.
- 10. On the microwave spectrum analyzer, press PEAK SEARCH. Press MARKER →REF LVL. Wait for another sweep to finish.
- 11. Record the microwave spectrum analyzer marker amplitude reading in Table 2-72 as the Fundamental Amplitude.
- 12. Repeat steps 8 through 11 for all Fundamental Frequency settings in Table 2-72.

Table 2-72. Fundamental Response Amplitudes Worksheet

Fundamental Amplitude (dBm)

Measuring Non-Harmonic Responses

- 13. On the EMC analyzer, set the center frequency to 10 MHz.
- 14. Set the microwave spectrum analyzer START FREQ, STOP FREQ, and RES BW as indicated in the first row of Table 2-73.
- 15. Press SINGLE on the microwave spectrum analyzer and wait for the sweep to finish. Press $(MKR \rightarrow)$ $MKR \rightarrow$ HIGH.

2.356 Performance Verification Tests

16. Verify that the marked signal is not the fundamental or a harmonic of the fundamental by performing the following steps:

Note that the following steps are for an HP 8566A/B microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

- a. Divide the marker frequency by the fundamental frequency (the EMC analyzer center frequency setting). For example, if the marker frequency is 30.3 MHz and the fundamental frequency is 10 MHz, dividing 30.3 MHz by 10 MHz yields 3.03.
- b. Round the number calculated in step a the nearest whole number. In the example above, 3.03 should be rounded to 3.
- c. Multiply the fundamental frequency by the number calculated in step b. Following the example, multiplying 10 MHz by 3 yields 30 MHz.
- d. Calculate the difference between the marker frequency and the frequency calculated in step c above. Continuing the example, the difference would be 300 kHz.
- e. Due to span accuracy uncertainties in the microwave spectrum analyzer, the marker frequency might not equal the actual frequency. Given the marker frequency, check if the difference calculated in step d is within the appropriate tolerance:

```
For marker frequencies <5 MHz, tolerance = \pm 200 kHz
For marker frequencies <55 MHz, tolerance = \pm 750 kHz
For marker frequencies >55 MHz, tolerance = \pm 10 MHz
```

- f. If the difference in step d is within the indicated tolerance, the signal in question is the fundamental signal (if the number in step b=1) or a harmonic of the fundamental (if the number in step b>1). This response should be ignored.
- 17. Verify that the marked signal is a true response and not a random noise peak by pressing SINGLE to trigger a new sweep and press PEAK SEARCH. A true response will remain at the same frequency and amplitude on successive sweeps but a noise peak will not.

If the marked signal is *not* the fundamental or a harmonic of the fundamental (see step 16) and is a true response (see step 17), proceed with step 20.

- 18. If the marked signal is either the fundamental or a harmonic of the fundamental (see step 16) or a noise peak (see step 17), move the marker to the next highest signal by pressing SHIFT, PEAK SEARCH. Repeat step 16.
 - The following step is only performed if the marker signal is not the fundamental or harmonic of the fundamental and is a true response.
- 19. Calculate the difference between the amplitude of marked signal and the Fundamental Amplitude as listed in Table 2-72.

For example, if the Fundamental Amplitude for a fundamental frequency of 10 MHz is +1.2 dBm and the marker amplitude is -40.8 dBm, the difference is -42 dBc.

Record this difference as the Non-Harmonic Response Amplitude for the appropriate EMC analyzer center frequency and microwave spectrum analyzer start and stop frequency settings in Table 2-73.

 $Non ext{-}Harmonic\ Amplitude = Marker\ Amplitude - Fundamental\ Amplitude$

- 20. If a true non-harmonic spurious response is not found, record "NOISE" as the Non-Harmonic Response Amplitude in Table 2-73 for the appropriate EMC analyzer center frequency and microwave spectrum analyzer start and stop frequency settings.
- 21. Repeat steps 15 through 20 for the remaining microwave spectrum analyzer settings for start frequency, stop frequency, and resolution bandwidth; and for the EMC analyzer center frequency setting of 10 MHz.
- 22. Repeat steps 14 through 21 with the EMC analyzer center frequency set to 900 MHz.
- 23. Repeat steps 14 through 21 with the EMC analyzer center frequency set to 1.8 GHz.
- 24. Locate in Table 2-73 the most-positive Non-Harmonic Response Amplitude. Record this amplitude as the Highest Non-Harmonic Response Amplitude in **TR Entry 1** of the performance verification test record.

Table 2-73. Non-Harmonic Responses Worksheet

Microwave Spectrum Analyzer Settings			Non-Harmonic Response Amplitude (dBc)		-
Start Frequency Fr	Stop	Stop Frequency Resolution Bandwidth	Center Frequency		
	Frequency		10 MHz	900 MHz	1.8 GHz
0.1 MHz	5.0 MHz	10 kHz			
5.0 MHz	55 MHz	100 kHz			
55 MHz	1240 MHz	1 MHz			
1240 MHz	1800 MHz	1 MHz			

57. Non-Harmonic Spurious Outputs, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The tracking generator output is connected to the EMC analyzer input and the tracking is adjusted at 300 MHz for a maximum signal level. The tracking generator output is then connected to the input of a microwave spectrum analyzer. The tracking generator is tuned to several different frequencies, then the amplitude of the second and third harmonics relative to the fundamental are measured at each frequency.

For each output frequency, several sweeps are taken on the microwave spectrum analyzer over different frequency spans and the highest displayed spurious response is measured in each span. Responses at the fundamental frequency of the tracking generator output or its harmonics are ignored; they are tested in the "Harmonic Spurious Responses" performance verification test. The amplitude of the highest spurious response is recorded.

There are no related adjustments for this performance verification test.

Equipment Required

Spectrum analyzer, microwave Cable, Type N, 62 cm (24 in) Cable, BNC, 23 cm (9 in) Adapter, Type N (m) to BNC (f)

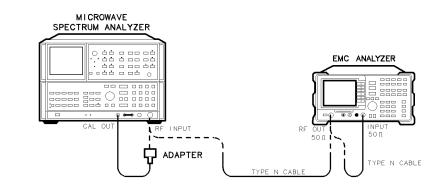


Figure 2-82.
Non-Harmonic Spurious Outputs Test Setup,
HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

Procedure

xd634

It is only necessary to perform step 1 if more than 2 hours have elapsed since a front-panel calibration of the microwave spectrum analyzer has been performed.

The microwave spectrum analyzer should be allowed to warm up for at least 30 minutes before proceeding.

1. Perform a front-panel calibration of the microwave spectrum analyzer by performing the following steps:

Note that the following steps are for an HP 8566A/B microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

- a. Connect a BNC cable between CAL OUTPUT and RF INPUT.
- b. Select the 2-22 GHz band, then press INSTR PRESET, (RECALL), 8. Adjust AMPTD CAL for a marker amplitude reading of -10 dBm.
- c. Press (RECALL), 9. Adjust FREQ ZERO for a maximum amplitude response.
- d. Press SHIFT, FREQUENCY SPAN to start the 30 second internal error correction routine.
- e. When the CALIBRATING! message disappears, press SHIFT, START FREQ to use the error correction factors just calculated.

- 2. Connect the Type N cable between the RF OUT 50 Ω and INPUT 50 Ω connectors on the EMC analyzer. See Figure 2-82.
- 3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) Band Lock 0-2.9 Gz BAND 0

The HP 8594EM does not need to be band locked.

(FREQUENCY) 300 (MHz)

(SPAN) (Hz)

(BW) IF BW AUTO MAN (MAN) 30 (kHz)

(MKR

(AUX/USER) Track Gen SRC PWR ON OFF (ON) $102 (\overline{dB\mu V})$

TRACKING PEAK

Wait for the PEAKING message to disappear, then press the following keys:

SRC PWR ON OFF (ON) $106 \ (\overline{\text{dB}\mu\text{V}})$

4. Connect the Type N cable from the tracking generator output to the microwave spectrum analyzer RF INPUT as shown in Figure 2-82.

Measuring Fundamental Amplitudes

- 5. Set the EMC analyzer center frequency to the Fundamental Frequency listed in Table 2-74.
- 6. Set the microwave spectrum analyzer controls as follows:

SPAN100	kHz
REFERENCE LEVEL+5 o	dΒm
ATTEN) dB
LOG dB/DIV) dB

- 7. Set the microwave spectrum analyzer CENTER FREQUENCY to the Fundamental Frequency listed in Table 2-74.
- 8. On the microwave spectrum analyzer, press PEAK SEARCH. If the marker frequency is greater than 2.5 GHz, press PRESEL PEAK and wait for the PEAKING! message to disappear. Press MARKER \rightarrow REF LVL. Wait for another sweep to finish.
- 9. Record the microwave spectrum analyzer marker amplitude reading in Table 2-74 as the Fundamental Amplitude.
- 10. Repeat steps 5 through 9 for all Fundamental Frequency settings in Table 2-74.

Table 2-74. Fundamental Response Amplitudes Worksheet

Fundamental Frequency	Fundamental Amplitude (dBm)
9 kHz	
1.5 GHz	
2.9 GHz	

Measuring Non-Harmonic Responses

- 11. On the EMC analyzer, set the center frequency to 9 kHz.
- 12. Set the microwave spectrum analyzer START FREQ, STOP FREQ, and RES BW as indicated in the first row of Table 2-75.
- 13. Press SINGLE on the microwave spectrum analyzer and wait for the sweep to finish. Press PEAK SEARCH. If the marker frequency is greater than 2.5 GHz, press PRESEL PEAK and wait for the PEAKING! message to disappear.
- 14. Verify that the marked signal is not the fundamental or a harmonic of the fundamental by performing the following steps:
 - Note that the following steps are for an HP 8566A/B microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.
 - a. Divide the marker frequency by the fundamental frequency (the EMC analyzer center frequency setting). For example, if the marker frequency is 26.5 kHz and the fundamental frequency is 9 kHz, dividing 26.5 kHz by 9 kHz yields 2.944.
 - b. Round the number calculated in step a the nearest whole number. In the example above, 2.944 should be rounded to 3.
 - c. Multiply the fundamental frequency by the number calculated in step b. Following the example, multiplying 9 kHz by 3 yields 27 kHz.
 - d. Calculate the difference between the marker frequency and the frequency calculated in step c above. Continuing the example, the difference would be 500 Hz.
 - e. Due to span accuracy uncertainties in the microwave spectrum analyzer, the marker frequency might not equal the actual frequency. Given the marker frequency, check if the difference calculated in step d is within the appropriate tolerance:

For marker frequencies <5 MHz, tolerance = ±200 kHz For marker frequencies <55 MHz, tolerance = ±750 kHz For marker frequencies >55 MHz, tolerance = ±10 MHz

f. If the difference in step d is within the indicated tolerance, the signal in question is the fundamental signal (if the number in step b=1) or a harmonic of the fundamental (if the number in step b>1). This response should be ignored.

2-364 Performance Verification Tests

15. Verify that the marked signal is a true response and not a random noise peak by pressing SINGLE to trigger a new sweep and press PEAK SEARCH. A true response will remain at the same frequency and amplitude on successive sweeps but a noise peak will not.

If the marked signal is *not* the fundamental or a harmonic of the fundamental (see step 14) and is a true response (see step 15), proceed with step 17.

16. If the marked signal is either the fundamental or a harmonic of the fundamental (see step 14) or a noise peak (see step 15), move the marker to the next highest signal by pressing SHIFT, PEAK SEARCH. Repeat step 14.

The following step is only performed if the marker signal is not the fundamental or harmonic of the fundamental and is a true response.

17. Calculate the difference between the amplitude of marked signal and the Fundamental Amplitude as listed in Table 2-74.

For example, if the Fundamental Amplitude for a fundamental frequency of 9 kHz is +1.2 dBm and the marker amplitude is -30.8 dBm, the difference is -32 dBc.

Record this difference as the Non-Harmonic Response Amplitude for the appropriate EMC analyzer center frequency and microwave spectrum analyzer start and stop frequency settings in Table 2-75.

 $Non ext{-}Harmonic\ Amplitude = Marker\ Amplitude - Fundamental\ Amplitude$

- 18. If a true non-harmonic spurious response is not found, record "NOISE" as the Non-Harmonic Response Amplitude in Table 2-75 for the appropriate EMC analyzer center frequency and microwave spectrum analyzer start and stop frequency settings.
- 19. Repeat steps 14 through 18 for the remaining microwave spectrum analyzer settings for start frequency, stop frequency, and resolution bandwidth; and for the EMC analyzer center frequency setting of 9 kHz.
- 20. Repeat steps 12 through 18 with the EMC analyzer center frequency set to 1.5 GHz.
- 21. Repeat steps 12 through 18 with the EMC analyzer center frequency set to 2.9 GHz.
- 22. Locate in Table 2-75 the most-positive Non-Harmonic Response Amplitude for the microwave spectrum analyzer STOP frequency settings of less than

- or equal to 2000 MHz. Record this amplitude as the Highest Non-Harmonic Response Amplitude \leq 2000 MHz as **TR Entry 1** of the performance verification test record.
- 23. Locate in Table 2-75 the most-positive Non-Harmonic Response Amplitude for the microwave spectrum analyzer START frequency settings of greater than or equal to 2000 MHz. Record this amplitude as the Highest Non-Harmonic Response Amplitude ≥2000 MHz as **TR Entry 2** of the performance verification test record.

Table 2-75. Non-Harmonic Responses Worksheet

Microwave Spectrum Analyzer Settings		· '		-	
Start	Stop	Resolution	Center Frequency		cy
Frequency	Frequency	Bandwidth	9 kHz	1.5 GHz	2.9 GHz
0.003 MHz*	0.2 MHz	3 kHz			
0.2 MHz	5.0 MHz	30 kHz			
5.0 MHz	55 MHz	100 kHz			
55 MHz	1240 MHz	1 MHz			
1240 MHz	2000 MHz	1 MHz			
2000 MHz	2900 MHz	1 MHz			

58. Tracking Generator Feedthrough, **HP 8591EM Option 010**

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

The tracking generator output is connected to the EMC analyzer input and the tracking is adjusted at 300 MHz for a maximum signal level. The tracking generator output is terminated and set for 0 dBm output power (maximum output power). The EMC analyzer input is also terminated. The noise level of the EMC analyzer is then measured at several frequencies.

There are no related adjustments for this performance test.

Equipment Required

50 Ω Termination (two required) Cable, Type N, 62 cm (24 in) Cable, BNC, 23 cm (9 in) Cable, Type N (m) to BNC (f)

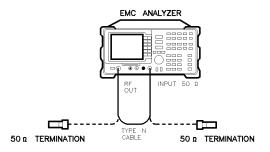


Figure 2-83. Tracking Generator Feedthrough Test Setup, HP 8591EM

XC633

58. Tracking Generator Feedthrough, HP 8591EM Option 010

Procedure

- 1. Connect the Type N cable between the RF OUT 50 Ω and INPUT 50 Ω connectors on the EMC analyzer. See Figure 2-83.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 300 (MHz)
(SPAN) 1 (MHz)
(MKR)
(AUX/USER) Track Gen SRC PWR ON OFF (ON) 102 (dBµV)

- $^{3\cdot}$ On the EMC analyzer, press TRACKING PEAK . Wait for the PEAKING message to disappear.
- 4. Connect the CAL OUTPUT to the INPUT 50 Ω .
- 5. Set the EMC analyzer by pressing the following keys:

(AMPLITUDE) 87 ($\overline{dB}\mu V$)
ATTEN AUTO MAN (MAN) 0 (\overline{dB})
(SPAN) 10 (MHz)
(MKR \rightarrow) MKR \rightarrow HIGH
(MKR) More 1 of 3 MK TRACK ON OFF (ON)
(SPAN) 100 (kHz)

Wait for the AUTO ZOOM message to disappear, then set the EMC analyzer as follows:

BW AVG BW AUTO MAN (MAN) 30 Hz

MKR More 1 of 3 MK TRACK ON OFF (OFF)

58. Tracking Generator Feedthrough, HP 8591EM Option 010

6. Press (SGL SWP), wait for the completion of a new sweep, then press (MKR \rightarrow) MKR \rightarrow HIGH.

Subtract the MKR amplitude reading from 87 dB μ V, then enter the result in the EMC analyzer as the REF LVL OFFSET. For example, if the marker reads 86.79 dB μ V, enter +0.21 dB.

$$87 dB\mu V - (86.79 dB\mu V) = +0.21 dB$$

Then press the following EMC analyzer keys:

(AMPLITUDE) More 1 of 3 More 2 of 3 REF LVL OFFSET (enter calculated value)

- 7. Connect one 50 Ω termination to the EMC analyzer INPUT 50 Ω and another to the tracking generator's RF OUT 50 Ω .
- 8. Press (AUX/USER), Track Gen, then SRC PWR ON OFF (OFF).
- 9. Set the EMC analyzer by pressing the following keys:

 $\begin{array}{c} (\text{FREQUENCY}) \ 0 \ (\text{Hz}) \\ (\text{SPAN}) \ 10 \ (\text{MHz}) \\ (\text{AMPLITUDE}) \ 97 \ (\text{dB}\mu\text{V}) \\ (\text{BW}) \ \text{AVG} \ \text{BW} \ \text{AUTO} \ \text{MAN} \ (\text{AUTO}) \end{array}$

MKR More 1 of 2 MARKER ALL OFF

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

10. Press the following EMC analyzer keys:

 $(MKR \rightarrow)$ MKR \rightarrow HIGH

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

 $(\underline{\mathsf{MKR}} \to \mathsf{More} \ 1 \ \mathsf{of} \ 3 \ \mathsf{MARKER} \to \mathsf{REF} \ \mathsf{LVL}$

(SPAN) 2 (MHz)

Wait for the AUTO ZOOM message to disappear, then press (MKR) More 1 of 3 MK TRACK ON OFF (OFF).

11. Press (FREQUENCY) and adjust the center frequency until the LO feedthrough peak is on the left-most graticule line, then set the EMC analyzer as follows:

(SPAN) 50 (kHz) (AMPLITUDE) 57 ($\overline{a}\overline{b}\mu V$) (BW) AVG BW AUTO MAN (MAN) 30 ($\overline{H}z$)

58. Tracking Generator Feedthrough, HP 8591EM Option 010

- 12. Press (AUX/USER), Track Gen, SRC PWR ON OFF (ON), and enter 107 ($\overline{\text{dB}\mu\text{V}}$).
- 13. Press (SGL SWP), then wait for completion of a new sweep. Press (DISPLAY), DSP LINE ON OFF (ON).
- 14. Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses. Record the display line amplitude setting in Table 2-76 as the noise level at 1 MHz.
- 15. Repeat steps 13 and 14 for the remaining Tracking Generator Output Frequencies (EMC analyzer center frequency) listed in Table 2-76.
- 16. In Table 2-76, locate the most positive Noise Level Amplitude. Record this amplitude as **TR Entry 1** of the performance verification test record.

Table 2-76. TG Feedthrough Worksheet

Tracking Generator Output Frequency	Noise Level Amplitude $(dB\mu V)$	Tracking Generator Output Frequency	Noise Level Amplitude $(\mathrm{dB}\mu\mathrm{V})$
1 MHz		850 MHz	
20 MHz		1000 MHz	
50 MHz		1150 MHz	
100 MHz		1300 MHz	
250 MHz		1450 MHz	
400 MHz		1600 MHz	
550 MHz		1750 MHz	
700 MHz			

59. Tracking Generator Feedthrough, HP 8594EM Option 010

This performance verification test must be performed with the EMC analyzer set in the spectrum analyzer mode.

The tracking generator output is connected to the EMC analyzer input and the tracking is adjusted at 300 MHz for a maximum signal level. The tracking generator output is terminated and set for 108 dB μ V output power (maximum output power). The EMC analyzer input is also terminated. The noise level of the EMC analyzer is then measured at several frequencies.

There are no related adjustments for this performance verification test.

Equipment Required

Termination, 50 Ω (two required) Cable, Type N, 62 cm (24 in) Cable, BNC, 23 cm (9 in) Cable, Type N (m) to BNC (f)

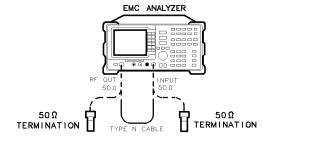


Figure 2-84. Tracking Generator Feedthrough Test Setup, HP 8594EM

xd635

59. Tracking Generator Feedthrough, HP 8594EM Option 010

Procedure

- 1. Connect the Type N cable between the RF OUT 50 Ω and INPUT 50 Ω connectors on the EMC analyzer. See Figure 2-84.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

FREQUENCY 300 (MHz) (SPAN) 0 (Hz)

BW IF BW AUTO MAN (MAN) 30 (kHz) (MKR)

AUX/USER Track Gen

SRC PWR ON OFF (ON) 102 (dB \(\psi \))

- 3. On the EMC analyzer, press TRACKING PEAK. Wait for the PEAKING message to disappear.
- 4. Connect the CAL OUTPUT to the INPUT 50 Ω .
- 5. Set the EMC analyzer by pressing the following keys:

SPAN 10 (MHz)

(AMPLITUDE) REF LVL 87 ($\overline{d}B\mu V$)

ATTEN AUTO MAN (MAN) 0 ($\overline{d}B$)

(MKR \rightarrow) MKR \rightarrow HIGH

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

(SPAN) 100 ($\overline{k}Hz$)

Wait for the AUTO ZOOM message to disappear, then set the EMC analyzer as follows:

BW AVG BW AUTO MAN (MAN) 30 Hz
(MKR) More 1 of 3 MK TRACK ON OFF (OFF)

6. Press (SGL SWP), wait for the completion of a new sweep, then press (MKR \rightarrow MKR \rightarrow HIGH.

Subtract the MKR amplitude reading from 87 dB μ V, then enter the result in the EMC analyzer as the REF LVL OFFSET. For example, if the marker reads 86.79 dB μ V, enter +0.21 dB.

2.372 Performance Verification Tests

59. Tracking Generator Feedthrough, HP 8594EM Option 010

$$87 \ dB\mu V - (86.79 \ dB\mu V) = +0.21 \ dB$$

Press the following EMC analyzer keys:

(AMPLITUDE) More 1 of 3 REF LVL OFFSET (enter calculated value)

- 7. Connect one 50 Ω termination to the EMC analyzer INPUT 50 Ω and another to the tracking generator RF OUT 50 Ω .
- 8. Press (AUX/USER), Track Gen, then SRC PWR ON OFF (OFF).
- 9. Set the EMC analyzer by pressing the following keys:

FREQUENCY 0 (Hz)

(SPAN) 10 (MHz)

(AMPLITUDE) REF LVL 97 ($dB\mu V$)

(MKR) MARKER 1 ON OFF (OFF)

(BW) AVG BW AUTO MAN (AUTO)

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

10. Press the following EMC analyzer keys:

 $(MKR \rightarrow) MKR \rightarrow HIGH$

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

 $(\overline{MKR} \rightarrow)$ More 1 of 3 MARKER \rightarrow REF LVL

(SPAN) 800 (kHz)

Wait for the AUTO ZOOM message to disappear, then press $\boxed{\text{MKR}}$ More 1 of 3 MK TRACK ON OFF (OFF).

59. Tracking Generator Feedthrough, HP 8594EM Option 010

11. Press (FREQUENCY) and adjust the center frequency until the LO feedthrough peak is on the left-most graticule line, then set the EMC analyzer as follows:

(SPAN) 50 (kHz)

(AMPLITUDE) REF LVL 57 ($dB\mu V$)

(BW) IF BW AUTO MAN (MAN) 1 (kHz)

AVG BW AUTO MAN (MAN) 30 (Hz)

(TRACE) More 1 of 4 More 2 of 4 DETECTOR SMP PK (SMP)

- $^{12}\cdot$ Press (AUX/USER), Track Gen , SRC PWR ON OFF (ON), then enter 106 (dB\$\mu V\$).
- 13. Press (SGL SWP), then wait for completion of a new sweep. Press (DISPLAY), DSP LINE ON OFF (ON).
- 14. Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses. Record the display line amplitude setting in Table 2-77 as the noise level at 400 kHz.
- 15. Repeat steps 13 and 14 for the remaining Tracking Generator Output Frequencies (EMC analyzer center frequency) listed in Table 2-77.
- 16. In Table 2-77, locate the most positive Noise Level Amplitude from 400 kHz to 5 MHz. Record this amplitude as **TR Entry 1** of the performance verification test record.
- 17. In Table 2-77, locate the most positive Noise Level Amplitude from 5 MHz to 2900 MHz. Record this amplitude as **TR Entry 2** of the performance verification test record.

59. Tracking Generator Feedthrough, HP 8594EM Option 010 Table 2-77. TG Feedthrough Worksheet

Tracking Generator Output Frequency	Noise Level Amplitude (dB μ V)	Tracking Generator Output Frequency	Noise Level Amplitude (dB μ V)
400 kHz		1000 MHz	
500 kHz		1150 MHz	
1 MHz		1300 MHz	
20 MHz		1450 MHz	
50 MHz		1600 MHz	
100 MHz		1750 MHz	
250 MHz		2000 MHz	
400 MHz		2300 MHz	
550 MHz		2600 MHz	
700 MHz		2900 MHz	
850 MHz		2333 11112	

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The tracking generator output is connected to the EMC analyzer input and the tracking is adjusted at 300 MHz for a maximum signal level. The tracking generator output is terminated and set for $106~\mathrm{dB}\mu\mathrm{V}$ output power (maximum output power). The EMC analyzer input is also terminated. The noise level of the EMC analyzer is then measured at several frequencies.

There are no related adjustments for this performance verification test.

Equipment Required

Termination, 50 Ω (two required) Cable, Type N, 62 cm (24 in) Cable, BNC, 23 cm (9 in) Cable, Type N (m) to BNC (f)

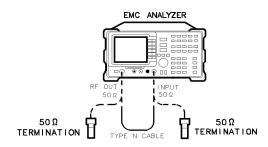


Figure 2-85.
Tracking Generator Feedthrough Test Setup,
HP 8593EM, HP 8595EM, and HP 8596EM

xd635

Procedure

- 1. Connect the Type N cable between the RF OUT 50 Ω and INPUT 50 Ω connectors on the EMC analyzer. See Figure 2-85.
- 2. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) Band Lock 0-2.9 Gz BAND 0
(FREQUENCY) 300 (MHz)
(SPAN) 0 (Hz)
(BW) IF BW AUTO MAN (MAN) 30 (kHz)
(MKR)
(AUX/USER) Track Gen SRC PWR ON OFF (ON) 102 (dB \(\psi \) V)

- $^{3\cdot}$ On the EMC analyzer, press TRACKING PEAK. Wait for the PEAKING message to disappear.
- 4. Connect the CAL OUTPUT to the INPUT 50 Ω .
- 5. Set the EMC analyzer by pressing the following keys:

(SPAN) 10 (MHz)
(AMPLITUDE) REF LVL 87 ($dB\mu V$)
ATTEN AUTO MAN (MAN) 0 (dB)
(MKR \rightarrow) MKR \rightarrow HIGH
(MKR) More 1 of 3 MK TRACK ON OFF (ON)
(SPAN) 100 (kHz)

Wait for the AUTO ZOOM message to disappear, then set the EMC analyzer as follows:

(BW) AVG BW AUTO MAN (MAN) 30 (Hz) (MKR) More 1 of 3 MK TRACK ON OFF (OFF)

6. Press (SGL SWP), wait for the completion of a new sweep, then press (MKR \rightarrow MKR \rightarrow HIGH.

Subtract the MKR amplitude reading from 87 dB μ V, then enter the result in the EMC analyzer as the REF LVL OFFSET. For example, if the marker reads 86.79 dB μ V, enter +0.21 dB.

$$87 dB\mu V - (86.79 dB\mu V) = +0.21 dB$$

Press the following EMC analyzer keys:

(AMPLITUDE) More 1 of 3 More 2 of 3 REF LVL OFFSET (enter calculated value)

- 7. Connect one 50 Ω termination to the EMC analyzer INPUT 50 Ω and another to the tracking generator RF OUT 50 Ω .
- 8. Press (AUX/USER), Track Gen, then SRC PWR ON OFF (OFF).
- 9. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) 0 (Hz) (SPAN) 10 (MHz)

(AMPLITUDE) REF LVL 97 ($dB\mu V$)

MKR MARKER 1 ON OFF (OFF)

(BW) AVG BW AUTO MAN (AUTO)

(SWEEP/TRIG) SWEEP CONT SGL (CONT)

10. Press the following EMC analyzer keys:

 $(MKR \rightarrow) MKR \rightarrow HIGH$

(MKR) More 1 of 3 MK TRACK ON OFF (ON)

 $(MKR \rightarrow)$ More 1 of 3 MARKER \rightarrow REF LVL

(SPAN) 800 (kHz)

Wait for the AUTO ZOOM message to disappear, then press $\boxed{\text{MKR}}$ More 1 of 3 MK TRACK ON OFF (OFF).

11. Press (FREQUENCY) and adjust the center frequency until the LO feedthrough peak is on the left-most graticule line, then set the EMC analyzer as follows:

SPAN 50 kHz (AMPLITUDE) REF LVL 57 ($\overline{\rm dB}\mu\rm{V}$) (BW) IF BW AUTO MAN (MAN) 1 kHz AVG BW AUTO MAN (MAN) 30 Hz (TRACE) More 1 of 4 More 2 of 4 DETECTOR SMP PK (SMP)

- 12. Press (AUX/USER), Track Gen , SRC PWR ON OFF (ON), then enter 106 (dB μ V).
- 13. Press (SGL SWP), then wait for completion of a new sweep. Press (DISPLAY), DSP LINE ON OFF (ON).
- 14. Adjust the display line so that it is centered on the average trace noise, ignoring any residual responses. Record the display line amplitude setting in Table 2-78 as the noise level at 400 kHz.
- 15. Repeat steps 13 and 14 for the remaining Tracking Generator Output Frequencies (EMC analyzer center frequency) listed in Table 2-78.
- 16. In Table 2-78, locate the most positive Noise Level Amplitude. Record this amplitude as **TR Entry 1** of the performance verification test record.

60. Tracking Generator Feedthrough, HP 8593EM, HP 8595EM, and HP 8596EM Option 010 Table 2-78. TG Feedthrough Worksheet

Tracking Generator Output Frequency	Noise Level Amplitude (dB μ V)	Tracking Generator Output Frequency	Noise Level Amplitude $(\mathrm{dB}\mu\mathrm{V})$
400 kHz		1000 MHz	
500 kHz		1150 MHz	
1 MHz		1300 MHz	
20 MHz		1450 MHz	
50 MHz		1600 MHz	
100 MHz		1750 MHz	
250 MHz		2000 MHz	
400 MHz		2300 MHz	
550 MHz		2600 MHz	
700 MHz		2900 MHz	
850 MHz			

61. Tracking Generator LO Feedthrough Amplitude, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

This performance verification test must be performed with the EMC analyzer set in the *spectrum analyzer mode*.

The tracking generator output is connected to the EMC analyzer INPUT 50 Ω and the tracking is adjusted at 300 MHz for a maximum signal level. The tracking generator output is then connected to the input of a microwave spectrum analyzer. The tracking generator is tuned to several different frequencies and the LO Feedthrough is measured at the frequency extremes of the LO.

There are no related adjustment procedures for this performance verification test.

Equipment Required

Microwave spectrum analyzer Cable, Type N, 62 cm (24 in) Cable, BNC, 23 cm (9 in) Adapter, Type N (m) to BNC (f)

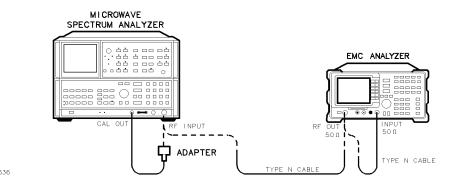


Figure 2-86.
LO Feedthrough Amplitude Test Setup,
HP 8593EM, HP 8594EM, HP 8595EM, and HP 8596EM

61. Tracking Generator LO Feedthrough Amplitude, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

Procedure

It is only necessary to perform step 1 if more than 2 hours have elapsed since a front-panel calibration of the microwave spectrum analyzer has been performed.

The microwave spectrum analyzer should be allowed to warm up for at least 30 minutes before proceeding.

1. Perform a front-panel calibration of the microwave spectrum analyzer by performing the following steps:

Note that the following steps are for an HP 8566A/B microwave spectrum analyzer, the steps may be different if you are using another microwave spectrum analyzer.

- a. Connect a BNC cable between CAL OUTPUT and RF INPUT.
- b. Press 2 22 GHz (INSTR PRESET), (RECALL), 8. Adjust AMPTD CAL for a marker-amplitude reading of -10 dBm.
- c. Press (RECALL), 9. Adjust FREQ ZERO for a maximum amplitude response.
- d. Press SHIFT, FREQUENCY SPAN to start the 30 second internal error correction routine.
- e. After the CALIBRATING! message disappears, press SHIFT, START FREQ to use the error correction factors just calculated.
- 2. Connect the Type N cable between the RF OUT 50 Ω and INPUT 50 Ω connectors on the EMC analyzer. See Figure 2-86.
- 3. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Set the EMC analyzer by pressing the following keys:

(FREQUENCY) Band Lock 0-2.9 Gz BAND 0 The HP 8594EM does not need to be band locked. (FREQUENCY) 300 (MHz) (SPAN) 0 (Hz) (BW) IF BW AUTO MAN (MAN) 30 (kHz)

(AUX/USER) Track Gen SRC PWR ON OFF (ON) 102 ($\overline{dB\mu V}$)

- 4. Press TRACKING PEAK, then wait for the PEAKING! message to disappear.
- 5. Press the following EMC analyzer keys:

2.382 Performance Verification Tests

61. Tracking Generator LO Feedthrough Amplitude, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

SRC PWR ON OFF (ON) - 1 (\overline{dBm}) (FREQUENCY) 9 (kHz) (SGL SWP)

- 6. Connect the Type N cable from the tracking generator output to the microwave spectrum analyzer RF INPUT. See Figure 2-86.
- 7. Set the microwave spectrum analyzer controls as follows:

CENTER FREQUENCY	Hz
SPAN	Ήz
REFERENCE LEVEL 0 dI	Зm
RES BW 1 k	Ήz
LOG dB/DIV	dB

- 8. On the microwave spectrum analyzer, press PEAK SEARCH and SIGNAL TRACK (ON), then wait for the signal to be displayed at center screen. Press SIGNAL TRACK (OFF).
- 9. On the microwave spectrum analyzer, press PEAK SEARCH, PRESEL PEAK, then wait for the PEAKING! message to disappear.
- 10. Record the microwave spectrum analyzer marker amplitude in Table 2-79 as the LO Feedthrough Amplitude for 3.9217 GHz.
- 11. Repeat steps 8 through 10 for the remaining EMC analyzer CENTER FREQ and microwave spectrum analyzer CENTER FREQUENCY settings listed in Table 2-79.
- 12. Locate in Table 2-79 the LO Feedthrough Amplitude with the greatest amplitude 9 kHz to 1.5 GHZ, then record the amplitude as **TR Entry 1** of the performance verification test record.
- 13. Locate in Table 2-79 the LO Feedthrough Amplitude for 2.9 GHz, then record the amplitude as TR Entry 2 of the performance verification test record.

61. Tracking Generator LO Feedthrough Amplitude, HP 8593EM, HP 8594EM, HP 8595EM, HP 8596EM Option 010

Table 2-79. LO Feedthrough Amplitude

EMC Analyzer Center Frequency	Microwave Spectrum Analyzer Center Frequency	LO Feedthrough Amplitude (dBm)
9 kHz	3.9214 GHz	
70 MHz	3.9914 GHz	
150 MHz	4.0714 GHz	
1.5 GHz	5.4214 GHz	
2.9 GHz	6.8214 GHz	

This is the only performance verification test that is performed with the EMC analyzer set in the EMC analyzer mode.

This CISPR pulse response measurement is made using a pulsed RF input signal rather than a pulse signal because the equipment is readily available, easily calibrated, and flexible in use. Pulsed RF setup considerations as well as the relationship between the two techniques are explained in Application Note 150-2.

The CISPR pulse response test measures the receiver quasi-peak detector receiver system's response to a pulsed RF input signal relative to that of a CW input signal and as a function of pulse repetition frequency. The output of the synthesizer/level generator is modulated by the pulse generator using the pulse modulator to yield the pulsed RF signal. The output of the pulse modulator is connected to the input of the device under test (DUT) with a BNC cable through 3 dB of attenuation. This provides protection as well as a controlled source match. Amplitude accuracy is ensured by measuring the output signal of the 3 dB attenuation using the power meter with the pulse modulator dc biased to provide a CW signal. This measured CW amplitude also corresponds to the burst amplitude of the pulsed RF input signal when the pulse modulator is appropriately driven. The system is tested, through the 200 Hz, 9 kHz, and 120 kHz EMI bandwidth filters with a pulse repetition frequency (PRF) corresponding to CISPR specifications. The required CW amplitude for the tests is calculated based on the DUT's impulse bandwidth, the pulse width of the pulsed RF, and the CISPR specified spectral intensity.

Equipment Required

Pulse generator Synthesizer/level generator Power meter Power sensor, 100 kHz to 1800 MHz Attenuator, 3 dB Modulator, TeleTech Cable, BNC, 122 cm (48 in) (two required) Adapter, Type N (f) to BNC (m) Adapter, Type N (m) to Type N (m)

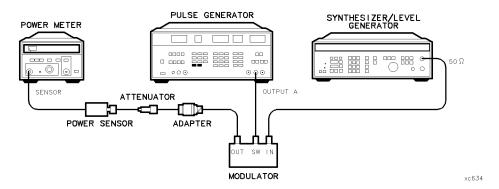


Figure 2-87. Input Amplitude Calibration Test Setup

Procedure

Input Amplitude Calibration

- 1. Zero and calibrate the power meter and the 100 kHz to 1800 MHz power sensor.
- 2. Connect the equipment as shown in Figure 2-87.
- 3. Press (RECALL) 0 on the pulse generator to preset the pulse generator. To bias the modulator on, set the pulse generator to the following settings:

Parameters:

LEE 3 n	S
TRE 3 n	
HIL+2 V	
LOL+1.8 V	I
DEL 0 n	S

Output Mode: Enabled

Channel A	50 Ω
Channel A	NORM

- 4. Press (STORE) 1 on the pulse generator to store the settings in storage register 1.
- 5. Set the synthesizer/level generator to the following settings:

2.386 Performance Verification Tests

FREQUENCY	 . 50 MHz
AMPLITUDE	 -3 dBm

6. Set the power meter to the following settings:

MODE	lBm
CAL FACTOR power sensor Ref Cal Factor for 50 M	MHz

- 7. Adjust synthesizer/level generator power level for a -6.99 dBm (± 0.03) reading on the power meter.
- 8. Record the synthesizer/level generator amplitude setting in Table 2-80 under Reference Amplitude at 50 MHz for the 200 Hz, 9 kHz and 120 kHz EMI bandwidths.

Table 2-80. Input Amplitude Calibration Worksheet

EMI Bandwidth	Reference Amplitude at 50 MHz	Amplitude Offset	Required Amplitude
200 Hz		-0.40	
9 kHz		0.05	
120 kHz		5.42	

9. Calculate the Required Amplitude for each EMI bandwidth using the following formula and enter each calculated Required Amplitude values in Table 2-80.

Reference Amplitude at 50 MHz + Amplitude Offset = Required Amplitude

Note that the reference amplitude is the same for the 200 Hz, 9 kHz, and 120 kHz filters.

10. On the synthesizer/level generator, press (STORE) 1 to store the previous setting of the synthesizer/level generator in storage register 1.

Isolation Check

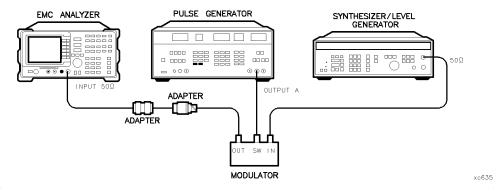


Figure 2-88. Isolation Check Test Setup

- 11. Connect the equipment as shown in Figure 2-88.
- 12. On the EMC analyzer, press the following keys:

MODE EMC ANALYZER

PRESET (Wait for the preset routine to finish.)

FREQUENCY CENTER FREQ 50 MHz

SPAN 1 MHz

AMPLITUDE SCALE LOG LIN (LIN)

More 1 of 3 Amptd Units $dB\mu V$ AMPLITUDE SCALE LOG LIN (LOG)

More 1 of 3 Amptd Units $dB\mu V$ MKR \rightarrow MARKER \rightarrow HIGH

SAVE/RECALL Save Internal STATE \rightarrow INTRNL 1

MKR \rightarrow More 1 of 3 MARKER \rightarrow REF LVL

MKR MARKER Δ

13.	Press (RECALL) 1 on the pulse generator. Set the pulse generator to the
	following settings to bias the modulator off. (Use the CHS) key to change
	signs of the entered value on the pulse generator.)

HIL	.5 V
LOL1	.7 V

14. Verify that the isolation of the modulator (the marker-delta reading) exceeds 70 dBc.

CW Measurement for 200 Hz EMI Bandwidth

- 15. Press (RECALL) 1 on the pulse generator.
- 16. Subtract 40 dB from the Reference Amplitude at 50 MHz in Table 2-80. Set the synthesizer/level generator amplitude to the calculated value by pressing (AMPLITUDE), (enter the calculated value), (-dBm).
- 17. Press (STORE) 2 on the synthesizer/level generator.
- 18. Press (PRESET) on the EMC analyzer, then wait for the preset routine to finish. Press the following EMC analyzer keys:

(SAVE/RECALL) Recall Internal INTERNAL → STATE 1

(MKR) MARKER NORMAL

(SPAN) 1 (kHz)

(BW) 200 Hz EMI BW

(DET) QP ON OFF (ON)

Note that this routine will take approximately 1 minute to execute.

(AMPLITUDE) REF LVL 67 ($dB\mu V$)

MKR → MARKER → HIGH

19. Record the marker reading displayed on the EMC analyzer screen in Table 2-81, under the Measured CW Amplitude for 200 Hz.

200 Hz Pulse RF Signal Setup

20. Press (RECALL) 1 on the pulse generator. Set the pulse generator to the following conditions. (Use the CHS) key to change the sign of the value entered on the pulse generator.)

PER	 	 	 	40 ms
WID	 	 	 	$\dots 0.1 \text{ ms}$
LOL	 	 	 	$\dots -1.7 V$

- 21. Press (RECALL) 1 on the synthesizer/level generator. Set the synthesizer/level generator amplitude to the required amplitude value for the 200 Hz filter recorded in Table 2-80 by pressing (AMPLITUDE), (enter the Required Amplitude for 200 Hz), (-dBm).
- 22. Press the following EMC analyzer keys:

(SPAN) ZERO SPAN

(SWEEP/TRIG) SWP TIME AUTO MAN (MAN) 2 (SEC)

(DET) QP ON OFF (ON)

Note that this routine will take approximately 1 minute to execute.

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

- 23. Record the marker amplitude reading in:
 - Table 2-81 as the Measured 25 Hz Amplitude for 200 Hz.
 - Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band A, 25 Hz Repetition Frequency.
 - Table 2-83 as the Measured Relative Equivalent Level of Pulse for Band A (QP) 25 Hz Repetition Frequency.
- 24. Press the following EMC analyzer keys:

$$(\overline{DET})$$
 AVG ON OFF (ON)
 $(\overline{MKR} \rightarrow)$ MARKER \rightarrow HIGH

- 25. Record the marker amplitude reading in Table 2-83 as the Measured Relative Equivalent Level of Pulse for Band A (AVG) 25 Hz Repetition Frequency.
- 26. Press the following EMC analyzer keys:

(DET) QP ON OFF (ON)

2.390 Performance Verification Tests

(AMPLITUDE) REF LVL $67 \text{ } (\text{dB}\mu\text{V})$

- 27. Set the PERIOD to 10 ms on the pulse generator.
- 28. Press the following EMC analyzer keys:

(SGL SWP)
MARKER → HIGH

- 29. Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band A, 100 Hz Repetition Frequency.
- 30. Set the PERIOD to 16.7 ms on the pulse generator.
- 31. Press the following EMC analyzer keys:

 $\begin{array}{c} (\overline{SGL\ SWP}) \\ (\overline{MKR} \rightarrow) \ MARKER \rightarrow \ HIGH \end{array}$

- 32. Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band A, 60 Hz Repetition Frequency.
- 33. Set the PERIOD to 100 ms on the pulse generator.
- 34. Press the following EMC analyzer keys:

 $\begin{array}{c} \text{(SGL SWP)} \\ \text{MARKER} \ \rightarrow \ \text{HIGH} \end{array}$

- 35. Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band A, 10 Hz Repetition Frequency.
- 36. Set the PERIOD to 200 ms on the pulse generator.
- 37. Press the following EMC analyzer keys:

(SGL SWP)MARKER \rightarrow HIGH

- 38. Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band A, 5 Hz Repetition Frequency.
- 39. Set the PERIOD to 500 ms on the pulse generator.
- 40. Press the following EMC analyzer keys:

 $\begin{array}{ccc} \hline \text{DET} & \text{QP/AVG} & \text{10X OFF} & (10X) \\ \hline \hline \text{SGL SWP} \\ \hline \text{MKR} & \rightarrow & \text{MARKER} & \rightarrow & \text{HIGH} \\ \end{array}$

- 41. Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band A, 2 Hz Repetition Frequency.
- 42. Set the PERIOD to 980 ms on the pulse generator.
- 43. Press the following EMC analyzer keys:

(SGL SWP)
MARKER → HIGH

- 44. Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band A, 1 Hz Repetition Frequency.
- 45. Press (TRIG) on the pulse generator.
- 46. Press (SGL SWP) on the EMC analyzer.
- 47. Let the EMC analyzer sweep 3 divisions then press MAN on the pulse generator.
- 48. Press MARKER → HIGH.
- 49. Record the Marker reading for Isolated Pulse Measurement for Band A in Table 2-82.

CW Measurement for 9 kHz EMI Bandwidth

- 50. Press (PRESET) on the EMC analyzer. Wait for the preset routine to finish.
- 51. Press (RECALL) 1 on the pulse generator.
- 52. Press (RECALL) 2 on the synthesizer/level generator.
- 53. Press the following keys on the EMC analyzer:

(SAVE/RECALL) Recall Internal INTERNAL \rightarrow STATE 1

(MKR) MARKER NORMAL

(SPAN) 20 (kHz)

(BW) 9 kHz EMI BW

(DET) QP ON OFF (ON)

Note that this routine takes approximately 1 minute to execute.

(AMPLITUDE) REF LVL $67 \text{ dB}\mu\text{V}$

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

54. Record the quasi-peak reading displayed below the signal on the EMC analyzer screen in Table 2-81, under the Measured CW Amplitude for 9 kHz.

9 kHz Pulse RF Signal Setup

55. Press (RECALL) 1 on the pulse generator. Set the pulse generator to the following conditions. (Use the (CHS) key to change the sign of the value entered on the pulse generator.)

PER	 10 ms
WID	 $\dots 2.2 \ \mu s$
LOL	 1.7 V

56. Press (RECALL) 1 on the synthesizer/level generator. Set the synthesizer/level generator amplitude to the required amplitude value for the 9 kHz filter recorded in Table 2-80 by pressing (AMPLITUDE), (enter the Required Amplitude for 9 kHz), (-dBm).

57. Press the following EMC analyzer keys:

(SPAN) ZERO SPAN

(SWEEP/TRIG) SWP TIME AUTO MAN (MAN) 2 (SEC)

(DET) QP ON OFF (ON)

Note that this routine will take approximately 1 minute to execute.

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

- 58. Record the marker amplitude reading in:
 - Table 2-81 as the Measured 100 Hz Amplitude for 9 kHz.
 - Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band B, 100 Hz Repetition Frequency.
- 59. Set the PERIOD to 1 ms on the pulse generator.
- 60. On the EMC analyzer, press $(\overline{MKR} \rightarrow)$ MARKER \rightarrow HIGH.
- 61. Record the marker amplitude reading in:
 - Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band B, 1000 Hz Repetition Frequency.
 - Table 2-83 as the Measured Relative Equivalent Level of Pulse for Band B (QP) 1000 Hz Repetition Frequency.
- 62. Press the following EMC analyzer keys:

 $(\overline{\text{DET}})$ AVG ON OFF (ON) $(\overline{\text{MKR}} \rightarrow)$ MARKER \rightarrow HIGH

- 63. Record the marker amplitude reading in Table 2-83 as the Measured Relative Equivalent Level of Pulse for Band B (AVG) 1000 Hz Repetition Frequency.
- 64. Press the following EMC analyzer keys:

(DET) QP ON OFF (ON)
(AMPLITUDE) REF LVL 67 ($dB\mu V$)

- 65. Set the PERIOD to 50 ms on the pulse generator.
- 66. Press (SGL SWP) on the EMC analyzer, then press (MKR \rightarrow MARKER \rightarrow HIGH.

2-394 Performance Verification Tests

Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band B, 20 Hz Repetition Frequency.

- 67. Set the PERIOD to 100 ms on the pulse generator.
- 68. On the EMC analyzer, press (SGL SWP), MARKER \rightarrow HIGH.

Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band B, 10 Hz Repetition Frequency.

- 69. Set the PERIOD to 500 ms on the pulse generator.
- 70. On the EMC analyzer, press the following keys:

(DET) QP/AVG 10X OFF (10X) (SGL SWP) $(MKR \rightarrow)$ MARKER \rightarrow HIGH

Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band B, 2 Hz Repetition Frequency.

- 71. Set the PERIOD to 980 ms on the pulse generator.
- 72. On the EMC analyzer, press (SGL SWP), MARKER \rightarrow HIGH. Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Band B, 1 Hz Repetition Frequency.
- 73. Press TRIG on the pulse generator. Press (SGL SWP) on the EMC analyzer. Let the EMC analyzer sweep 3 divisions then press MAN on the pulse generator. On the EMC analyzer, press MARKER -> HIGH. Record the Marker reading for Isolated Pulse Measurement for Band B in Table 2-82.

CW Measurement for 120 kHz EMI Bandwidth

- 74. Press (PRESET) on the EMC analyzer. Wait for the preset routine to finish.
- 75. Press (RECALL) 1 on the pulse generator.
- 76. Press (RECALL) 2 on the synthesizer/level generator.
- 77. Press (SAVE/RECALL) Recall Internal INTERNAL -> STATE 1 on the EMC analyzer.
- 78. On the EMC analyzer, press the following keys:

(MKR) MARKER NORMAL

(SPAN) 200 (kHz)

(DET) QP ON OFF (ON)

Note that this routine will take approximately 1 minute to execute.

(AMPLITUDE) REF LVL $72 \text{ (dB}\mu\text{V)}$

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

79. Record the reading displayed below signal on the EMC analyzer screen in Table 2-81 under the Measured CW Amplitude for 120 kHz.

120 kHz Pulse RF Signal Setup

80. Set the pulse generator to the following conditions:

PER	 	 	 10 ms
WID	 	 	 167 ns
LOL			−1 7 V

81. Press (RECALL) 1 on the synthesizer/level generator. Set the synthesizer/level generator amplitude to the required amplitude value for the 120 kHz filter recorded in Table 2-80 by pressing (AMPLITUDE), (enter the Required Amplitude for 120 kHz), (dBm).

82. Press the following EMC analyzer keys:

(SPAN) ZERO SPAN

(SWEEP/TRIG) SWP TIME AUTO MAN (MAN) 2 (SEC)

(DET) QP ON OFF (ON)

Note that this routine will take approximately 1 minute to execute.

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

- 83. Record the marker amplitude reading in:
 - Table 2-81 as the Measured 100 Hz Amplitude for the 120 kHz EMI bandwidth.
 - Table 2-82 as the Measured Relative Equivalent Level of Pulse for Bands C and D, 100 Hz Repetition Frequency.
- 84. Set PERIOD to 1 ms on the pulse generator.
- 85. On the EMC analyzer, press:

$$(\overline{SGL SWP})$$
 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

- 86. Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Bands C and D, 1000 Hz Repetition Frequency.
- 87. Set PERIOD to .1 ms on the pulse generator.
- 88. On the EMC analyzer, press (SGL SWP) MARKER \rightarrow HIGH.
- 89. Record the marker reading in Table 2-83 as the Measured Relative Equivalent Level of Pulse for Bands C and D (QP value) for 10 kHz Repetition Frequency.
- 90. On the EMC analyzer, press the following keys:

$$\begin{array}{ccc} \hline \text{DET} & \text{AVG} & \text{ON} & \text{OFF} & (\text{ON}) \\ \hline \text{(SGL SWP)} & \\ \hline \text{MKR} & \rightarrow & \text{MARKER} & \rightarrow & \text{HIGH} \\ \end{array}$$

91. Record the marker amplitude reading in Table 2-83 as the Measured Relative Equivalent Level of Pulse for Band C/D (AVG) 10,000 Hz Repetition Frequency.

92. On the EMC analyzer, press the following keys:

(DET) QP ON OFF (ON)

- 93. Set the PERIOD to 50 ms on the pulse generator.
- 94. On the EMC analyzer, press the following keys:

(DET) QP/AVG 10X OFF (10X)

(SGL SWP)

 $(MKR \rightarrow)$ MARKER \rightarrow HIGH

- 95. Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Bands C and D, 20 Hz Repetition Frequency.
- 96. Set PERIOD to 100 ms on the pulse generator. Press (SGL SWP)

 MARKER → HIGH on the EMC analyzer.

Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Bands C and D, 10 Hz Repetition Frequency.

97. Set the PERIOD to 500 ms on the pulse generator. Press ($\overline{\text{SGL SWP}}$) MARKER \rightarrow HIGH on the EMC analyzer.

Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Bands C and D, 2 Hz Repetition Frequency.

98. Set PERIOD to 980 ms on the pulse generator. Press (SGL SWP) MARKER \rightarrow HIGH on the EMC analyzer.

Record the marker amplitude reading in Table 2-82 as the Measured Relative Equivalent Level of Pulse for Bands C and D, 1 Hz Repetition Frequency.

- 99. Press (TRIG) on the pulse generator. Press (SGL SWP) on the EMC analyzer. Let the EMC analyzer sweep three divisions then press (MAN) on the pulse generator. Record the marker reading as the Isolated Pulse for Bands C and D in Table 2-82.
- 100. Enter the Measured value for Band A 25 Hz Repetition Frequency as the Reference value for all the Repetition Frequencies listed for Band A (in Table 2-82).

2-398 Performance Verification Tests

- 101. Enter the Measured value for the Band B 100 Hz Repetition Frequency as the Reference value for all the Repetition Frequencies listed for Band B.
- 102. Enter the Measured value for the Bands C and D 100 Hz Repetition Frequency as the Reference value for all the Repetition Frequencies listed for Bands C and D.
- 103. Calculate the error for each of the EMI bandwidths listed in Table 2-81 and record in the Error column. Use the following formula to calculate the
 - Measured CW Amplitude Measured Amplitude for 25 Hz or 100 Hz = Error
- 104. Calculate the error for each of the frequencies listed in Table 2-82 and record in the Error column. Use the following formula to calculate the error:
 - Measured Reference = Error
- 105. Calculate the error for each of the bands listed in Table 2-83 and record in the Error column. Use the following formula to calculate the error:
 - $Quasi-Peak\ Measurement-Average\ Measurement=Error$
- 106. Record the calculated error values from Table 2-81, and Table 2-82, and Table 2-83 in the performance verification test record.

Table 2-81. Quasi-Peak Detector Reference Accuracy Worksheet

EMI Bandwidth	Measured CW Amplitude	Measured Amplitude for 25 Hz or 100 Hz	Error	TR Entry
200 Hz				1
9 kHz				2
120 kHz				3

Table 2-82. Quasi-Peak Detector Accuracy

Repetition	Relative Equivalent Level of Pulse				
Frequency (Hz)	$\begin{array}{c} \mathbf{Measured} \\ \mathbf{(dB}\mu\mathbf{V)} \end{array}$	Reference $({ m d}{ m B}\mu{ m V})$	Error (dB)	TR Entry	
	Ba	nd A (200 Hz EMI B	W)		
100				4	
60				5	
25				6	
10 _				7	
5 _				8	
2 _				9	
1 _				10	
Isolated pulse _				11	
	Ba	and B (9 kHz EMI BV	V)		
<u></u>				1	
1000 _				12	
100				13	
20 _				14	
10 _				15	
2 _				16	
1 _				17	
Isolated pulse _				18	
	Bands	C and D (120 kHz El	MI BW)		
<u></u>				1	
1000				19	
100				20	
20				21	
10				22	
Performance Ve	rification Tests			23	
1 _				24	
Isolated pulse _				25	

2-400

Table 2-83. Average Detector Accuracy

	Repetition	Relative Equivale	nt Level of Pulse		TR Entry
Band	Frequency (Hz)	Quasi-Peak Measurement	Average Measurement	Error	
Band A	25				26
Band B	1000				27
Band C/D	10,000				28

Performance Test Records

Only the tests for HP 8591EM are included in this test record, therefore not all test numbers are included.

Table 3-42. HP 8591EM Performance Test Record

Hewlett-Packard Company			
Address:		Report No	
		Date	
		(For example: 10 MAY 1	995)
Model HP 8591EM			
Serial No			
Options			
Firmware Revision			
Customer		Tested by	
Ambient temperature	° C	Relative humidity	%
Power mains line frequency	Hz ((nominal)	
Test Equipment Used:			
Description	Model No.	Trace No.	Cal Due Date
Synthesized Sweeper			
$Synthesizer/Function\ Generator\ _$		· 	_
Synthesizer/Level Generator			
Signal Generator			
Measuring Receiver			
Power Meter			
RF Power Sensor		- 	
High-Sensitivity Power Sensor			
Pulse Generator		- 	
Microwave Frequency Counter			
Frequency Counter			
Frequency Standard			
Power Splitter			
300 MHz Low Pass Filter		-	
50 MHz Low Pass Filter		· -	
50Ω Termination		-	_
Microwave Spectrum Analyzer		-	_
(Option 010 only)			
Notes/Comments:			
3.4 Performance Test Records			
-			
=			
<u>-</u>			

HP 8591EM Performance Test Record (page 2 of 11)

Hewlett-Packard Company		Í		
Model HP 8591EM		Report No.		
Serial No.		Date		
Test Description		Results Measured		Measurement
lest Description	Min.	(TR Entry)	Max.	Uncertainty
1. 10 MHz Reference Output	1 11111	Frequency Error		o no or terming
Accuracy		r requeriey hiror		
Settability	– 150 Hz	(1)	+ 150 Hz	$\pm 4.2 \times 10^{-9}$
2. 10 MHz Precision Frequency		Frequency Error		
Reference Output Accuracy for Option 004				
5 Minute Warmup Error	-1×10^{-7}	(1)	+1 × 10 ⁻⁷	$\pm 2.004 \times 10^{-9}$
30 Minute Warmup Error	-1×10^{-8}	(2)	+1 × 10 ⁻⁸	$\pm 2.002 \times 10^{-9}$
4. Frequency Readout and Marker Count Accuracy				
Frequency Readout Accuracy		Frequency (MHz)		
SPAN				
20 MHz	1.49918	(1)	1.50082	$\pm 1~\mathrm{Hz}$
10 MHz	1.49958	(2)	1.50042	$\pm 1~\mathrm{Hz}$
1 MHz	1.4999680	(3)	1.500032	$\pm 1~\mathrm{Hz}$
20 kHz	1.49999924	(4)	1.50000076	±1 Hz
Marker Count Accuracy				
SPAN				
(CNT RES = 100 Hz) 20 MHz	1.4999989	(5)	1.5000011	±1.0 Hz
(CNT RES = 10 Hz) 1 MHz	1.49999989	(6)	1.50000011	±1.0 Hz
(CNT RES = 10 Hz) 20 kHz	1.49999989	(7)	1.50000011	±1.0 Hz
(CNT RES = 10 Hz) 2 kHz	1.49999989	(8)	1.50000011	$\pm 1.0~\mathrm{Hz}$
6. Noise Sidebands				
Suppression at 10 kHz	z	(1)	-60 dBc	±1.0 dB
Suppression at 20 kHz	z	(2)	-70 dBc	±1.0 dB
Suppression at 30 kHz	z	(3)	-75 dBc	$\pm 1.0~\mathrm{dB}$
7. System Related Sidebands				
Sideband Below Signa	l 65 dBc	(1)		$\pm 1.0~\mathrm{dB}$
Sideband Above Signa	l 65 dBc	(2)		$\pm 1.0~\mathrm{dB}$
			Performance	Test Records 3.5
8. Frequency Span Readout Accuracy				
SPAN		MKRΔ Reading		
1800 MHz	1446.00 MHz	(1)	1554.00 MHz	$\pm 6.37~\mathrm{MHz}$
$10.10~\mathrm{MHz}$	7.70 MHz	(2)	8.30 MHz	$\pm 35.4~\mathrm{kHz}$
$10.00~\mathrm{MHz}$	7.80 MHz	(3)	8.20 MHz	$\pm 3.54~\mathrm{kHz}$
100.00 kHz	78.00 kHz	(4)	82.00 kHz	$\pm 354~\mathrm{Hz}$
99.00 kHz	78.00 kHz	(5)	$82.06~\mathrm{kHz}$	$\pm 354~\mathrm{Hz}$
10.00 kHz	$7.80~\mathrm{kHz}$	(6)	$8.20~\mathrm{kHz}$	$\pm 3.54~\mathrm{Hz}$

HP 8591EM Performance Test Record (page 3 of 11)

Hewlett-Packard Company		1		
Model HP 8591EM		Report No.		
Serial No		Date		
Test Description		 Results Measured		Measurement
•	Min.	(TR Entry)	Max.	Uncertainty
10. Residual FM		, , , , , , , , , , , , , , , , , , , ,	j	
		(1)	250 Hz	±45.8 H
Narrow IF Bandwidth		(2)	30 Hz	±3.5 H
12. Sweep Time Accuracy				
SWEEP TIME		MKRΔ Reading		
20 ms	15.4 ms	(1)	16.6 ms	$\pm 0.057 \text{ m}$
100 ms	77.0 ms	(2)	83.0 ms	$\pm 0.283~{\rm m}$
1 s	770.0 ms	(3)	830.0 ms	$\pm 2.83~{\rm m}$
10 s	7.7 s	(4)	8.3 s	±23.8 m
13. Scale Fidelity				
Log Mode	-	Cumulative Error		
dB from Ref Level				
0	0 (Ref)	0 (Ref)	0 (Ref)	
-4	−4.34 dB	(1)	+3.66 dB	$\pm 0.06 \text{ d}$
-8	−8.38 dB	(2)	-7.62 dB	± 0.06 d
-22	– 12.42 dB	(3)	-11.58 dB	$\pm 0.06 \text{ d}$
- 16	−16.46 dB	(4)	-15.54 dB	$\pm 0.06 \text{ d}$
-20	-20.50 dB	(5)	-19.50 dB	± 0.06 d
-24	-24.54 dB	(6)	-23.46 dB	± 0.06 d
-28	-28.58 dB	(7)	-27.42 dB	± 0.06 d
-32	-32.62 dB	(8)	-31.38 dB	$\pm 0.06 \text{ d}$
-36	−36.66 dB	(9)	-35.34 dB	$\pm 0.06 \text{ d}$
- 40	-40.70 dB	(10)	-39.30 dB	$\pm 0.06 \text{ d}$
-44	-44.74 dB	(11)	-43.26 dB	$\pm 0.06 \text{ d}$
-48	-48.78 dB	(12)	-47.22 dB	$\pm 0.06 \text{ d}$
-52	−52.82 dB	(13)	-51.18 dB	$\pm 0.06 \text{ d}$
-56	−56.86 dB	(14)	-55.14 dB	$\pm 0.06 \text{ d}$
-60	-60.90 dB	(15)	-59.10 dB	$\pm 0.11 \text{ d}$
-64	-64.94 dB	(16)	-63.06 dB	$\pm 0.11 \text{ d}$
-68	-68.98 dB	(17)	-67.02 dB	$\pm 0.11 \text{ d}$
3.6 Performance	Test Records			

HP 8591EM Performance Test Record (page 4 of 11)

Hewlett-Packard Company	
Model HP 8591EM	Report No
Serial No.	Date

Test Description		Results Measured		Measurement
lest Description	Min.	(TR Entry)	Max.	Uncertainty
13. Scale Fidelity (continued)		(120 Miles y)	2,400.421	o no or miney
Log Mode		Incremental Error		
dB from Ref Level				
0	0 (Ref)	0 (Ref)	0 (Ref)	
-4	-0.4 dB	(18)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-8	-0.4 dB	(19)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-22	-0.4 dB	(20)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-16	-0.4 dB	(21)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-20	-0.4 dB	(22)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-24	-0.4 dB	(23)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-28	-0.4 dB	(24)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-32	-0.4 dB	(25)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-36	-0.4 dB	(26)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-4 0	-0.4 dB	(27)	+ 0.4 dB	± 0.06 dE
-44	-0.4 dB	(28)	+ 0.4 dB	± 0.06 dE
-48	-0.4 dB	(29)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-52	-0.4 dB	(30)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-56	-0.4 dB	(31)	+ 0.4 dB	$\pm 0.06~\mathrm{dH}$
-60	-0.4 dB	(32)	+ 0.4 dB	$\pm 0.11 \text{ dF}$
Narrow IF Bandwidth				
Log Mode		Cumulative Error		
dB from Ref Level				
0	0 (Ref)	0 (Ref)	0 (Ref)	
-4	-4.44 dB	(33)	+ 3.56 dB	$\pm 0.06 \text{ dB}$
-8	-8.48 dB	(34)	-7.52 dB	$\pm 0.06 \text{ dB}$
-22	-12.52 dB	(35)	-11.48 dB	$\pm 0.06 \text{ dE}$
-16	-16.56 dB	(36)	-15.44 dB	$\pm 0.06 \text{ dE}$
-20	-20.60 dB	(37)	-19.40 dB	±0.06 dE
-24	-24.64 dB	(38)	-23.36 dB	±0.06 dE
-28	−28.68 dB	(39)	-27.32 dB	±0.06 dF
-32	-32.72 dB	(40)	-31.28 dB	±0.06 dE
-36	-36.76 dB	(41)	-35.24 dB	±0.06 dB
-40	-40.80 dB	(42)		Test Recards &
-44	-44.84 dB	(43)	-43.16 dB	$\pm 0.06 \text{ dB}$
-48	-48.88 dB	(44)	-47.12 dB	±0.06 dF
-52	−52.92 dB	(45)	-51.08 dB	$\pm 0.06 \text{ dB}$
-56	−56.96 dB	(46)	-55.04 dB	±0.06 dF
-60	-61.00 dB	(47)	-59.00 dB	$\pm 0.11 \text{ dE}$
-64	-65.04 dB	(48)	-62.96 dB	$\pm 0.11 \text{ dE}$
-68	-69.08 dB	(49)	-66.92 dB	$\pm 0.11 \text{ dB}$

HP 8591EM Performance Test Record (page 5 of 11)

Hewlett-Packard Company		1		
Model HP 8591EM		Report No.		
Serial No.		Date		
Test Description		 Results Measured	I	Measurement
Test Description	in.	(TR Entry)	Max.	Uncertainty
13. Scale Fidelity (continued)		(,)		y
Narrow IF Bandwidth				
Log Mode		Incremental Error		
dB from Ref Level				
0	0 (Ref)	0 (Ref)	0 (Ref)	
-4	-0.4 dB	(50)	+0.4 dB	$\pm 0.06~\mathrm{dB}$
-8	-0.4 dB	(51)	+0.4 dB	$\pm 0.06~\mathrm{dB}$
-22	-0.4 dB	(52)	+0.4 dB	$\pm 0.06~\mathrm{dB}$
- 16	-0.4 dB	(53)	+0.4 dB	$\pm 0.06~\mathrm{dB}$
-20	-0.4 dB	(54)	+0.4 dB	$\pm 0.06~\mathrm{dB}$
-24	-0.4 dB	(55)	+0.4 dB	± 0.06 dE
-28	-0.4 dB	(56)	+0.4 dB	± 0.06 dE
-32	-0.4 dB	(57)	+0.4 dB	± 0.06 dE
-36	-0.4 dB	(58)	+0.4 dB	$\pm 0.06~\mathrm{dB}$
-4 0	-0.4 dB	(59)	+0.4 dB	± 0.06 dE
-44	-0.4 dB	(60)	+0.4 dB	$\pm 0.06~\mathrm{dB}$
- 48	-0.4 dB	(61)	+0.4 dB	$\pm 0.06~\mathrm{dB}$
- 52	-0.4 dB	(62)	+0.4 dB	± 0.06 dE
- 56	-0.4 dB	(63)	+0.4 dB	$\pm 0.06~\mathrm{dB}$
-60	-0.4 dB	(64)	+ 0.4 dB	$\pm 0.11 \text{ dB}$
Linear Mode				
% of Ref Level				
100.00	0 (Ref)	0 (Ref)	0 (Ref)	
70.70 151	.59 mV	(65)	165.01 mV	± 1.84 mV
50.00 105	.36 mV	(66)	118.78 mV	$\pm 1.84~\mathrm{mV}$
35.48 72	2.63 mV	(67)	86.05 mV	± 1.84 mV
25.00 49	.46 mV	(68)	82.88 mV	$\pm 1.84~\mathrm{mV}$
Narrow IF Bandwidth				
% of Ref Level				
100.00	0 (Ref)	0 (Ref)	0 (Ref)	
70.70 151	.59 mV	(69)	165.01 mV	$\pm 1.84~\mathrm{mV}$
	.36 mV	(70)	118.78 mV	$\pm 1.84~\mathrm{mV}$
3⋅8 Peg <u>forg</u> nance Test ₇ B	eeg rds	(71)	86.05 mV	±1.84 mV
25.00 49	.46 mV	(72)	82.88 mV	$\pm 1.84~\mathrm{mV}$
Log-to-Linear Switching	0.25 d B	(73)	+ 0.25 dB	$\pm 0.05~\mathrm{dB}$
Narrow IF Bandwidth -	0.25 d B	(74)	+ 0.25 dB	$\pm 0.05~\mathrm{dB}$

HP 8591EM Performance Test Record (page 6 of 11)

Hewlett-Packard Company	
Model HP 8591EM	Report No.
Serial No	Date

	_			
Test Description		Results Measured	1	Measurement
	Min.	(TR Entry)	Max.	Uncertainty
14. Reference Level Accuracy				
Log Mode				
Reference Level (dB μ V)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	-0.40 dB	(1)	+ 0.40 dB	$\pm 0.06~\mathrm{dB}$
107	-0.50 dB	(2)	+ 0.50 dB	$\pm 0.06~\mathrm{dB}$
77	-0.40 dB	(3)	+ 0.40 dB	$\pm 0.06~\mathrm{dB}$
67	-0.50 dB	(4)	+ 0.50 dB	$\pm 0.08~\mathrm{dB}$
57	-0.80 dB	(5)	+ 0.80 dB	$\pm 0.08~\mathrm{dB}$
47	-1.00 dB	(6)	+ 1.00 dB	$\pm 0.12~\mathrm{dB}$
37	-1.10 dB	(7)	+ 1.10 dB	$\pm 0.12~\mathrm{dB}$
27	-1.20 dB	(8)	+ 1.20 dB	$\pm 0.12~\mathrm{dB}$
17	-1.30 dB	(9)	+ 1.30 dB	$\pm 0.12~\mathrm{dB}$
Linear Mode				
Reference Level (dBµV)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	-0.40 dB	(10)	+ 0.40 dB	±0.06 dB
107	-0.50 dB	(11)	+ 0.50 dB	$\pm 0.06~\mathrm{dB}$
77	-0.40 dB	(12)	+ 0.40 dB	$\pm 0.06~\mathrm{dB}$
67	-0.50 dB	(13)	+ 0.50 dB	$\pm 0.08~\mathrm{dB}$
57	-0.80 dB	(14)	+ 0.80 dB	$\pm 0.08~\mathrm{dB}$
47	-1.00 dB	(15)	+ 1.00 dB	$\pm 0.12~\mathrm{dB}$
37	-1.10 dB	(16)	+ 1.10 dB	$\pm 0.12~\mathrm{dB}$
27	-1.20 dB	(17)	+ 1.20 dB	$\pm 0.12~\mathrm{dB}$
17	-1.30 dB	(18)	+ 1.30 dB	$\pm 0.12~\mathrm{dB}$
Narrow IF Bandwidth				
Log Mode				
Reference Level (dB μ V)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	-0.40 dB	(19)	+ 0.40 dB	$\pm 0.06~\mathrm{dB}$
107	-0.50 dB	(20)	+ 0.50 dB	$\pm 0.06~\mathrm{dB}$
77	-0.50 dB	(21)	+ 0.50 dB	$\pm 0.06~\mathrm{dB}$
67	-0.50 dB	(22)	Let to the other	Test Recards 38
57	-0.80 dB	(23)	+0.80 dB	$\pm 0.08~\mathrm{dB}$
47	-1.20 dB	(24)	+ 1.10 dB	$\pm 0.12~\mathrm{dB}$
37	-1.20 dB	(25)	+ 1.20 dB	$\pm 0.12~\mathrm{dB}$
27	-1.30 dB	(26)	+ 1.30 dB	$\pm 0.12~\mathrm{dB}$
17	-1.40 dB	(27)	+ 1.40 dB	$\pm 0.12~\mathrm{dB}$

HP 8591EM Performance Test Record (page 7 of 11)

Hewlett-Packard Company	
Model HP 8591EM	Report No.
Serial No.	Date

m D		B 1. 16	ı	
Test Description	Min.	Results Measured (TR Entry)	Max.	Measurement Uncertainty
14. Reference Level Accuracy	MIII.	(1K Entry)	Max.	Oncertainty
(continued)				
$Narrow\ IF\ Bandwidth$				
Linear Mode				
Reference Level (dB μ V)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	-0.40 dB	(28)	+ 0.40 dB	$\pm 0.06~\mathrm{dB}$
107	-0.50 dB	(29)	+ 0.50 dB	$\pm 0.06~\mathrm{dB}$
77	−0.50 dB	(30)	+0.50 dB	$\pm 0.06~\mathrm{dB}$
67	-0.50 dB	(31)	+0.50 dB	$\pm 0.08~\mathrm{dB}$
57	−0.80 dB	(32)	+0.80 dB	$\pm 0.08~\mathrm{dB}$
47	-1.20 dB	(33)	+ 1.10 dB	$\pm 0.12~\mathrm{dB}$
37	-1.20 dB	(34)	+ 1.20 dB	$\pm 0.12~\mathrm{dB}$
27	-1.30 dB	(35)	+ 1.30 dB	$\pm 0.12~\mathrm{dB}$
17	-1.40 dB	(36)	+ 1.40 dB	$\pm 0.12~\mathrm{dB}$
16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties				
Absolute Amplitude Uncertainty	$+86.85\mathrm{dB}\mu\mathrm{V}$	(1)	$+87.15~\mathrm{dB}\mu\mathrm{V}$	N/A
Resolution (IF) Bandwidth Switching Uncertainty				
Resolution (IF) Bandwidth				
3 kHz	0 (Ref)	0 (Ref)	0 (Ref)	
1 kHz	-0.5 dB	(2)	+ 0.5 dB	+ 0.07/-0.08 dB
9 kHz	−0.4 dB	(3)	+ 0.4 dB	+ 0.07/-0.08 dB
10 kHz	−0.4 dB	(4)	+ 0.4 dB	+ 0.07/ - 0.08 dB
$30~\mathrm{kHz}$	−0.4 dB	(5)	+ 0.4 dB	+ 0.07/- 0.08 dB
100 kHz	-0.4 dB	(6)	+ 0.4 dB	+ 0.07/-0.08 dB
120 kHz	−0.4 dB	(7)	+ 0.4 dB	+ 0.07/- 0.08 dB
$300~\mathrm{kHz}$	−0.4 dB	(8)	+ 0.4 dB	+ 0.07/-0.08 dB
2.10 hMHz	ce Test-Records	(9)	+0.4 dB	+ 0.07/ - 0.08 dB
3.10 Peyforman 3 MHz	-0.4 dB	(10)	+ 0.4 dB	+ 0.07/- 0.08 dB
$Narrow\ IF\ Bandwidth$		` ,		
3 kHz	0 (Ref)	0 (Ref)	0 (Ref)	
300 Hz	−0.6 dB	(11)	+ 0.6 dB	+ 0.07/- 0.08 dB
200 Hz	−0.6 dB	(12)	+0.6 dB	+ 0.07/- 0.08 dB
100 Hz	−0.6 dB	(13)	+0.6 dB	+ 0.07/- 0.08 dB
$30~\mathrm{Hz}$	−0.6 dB	(14)	+0.6 dB	+ 0.07/-0.08 dB

HP 8591EM Performance Test Record (page 8 of 11)

Hewlett-Packard Company	
Model HP 8591EM	Report No.
Serial No.	Date

Serial No.		Date			
Test Description		Results Measured		Measurement	
	Min.	(TR Entry)	Max.	Uncertainty	
17. Resolution (IF) Bandwidth Accuracy					
3 dB Bandwidth					
3 MHz	$2.4~\mathrm{MHz}$	(1)	3.6 MHz	$\pm 138~\mathrm{kHz}$	
300 kHz	$240~\mathrm{kHz}$	(2)	360 kHz	$\pm 13.8~\mathrm{kHz}$	
100 kHz	80 kHz	(3)	120 kHz	$\pm 4.6~\mathrm{kHz}$	
30 kHz	$24~\mathrm{kHz}$	(4)	36 kHz	± 1.38 kH:	
10 kHz	8 kHz	(5)	12 kHz	±460 Hz	
3 kHz	$2.4~\mathrm{kHz}$	(6)	3.6 kHz	±138 Hz	
1 kHz	$0.8~\mathrm{kHz}$	(7)	1.2 kHz	±46 Hz	
6 dB EMI Bandwidth					
9 kHz	7.2 kHz	(8)	10.8 kHz	±333 Hz	
120 kHz	96 kHz	(9)	144 kHz	±4.44 kHz	
1 MHz	0.9 MHz	(10)	1.1 MHz	±46 kHz	
Narrow IF Bandwidth		()			
3 dB Bandwidth					
300 Hz	240 Hz	(11)	360 Hz	±36 H:	
100 Hz	80 Hz	(12)	120 Hz	±12 Hz	
30 Hz	24 Hz	(13)	36 Hz	±3.9 Hz	
6 dB EMI Bandwidth		,			
200 Hz	160 Hz	(14)	240 Hz	±24 Hz	
18. Calibrator Amplitude					
Accuracy	00 4 ID	(1)	10.6 ID	100 1	
	−20.4 dBm	(1)	-19.6 dBm	±0.2 dF	
19. Frequency Response					
Max Positive Response		(1)	+ 1.5 dB	+0.32/-0.33 dB	
Max Negative Response	– 1.5 dB	(2)		+0.32/-0.33 dF	
Peak-to-Peak Response		(3)	2.0 dB	+0.32/-0.33 dI	
24. Other Input Related					
Spurious Responses	55 AD -	(1)	Performance	Test Recor <u>ds</u> _{1.0} 3 _d 1	
542.8 MHz	55 dBc	(1) (2)			
1142.8 MHz	55 dBc	(2)		±1.0 dF	
29. Spurious Responses					
Second Harmonic Distortion		(1)	-45 dBc	+ 1.86/-2.27 dI	
Third Order Intermodulation		(2)	-54 dBc	+2.07/-2.42 dB	
Distortion					

HP 8591EM Performance Test Record (page 9 of 11)

I	Report No		
_ I	Date		
	Results Measured		Measurement
n.	(TR Entry)	Max.	Uncertainty
j		İ	
į	(1)	0.5 dB	+ 0.21/-0.22 d
	(2)	0.5 dB	+ 0.21/-0.22 d
	(1)	$-23 \text{ dB}\mu\text{V}$	+ 1.15/– 1.25 d
	(2)	$-23 \text{ dB}\mu\text{V}$	+ 1.15/ – 1.25 d
	(3)	$-23 \text{ dB}\mu\text{V}$	+ 1.15/- 1.25 d
	(4)	$-21~\mathrm{dB}\mu\mathrm{V}$	+ 1.15/ – 1.25 d
	(1)	$17~\mathrm{dB}\mu\mathrm{V}$	+ 1.09/ – 1.15 d
).933 X		1.007X	0
.04 ms	(1)	14.76 ms	± 0.5
	, ,		±0.5
	(3)	`	±0.5
$78~\mu s$	(4)	$82 \mu s$	±0.5
5.6 μs	(5)	$16.4~\mu\mathrm{s}$	± 0.59
1.0 dB		+ 1.0 dB	+ 0.25/- 0.26 d
	(2)	+ 0.75 dB	$\pm 0.033 \text{ d}$
.75 dB	(3)		$\pm 0.033 \text{ d}$
	(4)	1.5 dB	$\pm 0.033 \text{ d}$
ecords			
	0.933X .04 ms .80 ms 780 μs	Results Measured (TR Entry) (1)	Results Measured (TR Entry) Max. (1)

HP 8591EM Performance Test Record (page 10 of 11)

Hewlett-Packard Company		1			
Model HP 8591EM		Report No.			
Serial No		Date			
Test Description		Results Measured		Measurement	
	Min.	(TR Entry)	Max.	Uncertainty	
52. Tracking Generator Level Flatness					
Option 010 only:					
Maximum Flatness					
100 kHz		(1)	+ 1.75 dB	+0.42/-0.45 dB	
300 kHz to 5 MHz		(2)	+ 1.75 dB	+0.28/-0.28 dB	
10 MHz to 1800 MHz		(3)	+ 1.75 dB	+0.24/-0.24 dB	
Minimum Flatness					
100 kHz	-1.75 dB	(4)		+0.42/-0.45 dB	
300 kHz to 5 MHz	-1.75 dB	(5)		+0.28/-0.28 dB	
10 MHz to 1800 MHz	-1.75 dB	(6)	Ī	+0.24/-0.24 dB	
54. Harmonic Spurious Outputs					
Option 010 only:					
2nd Harmonic Level	$25~\mathrm{dBc}$	(1)		+1.55/-1.80 dB	
3rd Harmonic Level	$25~\mathrm{dBc}$	(2)		+ 1.55/-1.80 dB	
56. Non-Harmonic Spurious Outputs					
Option 010 only: Highest Non-Harmonic Response Amplitude	30 d Bc	(1)		+ 1.55/ – 1.80 dB	
58. Tracking Generator Feedthrough					
Option 010 only:		(1)	$1~\mathrm{dB}\mu\mathrm{V}$	+1.15/-1.24 dB	

HP 8591EM Performance Test Record (page 11 of 11)

Hewlett-Packard Company	1
Model HP 8591EM	Report No
Serial No.	Date

Test Description		Results Measured	Ī	Measurement
	Min.	(TR Entry)	Max.	Uncertainty
62. CISPR Pulse Response				
Measured Amplitude				
200 Hz EMI BW	-1.5 dB	(1)	+ 1.5 dB	$\pm 0.34~\mathrm{dB}$
9 kHz EMI BW	-1.5 dB	(2)	+ 1.5 dB	$\pm 0.34~\mathrm{dB}$
120 kHz EMI BW	-1.5 dB	(3)	+ 1.5 dB	$\pm 0.50~\mathrm{dB}$
Relative Level, 200 Hz EMI BW				
Repetition Frequency				
100	3.0 dB	(4)	+5.0 dB	$\pm 0.24~\mathrm{dB}$
60	2.0 dB	(5)	+ 4.0 dB	$\pm 0.26~\mathrm{dB}$
25	0 (Ref)	(6)	0 (Ref)	0 (Ref)
10	-3.0 dB	(7)	-5.0 dB	$\pm 0.29~\mathrm{dB}$
5	-6.0 dB	(8)	-9.0 dB	$\pm 0.30~\mathrm{dB}$
2	-11.0 dB	(9)	-15.0 dB	$\pm 0.36~\mathrm{dB}$
1	-15.0 dB	(10)	-19.0 dB	$\pm 0.28~\mathrm{dB}$
Isolated Pulse	-17.0 dB	(11)	-21.0 dB	±0.20 dB
Relative Level, 9 kHz EMI BW				
Repetition Frequency				
1000	+5.5 dB	(12)	+3.5 dB	$\pm 0.17~\mathrm{dB}$
100	0 (Ref)	(13)	0 (Ref)	0 (Ref)
20	−5.5 dB	(14)	-7.5 dB	$\pm 0.27~\mathrm{dB}$
10	-8.5 dB	(15)	-11.5 dB	$\pm 0.25~\mathrm{dB}$
2	-18.5 dB	(16)	−22.5 dB	$\pm 0.23~\mathrm{dB}$
1	-20.5 dB	(17)	−24.5 dB	$\pm 0.19~\mathrm{dB}$
Isolated Pulse	−21.5 dB	(18)	−25.5 dB	$\pm 0.15~\mathrm{dB}$
Relative Level, 120 kHz EMI BW				
Repetition Frequency				
1000	+9.0 dB	(19)	+7.0 dB	$\pm 0.17~\mathrm{dB}$
100	0 (Ref)	(20)	0 (Ref)	0 (Ref)
20	-8.0 dB	(21)	-10.0 dB	$\pm 0.18~\mathrm{dB}$
10	–12.5 dB	(22)	−15.5 dB	$\pm 0.18~\mathrm{dB}$
2	-24.0 dB	(23)	-28.0 dB	$\pm 0.18~\mathrm{dB}$
3⋅14 Perfo _f man¢	e Tes <u>t Bec</u> ords	(24)	-30.5 dB	$\pm 0.18~\mathrm{dB}$
Isolated Pulse	−29.5 dB	(25)	−33.5 dB	±0.17 dB
Band, Bandwidth, Repetition Frequency				
Band A, 200 Hz, 25 Hz	+ 9.4 dB	(26)	+ 13.4 dB	$\pm 0.28~\mathrm{dB}$
Band B, 9 kHz, 1000 Hz	+ 14.4 dB	(27)	+ 18.4 dB	$\pm 0.17~\mathrm{dB}$
Band C/D, $120~\mathrm{kHz},~10,000~\mathrm{Hz}$	$+\ 17.8\ dB$	(28)	+21.8~dB	$\pm 0.18~\mathrm{dB}$

Only the tests for HP 8593EM are included in this test record, therefore not all test numbers are included.

Table 3-43. HP 8593EM Performance Test Record

Hewlett-Packard Company			
Address:		Report No	
		Date	
		(For example: 10 MAY 1	995)
Model HP 8593EM			
Serial No			
Options			
Firmware Revision			
Customer		Tested by	
Ambient temperature	°C	Relative humidity	%
Power mains line frequency	Hz	(nominal)	
Test Equipment Used:			
Description	Model No.	Trace No.	Cal Due Date
Synthesized Sweeper		:	
Synthesizer/Function Generator _		_	_
Synthesizer/Level Generator _			
Signal Generator		:	
Measuring Receiver			
Power Meter			
RF Power Sensor			
High-Sensitivity Power Sensor			
Pulse Generator			_
Microwave Frequency Counter _			_
Frequency Counter			
Frequency Standard			
Power Splitter			
50 MHz Low Pass Filter			
4.4 GHz Low Pass Filter			
50 Ω Termination		_	
• ,		_	_
(Option 010)			
Notes/Comments:			
-		Parfor	mance Test Records 3:
-		1 611011	nanso loot nootho J.
-			

HP 8593EM Performance Test Record (page 2 of 13)

	ewlett-Packard Company		I		
	odel HP 8593EM Report No.				
Serial No.			Date		
	Test Description		Results Measured	l	Measurement
	100 t D 00 01 1p 110 11	Min.	(TR Entry)	Max.	Uncertainty
1.	10 MHz Reference Output			, i	
	Accuracy				
			Frequency Error	1	
	Settability	-150 Hz	(1)	+ 150 Hz	$\pm 4.2 \times 10^{-9}$
2.	10 MHz Precision Frequency Reference Output Accuracy for Option 004		Frequency Error		
	5 Minute Warmup Error	-1×10^{-7}	(1)	+ 1 × 10 ⁻⁷	$\pm 2.004 \times 10^{-9}$
	30 Minute Warmup Error	-1×10^{-8}	(1)(2)	+ 1 × 10 ⁻⁸	$\pm 2.002 \times 10^{-9}$
3.	Comb Generator Frequency Accuracy				
		-	Frequency (MHz)		
	Comb Generator Frequency	99.993	(1)	100.007	$\pm 25~\mathrm{Hz}$
5.	Frequency Readout and Marker Count Accuracy			.	
	Frequency = 1.5 GHz				
	SPAN				
	20 MHz	1.49918	(1)	1.50082	$\pm 1.0~\mathrm{Hz}$
	10 MHz	1.49958	(2)	1.50042	$\pm 1.0~\mathrm{Hz}$
	1 MHz	1.4999680	(3)	1.500032	$\pm 1.0~\mathrm{Hz}$
	Frequency = 4.0 GHz				
	SPAN				
	20 MHz	3.99918	(4)	4.00082	$\pm 1.0~\mathrm{Hz}$
	10 MHz	3.99958	(5)	4.00042	$\pm 1.0~\mathrm{Hz}$
	1 MHz	3.9999680	(6)	4.000032	$\pm 1.0~\mathrm{Hz}$
	Frequency = 9.0 GHz				
	SPAN				
	20 MHz	8.99918	(7)	9.00082	$\pm 2.0~\mathrm{Hz}$
	10 MHz	8.99958	(8)	9.00042	$\pm 2.0~\mathrm{Hz}$
	1 MHz	8.9999680	(9)	9.000032	$\pm 2.0~\mathrm{Hz}$
	Frequency = 3618 GIPerforman	ce Test Records			
	SPAN				
	20 MHz	15.99918	(10)	16.00082	$\pm 3.0~\mathrm{Hz}$
	10 MHz	15.99958	(11)	16.00042	$\pm 3.0~\mathrm{Hz}$
	1 MHz	15.9999680	(12)	16.000032	$\pm 3.0~\mathrm{Hz}$
	I				

HP 8593EM Performance Test Record (page 3 of 13)

Hewlett-Packard Company	
Model HP 8593EM	Report No
Serial No	Date

Test Description	,	Results Measured	ı	Measurement
	Min.	(TR Entry)	Max.	Uncertainty
5. Frequency Readout and Marker Count Accuracy (continued)				
Frequency = 21.0 GHz				
SPAN				
20 MHz	20.99918	(13)	21.00082	±4.0 Hz
10 MHz	20.99958	(14)	21.00042	±4.0 H:
1 MHz	20.9999680	(15)	21.000032	±4.0 H
$Narrow\ IF\ Bandwidth$				
SPAN				
20 kHz	1.49999924	(16)	1.50000076	±1.0 Hz
Marker Count Accuracy				
Frequency = 1.5 GHz				
SPAN				
(CNT RES = 100 Hz) 20 MHz	1.4999989	(17)	1.5000011	±1 H:
(CNT RES = 10 Hz) 1 MHz	1.49999989	(18)	1.50000011	±1 H:
Frequency = 4.0 GHz				
SPAN				
(CNT RES = 100 Hz) 20 MHz	3.9999989	(19)	4.0000011	±1 H:
(CNT RES = 10 Hz) 1 MHz	1.99999989	(20)	1.00000011	±1 H:
Frequency = 9.0 GHz				
SPAN				
(CNT RES = 100 Hz) 20 MHz	8.9999989	(21)	9.0000011	±2 Hz
(CNT RES = 10 Hz) 1 MHz	8.99999989	(22)	9.00000011	±2 Hz
Frequency = 16.0 GHz				
SPAN				
(CNT RES = 100 Hz) 20 MHz	15.9999989	(23)	16.0000011	±3 Hz
(CNT RES = 10 Hz) 1 MHz	15.99999989	(24)	16.00000011	±3 H:
Frequency = 21.0 GHz				
SPAN				
(CNT RES = 100 Hz) 20 MHz	20.9999989	(25)	21.0000011	±4 Hz
(CNT RES = 10 Hz) 1 MHz	20.99999989	(26)	Performance	Test Records±43HL
$Narrow\ IF\ Bandwidth$				
SPAN				
(CNT RES = 10 Hz) 20 kHz	1.49999989	(27)	1.50000011	±1.0 H:
(CNT RES = 10 Hz) 2 kHz	1.49999989	(28)	1.50000011	±1.0 Hz

HP 8593EM Performance Test Record (page 4 of 13)

Hewlett-Packard Company Model HP 8593EM Report No				
Serial No.		Date		
Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
6. Noise Sidebands				
Suppression at 10 kHz		(1)	-60 dBc	$\pm 1.0 d$
Suppression at 20 kHz		(2)	-70 dBc	$\pm 1.0 d$
Suppression at 30 kHz		(3)	-75 dBc	±1.0 d
7. System Related Sidebands				
Sideband Below Signal	$65~\mathrm{dBc}$	(1)		$\pm 1.0 d$
Sideband Above Signal	$65~\mathrm{dBc}$	(2)		±1.0 d
9. Frequency Span Readout Accuracy			l	
SPAN		MKR∆ Reading		
		O		
1800 MHz	1446.00 MHz	(1)	1554.00 MHz	$\pm 6.37~\mathrm{MH}$
10.10 MHz	7.70 MHz	(2)	8.30 MHz	±35.4 kF
10.00 MHz	7.80 MHz	(3)	8.20 MHz	$\pm 35.4~\mathrm{kH}$
100.00 kHz	78.00 kHz	(4)	82.00 kHz	±354 F
99.00 kHz	78.00 kHz	(5)	82.00 kHz	±354 F
10.00 kHz	7.80 kHz	(6)	8.20 kHz	±3.54 H
$Narrow\ IF\ Bandwidth$				
1.00 kHz	0.78 kHz	(7)	0.82 kHz	±3.54 H
11. Residual FM				
		(1)	250 Hz	±45.8 H
Narrow IF Bandwidth		(2)	30 Hz	±3.5 H
12. Sweep Time Accuracy			l	
SWEEP TIME		MKR∆ Reading		
20 ms	15.4 ms	(1)	16.6 ms	± 0.057 m
100 ms	$77.0~\mathrm{ms}$	(2)	83.0 ms	±0.283 m
1 s	770.0 ms	(3)	830.0 ms	$\pm 2.83~{ m n}$
10 s	7.7 s	(4)	8.3 s	±23.8 m

HP 8593EM Performance Test Record (page 5 of 13)

Hewlett-Packard Company	
Model HP 8593EM	Report No.
Serial No.	Date

Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
13. Scale Fidelity				
Log Mode		Cumulative Error		
dB from Ref Level				
0	0 (Ref)	0 (Ref)	0 (Ref)	
-4	-4.34 dB	(1)	+3.66 dB	± 0.06 dE
-8	-8.38 dB	(2)	-7.62 dB	$\pm 0.06~\mathrm{dH}$
-22	-12.42 dB	(3)	-11.58 dB	$\pm 0.06~\mathrm{dH}$
- 16	-16.46 dB	(4)	-15.54 dB	$\pm 0.06~\mathrm{dH}$
-20	-20.50 dB	(5)	-19.50 dB	$\pm 0.06~\mathrm{dH}$
-24	-24.54 dB	(6)	-23.46 dB	$\pm 0.06~\mathrm{dH}$
-28	-28.58 dB	(7)	-27.42 dB	$\pm 0.06~\mathrm{dB}$
-32	-32.62 dB	(8)	-31.38 dB	$\pm 0.06~\mathrm{dH}$
-36	-36.66 dB	(9)	-35.34 dB	$\pm 0.06~\mathrm{dB}$
-4 0	-40.70 dB	(10)	-39.30 dB	$\pm 0.06~\mathrm{dH}$
-44	-44.74 dB	(11)	-43.26 dB	$\pm 0.06~\mathrm{dH}$
-48	-48.78 dB	(12)	-47.22 dB	$\pm 0.06~\mathrm{dH}$
-52	−52.82 dB	(13)	-51.18 dB	$\pm 0.06~\mathrm{dH}$
-56	-56.86 dB	(14)	-55.14 dB	$\pm 0.06~\mathrm{dH}$
-60	-60.90 dB	(15)	-59.10 dB	$\pm 0.11 \text{ dB}$
-64	-64.94 dB	(16)	-63.06 dB	$\pm 0.11 \text{ dB}$
-68	-68.98 dB	(17)	-67.02 dB	$\pm 0.11 \text{ dB}$
Log Mode		Incremental Error		
dB from Ref Level				
0	0 (Ref)	0 (Ref)	0 (Ref)	
-4	-0.4 dB	(18)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-8	-0.4 dB	(19)	+ 0.4 dB	$\pm 0.06~\mathrm{dB}$
-22	-0.4 dB	(20)	+ 0.4 dB	±0.06 dF
- 16	-0.4 dB	(21)	+ 0.4 dB	$\pm 0.06~\mathrm{dH}$
-20	-0.4 dB	(22)	+ 0.4 dB	±0.06 dF
-24	-0.4 dB	(23)	+ 0.4 dB	±0.06 dF
-28	-0.4 dB	(24)	+ 0.4 dB	±0.06 dF
-32	-0.4 dB	(25)	+ 0.4 dB	±0.06 dF
-36	-0.4 dB	(26)	Perform <u>a</u> ngg 1	[est Reco <u>r</u> ds _{.06} 3 _d 2
-40	-0.4 dB	(27)	+ 0.4 dB	±0.06 dF
-44	-0.4 dB	(28)	+ 0.4 dB	±0.06 dF
-48	-0.4 dB	(29)	+ 0.4 dB	±0.06 dF
- 52	-0.4 dB	(30)	+ 0.4 dB	±0.06 dF
-56	-0.4 dB	(31)	+ 0.4 dB	±0.06 dI
-60	-0.4 dB	(32)	+ 0.4 dB	±0.11 dE
		. ,		

HP 8593EM Performance Test Record (page 6 of 13)

Model HP 8593EM		Report No.			
Serial No.		Date			
Test Descript	ion		Results Measured		Measurement
		Min.	(TR Entry)	Max.	Uncertainty
13. Scale Fidelity (co	ntinued)				
Narrow IF Band	lwidth				
	Log Mode		Cumulative Error		
dB from	Ref Level				
	0	0 (Ref)	0 (Ref)	0 (Ref)	
	-4	-4.44 dB	(33)	+ 3.56 dB	$\pm 0.06 \text{ d}$
	-8	-8.48 dB	(34)	−7.52 dB	$\pm 0.06 \text{ d}$
	-22	−12.52 dB	(35)	-11.48 dB	$\pm 0.06 \text{ d}$
	- 16	-16.56 dB	(36)	-15.44 dB	$\pm 0.06 \text{ d}$
	-20	-20.60 dB	(37)	-19.40 dB	$\pm 0.06 \text{ d}$
	-24	-24.64 dB	(38)	-23.36 dB	$\pm 0.06 \text{ d}$
	-28	-28.68 dB	(39)	-27.32 dB	±0.06 d
	-32	-32.72 dB	(40)	−31.28 dB	±0.06 d
	-36	-36.76 dB	(41)	−35.24 dB	±0.06 d
	-40	-40.80 dB	(42)	-39.20 dB	±0.06 d
	- 44	-44.84 dB	(43)	-43.16 dB	±0.06 d
	-48	-48.88 dB	(44)	-47.12 dB	±0.06 d
	-52	-52.92 dB	(45)	-51.08 dB	±0.06 d
	-56	-56.96 dB	(46)	-55.04 dB	±0.06 d
	-60	-61.00 dB	(47)	-59.00 dB	±0.11 d
	-64	-65.04 dB	(48)	-62.96 dB	±0.11 d
	-68	-69.08 dB		-66.92 dB	±0.11 d
M IE D		-00.00 U D	(10)	-00.82 db	±0.11 d
Narrow IF Band					
ID e	Log Mode	-	Incremental Error 		
aB Irom	Ref Level	0 (D 8)	0 (Ref)	0 (D 6)	
	0	0 (Ref)	i '	0 (Ref)	10.06.4
	-4	-0.4 dB	(50)		±0.06 d
	-8	-0.4 dB	(51)	+ 0.4 dB	±0.06 d
	-22	-0.4 dB	(52)	+ 0.4 dB	±0.06 d
	- 16	-0.4 dB	(53)	+ 0.4 dB	±0.06 d
	-20	-0.4 dB	(54)	+ 0.4 dB	±0.06 d
3.22	-24	–0.4 dB e Test_Recogds	(55)	+ 0.4 dB	±0.06 d
3.22			(56)	+ 0.4 dB	±0.06 d
	-32	-0.4 dB	(57)	+ 0.4 dB	±0.06 d
	-36	-0.4 dB	(58)	+ 0.4 dB	±0.06 d
	-40	-0.4 dB	(59)	+ 0.4 dB	±0.06 d
	- 44	-0.4 dB	(60)	+ 0.4 dB	±0.06 d
'	-48	−0.4 dB	(61)	+ 0.4 dB	$\pm 0.06 \text{ d}$
	-52	−0.4 dB	(62)	+ 0.4 dB	±0.06 d
	- 56	-0.4 dB	(63)	+0.4 dB	$\pm 0.06 d$

-60

-0.4 dB

(64)

+0.4~dB

 $\pm 0.11~\mathrm{dB}$

HP 8593EM Performance Test Record (page 7 of 13)

Hewlett-Packard Company	
Model HP 8593EM	Report No.
Serial No.	Date

Test Description	ı	Results Measured	ı	Measurement
	Min.	(TR Entry)	Max.	Uncertainty
13. Scale Fidelity (continued)	I		.	
Linear Mode				
% of Ref Level	0 (D 6)	0 (D, s)	0 (D 5)	
100.00 70.70	0 (Ref)	0 (Ref) (65)	0 (Ref)	1 1 0 4 ··· V
	151.59 mV		165.01 mV	±1.84 mV
50.00	105.36 mV	(66)	118.78 mV	±1.84 mV
35.48	72.63 mV	(67)	86.05 mV 82.88 mV	±1.84 mV
25.00	49.46 mV	(68)	82.88 m v	±1.84 mV
Narrow IF Bandwidth				
% of Ref Level	0 (P m)	0 (17) (17)	0 (7) (8)	
100.00	0 (Ref)	0 (Ref)	0 (Ref)	1104 1
70.70	151.59 mV	(69)	165.01 mV	±1.84 mV
50.00	105.36 mV	(70)	118.78 mV	±1.84 mV
35.48	72.63 mV	(71)	86.05 mV	±1.84 mV
25.00	49.46 mV	(72)	82.88 mV	±1.84 mV
Log-to-Linear Switching	-0.25 dB	(73)	+ 0.25 dB	$\pm 0.05 \text{ dB}$
Narrow IF Bandwidth	−0.25 dB	(74)	+ 0.25 dB	±0.05 dB
15. Reference Level Accuracy				
Log Mode				
Reference Level (dBµV)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	-0.40 dB	(1)	+ 0.40 dB	$\pm 0.06~\mathrm{dB}$
107	-0.50 dB	(2)	+0.50 dB	$\pm 0.06~\mathrm{dB}$
77	-0.40 dB	(3)	+ 0.40 dB	$\pm 0.06~\mathrm{dB}$
67	-0.50 dB	(4)	+0.50 dB	$\pm 0.08~\mathrm{dB}$
57	-0.80 dB	(5)	+0.80 dB	$\pm 0.08~\mathrm{dB}$
47	-1.00 dB	(6)	+ 1.00 dB	$\pm 0.12~\mathrm{dB}$
37	-1.10 dB	(7)	+ 1.10 dB	$\pm 0.12~\mathrm{dB}$
27	-1.20 dB	(8)	+ 1.20 dB	$\pm 0.12~\mathrm{dB}$
17	-1.30 dB	(9)	+ 1.30 dB	$\pm 0.12~\mathrm{dB}$
Linear Mode				
Reference Level (dB μ V)			Performance	Test Records 3-23
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	-0.40 dB	(10)	+ 0.40 dB	$\pm 0.06~\mathrm{dB}$
107	-0.50 dB	(11)	+ 0.50 dB	$\pm 0.06~\mathrm{dB}$
77	-0.40 dB	(12)	+0.40 dB	$\pm 0.06~\mathrm{dB}$
67	-0.50 dB	(13)	+0.50 dB	$\pm 0.08~\mathrm{dB}$
57	-0.80 dB	(14)	+0.80 dB	$\pm 0.08~\mathrm{dB}$
47	-1.00 dB	(15)	+ 1.00 dB	$\pm 0.12~\mathrm{dB}$
37	-1.10 dB	(16)	+ 1.10 dB	$\pm 0.12~\mathrm{dB}$

Hewlett-Packard Company		I		
Model HP 8593EM		Report No.		
Serial No.		Date		
Test Description		 Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
15. Reference Level Accuracy (continued)				
Narrow IF Bandwidth				
Log Mode				
Reference Level (dBµV)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	−0.40 dB	(19)	+ 0.40 dB	± 0.06 c
107	−0.50 dB	(20)	+ 0.50 dB	± 0.06 c
77	−0.50 dB	(21)	+ 0.50 dB	±0.06 c
67	−0.50 dB	(22)	+ 0.50 dB	±0.08 d
57	−0.80 dB	(23)	+ 0.80 dB	± 0.08 c
47	−1.20 dB	(24)	+ 1.10 dB	± 0.12 c
37	−1.20 dB	(25)	+ 1.20 dB	± 0.12 c
27	−1.30 dB	(26)	+ 1.30 dB	± 0.12 c
17	−1.40 dB	(27)	+ 1.40 dB	± 0.12 c
Linear Mode				
Reference Level (dB μ V)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
77	−0.40 dB	(28)	+ 0.40 dB	± 0.06 c
107	−0.50 dB	(29)	+ 0.50 dB	±0.06 c
77	−0.50 dB	(30)	+ 0.50 dB	±0.06 c
67	−0.50 dB	(31)	+ 0.50 dB	±0.08 d
57	−0.80 dB	(32)	+ 0.80 dB	±0.08 d
47	−1.20 dB	(33)	+ 1.10 dB	± 0.12 c
37	−1.20 dB	(34)	+ 1.20 dB	± 0.12 c
27	−1.30 dB	(35)	+ 1.30 dB	± 0.12 c
17	-1.40 dB	(36)	+ 1.40 dB	±0.12 c
16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties				
	86.85 dBµV Test Records	(1)	$+87.15~\mathrm{dB}\mu\mathrm{V}$	N
Resolution (IF) Bandwidth Switching Uncertainty				
Resolution (IF) Bandwidth				
3 kHz	0 (Ref)	0 (Ref)	0 (Ref)	
1 kHz	-0.5 dB	· · ·	+ 0.5 dB	+ 0.07/- 0.08

 $-0.4~\mathrm{dB}$

 $-0.4~\mathrm{dB}$

-0.4 dB

-0.4 dB

(3)

(4) _

(5)

(6)

 $9~\mathrm{kHz}$

 $10~\mathrm{kHz}$

 $30~\mathrm{kHz}$

 $100~\mathrm{kHz}$

+0.4~dB

+0.4~dB

+0.4~dB

+0.4~dB

+0.07/-0.08~dB

+0.07/-0.08 dB

+0.07/-0.08~dB

 $+0.07/-0.08 \ dB$

HP 8593EM Performance Test Record (page 9 of 13)

Hewlett-Packard Company			
Model HP 8593EM	Report No.		
Serial No.	Date		

Test Description	Min.	Results Measured (TR Entry)	Max.	Measurement Uncertainty
16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties (continued)		, ,		
120 kHz	-0.4 dB	(7)	+ 0.4 dB	+0.07/-0.08 dl
300 kHz	-0.4 dB	(8)	+ 0.4 dB	+0.07/-0.08 d
1 MHz	-0.4 dB	(9)	+ 0.4 dB	+0.07/-0.08 d
3 MHz	-0.4 dB	(10)	+ 0.4 dB	+0.07/-0.08 d
$Narrow\ IF\ Bandwidth$				
3 kHz	0 (Ref)	0 (Ref)	0 (Ref)	
300 Hz	-0.6 dB	(11)	+ 0.6 dB	+0.07/-0.08 d
200 Hz	-0.6 dB	(12)	+ 0.6 dB	+0.07/-0.08 d
100 Hz	-0.6 dB	(13)	+ 0.6 dB	+0.07/-0.08 d
30 Hz	-0.6 dB	(14)	+ 0.6 dB	+0.07/-0.08 d
17. Resolution (IF) Bandwidth Accuracy				
3 dB Bandwidth				
3 MHz	$2.4~\mathrm{MHz}$	(1)	3.6 MHz	$\pm 138~\mathrm{kH}$
300 kHz	$240~\mathrm{kHz}$	(2)	360 kHz	$\pm 13.8~\mathrm{kH}$
100 kHz	80 kHz	(3)	120 kHz	$\pm 4.6~\mathrm{kH}$
30 kHz	24 kHz	(4)	36 kHz	$\pm 1.38~\mathrm{kH}$
10 kHz	8 kHz	(5)	12 kHz	±460 H
3 kHz	$2.4~\mathrm{kHz}$	(6)	3.6 kHz	±138 H
1 kHz	$0.8~\mathrm{kHz}$	(7)	1.2 kHz	±46 I
6 dB EMI Bandwidth				
9 kHz	7.2 kHz	(8)	10.8 kHz	±333 I
120 kHz	96 kHz	(9)	144 kHz	±4.44 kH
1 MHz	0.9 MHz	(10)	1.1 MHz	±46 kH
Narrow IF Bandwidth	j	, ,		
3 dB Bandwidth				
300 Hz	$240~\mathrm{Hz}$	(11)	360 Hz	±36 H
100 Hz	80 Hz	(12)	120 Hz	±12 H
30 Hz	24 Hz	(13)	Performange	Test Recor <u>ds_{3.9}3</u> F
6 dB EMI Bandwidth		•		
200 Hz	160 Hz	(14)	240 Hz	±24 H
18. Calibrator Amplitude Accuracy				
	-20.4 dBm	(1)	-19.6 dBm	±0.2 d

HP 8593EM Performance Test Record (page 10 of 13)

Hewlett-Packard Company	i			
Model HP 8593EM	Report No.	Report No.		
Serial No.	Date	Date		
Test Description	Results Measured	Measurem		

1			ı	
Test Description	M:	Results Measured	M	Measurement
20 F B	Min.	(TR Entry)	Max.	Uncertainty
20. Frequency Response Band 0				
Max Positive Response		(1)	+ 1.5 dB	+ 0.32/ - 0.33 dB
Max Negative Response	-1.5 dB	(2)	+ 1.5 db	+ 0.32/- 0.33 dB
Peak-to-Peak Response	-1.5 db	(3)	2.0 dB	+ 0.32/- 0.33 dB
Band 1		(9)	2.0 db	+ 0.52/ = 0.55 db
Max Positive Response		(4)	+ 2.0 dB	+ 0.40/- 0.42 dB
Max Negative Response	-2.0 dB	(5)	1 2.0 db	+ 0.40/- 0.42 dB
Peak-to-Peak Response	-2.0 dB	(6)	3.0 dB	+ 0.40/- 0.42 dB + 0.40/- 0.42 dB
Band 2		(0)	0.0 ub	1 0.40/ 0.12 db
Max Positive Response		(7)	+ 2.5 dB	+ 0.42/ - 0.43 dB
Max Negative Response	-2.5 dB	(8)		+ 0.42/- 0.43 dB
Peak-to-Peak Response		(9)	4.0 dB	+ 0.42/- 0.43 dB
Band 3		(-)	2.7	
Max Positive Response		(10)	+ 3.0 dB	+ 0.52/- 0.55 dB
Max Negative Response	-3.0 dB	(11)		+ 0.52/- 0.55 dB
Peak-to-Peak Response		(12)	4.0 dB	+ 0.52/- 0.55 dB
Band 4		· ,		
Max Positive Response		(13)	+ 3.0 dB	+ 0.54/- 0.57 dB
Max Negative Response	-3.0 dB	(14)		+ 0.54/- 0.57 dB
Peak-to-Peak Response		(15)	4.0 dB	+ 0.54/-0.57 dB
Band 4 for Option 026 or 027				
Max Positive Response		(13)	+5.0 dB	$+0.54/-0.57 \ dB$
Max Negative Response	-5.0 dB	(14)		+0.54/-0.57~dB
Peak-to-Peak Response		(15)	4.0 dB	+ 0.54/-0.57 dB
25. Other Input Related Spurious Responses				
50 kHz to 2.9 GHz	$55~\mathrm{dBc}$	(1)		+ 1.12/ - 1.21 dB
≤18 GHz	$55~\mathrm{dBc}$	(2)		+ 1.13/ – 1.22 dB
≤22 GHz	$50~\mathrm{dBc}$	(3)		+ 1.15/ – 1.25 dB
Option 026 or 027 only:				
3.26 ₹26.5 GHz	e Test Records	(3)		+ 1.15/ – 1.25 dB
30. Spurious Response Second Harmonic Distortion Applied Frequency				
40 MHz		(1)	-50 dBc	+ 1.86/-2.27 dB
2.8 GHz		(3)	(2)	+ 2.24/-2.72 dB
Third Order Intermodulation Distortion			(Step 23c)	

Frequency

HP 8593EM Performance Test Record (page 11 of 13)

Hewlett-Packard Company				
Model HP 8593EM		Report No.		
Serial No.		Date		
Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
35. Gain Compression				
<2.9 GHz		(1)	0.5 dB	+0.21/-0.22 dB
>2.9 GHz		(2)	0.5 dB	+0.21/-0.22 dB
Narrow IF Bandwidth		(3)	0.5 d B	+0.21/-0.22 dB
40. Displayed Average Noise Level				
Frequency				
400 kHz		(1)	−20 dBµV	+ 1.15/ – 1.25 dB
1 MHz		1 ' '	$-20 \text{ dB}\mu\text{V}$ $-20 \text{ dB}\mu\text{V}$	+ 1.15/= 1.25 dB + 1.15/= 1.25 dB
		(2)	•	+ 1.15/– 1.25 dB + 1.15/– 1.25 dB
1 MHz to 2.9 GHz			-20 dBμV	
2.75 to 6.4 GHz		(4)	-22 dBμV	+ 1.15/–1.25 dB
6.0 to 12.8 GHz		(5)	$-10 \text{ dB}\mu\text{V}$	+ 1.15/–1.25 dB
12.4 to 19.4 GHz		(6)	-6 dBμV	+ 1.15/–1.25 dB
19.1 to 22 GHz		(7)	$0 \text{ dB}\mu\text{V}$	+ 1.15/-1.25 dB
Option 026 or 027 only:				
19.1 to 26.5 GHz		(8)	$5~\mathrm{dB}\mu\mathrm{V}$	+ 1.15/-1.25 dB
46. Residual Responses				
150 kHz to 6.4 GHz		(1)	$17~\mathrm{dB}\mu\mathrm{V}$	+ 1.09/-1.15 dB
48. Fast Time Domain Sweeps				
Options 101 and 301 only:				
Amplitude Resolution	0.933X		1.007X	0%
SWEEP TIME				
18 ms	14.04 ms	(1)	14.76 ms	±0.5%
10 ms	$7.80~\mathrm{ms}$	(2)	8.20 ms	±0.5%
1.0 ms	$780~\mu\mathrm{s}$	(3)	$820~\mu s$	±0.5%
$100~\mu \mathrm{s}$	$78~\mu\mathrm{s}$	(4)	$82~\mu s$	$\pm 0.5\%$
$20~\mu \mathrm{s}$	$15.6~\mu\mathrm{s}$	(5)	$16.4~\mu \mathrm{s}$	±0.5%
50. Absolute Amplitude				
Accuracy			Performance	Test Records 3-27
Option 010 only:				
Absolute Amplitude Accuracy	−20.75 dBm	(1)	- 19.25 dBm	+ .155/ – .161 dB
Positive Vernier Accuracy		(2)	+0.50 dB	$\pm 0.03~\mathrm{dB}$
Negative Vernier Accuracy	−0.50 dB	(3)		$\pm 0.03~\mathrm{dB}$
Positive Step-to-Step Accuracy		(4)	+ 1.20 dB	$\pm 0.03~\mathrm{dB}$
Negative Step-to-Step Accuracy	-0.80 dB	(5)		$\pm 0.03~\mathrm{dB}$

HP 8593EM Performance Test Record (page 12 of 13)

Hewlett-Packard Company Model HP 8593EM		Report No.		
Serial No.		Date		
Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
51. Power Sweep Range				
Option 010 only:				
Start Power Level		(1)		
Stop Power Level		(2)		
Power Sweep Range	9.0 d B	(3)		±0.03 d
53. Tracking Generator Level Flatness				
Option 010 only:				
Maximum Flatness				
9 kHz to 100 kHz		(1)	+2.0 dB	+ 0.42/- 0.45 d
100 kHz to 2900 MHz		(2)	+ 2.0 dB	+ 0.42/- 0.45 d
Minimum Flatness				
9 kHz to 100 kHz	-2.0 dB	(3)		+ 0.42/- 0.45 d
100 kHz to 2900 MHz	-2.0 dB	(4)		+ 0.42/- 0.45 d
Too Kiiz to 2500 Miiz	-2.0 db	(4)		1 0.42/ - 0.49 d.
55. Harmonic Spurious Outputs				
Option 010 only:				
2nd Harmonic Level, 9 kHz	15 dBc	(1)		+ 1.55/- 1.80 d
2nd Harmonic Level,	25 dBc	1 ' '		+ 1.55/- 1.80 d
25 kHz to 900 MHz		(-)		
2nd Harmonic Level, 1.4 GHz	$25~\mathrm{dBc}$. , _		+ 3.45/- 4.01 d
3rd Harmonic Level, 9 kHz	$15~\mathrm{dBc}$	(4)		+ 1.55/ – 1.80 d
3rd Harmonic Level, 25 kHz to 900 MHz	25 d Bc	(5)		+ 1.55/- 1.80 d
57. Non-Harmonic Spurious Outputs				
Option 010 only:				
Highest Non-Harmonic				
Response Amplitude				
9 kHz to 2000 MHz	27 dBc			+ 1.55/- 1.80 d
2000 MHz to 2900 MHz	23 dBc	(2)		+ 3.45/- 4.01 d
3.28 Performance	Test Records			
60. Tracking Generator Feedthrough				
Option 010 only:				
400 kHz to 2.9 GHz		(1)	$-5~\mathrm{dB}\mu\mathrm{V}$	+ 1.59/– 1.70 d
61. Tracking Generator LO Feedthrough Amplitude				

(1)

 $-16~{\rm dBm}~\pm 2.02/-2.50~{\rm dB}$

Option 010 only:

 $9~\mathrm{kHz}$ to $1.5~\mathrm{GHz}$

HP 8593EM Performance Test Record (page 13 of 13)

Hewlett-Packard Company	
Model HP 8593EM	Report No
Serial No.	Date

Test Description	M	Results Measured	1 24	Measurement
40 CIGDD D I D	Min.	(TR Entry)	Max.	Uncertainty
62. CISPR Pulse Response		4 11 1 17		
		Amplitude Error		
Measured Amplitude	1.5 ID	(4)	15.10	1004 10
200 Hz EMI BW	– 1.5 dB	(1)	+ 1.5 dB	±0.34 dB
9 kHz EMI BW	-1.5 dB	(2)	+ 1.5 dB	±0.34 dB
120 kHz EMI BW	– 1.5 dB	(3)	+ 1.5 dB	$\pm 0.50 \text{ dB}$
Relative Level, 200 Hz EMI BW				
Repetition Frequency				
100	3.0 dB	(4)	+ 5.0 dB	$\pm 0.24~\mathrm{dB}$
60	2.0 dB	(5)	+ 4.0 dB	$\pm 0.26~\mathrm{dB}$
25	0 (Ref)	(6)	0 (Ref)	0 (Ref)
10	-3.0 dB	(7)	-5.0 dB	$\pm 0.29~\mathrm{dB}$
5	-6.0 dB	(8)	-9.0 dB	$\pm 0.30~\mathrm{dB}$
2	-11.0 dB	(9)	-15.0 dB	$\pm 0.36 \text{ dB}$
1	-15.0 dB	(10)	-19.0 dB	$\pm 0.28~\mathrm{dB}$
Isolated Pulse	-17.0 dB	(11)	-21.0 dB	$\pm 0.20~\mathrm{dB}$
Relative Level, 9 kHz EMI BW				
Repetition Frequency				
1000	+ 5.5 dB	(12)	+ 3.5 dB	$\pm 0.17 \text{ dB}$
100	0 (Ref)	(13)	0 (Ref)	0 (Ref)
20	−5.5 dB	(14)	−7.5 dB	$\pm 0.27~\mathrm{dB}$
10	−8.5 dB	(15)	-11.5 dB	$\pm 0.25~\mathrm{dB}$
2	−18.5 dB	(16)	−22.5 dB	$\pm 0.23~\mathrm{dB}$
1	-20.5 dB	(17)	−24.5 dB	$\pm 0.19~\mathrm{dB}$
Isolated Pulse	−21.5 dB	(18)	−25.5 dB	$\pm 0.15~\mathrm{dB}$
Relative Level, 120 kHz EMI BW				
Repetition Frequency				
1000	+9.0 dB	(19)	+ 7.0 dB	$\pm 0.17~\mathrm{dB}$
100	0 (Ref)	(20)	0 (Ref)	0 (Ref)
20	-8.0 dB	(21)	-10.0 dB	$\pm 0.18~\mathrm{dB}$
10	-12.5 dB	(22)	−15.5 dB	$\pm 0.18~\mathrm{dB}$
2	-24.0 dB	(23)	-28.0 dB	±0.18 dB
1	−26.5 dB	(24)	Per <u>to</u> gmance	Test Reco <u>rds</u> $_{18}$ 3 $_{ m dB}$ 9
Isolated Pulse	-29.5 dB	(25)	−33.5 dB	$\pm 0.17~\mathrm{dB}$
Band, Bandwidth, Repetition Frequency				
Band A, 200 Hz, 25 Hz	+9.4 dB	(26)	+ 13.4 dB	$\pm 0.28~\mathrm{dB}$
Band B, 9 kHz, 1000 Hz	+ 14.4 dB	(27)	+ 18.4 dB	$\pm 0.17~\mathrm{dB}$
Band C/D, 120 kHz , $10,000 \text{ Hz}$	$+\ 17.8\ dB$	(28)	+21.8~dB	$\pm 0.18~\mathrm{dB}$

Only the tests for HP 8594EM are included in this test record, therefore not all test numbers are included.

Table 3-44. HP 8594EM Performance Test Record

Hewlett-Packard Company			
Address:		Report No	
		Date	
		(For example: 10 MAY 19	
Model HP 8594EM		(For example, To MIII To	50)
Serial No.			
Options			
Firmware Revision			
Customer		Tested by	
Ambient temperature	°C	Relative humidity	%
Power mains line frequency	Hz	(nominal)	
Test Equipment Used:			
Description	Model No.	Trace No.	Cal Due Date
Frequency Counter _			
Frequency Standard			
Low Pass Filter, 50 MHz			
Low Pass Filter, 300 MHz			
Measuring Receiver _			
Microwave Frequency Counter _			-
Microwave Spectrum Analyzer _		<u> </u>	-
(Option 010)			
Power Meter			-
RF Power Sensor		<u> </u>	· -
High-Sensitivity Power Sensor _			
Power Splitter			
Pulse Generator			
Signal Generator			
Synthesized Sweeper			-
${ m Synthesizer/Function\ Generator\ }$			
Synthesizer/Level Generator _			
Termination, 50 Ω _			
Notes/Comments:			
3.32 Performance Test Records	<u> </u>		
=			
_			

HP 8594EM Performance Test Record (page 2 of 11)

He	ewlett-Packard Company		1			
Model HP 8594EM		Report No.				
Serial No			Date			
	T4 Di-4i		Results Measured	1	M	
	Test Description	Min.	(TR Entry)	Max.	Measurement Uncertainty	
1	10 MHz Reference Output	Will.	(TR Entry)	Max.	Check tallity	
1.	Accuracy					
	·		Frequency Error			
	Settability	– 150 Hz	(1)	+ 150 Hz	$\pm 4.2 \times 10^{-9}$	
9	10 MHz Precision Frequency		Frequency Error			
۷.	Reference Accuracy Output for Option 004		rrequency Error			
	5 Minute Warmup Error	-1×10^{-7}	(1)	+1 × 10 ⁻⁷	$\pm 2.004 \times 10^{-9}$	
	30 Minute Warmup Error	-1×10^{-8}	(2)	+1 x 10 ⁻⁸	$\pm 2.002 \times 10^{-9}$	
4.	Frequency Readout and Marker Count Accuracy		<u> </u>			
	Frequency Readout Accuracy		Frequency (MHz)			
	Frequency = 1.5 GHz					
	SPAN					
	20 MHz	1.49918	(1)	1.50082	$\pm 1.0~\mathrm{Hz}$	
	10 MHz	1.49958	(2)	1.50042	$\pm 1.0~\mathrm{Hz}$	
	1 MHz	1.4999680	(3)	1.500032	$\pm 1.0~\mathrm{Hz}$	
	$Narrow\ IF\ Ban\ dwidth$					
	$20~\mathrm{kHz}$	1.49999924	(4)	1.50000076	$\pm 1.0~\mathrm{Hz}$	
	Frequency = 1.5 GHz					
	SPAN					
	(CNT RES = 100 Hz) 20 MHz	1.4999989	(5)	1.5000011	$\pm 1.0~\mathrm{Hz}$	
	(CNT RES = 10 Hz) 1 MHz	1.49999989	(6)	1.50000011	$\pm 1.0~\mathrm{Hz}$	
	$Narrow\ IF\ Bandwidth$					
	(CNT RES = 10 Hz) 20 kHz	1.49999989	(7)	1.50000011	$\pm 1.0~\mathrm{Hz}$	
	(CNT RES = 10 Hz) 2 kHz	1.49999989	(8)	1.50000011	±1.0 Hz	
6.	Noise Sidebands					
	Suppression at 10 kHz		(1)	-60 dBc	$\pm 1.0~\mathrm{dB}$	
	Suppression at 20 kHz		(2)	-70 dBc	±1.0 dB	
	Suppression at 30 kHz		(3)	−75 dBc	$\pm 1.0~\mathrm{dB}$	
				Performance	Test Records 3.3:	
7.	System Related Sidebands					
	Sideband Above Signal	65 d Bc	(1)		±1.0 dB	
	Sideband Below Signal	$65~\mathrm{dBc}$	(2)		±1.0 dB	
1			1	1		

HP 8594EM Performance Test Record (page 3 of 11)

Hewlett-Packard Company Model HP 8594EM		Report No.			
Serial No		Date			
Test Description	ı	Results Measured		Measuremen	
N	Min.	(TR Entry)	Max.	Uncertainty	
9. Frequency Span Readout					
Accuracy					
SPAN	<u></u>	MKR∆ Reading			
1800 MHz 1446	6.00 MHz	(1)	1554.00 MHz	±6.37 M	
	7.70 MHz	(2)	8.30 MHz	$\pm 35.4 \text{ k}$	
10.00 MHz 7	7.80 MHz	(3)	8.20 MHz	±35.4 k	
100.00 kHz 78	8.00 kHz	(4)	82.00 kHz	± 354	
	8.00 kHz	(5)	82.00 kHz	± 354	
10.00 kHz	7.80 kHz	(6)	8.20 kHz	± 3.54	
$Narrow\ IF\ Bandwidth$					
1.00 kHz	780 Hz	(7)	820 Hz	± 3.54	
1. Residual FM					
		(1)	250 Hz	± 45.8	
Narrow IF Bandwidth		(2)	30 Hz	± 3.5	
2. Sweep Time Accuracy	I				
SWEEP TIME		MKR∆ Reading			
20 ms	15.4 ms	(1)	16.6 ms	± 0.057	
100 ms	77.0 ms	(2)	83.0 ms	± 0.283	
1 s	770.0 ms	(3)	830.0 ms	± 2.83	
10 s	7.7 s	(4)	8.3 s	± 23.8	
13. Scale Fidelity	I				
Log Mode		Cumulative Error			
dB from Ref Level					
0	0 (Ref)	0 (Ref)	0 (Ref)		
-4 -	-4.34 dB	(1)	+ 3.66 dB	± 0.06	
-8	-8.38 dB	(2)	−7.62 dB	± 0.06	
-12 -	12.42 dB	(3)	-11.58 dB	± 0.06	
-16 -1	16.46 dB	(4)	-15.54 dB	± 0.06	
-20 -2	20.50 dB	(5)	-19.50 dB	± 0.06	
3.34 Performance Test	24.54 dB	(6)	-23.46 dB	± 0.06	
	28.58 dB	(7)	-27.42 dB	± 0.06	
-32 -3	32.62 dB	(8)	-31.38 dB	±0.06	
-36 -3	36.66 dB	(9)	-35.34 dB	±0.06	
	40.70 dB	(10)	-39.30 dB	±0.06	
	44.74 dB	(11)	-43.26 dB	±0.06	
	48.78 dB	(12)	-47.22 dB	±0.06	
	52.82 dB	(13)	−51.18 dB	±0.06	
•	56.86 dB	(14)	-55.14 dB	±0.06	

-60

-60.90 dB

(15)

-59.10 dB

 $\pm 0.11~\mathrm{dB}$

HP 8594EM Performance Test Record (page 4 of 11)

Hewlett-Packard Company				
Model HP 8594EM	Report No.			
Serial No.	Date			

m . p		D 1/ 15 3	T	3.5
Test Description	M:	Results Measured	M	Measurement
10 G 1 Fills (Min.	(TR Entry)	Max.	Uncertainty
13. Scale Fidelity (continued)		. 17		
Log Mode		Incremental Error	<u> </u>	
dB from Ref Level	0 (D - f)	() (D - f)	0 (D-f)	
-4	0 (Ref) -0.4 dB	0 (Ref)	0 (Ref) + 0.4 dB	1006 dp
-4 -8	-0.4 dB	(19)	+ 0.4 dB + 0.4 dB	$\pm 0.06 \text{ dB}$ $\pm 0.06 \text{ dB}$
-8 -12	-0.4 dB	(20)	+ 0.4 dB	±0.06 dB
-12 -16	-0.4 dB	(21)	+ 0.4 dB	±0.06 dB
-10 -20	-0.4 dB	(22)	+ 0.4 dB	±0.06 dB
-24 -24	-0.4 dB	(23)	+ 0.4 dB	±0.06 dB
-24 -28	-0.4 dB	(24)	+ 0.4 dB	±0.06 dB
-32	-0.4 dB	(25)	+ 0.4 dB	±0.06 dB
-36 -36	-0.4 dB	(26)	+ 0.4 dB	±0.06 dB
-40	-0.4 dB	(27)	+ 0.4 dB	±0.06 dB
-44 -44	-0.4 dB	(28)	+ 0.4 dB	±0.06 dB
-48 -48	-0.4 dB	(29)	+ 0.4 dB	±0.06 dB
-40 -52	-0.4 dB	(30)	+ 0.4 dB + 0.4 dB	±0.06 dE
-56 -56	-0.4 dB	(31)	+ 0.4 dB	±0.06 dB
-60 -60	-0.4 dB	(32)	+ 0.4 dB	±0.00 dB
	0.1 43	(02)	T OIT ab	Ξ (// 11 αΒ
Narrow IF Bandwidth		G 1.C P		
Log Mode dB from Ref Level	<u> </u>	Cumulative Error		
dB from Ref Level	0 (Ref)	0 (Ref)	0 (Ref)	
-4	-4.44 dB	(33)	+ 3.56 dB	±0.06 dB
-8 -8	-8.48 dB	(34)	-7.52 dB	±0.06 dB
-12	-12.52 dB	(35)	-11.48 dB	±0.06 dB
-12 -16	-16.56 dB	(36)	-15.44 dB	±0.06 dB
-20	-20.60 dB	(37)	-19.40 dB	±0.06 dB
-24	-24.64 dB	(38)	-23.36 dB	±0.06 dB
-28	-28.68 dB	(39)	-27.32 dB	±0.06 dB
-32	-32.72 dB	(40)	-31.28 dB	±0.06 dB
-36	-36.76 dB	(41)	į į	±0.00 dB Fest Reco≠ds:06 3 d3
-40	-40.80 dB	(42)	-39.20 dB	±0.06 dB
-44 -44	-44.84 dB	(43)	-43.16 dB	±0.06 dB
-48	-48.88 dB	(44)	-47.12 dB	±0.06 dB
-46 -52	-52.92 dB	(45)	-51.08 dB	±0.06 dB
-52 -56	-56.96 dB	(46)	-55.04 dB	±0.06 dB
-60 -60	-61.00 dB	(47)	-59.00 dB	±0.00 dB
-64	-65.04 dB	(48)	-62.96 dB	±0.11 dB
-68	-69.08 dB	(49)	-66.92 dB	±0.11 dB

HP 8594EM Performance Test Record (page 5 of 11)

Model HP 8594EM		Report No.		
Serial No		Date		
Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
13. Scale Fidelity (continued)		, ,,	1	v
Narrow IF Bandwidth				
Log Mode		Incremental Error		
dB from Ref Level				
0	0 (Ref)	0 (Ref)	0 (Ref)	
-4	-0.4 dB	(50)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-8	-0.4 dB	(51)	+ 0.4 dB	$\pm 0.06 \text{ d}$
- 12	-0.4 dB	(52)	+ 0.4 dB	± 0.06 d
- 16	-0.4 dB	(53)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-20	-0.4 dB	(54)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-24	-0.4 dB	(55)	+ 0.4 dB	± 0.06 d
-28	-0.4 dB	(56)	+ 0.4 dB	± 0.06 d
-32	-0.4 dB	(57)	+ 0.4 dB	± 0.06 d
-36	-0.4 dB	(58)	+ 0.4 dB	± 0.06 d
-40	-0.4 dB	(59)	+ 0.4 dB	± 0.06 d
- 44	-0.4 dB	(60)	+ 0.4 dB	± 0.06 d
-48	-0.4 dB	(61)	+ 0.4 dB	± 0.06 d
-52	-0.4 dB	(62)	+ 0.4 dB	± 0.06 d
-56	-0.4 dB	(63)	+ 0.4 dB	± 0.06 d
-60	-0.4 dB	(64)	+ 0.4 dB	$\pm 0.11 \text{ d}$
Linear Mode		, ,		
% of Ref Level				
100.00	0 (Ref)	0 (Ref)	0 (Ref)	
70.70	151.59 mV	(65)	165.01 mV	±1.84 m
50.00	105.36 mV	(66)	118.78 mV	±1.84 m
35.48	72.63 mV	(67)	86.05 mV	±1.84 m
25.00	49.46 mV	(68)	82.88 mV	±1.84 m
Narrow IF Bandwidth				
% of Ref Level				
100.00	0 (Ref)	0 (Ref)	0 (Ref)	
70.70	151.59 mV	(69)	165.01 mV	±1.84 m
50.00	105.36 mV	(70)	118.78 mV	±1.84 m
3.36 Perfermance	Tes/12Reconds	(71)	86.05 mV	±1.84 m
25.00	49.46 mV	(72)	82.88 mV	±1.84 m
Log-to-Linear Switching	−0.25 dB	(73)	+ 0.25 dB	±0.05 d
Narrow IF Bandwidth	−0.25 dB	(74)	+ 0.25 dB	$\pm 0.05 \text{ d}$

HP 8594EM Performance Test Record (page 6 of 11)

Hewlett-Packard Company				
Model HP 8594EM	Report No.			
Serial No.	Date			

Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
15. Reference Level Accuracy				
Log Mode				
Reference Level (dB μ V)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	-0.40 dB	(1)	+ 0.40 dB	$\pm 0.06~\mathrm{dB}$
107	-0.50 dB	(2)	+ 0.50 dB	$\pm 0.06~\mathrm{dB}$
77	-0.40 dB	(3)	+ 0.40 dB	$\pm 0.06 \text{ dB}$
67	−0.50 dB	(4)	+ 0.50 dB	$\pm 0.08~\mathrm{dB}$
57	−0.80 dB	(5)	+0.80 dB	$\pm 0.08~\mathrm{dB}$
47	-1.00 dB	(6)	+ 1.00 dB	$\pm 0.12~\mathrm{dB}$
37	-1.10 dB	(7)	+ 1.10 dB	$\pm 0.12~\mathrm{dB}$
27	-1.20 dB	(8)	+ 1.20 dB	$\pm 0.12~\mathrm{dB}$
17	-1.30 dB	(9)	+ 1.30 dB	$\pm 0.12~\mathrm{dB}$
Linear Mode				
Reference Level (dB μ V)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	-0.40 dB	(10)	+ 0.40 dB	$\pm 0.06~\mathrm{dB}$
107	-0.50 dB	(11)	+ 0.50 dB	$\pm 0.06~\mathrm{dB}$
77	-0.40 dB	(12)	+ 0.40 dB	$\pm 0.06~\mathrm{dB}$
67	-0.50 dB	(13)	+ 0.50 dB	$\pm 0.08~\mathrm{dB}$
57	-0.80 dB	(14)	+0.80 dB	$\pm 0.08~\mathrm{dB}$
47	-1.00 dB	(15)	+ 1.00 dB	$\pm 0.12~\mathrm{dB}$
37	-1.10 dB	(16)	+ 1.10 dB	$\pm 0.12 \text{ dB}$
27	-1.20 dB	(17)	+ 1.20 dB	$\pm 0.12~\mathrm{dB}$
17	-1.30 dB	(18)	+ 1.30 dB	$\pm 0.12~\mathrm{dB}$
Narrow IF Bandwidth				
Log Mode				
Reference Level (dB μ V)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	-0.40 dB	(19)	+0.40 dB	$\pm 0.06~\mathrm{dB}$
107	-0.50 dB	(20)	+0.50 dB	$\pm 0.06~\mathrm{dB}$
77	-0.50 dB	(21)	+ 0.50 dB	$\pm 0.06~\mathrm{dB}$
67	−0.50 dB	(22)	i i	Test Reco±ds.083d35
57	−0.80 dB	(23)	+0.80 dB	$\pm 0.08~\mathrm{dB}$
47	−1.20 dB	(24)	+ 1.10 dB	$\pm 0.12~\mathrm{dB}$
37	-1.20 dB	(25)	+ 1.20 dB	$\pm 0.12~\mathrm{dB}$
27	-1.30 dB	(26)	+ 1.30 dB	$\pm 0.12~\mathrm{dB}$
17	-1.40 dB	(27)	+ 1.40 dB	$\pm 0.12~\mathrm{dB}$

HP 8594EM Performance Test Record (page 7 of 11)

Model HP 8594EM		Report No.		
Serial No.		Date		
Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
15. Reference Level Accuracy (continued)				
$Narrow\ IF\ Bandwidth$				
Linear Mode				
Reference Level (dB μ V)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	−0.40 dB	(28)	+ 0.40 dB	$\pm 0.06 \text{ d}$
107	−0.50 dB	(29)	+ 0.50 dB	±0.06 d
77	-0.50 dB	(30)	+0.50 dB	± 0.06 dl
67	-0.50 dB	(31)	+0.50 dB	$\pm 0.08 \text{ d}$
57	-0.80 dB	(32)	+0.80 dB	$\pm 0.08 \text{ d}$
47	-1.20 dB	(33)	+ 1.10 dB	$\pm 0.12 \text{ d}$
37	-1.20 dB	(34)	+ 1.20 dB	$\pm 0.12 \text{ d}$
27	-1.30 dB	(35)	+ 1.30 dB	$\pm 0.12 \text{ d}$
17	-1.40 dB	(36)	+ 1.40 dB	$\pm 0.12 \text{ d}$
16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties Absolute Amplitude	$+86.85~\mathrm{dB}\mu\mathrm{V}$	(1)	$+87.15~\mathrm{dB}\mu\mathrm{V}$	N/2
Uncertainty Resolution (IF) Bandwidth Switching Uncertainty				
Resolution (IF) Bandwidth				
3 kHz	0 (Ref)	0 (Ref)	0 (Ref)	
1 kHz	-0.5 dB	(2)	+ 0.5 dB	+ 0.07/- 0.08 dl
9 kHz	-0.4 dB	(3)	+ 0.4 dB	+ 0.07/- 0.08 dl
10 kHz	-0.4 dB	(4)	+ 0.4 dB	+ 0.07/- 0.08 dl
30 kHz	-0.4 dB	(5)	+ 0.4 dB	+ 0.07/- 0.08 dl
100 kHz	-0.4 dB	1 ' '	+ 0.4 dB	+ 0.07/- 0.08 dI
120 kHz	-0.4 dB	(7)	+ 0.4 dB	+ 0.07/- 0.08 dl
300 kHz	-0.4 dB	(8)	+ 0.4 dB	+ 0.07/- 0.08 dl
	ł	i ' '	+ 0.4 dB	+ 0.07/- 0.08 dl
3.38 Pertorman 3 MHz	ce Test Records $-0.4~\mathrm{dB}$	(10)	+ 0.4 dB	+ 0.07/- 0.08 dl
$Narrow\ IF\ Bandwidth$				
3 kHz	0 (Ref)	0 (Ref)	0 (Ref)	
300 Hz	−0.6 dB	(11)	+ 0.6 dB	+ 0.07/-0.08 dl
200 Hz	−0.6 dB	(12)	+ 0.6 dB	+ 0.07/- 0.08 dI
100 Hz	−0.6 dB	(13)	+ 0.6 dB	+ 0.07/- 0.08 dl
$30~\mathrm{Hz}$	−0.6 dB	(14)	+0.6 dB	+ 0.07/-0.08 dB

HP 8594EM Performance Test Record (page 8 of 11)

Hewlett-Packard Company	
Model HP 8594EM	Report No.
Serial No	Date

Test Description	1	Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
17. Resolution (IF) Bandwidth Accuracy				
3 dB Bandwidth				
3 MHz	$2.4~\mathrm{MHz}$	(1)	3.6 MHz	$\pm 138~\mathrm{kHz}$
300 kHz	$240~\mathrm{kHz}$	(2)	360 kHz	$\pm 13.8~\mathrm{kHz}$
100 kHz	80 kHz	(3)	120 kHz	$\pm 4.6~\mathrm{kHz}$
30 kHz	24 kHz	(4)	36 kHz	$\pm 1.38~\mathrm{kHz}$
10 kHz	8 kHz	(5)	12 kHz	$\pm 460~\mathrm{Hz}$
3 kHz	$2.4~\mathrm{kHz}$	(6)	3.6 kHz	$\pm 138~\mathrm{Hz}$
1 kHz	0.8 kHz	(7)	1.2 kHz	$\pm 46~\mathrm{Hz}$
6 dB EMI Bandwidth				
9 kHz	7.2 kHz	(8)	10.8 kHz	±333 Hz
120 kHz	96 kHz	(9)	144 kHz	$\pm 4.44~\mathrm{kHz}$
1 MHz	0.9 MHz	(10)	1.1 MHz	±46 kHz
Narrow IF Bandwidth		· /		_
3 dB Bandwidth				
300 Hz	240 Hz	(11)	360 Hz	±36 Hz
100 Hz	80 Hz	(12)	120 Hz	±12 Hz
30 Hz	24 Hz	(13)	36 Hz	±3.9 Hz
6 dB EMI Bandwidth		,		
200 Hz	160 Hz	(14)	240 Hz	$\pm 24~\mathrm{Hz}$
18. Calibrator Amplitude Accuracy				
	-20.4 dBm	(1)	-19.6 dBm	$\pm 0.2~\mathrm{dB}$
21. Frequency Response				
Max Positive Response		(1)	+ 1.5 dB	+0.32/-0.33 dB
Max Negative Response	– 1.5 dB	(2)		+0.32/-0.33 dB
Peak-to-Peak Response		(3)	2.0 dB	+0.32/-0.33 dB
26. Other Input Related				
Spurious Responses	55 ID	/4/	Performance	Test Reco <u>r</u> ds ₂₁ 3,35
50 kHz to 2.9 GHz	55 dBc	(1)		** 1:127="F.21"dB"
31. Spurious Response				
Second Harmonic Distortion		(1)	-55 dBc	= 1.12/-1.21 dB
Third Order Intermodulation Distortion			(Step 23c)	
Frequency				
2.8 GHz		(2)	-54 dBc	+2.07/-2.42 dB

HP 8594EM Performance Test Record (page 9 of 11)

Hewlett-Packard Company		1		
Model HP 8594EM		Report No.		
Serial No		Date		
Test Description		 Results Measured		Measurement
Test Description	Min.	(TR Entry)	Max.	Uncertainty
36. Gain Compression		, ,		J
<2.9 GHz		(1)	0.5 d B	+ 0.21/-0.22 d
Narrow IF Bandwidth		(2)	0.5 dB	+ 0.21/-0.22 d
41. Displayed Average Noise Level				
Frequency				
400 kHz		(1)	$-15 \text{ dB}\mu\text{V}$	+ 1.15/ – 1.25 d
4 MHz		(2)	$-15~\mathrm{dB}\mu\mathrm{V}$	+ 1.15/ – 1.25 d
5 MHz to 2.9 GHz		(3)	$-20 \text{ dB}\mu\text{V}$	+ 1.15/ – 1.25 d
45. Residual Responses				
150 kHz to 2.9 GHz		(1)	$17~\mathrm{dB}\mu\mathrm{V}$	+ 1.09/ – 1.15 d
8. Fast Time Domain Sweeps				
Options 101 and 301 only:				
Amplitude Resolution	0.933X	(1)	1.007X	0
SWEEP TIME				
18 ms	14.04 ms	(2)	14.76 ms	± 0.5
10 ms	7.80 ms	(3)	8.20 ms	± 0.5
1.0 ms	$780~\mu\mathrm{s}$	(4)	$820~\mu\mathrm{s}$	± 0.5
$100~\mu\mathrm{s}$	$78~\mu s$	(5)	$82~\mu s$	± 0.5
$20~\mu \mathrm{s}$	$15.6~\mu s$	(6)	$16.4~\mu\mathrm{s}$	± 0.5
50. Absolute Amplitude Accuracy				
Option 010 only:				
Absolute Amplitude Accuracy –	20.75 dBm	(1)	– 19.25 dBm	+ .155/ - .161 d
Positive Vernier Accuracy		(2)	+ 0.50 dB	±0.03 d
Negative Vernier Accuracy	-0.50 dB	(3)		±0.03 d
Positive Step-to-Step Accuracy		(4)	+ 1.20 dB	± 0.03 d
Negative Step-to-Step Accuracy	−0.80 dB	(5)		± 0.03 ϵ
3.40 Performance T 51. Power Sweep Range	est Records			
Option 010 only:				
Start Power Level		(1)		
Stop Power Level		(2)		
Power Sweep Range	9.0 d B	(3)		± 0.03 d

HP 8594EM Performance Test Record (page 10 of 11)

Hewlett-Packard Company		,		
Model HP 8594EM		Report No.		
Serial No.		Date		
Test Description	M:	Results Measured	M	Measurement
Fa Ti Li a C	Min.	(TR Entry)	Max.	Uncertainty
53. Tracking Generator Level Flatness				
Option 010 only:			j	
Maximum Flatness				
9 kHz to 100 kHz		(1)	+ 2.0 dB	+0.42/-0.45 dB
100 kHz to 2900 MHz		(2)	+ 2.0 dB	+0.42/-0.45 dB
Minimum Flatness				
9 kHz to 100 kHz	-2.0 dB	(3)		+0.42/-0.45 dB
100 kHz to 2900 MHz	-2.0 dB	(4)		+0.42/-0.45 dB
55. Harmonic Spurious Outputs				
Option 010 only:				
2nd Harmonic Level, 9 kHz	15 dBc	(1)		+ 1.55/-1.80 dB
2nd Harmonic Level, 25 kHz to 900 MHz	25 dBc	(2)		+ 1.55/-1.80 dB
2nd Harmonic Level, 1.4 GHz	$25~\mathrm{dBc}$	(3)		+3.45/-4.01 dB
3rd Harmonic Level, 9 kHz	$15~\mathrm{dBc}$	(4)		+ 1.55/-1.80 dB
3rd Harmonic Level, 25 kHz to 900 MHz	25 dBc	(5)		+ 1.55/ – 1.80 dB
57. Non-Harmonic Spurious Outputs				
Option 010 only:				
Highest Non-Harmonic Response Amplitude				
9 kHz to 2000 MHz	$27~\mathrm{dBc}$	(1)		+ 1.55/-1.80 dB
2000 MHz to 2900 MHz	23 dBc	(2)		+3.45/-4.01 dB
59. Tracking Generator				
Feedthrough Option 010 only:				
400 kHz to 5 MHz		(1)	0 dB ₀ V	+ 1.59/-1.70 dB
5 MHz to 2.9 GHz		(2)	$-5 \text{ dB}\mu\text{V}$	
		(-/	,	Test Records 3.4
61. Tracking Generator LO Feedthrough Amplitude			- F811UTHIANGS 	ioat nuuutus 3.4
Option 010 only:				
9 kHz to 1.5 GHz		(1)	-16 dBm	$\pm 2.02/-2.50~{ m dB}$
2.9 GHz		(2)	-16 dBm	$\pm 2.10/-2.67~{ m dB}$

HP 8594EM Performance Test Record (page 11 of 11)

Hewlett-Packard Company	
Model HP 8594EM	Report No.
Serial No.	Date

Test Description		Results Measured	1	Measurement
	Min.	(TR Entry)	Max.	Uncertainty
62. CISPR Pulse Response				
		Amplitude Error		
Measured Amplitude				
200 Hz EMI BW	-1.5 dB	(1)	+ 1.5 dB	$\pm 0.34~\mathrm{dB}$
9 kHz EMI BW	-1.5 dB	(2)	+ 1.5 dB	$\pm 0.34~\mathrm{dB}$
120 kHz EMI BW	-1.5 dB	(3)	+ 1.5 dB	$\pm 0.50~\mathrm{dB}$
Relative Level, 200 Hz EMI BW				
Repetition Frequency				
100	3.0 dB	(4)	+5.0 dB	$\pm 0.24~\mathrm{dB}$
60	2.0 dB	(5)	+ 4.0 dB	$\pm 0.26~\mathrm{dB}$
25	0 (Ref)	(6)	0 (Ref)	0 (Ref)
10	-3.0 dB	(7)	-5.0 dB	$\pm 0.29~\mathrm{dB}$
5	-6.0 dB	(8)	-9.0 dB	±0.30 dB
2	-11.0 dB	(9)	-15.0 dB	±0.36 dB
1	-15.0 dB	(10)	-19.0 dB	$\pm 0.28~\mathrm{dB}$
Isolated Pulse	-17.0 dB	(11)	-21.0 dB	$\pm 0.20~\mathrm{dB}$
Relative Level, 9 kHz EMI BW			İ	
Repetition Frequency				
1000	+ 5.5 dB	(12)	+3.5 dB	$\pm 0.17~\mathrm{dB}$
100	0 (Ref)	(13)	0 (Ref)	0 (Ref)
20	−5.5 dB	(14)	-7.5 dB	$\pm 0.27~\mathrm{dB}$
10	-8.5 dB	(15)	-11.5 dB	$\pm 0.25~\mathrm{dB}$
2	-18.5 dB	(16)	−22.5 dB	$\pm 0.23~\mathrm{dB}$
1	-20.5 dB	(17)	-24.5 dB	$\pm 0.19~\mathrm{dB}$
Isolated Pulse	−21.5 dB	(18)	−25.5 dB	$\pm 0.15~\mathrm{dB}$
Relative Level, 120 kHz EMI BW				
Repetition Frequency				
1000	+9.0 dB	(19)	+7.0 dB	$\pm 0.17~\mathrm{dB}$
100	0 (Ref)	(20)	0 (Ref)	0 (Ref)
20	-8.0 dB	(21)	-10.0 dB	$\pm 0.18~\mathrm{dB}$
10	–12.5 dB	(22)	-15.5 dB	$\pm 0.18~\mathrm{dB}$
2 2 2	-24.0 dB	(23)	-28.0 dB	$\pm 0.18~\mathrm{dB}$
3.42 Perfo _f man¢	e Tes <u>t Re</u> gords	(24)	-30.5 dB	$\pm 0.18~\mathrm{dB}$
Isolated Pulse	−29.5 dB	(25)	-33.5 dB	$\pm 0.17~\mathrm{dB}$
Band, Bandwidth, Repetition Frequency				
Band A, 200 Hz, 25 Hz	+9.4 dB	(26)	+ 13.4 dB	$\pm 0.28~\mathrm{dB}$
Band B, 9 kHz, 1000 Hz	+ 14.4 dB	(27)	+ 18.4 dB	$\pm 0.17~\mathrm{dB}$
Band C/D, $120~\mathrm{kHz},~10,000~\mathrm{Hz}$	$+\ 17.8\ dB$	(28)	$+21.8~\mathrm{dB}$	$\pm 0.18~\mathrm{dB}$

Only the tests for HP $8595\mathrm{EM}$ are included in this test record, therefore not all test numbers are included.

Table 3-45. HP 8595EM Performance Verification Test Record

Hewlett-Packard Company Address:		Report No	
		Date	
		(For example: 10 MAY 1	
Model HP 8595EM		(101 champier 10 mili 1	,
Serial No.			
Options			
Firmware Revision			
Customer		Tested by	
Ambient temperature	°C	Relative humidity	%
Power mains line frequency	H:	z (nominal)	
Test Equipment Used:			
Description	Model No.	Trace No.	Cal Due Date
Frequency Counter _			
Frequency Standard _			
Low Pass Filter, 50 MHz			_
Low Pass Filter, 300 MHz			_
Low Pass Filter, 4.4 GHz		_	_
Measuring Receiver		_	_
Microwave Frequency Counter _			
Microwave Spectrum Analyzer _			
(Option 010)			
Power Meter _			
RF Power Sensor			
High-Sensitivity Power Sensor _			
Power Splitter _			
Pulse Generator			
Signal Generator			
Synthesized Sweeper			_
Synthesizer/Function Generator $_$		_	
Synthesizer/Level Generator _			_
Termination, 50 Ω			_
Notes/Comments:		Perfor	mance Test Records
-		. 311011	
_			

HP 8595EM Performance Verification Test Record (page 2 of 11)

Hewlett-Packard Company		1		
Model HP 8595EM		Report No.		
Serial No		Date		
Test Description		Results Measured		Measurement
rest Description	Min.	(TR Entry)	Max.	Uncertainty
1. 10 MHz Reference Output Accuracy		(12.22.23)	,	
		Frequency Error		
Settability	-150 Hz	1 * *	i l	$\pm 4.2 \times 10^{-9}$
2. 10 MHz Precision Frequency Reference Output Accuracy for Option 004		 Frequency Error		
5 Minute Warmup Error	-1×10^{-7}	(1)	$+ 1 \times 10^{-7}$	$\pm 2.004 \times 10^{-9}$
30 Minute Warmup Error	-1×10^{-8}	(1)(2)	+ 1 × 10 ⁻⁸	$\pm 2.002 \times 10^{-9}$
5. Frequency Readout and Marker Count Accuracy		I	1	
Frequency Readout Accuracy		Frequency (MHz)		
Frequency = 1.5 GHz SPAN				
20 MHz	1.49918	(1)	1.50082	$\pm 1.0~\mathrm{Hz}$
10 MHz	1.49958	(2)	1.50042	$\pm 1.0~\mathrm{Hz}$
1 MHz	1.4999680	(3)	1.500032	$\pm 1.0~\mathrm{Hz}$
Frequency = 4.0 GHz SPAN				
$20~\mathrm{MHz}$	3.99918	(4)	4.00082	$\pm 1.0~\mathrm{Hz}$
$10~\mathrm{MHz}$	3.99958	(5)	4.00042	$\pm 1.0~\mathrm{Hz}$
1 MHz	3.9999680	(6)	4.000032	$\pm 1.0~\mathrm{Hz}$
${\it Narrow\ IF\ Bandwidth}$				
20 kHz	1.49999924	(16)	1.50000076	$\pm 1.0~\mathrm{Hz}$
Marker Count Accuracy				
Frequency = 1.5 GHz SPAN				
(CNT RES = 100 Hz) 20 MHz	1.4999989	(17)	1.5000011	$\pm 1~\mathrm{Hz}$
(CNT RES = 10 Hz) 1 MHz	1.49999989	(18)	1.50000011	$\pm 1~\mathrm{Hz}$
Frequency = 4.0 GHz SPAN				
(CNT RES = 100 Hz) 20 MHz	3.9999989	(19)	4.0000011	$\pm 1~\mathrm{Hz}$
(CNT RES = 10 Hz) 1 MHz	+ 4.99999989	(20)	4.00000011	$\pm 1~\mathrm{Hz}$
$Narrow\ IF\ Bandwidth$				
(CNT RES = 10 Hz) 20 kHz	1.49999989	(27)	1.50000011	±1.0 Hz
(CNT RES = 1 3.46) Performan	ce Tes49Beoords	(28)	1.50000011	±1.0 Hz
6. Noise Sidebands				
Suppression at 10 kHz		(1)	-60 dBc	$\pm 1.0 \text{ dB}$
Suppression at 20 kHz		(2)	-70 dBc	$\pm 1.0 \text{ dB}$
Suppression at 30 kHz		(3)	-75 dBc	±1.0 dB
7. System Related Sidebands				
Sideband Above Signal	$65~\mathrm{dBc}$	(1)		$\pm 1.0~\mathrm{dB}$

65 dBc (2)

 $\pm 1.0~\mathrm{dB}$

Sideband Below Signal

HP 8595EM Performance Verification Test Record (page 3 of 11)

Hewlett-Packard Company		
Model HP 8595EM	Report No.	
Serial No.	Date	
Test Description	Results Measured	Measurement

Test Description	Min.	Results Measured (TR Entry)	Max.	Measurement Uncertainty
9. Frequency Span Readout			·	
Accuracy		MIZD (D. 1)		
SPAN	1446 00 MII	MKR∆ Reading	1554.00 MII	LC OF MIL
1800 MHz	1446.00 MHz	(6-1)	1554.00 MHz 8.30 MHz	±6.37 MHz
10.10 MHz	7.70 MHz	(2)		±35.4 kHz
10.00 MHz	7.80 MHz	(3)	8.20 MHz	±35.4 kHz
100.00 kHz	78.00 kHz	(4)	82.00 kHz	±354 H:
99.00 kHz	78.00 kHz	(5)	82.00 kHz	±354 H:
10.00 kHz	7.80 kHz	(6)	8.20 kHz	±3.54 H
Narrow IF Bandwidth				
1.00 kHz	780 Hz	(7)	820 Hz	±3.54 H
11. Residual FM				
		(1)	250 Hz	$\pm 45.8~{ m Hz}$
$Narrow\ IF\ Bandwidth$		(2)	30 Hz	±3.5 H
12. Sweep Time Accuracy				
SWEEP TIME		MKR∆ Reading		
20 ms	15.4 ms	(1)	16.6 ms	±0.057 m
100 ms	77.0 ms	(2)	83.0 ms	±0.283 m
1 s	770.0 ms	(3)	830.0 ms	$\pm 2.83 \text{ m}$
10 s	7.7 s	(4)	8.3 s	±23.8 m
13. Scale Fidelity				
Log Mode	-	Cumulative Error		
dB from Ref Level				
0	0 (Ref)	0 (Ref)	0 (Ref)	
-4	-4.34 dB	(1)	+ 3.66 dB	$\pm 0.06 \text{ d}$
-8	-8.38 dB	(2)	-7.62 dB	$\pm 0.06 \text{ d}$
-12	-12.42 dB	(3)	-11.58 dB	±0.06 dl
-16	-16.46 dB	(4)	-15.54 dB	$\pm 0.06 \text{ d}$
-20	-20.50 dB	(5)	-19.50 dB	±0.06 dl
-24	-24.54 dB	(6)	-23.46 dB	±0.06 dl
-28	-28.58 dB	(7)	i	Test Reco ^{±0.06} 3 ^d
-32	-32.62 dB	(8)	-31.38 dB	est necurus 3.4 ±0.06 dl
-36	-36.66 dB	(9)	−35.34 dB	±0.06 d
-4 0	-40.70 dB	(10)	-39.30 dB	±0.06 d
-44	-44.74 dB	(11)	-43.26 dB	±0.06 d
-48	-48.78 dB	(12)	-47.22 dB	±0.06 d
-40 -52	-52.82 dB	(13)	-51.18 dB	
-52 -56	-52.82 dB -56.86 dB	` '	-51.13 dB	±0.06 d
		(14)		±0.06 dl
-60	-60.90 dB	(15)	-59.10 dB	±0.11 dI
-64	−64.94 dB	(16)	−63.06 dB	$\pm 0.11 \text{ d}$

HP 8595EM Performance Verification Test Record (page 4 of 11)

Hewlett-Packard Company Model HP 8595EM		Report No.		
Serial No		Date		
Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
13. Scale Fidelity (continued)				
Log Mode		Incremental Error_		
dB from Ref Level				
0	0 (Ref)		0 (Ref)	
-4	−0.4 dB	(18)	+ 0.4 dB	±0.06
-8	−0.4 dB	(19)	+ 0.4 dB	± 0.06
- 12	−0.4 dB	(20)	+ 0.4 dB	±0.06
- 16	−0.4 dB	(21)	+ 0.4 dB	± 0.06
-20	-0.4 dB	(22)	+ 0.4 dB	±0.06
-24	-0.4 dB	(23)	+ 0.4 dB	±0.06
-28	-0.4 dB	(24)	+ 0.4 dB	±0.06
-32	-0.4 dB	(25)	+ 0.4 dB	± 0.06
-36	-0.4 dB	(26)	+ 0.4 dB	± 0.06
- 40	−0.4 dB	(27)	+ 0.4 dB	± 0.06
- 44	-0.4 dB	(28)	+ 0.4 dB	± 0.06
-48	-0.4 dB	(29)	+ 0.4 dB	± 0.06
-52	-0.4 dB	(30)	+ 0.4 dB	± 0.06
-56	-0.4 dB	(31)	+ 0.4 dB	± 0.06
-60	-0.4 dB	(32)	+ 0.4 dB	± 0.11
Narrow IF Bandwidth				
Log Mode		Cumulative Error		
dB from Ref Level				
0	0 (Ref)	` '	0 (Ref)	
-4	-4.44 dB	(33)		±0.06
-8	−8.48 dB	(34)		± 0.06
- 12	– 12.52 dB	(35)		± 0.06
- 16	– 16.56 dB	(36)	i i	± 0.06
-20	-20.60 dB	(37)	19.40 dB	± 0.06
-24	-24.64 dB	(38)		±0.06
-28	-28.68 dB	(39)		± 0.06
-32	−32.72 dB	(40)	31.28 dB	±0.06
	Test Records	(41)	35.24 dB	± 0.06
-40	-40.80 dB	(42)	39.20 dB	± 0.06
-44	–44.84 dB	(43)	43.16 dB	± 0.06
-48	–48.88 dB	(44)	47.12 dB	±0.06
	−52.92 dB	(45)	51.08 dB	±0.06
-56	−56.96 dB	(46)		±0.06
60	61 00 dB	(47)	50 00 AB	±0.11.

-65.04 dB

-69.08 dB

-68

(48)

(49)

-62.96 dB

-66.92 dB

 $\pm 0.11~\mathrm{dB}$

 $\pm 0.11~\mathrm{dB}$

86.05 mV

82.88 mV

+0.25~dB

 $+\,0.25~dB$

Peirformance Test Recourds84 3a49

±1.84 mV

 $\pm 1.84~\text{mV}$

 $\pm 0.05~\mathrm{dB}$

 $\pm 0.05~\mathrm{dB}$

HP 8595EM Performance Verification Test Record (page 5 of 11)

Hewlett-Packard Company

50.00

35.48

25.00

Log-to-Linear Switching

 $Narrow\ IF\ Ban\ dwidth$

105.36 mV

72.63 mV

49.46 mV

-0.25 dB

-0.25 dB

(73) _____

(74) _____

Model HP 8595EM		Report No.		
Serial No.		Date		
Test Description		Results Measured		Measurement
•	Min.	(TR Entry)	Max.	Uncertainty
13. Scale Fidelity (continued)				
Narrow IF Bandwidth				
Log Mode		Incremental Error		
dB from Ref Level				
0	0 (Ref)	0 (Ref)	0 (Ref)	
-4	-0.4 dB	(50)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-8	-0.4 dB	(51)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-12	-0.4 dB	(52)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-16	-0.4 dB	(53)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-20	-0.4 dB	(54)	+ 0.4 dB	±0.06 d
-24	-0.4 dB	(55)	+ 0.4 dB	±0.06 d
-28	-0.4 dB	(56)	+ 0.4 dB	±0.06 d
-32	-0.4 dB	(57)	+ 0.4 dB	±0.06 d
-36	-0.4 dB	(58)	+ 0.4 dB	±0.06 d
-4 0	-0.4 dB	(59)	+ 0.4 dB	±0.06 d
-44	-0.4 dB	(60)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-48	-0.4 dB	(61)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-52	-0.4 dB	(62)	+ 0.4 dB	±0.06 d
-56	-0.4 dB	(63)	+ 0.4 dB	±0.06 d
-60	-0.4 dB	(64)	+ 0.4 dB	$\pm 0.11 \text{ d}$
Linear Mode				
% of Ref Level				
100.00	0 (Ref)	0 (Ref)	0 (Ref)	
70.70	151.59 mV	(65)	165.01 mV	± 1.84 m
50.00	105.36 mV	(66)	118.78 mV	± 1.84 m
35.48	72.63 mV	(67)	86.05 mV	±1.84 m
25.00	49.46 mV	(68)	82.88 mV	± 1.84 m
NarrowIFBandwidth				
% of Ref Level				
100.00	0 (Ref)	0 (Ref)	0 (Ref)	
70.70	151.59 mV	(69)	165.01 mV	±1.84 m

HP 8595EM Performance Verification Test Record (page 6 of 11)

Hewlett-Packard Company Model HP 8595EM		Report No.		
Serial No.		Date		
Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
15. Reference Level Accuracy				
Log Mode				
Reference Level (dBµV)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	−0.40 dB	(1)	+ 0.40 dB	$\pm 0.06 \text{ d}$
107	−0.50 dB	(2)	+ 0.50 dB	$\pm 0.06 \text{ d}$
77	−0.40 dB	(3)	+ 0.40 dB	$\pm 0.06 \text{ d}$
67	−0.50 dB	(4)	+ 0.50 dB	$\pm 0.08 \text{ d}$
57	−0.80 dB	(5)	+ 0.80 dB	$\pm 0.08 \text{ d}$
47	-1.00 dB	(6)	+ 1.00 dB	$\pm 0.12 \text{ d}$
37	−1.10 dB	(7)	+ 1.10 dB	$\pm 0.12 \text{ d}$
27	−1.20 dB	(8)	+ 1.20 dB	$\pm 0.12 \ d$
17	−1.30 dB	(9)	+ 1.30 dB	±0.12 d
Linear Mode				
Reference Level (dBµV)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	−0.40 dB	(10)	+ 0.40 dB	±0.06 d
107	−0.50 dB	(11)	+ 0.50 dB	± 0.06 d
77	−0.40 dB	(12)	+ 0.40 dB	± 0.06 d
67	−0.50 dB	(13)	+ 0.50 dB	$\pm 0.08 d$
57	−0.80 dB	(14)	+ 0.80 dB	$\pm 0.08 d$
47	-1.00 dB	(15)	+ 1.00 dB	±0.12 d
37	-1.10 dB	(16)	+ 1.10 dB	±0.12 d
27	-1.20 dB	(17)	+ 1.20 dB	± 0.12 d
17	−1.30 dB	(18)	+ 1.30 dB	$\pm 0.12 \text{ d}$
Narrow IF Bandwidth				
Log Mode				
Reference Level (dB μ V)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	−0.40 dB	(19)	+ 0.40 dB	$\pm 0.06 \text{ d}$
107	−0.50 dB	(20)	+ 0.50 dB	$\pm 0.06 \text{ d}$
3⋅50 Perfő∉mance	Tes t Récodds	(21)	+ 0.50 dB	±0.06 d
67	−0.50 dB	(22)	+ 0.50 dB	$\pm 0.08~\mathrm{d}$
57	-0.80 dB	(23)	+ 0.80 dB	$\pm 0.08~\mathrm{d}$
47	-1.20 dB	(24)	+ 1.10 dB	±0.12 d
37	-1.20 dB	(25)	+ 1.20 dB	$\pm 0.12 \text{ d}$
27	−1.30 dB	(26)	+ 1.30 dB	$\pm 0.12 \text{ d}$
17	-1.40 dB	(27)	+ 1.40 dB	$\pm 0.12 \text{ dl}$

$HP\ 8595EM\ Performance\ Verification\ Test\ Record\ (page\ 7\ of\ 11)$

Hewlett-Packard Company	
Model HP 8595EM	Report No.
Serial No.	Date

Test Description	 	Results Measured	ı <u>-</u>	Measurement
	Min.	(TR Entry)	Max.	Uncertainty
15. Reference Level Accuracy (continued)				
$Narrow\ IF\ Bandwidth$				
Linear Mode				
Reference Level (dB μ V)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	-0.40 dB	(28)	+ 0.40 dB	$\pm 0.06~\mathrm{dB}$
107	-0.50 dB	(29)	+ 0.50 dB	$\pm 0.06~\mathrm{dB}$
77	-0.50 dB	(30)	+ 0.50 dB	$\pm 0.06~\mathrm{dB}$
67	-0.50 dB	(31)	+ 0.50 dB	$\pm 0.08~\mathrm{dB}$
57	-0.80 dB	(32)	+0.80 dB	$\pm 0.08~\mathrm{dB}$
47	-1.20 dB	(33)	+ 1.10 dB	$\pm 0.12~\mathrm{dB}$
37	-1.20 dB	(34)	+ 1.20 dB	$\pm 0.12~\mathrm{dB}$
27	-1.30 dB	(35)	+ 1.30 dB	$\pm 0.12~\mathrm{dB}$
17	-1.40 dB	(36)	+ 1.40 dB	$\pm 0.12~\mathrm{dB}$
16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties Absolute Amplitude Uncertainty	$+86.85~\mathrm{dB}\mu\mathrm{V}$	(1)	$+87.15\;\mathrm{dB}\mu\mathrm{V}$	N/A
Resolution (IF) Bandwidth Switching Uncertainty				
Resolution (IF) Bandwidth				
3 kHz	0 (Ref)	0 (Ref)	0 (Ref)	
$1~\mathrm{kHz}$	−0.5 dB	(2)	+ 0.5 dB	+0.07/-0.08 dB
9 kHz	-0.4 dB	(3)	+ 0.4 dB	+0.07/-0.08 dB
$10~\mathrm{kHz}$	-0.4 dB	(4)	+ 0.4 dB	+0.07/-0.08 dB
$30~\mathrm{kHz}$	-0.4 dB	(5)	+ 0.4 dB	+0.07/-0.08 dB
$100~\mathrm{kHz}$	-0.4 dB	(6)	+ 0.4 dB	+0.07/-0.08 dB
$120~\mathrm{kHz}$	-0.4 dB	(7)	+ 0.4 dB	+0.07/-0.08 dB
$300~\mathrm{kHz}$	-0.4 dB	(8)	+ 0.4 dB	+0.07/-0.08 dB
1 MHz	-0.4 dB	(9)	Dorfor 0.4.dB	Te s't 1807 o rds 08 3951
3 MHz	-0.4 dB	(10)	+ 0.4 dB	+0.07/-0.08 dB
$Narrow\ IF\ Bandwidth$,		
$3~\mathrm{kHz}$	0 (Ref)	0 (Ref)	0 (Ref)	
300 Hz	-0.6 dB	(11)	+ 0.6 dB	+0.07/-0.08 dB
$200~\mathrm{Hz}$	-0.6 dB	(12)	+ 0.6 dB	+0.07/-0.08 dB
100 Hz	-0.6 dB	(13)	+ 0.6 dB	+0.07/-0.08 dB
30 Hz	-0.6 dB	(14)	+ 0.6 dB	+0.07/-0.08 dB

HP 8595EM Performance Verification Test Record (page 8 of 11)

Hewlett-Packard Company Model HP 8595EM		Report No.		
Serial No.		Date		
Test Description		Results Measured	ı	Measurement
	Min.	(TR Entry)	Max.	Uncertainty
17. Resolution (IF) Bandwidth Accuracy				
3 dB Bandwidth				
3 MHz	$2.4~\mathrm{MHz}$	(1)	3.6 MHz	$\pm 138 \text{ k}$
300 kHz	$240~\mathrm{kHz}$	(2)	360 kHz	$\pm 13.8 \text{ k}$
100 kHz	$80~\mathrm{kHz}$	(3)	120 kHz	$\pm 4.6 \text{ k}$
30 kHz	$24~\mathrm{kHz}$	(4)	36 kHz	± 1.38 kl
10 kHz	8 kHz	(5)	12 kHz	±460 I
3 kHz	$2.4~\mathrm{kHz}$	(6)	3.6 kHz	±138 I
1 kHz	$0.8~\mathrm{kHz}$	(7)	1.2 kHz	±46 1
6 dB EMI Bandwidth				
9 kHz	7.2 kHz	(8)	10.8 kHz	±333 1
120 kHz	96 kHz	(9)	144 kHz	±4.44 k
1 MHz	0.9 MHz	(10)	1.1 MHz	±46 k
Narrow IF Bandwidth		, ,	İ	
3 dB Bandwidth				
300 Hz	240 Hz	(11)	360 Hz	±36 l
100 Hz	80 Hz	(12)	120 Hz	±12 I
30 Hz	$24~\mathrm{Hz}$	(13)	36 Hz	±3.9 I
6 dB EMI Bandwidth		, ,		
200 Hz	$160~\mathrm{Hz}$	(14)	240 Hz	±24 l
18. Calibrator Amplitude				
Accuracy				
	-20.4 dBm	(1)	– 19.6 dBm	± 0.2 c
22. Frequency Response				
Band 0				
Max Positive Response		(1)	+ 1.5 dB	+ 0.32/- 0.33
Max Negative Response	-1.5 dB	(2)	110 420	+ 0.32/- 0.33
Peak-to-Peak Response	1.5 42	(3)	2.0 dB	+ 0.32/- 0.33
Band 1		(9)	2.5 42	. 0.102.
		(4)	+ 2.0 dB	+ 0.40/- 0.42
Max Positive Response 3.52 Performance Max Negative Response	lest Kecords -2.0 dB	(5)		+ 0.40/- 0.42
Peak-to-Peak Response		(6)	3.0 dB	+ 0.40/- 0.42
27. Other Input Related				
Spurious Responses				
50 kHz to 2.9 GHz	$55~\mathrm{dBc}$	(1)		+ 1.12/- 1.21 (
≤ 6.5 GHz	$55~\mathrm{dBc}$	(2)	1	+ 1.12/- 1.21 6

HP 8595EM Performance Verification Test Record (page 9 of 11)

Hewlett-Packard Company	
Model HP 8595EM	Report No.
Serial No.	Date

Serial No.		Date			
Test Description		Results Measured		Measurement	
	Min.	(TR Entry)	Max.	Uncertainty	
32. Spurious Response					
Second Harmonic Distortion					
Applied Frequency					
40 MHz		(1)		+1.86/-2.27 dB	
2.8 GHz		(3)	(2)	+2.24/-2.72 dB	
Third Order Intermodulation Distortion			(Step 23c)		
Frequency					
2.8 GHz		(4)		+2.07/-2.42 dB	
4.0 GHz		(5)		+2.07/-2.42 dB	
37. Gain Compression					
<2.9 GHz		(1)	0.5 dB	+0.21/-0.22 dB	
>2.9 GHz		(2)		+0.21/-0.22 dB	
$Narrow\ IF\ Bandwidth$		(3)	0.5 dB	+0.21/-0.22 dB	
42. Displayed Average Noise					
Level Frequency					
400 kHz		(1)	18 dBμV	+ 1.15/ – 1.25 dB	
1 MHz		(2)	18 dBμV	+ 1.15/-1.25 dB	
1 MHz to 2.9 GHz		(3)	18 dBμV	+ 1.15/ – 1.25 dB	
2.75 to 6.5 GHz		(4)	20 dBμV	+ 1.15/-1.25 dB	
46. Residual Responses					
150 kHz to 6.5 GHz		(1)	17 dBμV	+1.09/-1.15 dB	
48. Fast Time Domain Sweeps					
Options 101 and 301 only:					
Amplitude Resolution	$0.933\mathbf{X}$		1.007 X	0%	
SWEEP TIME					
18 ms	$14.04~\mathrm{ms}$	(1)	14.76 ms	±0.5%	
10 ms	7.80 ms	(2)	8.20 ms	±0.5%	
1.0 ms	$780~\mu\mathrm{s}$	(3)	820 μs	±0.5%	
$100~\mu \mathrm{s}$	$78~\mu\mathrm{s}$	(4)	— 82 μs	Test Records $^{\pm 0}_{-3}$ 5	
$20~\mu \mathrm{s}$	$15.6~\mu\mathrm{s}$	(5)	16.4 μs	±0.5%	
50. Absolute Amplitude Accuracy					
Option 010 only:					
Absolute Amplitude Accuracy	-20.75 dBm	(1)	19.25 dBm	+ .155/ – .161 dB	
Positive Vernier Accuracy		(2)	+ 0.50 dB	±0.03 dB	
Negative Vernier Accuracy	-0.50 dB	(3)		±0.03 dB	
Positive Step-to-Step Accuracy	_	(4)	+ 1.20 dB	±0.03 dB	

HP 8595EM Performance Verification Test Record (page 10 of 11)

Hewlett-Packard Company		I		
Model HP 8595EM		Report No.		
Serial No.		Date		
Test Description		 Results Measured	I	Measurement
lest Description	Min.	(TR Entry)	Max.	Uncertainty
51. Power Sweep Range		, , ,	j	
Option 010 only:			j	
Start Power Level		(1)		
Stop Power Level		(2)		
Power Sweep Range	9.0 d B	(3)		± 0.03 d
53. Tracking Generator Level Flatness				
Option 010 only:				
Maximum Flatness				
9 kHz to 100 kHz		(1)	+ 2.0 dB	+0.42/-0.45 d
100 kHz to 2900 MHz		(2)	$+2.0~\mathrm{dB}$	+0.42/-0.45 d
Minimum Flatness				
9 kHz to 100 kHz	-2.0 dB	(3)		+0.42/-0.45 d
100 kHz to 2900 MHz	-2.0 dB	(4)		+ 0.42/ - 0.45 d
55. Harmonic Spurious Outputs				
Option 010 only:				
2nd Harmonic Level, 9 kHz	$15~\mathrm{dBc}$	(1)		+ 1.55/ - 1.80 d
2nd Harmonic Level, 25 kHz to 900 MHz	$25~\mathrm{dBc}$	(2)		+ 1.55/ - 1.80 d
2nd Harmonic Level, 1.4 GHz	$25~\mathrm{dBc}$	(3)		+ 3.45/ - 4.01 d
3rd Harmonic Level, 9 kHz	$15~\mathrm{dBc}$	(4)		+ 1.55/ - 1.80 d
3rd Harmonic Level, 25 kHz to 900 MHz	25 dBc	(5)		+ 1.55/- 1.80 d
57. Non-Harmonic Spurious Outputs				
Option 010 only:				
Highest Non-Harmonic Response Amplitude				
9 kHz to 2000 MHz	$27~\mathrm{dBc}$	(1)		+ 1.55/ – 1.80 d
2000 MHz to 2900 MHz	23 dBc	(2)		+ 3.45/ - 4.01 d
	Test Records	, ,		
60. Tracking Generator Feedthrough	1001 11000140			
Option 010 only:				
400 kHz to 2.9 GHz		(1)	$-5 \mathrm{dB}\mu\mathrm{V}$	+ 1.59/- 1.70 d
61. Tracking Generator LO Feedthrough Amplitude				
Option 010 only:				

(1)

-16 dBm $\pm 2.02/-2.50 \text{ dB}$

9 kHz to 1.5 GHz

HP 8595EM Performance Verification Test Record (page 11 of 11)

Hewlett-Packard Company	
Model HP 8595EM	Report No
Serial No.	Date

Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
62. CISPR Pulse Response			·	
		Amplitude Error		
Measured Amplitude				
200 Hz EMI BW	-1.5 dB	(1)	+ 1.5 dB	$\pm 0.34~\mathrm{dB}$
9 kHz EMI BW	-1.5 dB	(2)	+ 1.5 dB	$\pm 0.34~\mathrm{dB}$
120 kHz EMI BW	-1.5 dB	(3)	+ 1.5 dB	$\pm 0.50~\mathrm{dB}$
Relative Level, 200 Hz EMI BW				
Repetition Frequency				
100	3.0 dB	(4)	+ 5.0 dB	$\pm 0.24~\mathrm{dB}$
60	2.0 dB	(5)	+ 4.0 dB	$\pm 0.26~\mathrm{dB}$
25	0 (Ref)	(6)	0 (Ref)	0 (Ref)
10	-3.0 dB	(7)	-5.0 dB	$\pm 0.29~\mathrm{dB}$
5	-6.0 dB	(8)	-9.0 dB	$\pm 0.30~\mathrm{dB}$
2	-11.0 dB	(9)	-15.0 dB	$\pm 0.36~\mathrm{dB}$
1	-15.0 dB	(10)	-19.0 dB	$\pm 0.28~\mathrm{dB}$
Isolated Pulse	-17.0 dB	(11)	-21.0 dB	$\pm 0.20~\mathrm{dB}$
Relative Level, 9 kHz EMI BW				
Repetition Frequency				
1000	+ 5.5 dB	(12)	+ 3.5 dB	± 0.17 dB
100	0 (Ref)	(13)	0 (Ref)	0 (Ref)
20	−5.5 dB	(14)	−7.5 dB	$\pm 0.27~\mathrm{dB}$
10	-8.5 dB	(15)	-11.5 dB	$\pm 0.25~\mathrm{dB}$
2	-18.5 dB	(16)	−22.5 dB	$\pm 0.23~\mathrm{dB}$
1	−20.5 dB	(17)	−24.5 dB	$\pm 0.19~\mathrm{dB}$
Isolated Pulse	−21.5 dB	(18)	−25.5 dB	$\pm 0.15 \text{ dB}$
Relative Level, 120 kHz EMI BW				
Repetition Frequency				
1000	+9.0 dB	(19)	+ 7.0 dB	$\pm 0.17 \text{ dB}$
100	0 (Ref)	(20)	0 (Ref)	0 (Ref)
20	-8.0 dB	(21)	-10.0 dB	$\pm 0.18 \text{ dB}$
10	-12.5 dB	(22)	-15.5 dB	$\pm 0.18 \text{ dB}$
2	-24.0 dB	(23)	-28.0 dB	±0.18 dB
1	-26.5 dB	(24)		lest Reco <u>r</u> ds ₁₈ 3d5
Isolated Pulse	-29.5 dB	(25)	-33.5 dB	±0.17 dB
Band, Bandwidth, Repetition Frequency				
Band A, 200 Hz, 25 Hz	+ 9 .4 dB	(26)	+ 13.4 dB	$\pm 0.28~\mathrm{dB}$
Band B, 9 kHz, 1000 Hz	+ 14.4 dB	(27)	+ 18.4 dB	$\pm 0.17~\mathrm{dB}$
Band C/D, 120 kHz, 10,000 Hz	$+\ 17.8\ dB$	(28)	+21.8~dB	$\pm 0.18~\mathrm{dB}$

Only the tests for HP 8596EM are included in this test record, therefore not all test numbers are included.

Table 3-46. HP 8596EM Performance Verification Test Record

Hewlett-Packard Company			
Address:		Report No	
		D.	
		Date	005)
		(For example: 10 MAY 1	995)
Model HP 8596EM			
Serial No.			
Options			
Firmware Revision			
Customer		Tested by	
Ambient temperature	°C	Relative humidity	%
Power mains line frequency	Hz	(nominal)	
Test Equipment Used:			
Description	Model No.	Trace No.	Cal Due Date
Frequency Counter			_
Frequency Standard			
Low Pass Filter, 50 MHz			
Low Pass Filter, 300 MHz		_,	
Low Pass Filter, 4.4 GHz		_,	
Measuring Receiver		_,	
Microwave Frequency Counter			_
Microwave Spectrum Analyzer			_
(Option 010)			
Power Meter			_
RF Power Sensor			_
High-Sensitivity Power Sensor			_
Power Splitter			_
Pulse Generator			_
Signal Generator		<u> </u>	_
Synthesized Sweeper		<u> </u>	_
$Synthesizer/Function\ Generator\ .$		<u> </u>	_
Synthesizer/Level Generator			_
Termination, 50 Ω			_
Notes/Comments: 3.58 Performance Test Record	ds		
-			

HP 8596EM Performance Verification Test Record (page 2 of 12)

Hewlett-Packard Company		l		
Model HP 8596EM		Report No.		
Serial No.		Date		
Test Description		Results Measured		Measurement
Test Description	Min.	(TR Entry)	Max.	Uncertainty
1. 10 MHz Reference Output		1	•	
Accuracy				
		Frequency Error		
Settability	– 150 Hz	(1)	+ 150 Hz	$\pm 4.2 \times 10^{-9}$
2. 10 MHz Precision Frequency Reference Output Accuracy for Option 004		Frequency Error		
5 Minute Warmup Error	-1×10^{-7}	(1)	$+1 \times 10^{-7}$	$\pm 2.004 \times 10^{-9}$
30 Minute Warmup Error	-1×10^{-8}	(2)	+1 x 10 ⁻⁸	$\pm 2.002 \times 10^{-9}$
3. Comb Generator Frequency Accuracy		<u> </u>		
riceurucy		Frequency (MHz)		
Comb Generator Frequency	99.993	1	100.007	±25 Hz
5. Frequency Readout and Marker Count Accuracy				
Frequency Readout Accuracy		Frequency (MHz)		
Frequency = 1.5 GHz				
SPAN				
20 MHz	1.49918	(1)	1.50082	$\pm 1.0~\mathrm{Hz}$
10 MHz	1.49958	(2)	1.50042	$\pm 1.0~\mathrm{Hz}$
1 MHz	1.4999680	(3)	1.500032	$\pm 1.0~\mathrm{Hz}$
Frequency = 4.0 GHz				
SPAN				
20 MHz	3.99918	(4)	4.00082	$\pm 1.0~\mathrm{Hz}$
10 MHz	3.99958	(5)	4.00042	$\pm 1.0~\mathrm{Hz}$
1 MHz	3.9999680	(6)	4.000032	±1.0 Hz
Frequency = 9.0 GHz				
SPAN				
20 MHz	8.99918	(7)	9.00082	±2.0 Hz
10 MHz	8.99958	(8)	9.00042	±2.0 Hz
1 MHz	8.9999680	(9)	Performance	Test Records $^{\pm 2.0}$ Hz
Narrow IF Bandwidth	1 10000001	(10)	1.50000054	1101
20 kHz	1.49999924	(16)	1.50000076	±1.0 Hz
Marker Count Accuracy				
Frequency = 1.5 GHz				
SPAN 100 H 20 MH	1 4000000	(15)	1.5000055	
(CNT RES = 100 Hz) 20 MHz	1.4999989	(17)	1.5000011	±1 Hz
(CNT RES = 10 Hz) 1 MHz Frequency = 4.0 GHz	1.49999989	(18)	1.50000011	±1 Hz

SPAN

HP 8596EM Performance Verification Test Record (page 3 of 12)

Hewlett-Packard Company	l		
Model HP 8596EM	Report No.		
Serial No.	Date		
Test Description	Results Measured		Measurement
Min.	(TR Entry)	Max.	Uncertainty
5. Frequency Readout and Marker Count Accuracy (continued)			
Frequency = 9.0 GHz SPAN			
(CNT RES = 100 Hz) 20 MHz 8.9999989	(21)	9.0000011	±2
(CNT RES = 10 Hz) 1 MHz 8.99999989	(22)	9.00000011	±21
Narrow IF Bandwidth			_
(CNT RES = 10 Hz) 20 kHz 1.49999989	(27)	1.50000011	±1.0 1
(CNT RES = 10 Hz) 2 kHz 1.49999989	(28)	1.50000011	±1.0 1
6. Noise Sidebands			
Suppression at 10 kHz	(1)	-60 dBc	± 1.0
Suppression at 20 kHz	(2)	-70 dBc	± 1.0 c
Suppression at 30 kHz	(3)	−75 dBc	±1.0 c
7. System Related Sidebands			
Sideband Above Signal 65 dBc	(1)		± 1.0 6
Sideband Below Signal 65 dBc	(2)		±1.0 c
9. Frequency Span Readout	I	ı	
Accuracy SPA N	MKRΔ Reading		
1800 MHz 1446.00 MHz	(1)	1554.00 MHz	±6.37 M
10.10 MHz 7.70 MHz		8.30 MHz	±35.4 kl
10.00 MHz 7.80 MHz	` '	8.20 MHz	±35.4 kl
100.00 kHz 78.00 kHz	(4)	82.00 kHz	±354 1
99.00 kHz 78.00 kHz		82.00 kHz	±354 l
10.00 kHz 7.80 kHz	(6)	8.20 kHz	±3.54 l
$Narrow\ IF\ Bandwidth$			
1.00 kHz 780 Hz	(7)	820 Hz	± 3.54]
11. Residual FM			
3.60 Performance Test Records	(1)	250 Hz	± 45.81
Narrow IF Bandwidth	(2)	30 Hz	±3.5]
2. Sweep Time Accuracy	1	ı	
SWEEP TIME	MKRΔ Reading	<u> </u>	
20 ms 15.4 ms	(1)	16.6 ms	±0.057 ı
100 ms 77.0 ms	(2)	83.0 ms	±0.283 r
1 s 770.0 ms	•	830.0 ms	±2.83 r
10 s 7.7 s	(4)	$8.3 \mathrm{\ s}$	$\pm 23.8 \text{ r}$

HP 8596EM Performance Verification Test Record (page 4 of 12)

Hewlett-Packard Company	
Model HP 8596EM	Report No.
Serial No.	Date

Seriai No.		Date		
Test Description	Min.	Results Measured (TR Entry)	Max.	Measurement Uncertainty
13. Scale Fidelity				
Log Mode		Cumulative Error		
dB from Ref Level				
0	0 (Ref)	0 (Ref)	0 (Ref)	
-4	-4.34 dB	(1)	+ 3.66 dB	$\pm 0.06 \text{ dH}$
-8	-8.38 dB	(2)	-7.62 dB	$\pm 0.06 \text{ dH}$
-12	-12.42 dB	(3)	-11.58 dB	± 0.06 dl
-16	-16.46 dB	(4)	-15.54 dB	± 0.06 dl
-20	−20.50 dB	(5)	-19.50 dB	± 0.06 dl
-24	$-24.54~\mathrm{dB}$	(6)	-23.46 dB	$\pm 0.06 \text{ dI}$
-28	$-28.58~\mathrm{dB}$	(7)	-27.42 dB	$\pm 0.06~\mathrm{dH}$
-32	$-32.62~\mathrm{dB}$	(8)	-31.38 dB	± 0.06 dl
-36	-36.66 dB	(9)	-35.34 dB	$\pm 0.06 \text{ dI}$
-40	-40.70 dB	(10)	-39.30 dB	± 0.06 dI
-44	-44.74 dB	(11)	-43.26 dB	± 0.06 dl
-48	-48.78 dB	(12)	-47.22 dB	± 0.06 dl
-52	$-52.82~\mathrm{dB}$	(13)	-51.18 dB	$\pm 0.06 \text{ d}$
-56	−56.86 dB	(14)	-55.14 dB	$\pm 0.06 \text{ d}$
-60	−60.90 dB	(15)	-59.10 dB	$\pm 0.11 \text{ d}$
-64	-64.94 dB	(16)	-63.06 dB	$\pm 0.11 \text{ d}$
-68	-68.98 dB	(17)	-67.02 dB	$\pm 0.11 d$
Log Mode		Incremental Error		
dB from Ref Level				
0	0 (Ref)	0 (Ref)	0 (Ref)	
-4	-0.4 dB	(18)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-8	-0.4 dB	(19)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-12	-0.4 dB	(20)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-16	-0.4 dB	(21)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-20	-0.4 dB	(22)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-24	-0.4 dB	(23)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-28	-0.4 dB	(24)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-32	-0.4 dB	(25)	+ 0.4 dB	$\pm 0.06 \mathrm{d}$
-36	-0.4 dB	(26)	Performançe	Test Reco <u>rd</u> s,₀63 _d l
-40	-0.4 dB	(27)	+ 0.4 dB	±0.06 d
-44	−0.4 dB	(28)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-48	-0.4 dB	(29)	+ 0.4 dB	$\pm 0.06 \text{ d}$
-52	−0.4 dB	(30)	+ 0.4 dB	±0.06 dl
-56	-0.4 dB	(31)	+ 0.4 dB	±0.06 dl
-60	-0.4 dB	(32)	+ 0.4 dB	±0.11 dI
		· /		

HP 8596EM Performance Verification Test Record (page 5 of 12)

-8	Hewlett-Packard Comp	oany		1		
Test Description	Model HP 8596EM			Report No.		
13. Scale Fidelity (continued) Narvow IF Bandwidth Log Mode Cumulative Error.	Serial No			Date		
13. Scale Fidelity (continued) Narvow IF Bandwidth Log Mode Cumulative Error Cumulative Error Cumulative Error 0 (Ref) 0	m . D	I		D 1. W 1	I	3.5
13. Scale Fidelity (continued) Narrow F Bandwidth Log Mode dB from Ref Level 0 0 (Ref) 0 (Ref) 0 (Ref) 0 (Ref) 0 (Ref) 4 4 4 4 6 6 6 6 6	Test Description	n	3.5:	Ī	1 34	
Narrow B Bandwidth Log Mode dB from Ref Level 0 0 (Ref) 0 (Ref			Min.	(1R Entry)	Max.	Uncertainty
Log Mode O (Ref) O (,	<i>'</i>		I		
0 0 0 0 0 0 0 0 0 0	Narrow IF Bandı	vidth				
0 0 (Ref) 0 (Ref) 0 (Ref) 0 (Ref) 0 (Ref) 0 (Ref) 4.4.6 dB ±0.06 dB −8 −8.48 dB (34) −7.52 dB ±0.06 dB −12 −12.52 dB (35) −11.48 dB ±0.06 dB −16 −16.56 dB (36) −15.44 dB ±0.06 dB −20 −20.90 dB (37) −19.40 dB ±0.06 dB −24 −24.64 dB (38) −228.58 dB ±0.06 dB −25.68 dB −30.76 dB −40.06 dB −25.68 dB −40 −40.80 dB −40 −40.80 dB −40 −40.80 dB −40 −40.80 dB −40 −40.80 dB −40 −40.80 dB −40 −40.80 dB −40 −40.80 dB −55 −56 −56.96 dB −61.00 dB −55.04 dB −66.92 dB ±0.11 dB −66.92 dB −66.92 dB −60.4 dB −60.4 dB −60.4 dB −60.4 dB −60.4 dB −60.4 dB −60.4 dB −60.4 dB −60.4 dB −60.4 dB −60.4 dB −60.4 dB −60.4 dB −00.4	Log Mode		Cumulative Error	<u> </u>		
-4	dB from I	Ref Level				
-8		0	0 (Ref)	` ′	0 (Ref)	
-12		-4	-4.44 dB	1 ' '	+ 3.56 dB	$\pm 0.06~\mathrm{dB}$
16		-8	-8.48 dB		-7.52 dB	$\pm 0.06~\mathrm{dB}$
-20		- 12	−12.52 dB	(35)	-11.48 dB	$\pm 0.06~\mathrm{dB}$
-24		- 16	– 16.56 dB	(36)	-15.44 dB	$\pm 0.06~\mathrm{dB}$
-28		-20	-20.60 dB	(37)	-19.40 dB	$\pm 0.06~\mathrm{dB}$
- 32		-24	-24.64 dB	, ,	-23.36 dB	$\pm 0.06~\mathrm{dB}$
-36		-28	-28.68 dB	(39)	−27.32 dB	$\pm 0.06~\mathrm{dB}$
-40		-32	-32.72 dB	(40)	-31.28 dB	$\pm 0.06~\mathrm{dB}$
-44		-36	-36.76 dB	(41)	-35.24 dB	$\pm 0.06~\mathrm{dB}$
-48		- 40	-40.80 dB	(42)	-39.20 dB	$\pm 0.06~\mathrm{dB}$
-52		- 44	-44.84 dB		-43.16 dB	±0.06 dB
-56		-48	-48.88 dB	(44)	-47.12 dB	±0.06 dB
-60		-52	−52.92 dB	(45)	-51.08 dB	±0.06 dB
-60		-56	-56.96 dB	(46)	-55.04 dB	±0.06 dB
Narrow IF Bandwidth Log Mode		-60	-61.00 dB	(47)	-59.00 dB	±0.11 dB
Narrow IF Bandwidth Log Mode		-64	-65.04 dB	(48)	-62.96 dB	±0.11 dB
Log Mode		-68		i ' '	i i	
Log Mode	Narrow IF Bandı	vidth				
dB from Ref Level 0 0 (Ref) 0 (Ref) 0 (Ref) -4 -0.4 dB (50) +0.4 dB ±0.06 dB -8 -0.4 dB (51) +0.4 dB ±0.06 dB -12 -0.4 dB (52) +0.4 dB ±0.06 dB -16 -0.4 dB (53) +0.4 dB ±0.06 dB -20 -0.4 dB (54) +0.4 dB ±0.06 dB -28 -0.4 dB (55) +0.4 dB ±0.06 dB -32 -0.4 dB (57) +0.4 dB ±0.06 dB -36 -0.4 dB (58) +0.4 dB ±0.06 dB -40 -0.4 dB (59) +0.4 dB ±0.06 dB -44 -0.4 dB (60) +0.4 dB ±0.06 dB -48 -0.4 dB (61) +0.4 dB ±0.06 dB -52 -0.4 dB (62) +0.4 dB ±0.06 dB	1147,700 11 1547400			Incremental Error	I	
0 0 (Ref) 0 (Ref) 0 (Ref) 0 (Ref) 0 (Ref) +0.4 dB ±0.06 dB +0.4 dB ±0.06 dB	dB from I		-			
-4			0 (Ref)	0 (Ref)	0 (Ref)	
-8		-4	` `	· · ·	` '	±0.06 dB
- 12		-8		i ' '	i i	
- 16		- 12		, ,		
-20] ' '		
3.62 Performance Test-Records (55) + 0.4 dB ± 0.06 dB -28 -0.4 dB (56) + 0.4 dB ± 0.06 dB -32 -0.4 dB (57) + 0.4 dB ± 0.06 dB -36 -0.4 dB (58) + 0.4 dB ± 0.06 dB -40 -0.4 dB (59) + 0.4 dB ± 0.06 dB -44 -0.4 dB (60) + 0.4 dB ± 0.06 dB -48 -0.4 dB (61) + 0.4 dB ± 0.06 dB -52 -0.4 dB (62) + 0.4 dB ± 0.06 dB				` '		
-28	3.62			` '		
- 32	3 32] ' '		
-36				` ′		
-40				· ' '		
-44				· '		
-48				· '		
-52 -0.4 dB (62) $+0.4 \text{ dB}$ $\pm 0.06 \text{ dB}$				` ′		
		i		i ' '	i i	
-56 -0.4 dB (63) $+0.4 \text{ dB}$ $\pm 0.06 \text{ dB}$		į		•		

-0.4 dB

(64)

+0.4 dB

 $\pm 0.11 \text{ dB}$

HP 8596EM Performance Verification Test Record (page 6 of 12)

Hewlett-Packard Company		ı		
Model HP 8596EM		Report No.		
Serial No.		Date		<u></u>
Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
13. Scale Fidelity (continued)				
Linear Mode				
% of Ref Level				
100.00	0 (Ref)	0 (Ref)	0 (Ref)	
70.70	151.59 mV	(65)	165.01 mV	±1.84 mV
50.00	105.36 mV	(66)	118.78 mV	$\pm 1.84~\mathrm{mV}$
35.48	72.63 mV	(67)	86.05 mV	$\pm 1.84~\mathrm{mV}$
25.00	49.46 mV	(68)	82.88 mV	$\pm 1.84~\mathrm{mV}$
Narrow IF Bandwidth				
% of Ref Level				
100.00	0 (Ref)	0 (Ref)	0 (Ref)	
70.70	151.59 mV	(69)	165.01 mV	$\pm 1.84~\mathrm{mV}$
50.00	105.36 mV	(70)	118.78 mV	$\pm 1.84~\mathrm{mV}$
35.48	72.63 mV	(71)	86.05 mV	$\pm 1.84~\mathrm{mV}$
25.00	49.46 mV	(72)	82.88 mV	±1.84 mV
Log-to-Linear Switching	−0.25 dB	(73)	+ 0.25 dB	$\pm 0.05~\mathrm{dB}$
Narrow IF Bandwidth	−0.25 dB	(74)	+ 0.25 dB	±0.05 dB
15. Reference Level Accuracy				
Log Mode				
Reference Level (dB μ V)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	− 0.40 dB	(1)	+0.40 dB	$\pm 0.06~\mathrm{dB}$
107	−0.50 dB	(2)	+ 0.50 dB	$\pm 0.06~\mathrm{dB}$
77	-0.40 dB	(3)	+0.40 dB	$\pm 0.06~\mathrm{dB}$

−0.50 dB

-0.80 dB

-1.00 dB

-1.10 dB

-1.20 dB

-1.30 dB

67 57

47 37

27

17

Performance Test Records 3.63

 $\pm 0.08~\mathrm{dB}$

 $\pm 0.08~\mathrm{dB}$

 $\pm 0.12~\mathrm{dB}$

 $\pm 0.12~\mathrm{dB}$

 $\pm 0.12~\mathrm{dB}$

 $\pm 0.12~\mathrm{dB}$

+0.50~dB

+0.80~dB

 $+\ 1.00\ dB$

 $+\;1.10\;\;dB$

 $+ 1.20 \ dB$

 $+ 1.30 \ dB$

HP 8596EM Performance Verification Test Record (page 7 of 12)

Model HP 8596EM		Report No.		
Serial No		Date		
Test Description		Results Measured	İ	Measurement
-	Min.	(TR Entry)	Max.	Uncertainty
15. Reference Level Accuracy (continued)				
Linear Mo				
Reference Level (dB μ V)			
87	0 (Ref)	0 (Ref)	0 (Ref)	
97	-0.40 dB	(10)	+ 0.40 dB	± 0.06 c
107	-0.50 dB	(11)	+ 0.50 dB	± 0.06 c
77	-0.40 dB	(12)	+ 0.40 dB	± 0.06 c
67	-0.50 dB	(13)	+ 0.50 dB	± 0.08 c
57	-0.80 dB	(14)	+ 0.80 dB	±0.08 c
47	-1.00 dB	(15)	+ 1.00 dB	± 0.12 c
37	-1.10 dB	(16)	+ 1.10 dB	± 0.12 c
27	-1.20 dB	(17)	+ 1.20 dB	± 0.12 c
17	-1.30 dB	(18)	+ 1.30 dB	± 0.12 c
$Narrow\ I\!F\ Bandwidth$				
Log Moo	de			
Reference Level (dB μ V)				
87	0 (Ref)	0 (Ref)	0 (Ref)	
77	-0.40 dB	(19)	+ 0.40 dB	± 0.06 c
107	-0.50 dB	(20)	+0.50 dB	± 0.06 c
77	-0.50 dB	(21)	+ 0.50 dB	±0.06 c
67	-0.50 dB	(22)	+ 0.50 dB	±0.08 d
57	-0.80 dB	(23)	+ 0.80 dB	±0.08 c
47	-1.20 dB	(24)	+ 1.10 dB	± 0.12 c
37	-1.20 dB	(25)	+ 1.20 dB	±0.12 c
27	-1.30 dB		+ 1.30 dB	±0.12 c
17	-1.40 dB	(27)	+ 1.40 dB	±0.12 c
$Narrow\ IF\ Bandwidth$				
Linear Mo				
Reference Level (dBµV)				
87	0 (Ref)	į	0 (Ref)	
97 3.64 Pe rform	ance Test Records -0.50 dB	(28)	+ 0.40 dB	±0.06 c
		(29)	+ 0.50 dB	$\pm 0.06 \ c$
77	-0.50 dB	(30)	+ 0.50 dB	$\pm 0.06 \ c$
67	-0.50 dB	(31)	+ 0.50 dB	± 0.08 c
57	-0.80 dB	(32)	+0.80 dB	± 0.08 c

-1.20 dB

-1.20 dB

-1.30 dB

-1.40 dB

37

27

17

+ 1.10 dB

+ 1.20 dB

+ 1.30 dB

+ 1.40 dB

 $\pm 0.12~\mathrm{dB}$

 $\pm 0.12~\mathrm{dB}$

 $\pm 0.12~\mathrm{dB}$

 $\pm 0.12~\mathrm{dB}$

HP 8596EM Performance Verification Test Record (page 8 of 12)

Hewlett-Packard Company		l		
Model HP 8596EM		Report No.		
Serial No.		Date		
Test Description		Results Measured		Measurement
-	Min.	(TR Entry)	Max.	Uncertainty
16. Absolute Amplitude Calibration and Resolution (IF) Bandwidth Switching Uncertainties				
Absolute Amplitude Uncertainty	$+86.85~\mathrm{dB}\mu\mathrm{V}$	(1)	$+87.15~\mathrm{dB}\mu\mathrm{V}$	N/A
Resolution (IF) Bandwidth Switching Uncertainty				
Resolution (IF) Bandwidth				
3 kHz	0 (Ref)	0 (Ref)	0 (Ref)	
1 kHz	-0.5 dB	(2)	+ 0.5 dB	+0.07/-0.08 dB
9 kHz	-0.4 dB	(3)	+ 0.4 dB	+0.07/-0.08 dB
10 kHz	-0.4 dB	(4)	+ 0.4 dB	+0.07/-0.08 dB
$30~\mathrm{kHz}$	-0.4 dB	(5)	+ 0.4 dB	+0.07/-0.08 dB
100 kHz	-0.4 dB	(6)	+ 0.4 dB	+0.07/-0.08 dB
120 kHz	-0.4 dB	(7)	+ 0.4 dB	+0.07/-0.08 dB
$300~\mathrm{kHz}$	-0.4 dB	(8)	+ 0.4 dB	+0.07/-0.08 dB
1 MHz	-0.4 dB	(9)	+ 0.4 dB	+0.07/-0.08 dB
3 MHz	-0.4 dB	(10)	+ 0.4 dB	+0.07/-0.08 dB
$Narrow\ IF\ Bandwidth$				
3 kHz	0 (Ref)	0 (Ref)	0 (Ref)	
$300~\mathrm{Hz}$	-0.6 dB	(11)	+ 0.6 dB	+0.07/-0.08 dB
$200~\mathrm{Hz}$	-0.6 dB	(12)	+ 0.6 dB	+0.07/ - 0.08 dB
$100~\mathrm{Hz}$	-0.6 dB	(13)	+ 0.6 dB	+0.07/-0.08 dB
30 Hz	-0.6 dB	(14)	+ 0.6 dB	+0.07/-0.08 dB
17. Resolution (IF) Bandwidth Accuracy				
3 dB Bandwidth				
3 MHz	2.4 MHz	(1)	3.6 MHz	±138 kHz
$300~\mathrm{kHz}$	240 kHz	(2)	360 kHz	±13.8 kHz
100 kHz	80 kHz	(3)	120 kHz	±4.6 kHz
30 kHz	24 kHz	(4)	36 kHz	±1.38 kHz
$10~\mathrm{kHz}$	8 kHz	(5)	Performance	Test Records 4603 Hg
3 kHz	2.4 kHz	(6)	3.6 kHz	±138 Hz
1 kHz	0.8 kHz	(7)	1.2 kHz	±46 Hz
6 dB EMI Bandwidth				
9 kHz	7.2 kHz	(8)	10.8 kHz	±333 Hz
120 kHz	96 kHz	(9)	144 kHz	±4.44 kHz
1 MHz	0.9 MHz	(10)	1.1 MHz	±46 kHz

HP 8596EM Performance Verification Test Record (page 9 of 12)

Hewlett-Packard Company		1		
Model HP 8596EM		Report No.		
Serial No.		Date		
Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
17. Resolution (IF) Bandwidth Accuracy (continued)				
Narrow IF Bandwidth				
3 dB Bandwidth				
300 Hz	$240~\mathrm{Hz}$	(11)	360 Hz	±36 H
100 Hz	80 Hz	(12)	120 Hz	±12 H
30 Hz	$24~\mathrm{Hz}$	(13)	36 Hz	±3.9 H
6 dB EMI Bandwidth				
200 Hz	160 Hz	(14)	240 Hz	±24 H
18. Calibrator Amplitude				
Accuracy	-20.4 dBm	(1)	- 19.6 dBm	±0.2 dl
23. Frequency Response				
Band 0				
Max. Positive Response		(1)	+ 1.5 dB	+ 0.32/- 0.33 dI
Max. Negative Response	−1.5 dB	(2)		+ 0.32/- 0.33 dI
Peak-to-Peak Response		(3)	2.0 dB	+ 0.32/- 0.33 dI
Band 1				
Max. Positive Response		(4)	+2.0 dB	+ 0.40/-0.42 dI
Max. Negative Response	-2.0 dB	(5)		+ 0.40/- 0.42 dI
Peak-to-Peak Response		(6)	3.0 dB	+ 0.40/- 0.42 dI
Band 2		, ,		
Max. Positive Response		(7)	+ 2.5 dB	+ 0.42/ - 0.43 dI
Max. Negative Response	−2.5 dB	(8)		+ 0.42/ - 0.43 dI
Peak-to-Peak Response		(9)	4.0 dB	+ 0.42/- 0.43 dI
28. Other Input Related Spurious Responses				
50 kHz to 2.9 GHz	55 d Bc	(1)		+ 1.12/ – 1.21 dI
< 12.8 GHz	55 d Bc	(1)		+ 1.13/- 1.22 dI
_		, ,		+ 1.15/ - 1.22 df
33. Spurious Responde Performance	e Test Records			
Second Harmonic Distortion				
Applied Frequency				
40 MHz		(1)	-50 dBc	+ 1.86/-2.27 dI
		(3)	(2)	+ 2.24/-2.72 dI
Third Order Intermodulation Distortion			(Step 23c)	

(4) _

(5)

 $-54~\mathrm{dBc}$

 $-54~\mathrm{dBc}$

+ 2.07/-2.42 dB

+ 2.07/- 2.42 dB

Frequency 2.8 GHz

 $4.0~\mathrm{GHz}$

HP 8596EM Performance Verification Test Record (page 10 of 12)

Hewlett-Packard Company		l.,		
Model HP 8596EM		Report No.		
Serial No.		Date		
Test Description		Results Measured		Measurement
-	Min.	(TR Entry)	Max.	Uncertainty
38. Gain Compression				
<2.9 GHz		(1)	0.5 dB	+0.21/-0.22 dB
>2.9 GHz		(2)	0.5 dB	+0.21/-0.22 dB
Narrow IF Bandwidth		(3)	0.5 dB	+0.21/-0.22 dB
43. Displayed Average Noise				
Frequency				
400 kHz		(1)	$-18 \mathrm{dB}\mu\mathrm{V}$	+ 1.15/-1.25 dB
1 MHz		(2)	$-18 \mathrm{dB}\mu\mathrm{V}$	+ 1.15/-1.25 dB
1 MHz to 2.9 GHz		(3)	$-18 \mathrm{dB}\mu\mathrm{V}$	+ 1.15/-1.25 dB
2.75 to 6.5 GHz		(4)	$-20~\mathrm{dB}\mu\mathrm{V}$	+ 1.15/-1.25 dB
6.0 to 12.8 GHz		(5)	−8 dBµV	+ 1.15/-1.25 dB
46. Residual Responses				
150 kHz to 6.5 GHz		(1)	$17~\mathrm{dB}\mu\mathrm{V}$	+1.09/-1.15 dB
48. Fast Time Domain Sweeps				
Options 101 and 301 only:				
Amplitude Resolution	0.933 X	-	1.007 X	0%
SWEEP TIME				
18 ms	14.04 ms	(1)	14.76 ms	±0.5%
10 ms	7.80 ms	(2)	8.20 ms	±0.5%
1.0 ms	780 μs	(3)	820 μs	±0.5%
$100~\mu \mathrm{s}$	$78 \ \mu s$	(4)	82 μs	±0.5%
$20~\mu s$	$15.6~\mu\mathrm{s}$	(5)	$16.4~\mu s$	±0.5%
50. Absolute Amplitude Accuracy				
Option 010 only:				
Absolute Amplitude Accuracy	-20.75 dBm	(1)	- 19.25 dBm	+ .155/161 dB
Positive Vernier Accuracy		(2)	+ 0.50 dB	±0.03 dB
Negative Vernier Accuracy	-0.50 dB	(3)		±0.03 dB
Positive Step-to-Step Accuracy		(4)	Performante	Test Reco#ds.033dB
Negative Step-to-Step Accuracy	-0.80 dB	(5)		±0.03 dB
51. Power Sweep Range				
Option 010 only:				
Start Power Level		(1)		
Stop Power Level		(2)		
Power Sweep Range	9.0 dB	(3)		±0.03 dB

HP 8596EM Performance Verification Test Record (page 11 of 12)

Hewlett-Packard Company				
Model HP 8596EM		Report No.		
Serial No.		Date		
ı			ı	
Test Description		Results Measured		Measurement
	Min.	(TR Entry)	Max.	Uncertainty
53. Tracking Generator Level Flatness				
Option 010 only:				
Maximum Flatness				
9 kHz to 100 kHz		(1)	+2.0 dB	+ 0.42/-0.45 dB
100 kHz to 2900 MHz		(2)	+ 2.0 dB	+ 0.42/ - 0.45 dB
Minimum Flatness				
9 kHz to 100 kHz	-2.0 dB	(3)		+ 0.42/ - 0.45 dB
100 kHz to 2900 MHz	-2.0 dB	(4)		+ 0.42/-0.45 dB
55. Harmonic Spurious Outputs Option 010 only:				
2nd Harmonic Level, 9 kHz	$15~\mathrm{dBc}$	(1)		+ 1.55/ – 1.80 dB
2nd Harmonic Level, 25 kHz to 900 MHz	$25~\mathrm{dBc}$	(2)		+ 1.55/ – 1.80 dB
2nd Harmonic Level, 1.4 GHz	$25~\mathrm{dBc}$	(3)		+ 3.45/ - 4.01 dB
3rd Harmonic Level, 9 kHz	$15~\mathrm{dBc}$	(4)		+ 1.55/ - 1.80 dB
3rd Harmonic Level, 25 kHz to 900 MHz	25 dBc	(5)		+ 1.55/- 1.80 dB
57. Non-Harmonic Spurious Outputs				
Option 010 only:				
Highest Non-Harmonic Response Amplitude				
9 kHz to 2000 MHz	$27~\mathrm{dBc}$	(1)		+ 1.55/ - 1.80 dB
2000 MHz to 2900 MHz	$23~\mathrm{dBc}$	(2)		+ 3.45/ - 4.01 dB
60. Tracking Generator Feedthrough				
Option 010 only:				
400 kHz to 2.9 GHz		(1)	-3 dBμV	+ 1.59/ – 1.70 dB
61. Tracking Gengregor Performan Feedthrough Amplitude	e Test Records			
Option 010 only:				
9 kHz to 1.5 GHz		(1)	-16 dBm	±2.02/-2.50 dB
2.9 GHz		(2)	-16 dBm	$\pm 2.10/-2.67~\mathrm{dB}$

HP 8596EM Performance Verification Test Record (page 12 of 12)

Hewlett-Packard Company	
Model HP 8596EM	Report No
Serial No.	Date

Test Description	İ	Results Measured	i	Measurement
	Min.	(TR Entry)	Max.	Uncertainty
62. CISPR Pulse Response				
		Amplitude Error		
Measured Amplitude				
200 Hz EMI BW	-1.5 dB	(1)	+ 1.5 dB	$\pm 0.34~\mathrm{dB}$
9 kHz EMI BW	– 1.5 dB	(2)	+ 1.5 dB	$\pm 0.34~\mathrm{dB}$
120 kHz EMI BW	−1.5 dB	(3)	+ 1.5 dB	$\pm 0.50 \text{ dB}$
Relative Level, 200 Hz EMI BW				
Repetition Frequency				
100	3.0 dB	(4)	+ 5.0 dB	$\pm 0.24~\mathrm{dB}$
60	2.0 dB	(5)	+ 4.0 dB	$\pm 0.26~\mathrm{dB}$
25	0 (Ref)	(6)	0 (Ref)	0 (Ref)
10	-3.0 dB	(7)	−5.0 dB	$\pm 0.29~\mathrm{dB}$
5	-6.0 dB	(8)	-9.0 dB	$\pm 0.30~\mathrm{dB}$
2	-11.0 dB	(9)	-15.0 dB	$\pm 0.36~\mathrm{dB}$
1	-15.0 dB	(10)	-19.0 dB	$\pm 0.28~\mathrm{dB}$
Isolated Pulse	-17.0 dB	(11)	-21.0 dB	$\pm 0.20~\mathrm{dB}$
Relative Level, 9 kHz EMI BW				
Repetition Frequency				
1000	$+5.5~\mathrm{dB}$	(12)	+ 3.5 dB	$\pm 0.17~\mathrm{dB}$
100	0 (Ref)	(13)	0 (Ref)	0 (Ref)
20	−5.5 dB	(14)	−7.5 dB	$\pm 0.27~\mathrm{dB}$
10	-8.5 dB	(15)	-11.5 dB	$\pm 0.25~\mathrm{dB}$
2	-18.5 dB	(16)	−22.5 dB	$\pm 0.23~\mathrm{dB}$
1	-20.5 dB	(17)	−24.5 dB	$\pm 0.19~\mathrm{dB}$
Isolated Pulse	-21.5 dB	(18)	−25.5 dB	$\pm 0.15~\mathrm{dB}$
Relative Level, 120 kHz EMI BW				
Repetition Frequency				
1000	+9.0 dB	(19)	+ 7.0 dB	$\pm 0.17~\mathrm{dB}$
100	0 (Ref)	(20)	0 (Ref)	0 (Ref)
20	-8.0 dB	(21)	-10.0 dB	$\pm 0.18~\mathrm{dB}$
10	-12.5 dB	(22)	−15.5 dB	$\pm 0.18~\mathrm{dB}$
2	-24.0 dB	(23)	-28.0 dB	$\pm 0.18 \text{ dB}$
1	-26.5 dB	(24)	Per <u>formance</u>	Test Reco ${ m \underline{r}}$ ds $_{18}$ 3 $_{ m dB}$ 9
Isolated Pulse	−29.5 dB	(25)	−33.5 dB	$\pm 0.17~\mathrm{dB}$
Band, Bandwidth, Repetition Frequency				
Band A, 200 Hz, 25 Hz	+9.4 dB	(26)	+ 13.4 dB	$\pm 0.28~\mathrm{dB}$
Band B, 9 kHz, 1000 Hz	+ 14.4 dB	(27)	+ 18.4 dB	$\pm 0.17~\mathrm{dB}$
Band C/D, 120 kHz, $10,000 \text{ Hz}$	$+\ 17.8\ dB$	(28)	+21.8~dB	$\pm 0.18~\mathrm{dB}$

HP 8591EM Specifications and Characteristics

This chapter contains specifications and characteristics for the HP 8591EM EMC analyzer.

The specifications and characteristics in this chapter are listed separately. The specifications are described first, followed by the characteristics.

General General specifications and characteristics.

Frequency Frequency-related specifications and characteristics. **Amplitude** Amplitude-related specifications and characteristics.

Option Option-related specifications and characteristics.

Input, output and physical characteristics. Physical

The distinction between specifications and characteristics is described as follows.

- Specifications describe warranted performance over the temperature range 0 °C to +55 °C (unless otherwise noted). The EMC analyzer will meet its specifications under the following conditions:
 - □ The instrument is within the one year calibration cycle.
 - □ 2 hours of storage at a constant temperature within the operating temperature range.
 - □ 30 minutes after the EMC analyzer is turned on.
 - □ After the CAL FREQ and CAL AMP routines have been run.
- Characteristics provide useful, but nonwarranted information about the functions and performance of the EMC analyzer. Characteristics are specifically identified.
- Typical Performance, where listed, is not warranted, but indicates performance that most units will exhibit.
- Nominal Value indicates the expected, but not warranted, value of the parameter.

General Specifications

Temperature Range	
Operating	0 °C to +55 °C
Storage	-40 °C to +75 °C
EMI Compatibility	Conducted and radiated emission is in
	compliance with CISPR Pub. 11/1990 Group 1
	Class A.
Audible Noise	<37.5 dBA pressure and <5.0 Bels power
	(ISODP7779)
Power Requirements	
ON (LINE 1)	90 to 132 V rms, 47 to 440 Hz
	195 to 250 V rms, 47 to 66 Hz
	Power consumption <500 VA; <180 W
Standby (LINE 0)	Power consumption <7 W
Environmental Specifications	Type tested to the environmental specifications
	of Mil-T-28800 class 5

Frequency Specifications

Frequency Range	9 kHz to 1.8 GHz
-----------------	------------------

Frequency Reference	
Aging	$\pm 2 \times 10^{-6}$ /year
Settability	$\pm 0.5 \times 10^{-6}$
Temperature Stability	$\pm 5 \times 10^{-6}$

Precision Frequency Reference (Option 004)	
Aging	$\pm 1 \times 10^{-7}/\text{year}$
Settability	$\pm 1 \times 10^{-8}$
Temperature Stability	$\pm 1 \times 10^{-8}$

Frequency Readout Accuracy	
(Start, Stop, Center, Marker)	±(frequency readout x frequency reference error* + span accuracy + 1% of span + 20% of IF BW + 100 Hz) [†]

^{*} frequency reference error = (aging rate \times period of time since adjustment + initial achievable accuracy + temperature stability). See "Frequency Characteristics."

[†] See "Drift" under "Stability" in Frequency Characteristics.

Marker Count Accuracy [†]	
Frequency Span ≤ 10 MHz	±(marker frequency x frequency reference error* + counter resolution + 100 Hz)
Frequency Span >10 MHz	±(marker frequency x frequency reference error* + counter resolution + 1 kHz)
Counter Resolution	
Frequency Span ≤ 10 MHz	Selectable from 10 Hz to 100 kHz
Frequency Span > 10 MHz	Selectable from 100 Hz to 100 kHz

 $^{^*}$ frequency reference error = (aging rate \times period of time since adjustment + initial achievable accuracy and temperature stability). See "Frequency Characteristics."

 $^{^\}dagger$ Marker level to displayed noise level > 25 dB, IF BW/Span \geq 0.01. Span \leq 300 MHz. Reduce SPAN annotation is displayed when IF BW/Span < 0.01.

Frequency Span	
Range	0 Hz (zero span), 1 kHz to 1.8 GHz
Resolution	Four digits or 20 Hz, whichever is greater.
Accuracy	
$\mathrm{Span} \leq 10~\mathrm{MHz}$	$\pm 2\%$ of span*
Span > 10 MHz	$\pm 3\%$ of span
* For spans < 10 kHz, add an additional 10 Hz resolution error.	

Frequency Sweep Time	
Range	
	20 ms to 100 s
(Options 101 and 301)	$20 \mu s$ to $100 s$ for span = $0 Hz$
Accuracy	
20 ms to 100 s	±3%
$20~\mu s$ to $<\!20~ms$ (Options 101 and 301)	±2%
Sweep Trigger	Free Run, Single, Line, Video, External

IF Bandwidths	
Measurement	200 Hz, 9 kHz, and 120 kHz (6 dB EMC bandwidths)
	1 MHz (6 dB bandwidth ±10%)
Diagnostic	30 Hz to 300 kHz, 3 dB bandwidths in 1,3,10 steps (±20%
	characteristic),
	also 3 MHz and 5 MHz.

4-4 HP 8591EM Specifications and Characteristics

tability	
Noise Sidebands	(1 kHz IF BW, 30 Hz AVG BW and sample detector)
>10 kHz offset from CW signal	≤-90 dBc/Hz
>20 kHz offset from CW signal	≤-100 dBc/Hz
>30 kHz offset from CW signal	≤-105 dBc/Hz
Residual FM	
1 kHz IF BW, 1 kHz Avg BW	≤250 Hz pk-pk in 100 ms
30 Hz IF BW, 30 Hz Avg BW	≤30 Hz pk-pk in 300 ms
System-Related Sidebands	
>30 kHz offset from CW signal	≤-65 dBc

Calibrator Output Frequency	300 MHz \pm (freq. ref. error* \times 300 MHz)

^{*} frequency reference error = (aging rate \times period of time since adjustment + initial achievable accuracy + temperature stability). See "Frequency Characteristics."

Amplitude specifications do not apply for Analog+ mode and negative peak detector mode except as noted in "Amplitude Characteristics."

Amplitude Range	-23 dBμV to +137 dBμV
-----------------	-----------------------

Maximum Safe Input Level	(Input attenuator≥10 dB)
Average Continuous Power	$+ 137~\mathrm{dB}\mu\mathrm{V}$ (1 W)
Peak Pulse Power	$+ 137 \text{ dB}\mu\text{V } (1 \text{ W})$
dc	25 Vdc

Quasi-Peak Detector Specifications (All except Option 703)

The specifications for Quasi-Peak Detector have been based on the following:

- The EMC analyzer displays the quasi-peak amplitude of pulsed radio frequency (RF) or continuous wave (CW) signals.
- Amplitude response conforms with Publication 16 of Comité International Spécial des Perturbations Radioélectriques (CISPR) Section 1, Clause 2.

Absolute amplitude accuracy is the sum of the pulse amplitude response relative to the reference, plus the reference pulse amplitude accuracy, plus the EMC analyzer amplitude accuracy (calibrator output, reference level, frequency response, input attenuator, IF bandwidth switching, linear display scale fidelity, and gain compression).

Relative Quasi-Peak Response to a CISPR Pulse (dB) (All except Option 703)			
	Frequency Band		
Pulse Repetition	120 kHz EMI BW	9 kHz EMI BW	200 Hz EMI BW
Frequency (Hz)	0.03 to 1 GHz	0.15 to 30 MHz	10 to 150 kHz
1000	+8.0 ± 1.0	$+\ 4.5\ \pm\ 1.0$	_
100	0 dB (reference)*	0 dB (reference)*	$+4.0 \pm 1.0$
60	_	_	$+3.0 \pm 1.0$
25	_	_	0 dB (reference)*
20	-9.0 ± 1.0	-6.5 ± 1.0	_
10	-14.0 ± 1.5	-10.0 ± 1.5	-4.0 ± 1.0
5	_	_	-7.5 ± 1.5
2	-26.0 ± 2.0	-20.5 ± 2.0	-13.0 ± 2.0
1	-28.5 ± 2.0	-22.5 ± 2.0	-17.0 ± 2.0
Isolated Pulse	-31.5 ± 2.0	-23.5 ± 2.0	-19.0 ± 2.0

 $^{^{\}ast}$ Reference pulse amplitude accuracy relative to the CW signal is $<\!1.5$ dB as specified in CISPR

CISPR reference pulse: 0.044 $\mu\rm \, Vs$ for 30 MHz to 1 GHz, 0.316 $\mu\rm \, Vs$ for 15 kHz to 30 MHz, and $13.5~\mu\mathrm{Vs}~\pm1.5~\mu\mathrm{Vs}$ for 9 kHz to 150 kHz.

Gain Compression [†]	
>10 MHz	\leq 0.5 dB (total power at input mixer* = 97 dB μ V)

^{*} Mixer Power Level $(dB\mu V)$ = Input Power $(dB\mu V)$ - Input Attenuation (dB).

 $^{^{\}dagger}$ If IF BW \leq 300 Hz, this applies only if signal separation \geq 4 kHz and signal amplitudes \leq Reference Level + 10 dB.

Displayed Average Noise Level	(Input terminated, 0 dB attenuation,
	30 Hz AVG BW, sample detector)
1 kHz IF BW	
400 kHz to 1 MHz	$\leq -8 \mathrm{dB}\mu\mathrm{V}$
1 MHz to 1.5 GHz	\leq -8 dB μ V
1.5 GHz to 1.8 GHz	\leq -6 dB μ V
30 Hz IF BW	
400 kHz to 1 MHz	≤-23 dBµV
1 MHz to 1.5 GHz	\leq -23 dB μ V
1.5 GHz to 1.8 GHz	\leq -21 dB μ V

Spurious Responses Second Harmonic Distortion		
5 MHz to 1.8 GHz	<-70 dBc for $+62$ dB $_{\mu}$ V tone at input mixer.*	
Third Order Intermodulation Distortion		
5 MHz to 1.8 GHz	<-70 dBc for two +77 dB μ V tones at input mixer* and >50 kHz separation.	
Other Input Related Spurious	<-65 dBc at \geq 30 kHz offset, for +87 dB μ V tone at input mixer \leq 1.8 GHz.	
* Mixer Power Level ($dB\mu V$) = Input Power ($dB\mu V$) - Input Attenuation (dB).		

Res	idual Responses	(Input terminated and 0 dB attenuation)
1:	50 kHz to 1.8 GHz	$<$ + 17 dB μ V

Display Range	
Log Scale	0 to -70 dB from reference level is calibrated; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps; eight divisions displayed.
Linear Scale	eight divisions
Scale Units	dBm, dBmV, dB μ V, mV, mW, nV, nW, pW, μ V, μ W, V, and W

Marker Readout Resolution	0.05 dB for log scale
	0.05% of reference level for linear scale
Fast Sweep Times for Zero Span	
20 μs to 20 ms (Option 101 or 301)	
Frequency ≤ 1 GHz	0.7% of reference level for linear scale
Frequency > 1 GHz	1.0% of reference level for linear scale

4-8 HP 8591EM Specifications and Characteristics

Reference Level	
Range	
Log Scale	Minimum amplitude to maximum amplitude*
Linear Scale	$+8~\mathrm{dB}\mu\mathrm{V}$ to maximum amplitude *
Resolution	
Log Scale	±0.01 dB
Linear Scale	$\pm 0.12\%$ of reference level
Accuracy	(referenced to $+87~dB\mu V$ reference level, 10 dB input attenuation, at a single frequency, in a fixed IF BW)
$107~\mathrm{dB}\mu\mathrm{V}$ to $+47.1~\mathrm{dB}\mu\mathrm{V}$	$\pm (0.3 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
$+47~\mathrm{dB}\mu\mathrm{V}$ and below	
1 kHz to 3 MHz IF BW	$\pm (0.6 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
30 Hz to 300 Hz IF BW	$\pm (0.7 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
* See "Amplitude Range."	

Frequency Response	(10 dB input attenuation)	
	Absolute*	Relative Flatness [†]
9 kHz to 1.8 GHz	$\pm 1.5~\mathrm{dB}$	$\pm 1.0~\mathrm{dB}$
* Referenced to 300 MHz CAL OUT. † Referenced to midpoint between highest and lowest frequency response deviations.		

Calibrator Output	
Amplitude	$+87~\mathrm{dB}\mu\mathrm{V}~\pm0.4~\mathrm{dB}$

Absolute Amplitude Calibration Repeatability*	±0.15 dB

 $^{^{\}ast}$ Repeatability in the measured absolute amplitude of the CAL OUT signal at the reference settings after CAL FREQ and CAL AMPTD self-calibration. Absolute amplitude reference settings are: Reference Level $+87~dB\mu V$; Input Attenuation 10 dB; Center Frequency 300 MHz; IF BW 3 kHz; Averaging BW 300 Hz; Scale Linear; Span 50 kHz; Sweep Time Coupled, Top Graticule (reference level), Corrections ON.

Input Attenuator	
Range	0 to 60 dB, in 10 dB steps

IF Bandwidth Switching Uncertainty	(At reference level, referenced to 3 kHz IF BW)
3 kHz to 3 MHz IF BW	±0.4 dB
1 kHz IF BW	$\pm 0.5~\mathrm{dB}$
30 Hz to 300 Hz IF BW	$\pm 0.6 \text{ dB}$

Linear to Log Switching	±0.25 dB at reference level
-------------------------	-----------------------------

Display Scale Fidelity	
Log Maximum Cumulative	
0 to -70 dB from Reference Level	
3 kHz to 3 MHz IF BW	\pm (0.3 dB + 0.01 $ imes$ dB from reference level)
IF BW ≤ 1 kHz	± (0.4 dB + 0.01 x dB from reference level)
Log Incremental Accuracy	
0 to -60 dB from Reference Level	$\pm 0.4~\mathrm{dB/4~dB}$
Linear Accuracy	$\pm 3\%$ of reference level

Option Specifications

Tracking Generator Specifications (Option 010)

All specifications apply over 0 °C to +55 °C. The EMC-analyzer/trackinggenerator combination will meet its specifications after 2 hours of storage at a constant temperature within the operating temperature range, 30 minutes after the EMC-analyzer/tracking-generator is turned on and after CAL FREQ, CAL AMPTD, CAL TRK GEN, and TRACKING PEAK have been run.

Warm-Up	30 minutes
Outside Francisco	
Output Frequency	
Range	100 kHz to 1.8 GHz

Output Power Level	
Range	$+107$ to $+37$ dB μ V
Resolution	0.1 dB
Absolute Accuracy	±1.0 dB
	(at 300 MHz, $+87$ dB μ V, and coupled source attenuator)
Vernier	
Range	10 dB*
Accuracy	±0.75 dB over 10 dB range
	$(referenced\ to\ +87\ dB\mu V\ for\ coupled\ source\ attenuator\ setting)^*$
Output Attenuator Range	0 to 60 dB in 10 dB steps
* See the Output Accuracy table in "Option Characteristics."	

Output Power Sweep	
Range	$(+92 \text{ dB}\mu\text{V to } + 107 \text{ dB}\mu\text{V})$ – (Source Attenuator
	Setting)
Resolution	0.1 dB
Accuracy (zero span)	<1.5 dB peak-to-peak

Option Specifications

Output Flatness	
(referenced to 300 MHz, 10 dB attenuator)	$\pm 1.75~\mathrm{dB}$

Spurious Outputs	(+ 107 dB μ V output, 100 kHz to 1.8 GHz)
Harmonic Spurs	<-25 dBc
Nonharmonic Spurs	<-30 dBc

Dynamic Range	
Tracking Generator Feedthrough	$<+1$ dB μ V

Frequency Characteristics

These are not specifications. Characteristics provide useful but nonwarranted information about instrument performance.

Frequency Reference	
Initial Achievable Accuracy	$\pm 0.5 \times 10^{-6}$
Aging	$\pm 1.0 \times 10^{-7} / \text{day}$

Precision Frequency Reference (Option 004)	
Aging	5 x 10 ⁻¹⁰ /day, 7-day average after being
	powered on for 7 days.
Warm-Up	1×10^{-8} after 30 minutes on.
Initial Achievable Accuracy	$\pm 2.2 \times 10^{-8}$ after being powered on for 24
	hours.

Stability	
Drift* (after warmup at stabilized	
temperature)	
Frequency Span ≤10 MHz, Free Run	<2 kHz/minute of sweep time
* Recourse the analyzer is leaked at the center from	anongy hafore each sween drift eagurs only

Because the analyzer is locked at the center frequency before each sweep, drift occurs only during the time of one sweep. For Line, Video or External trigger, additional drift occurs while waiting for the appropriate trigger signal.

Diagnostic IF Bandwidths	
Shape	Synchronously tuned four poles. Approximately Gaussian shape.
60 dB/3 dB Bandwidth Ratio IF Bandwidth	
100 kHz to 3 MHz	15:1
30 kHz	16:1
3 kHz to 10 kHz	15:1
1 kHz	16:1
40 dB/3 dB Bandwidth Ratio IF Bandwidth	
30 Hz to 300 Hz	10:1

Frequency Characteristics

Averaging	Bandwidth	(-3)	dB)	
		. ~	,	

Range

1 Hz to 1 MHz, selectable in 1, 3, 10 increments, accuracy $\pm30\,\%$ and 3 MHz. Averaging bandwidths may be selected manually, or coupled to IF bandwidth

and frequency span.

Shape

Post detection, single pole low-pass filter used to average displayed noise. Bandwidths below 30 Hz are digital bandwidths with anti-aliasing filtering.

FFT Bandwidth Factors			
	FLATTOP	HANNING	UNIFORM
Noise Equivalent Bandwidth*	3.63×	1.5x	1×
3 dB Bandwidth*	3.60×	1.48×	1×
Sidelobe Height	<-90 dB	−32 dB	−13 dB
Amplitude Uncertainty	0.10 dB	1.42 dB	$3.92~\mathrm{dB}$
Shape Factor (60 dB BW/3 dB BW)	2.6	9.1	>300

These are not specifications. Characteristics provide useful but nonwarranted information about instrument performance.

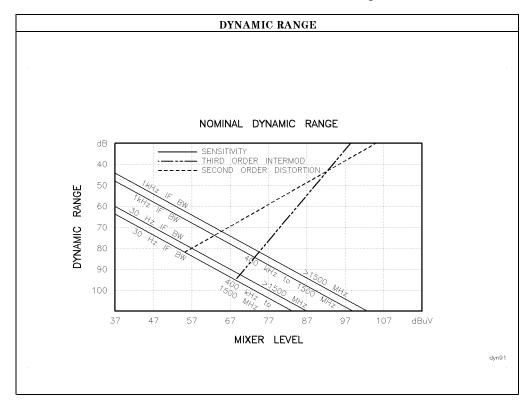
Log Scale Switching Uncertainty	Negligible error
	•

(All except Option 703)	Internal speaker, rear panel earphone jack and front-panel volume control. Adjustable squelch control mutes the audio signal to the speaker/earphone jack based on the level of the demodulated signal above 22 kHz. An
	uncalibrated demodulated signal is available on the AUX VIDEO OUT
	connector at the rear panel.

Quasi-Peak Detector (All except Option 703)	
Measurement Range	
Displayed	70 dB
Total	115 dB

FM Demodulation (All except Option 703)	
Input Level	$>$ (+ 47 dB μ V + attenuator setting)
Signal Level	0 to -30 dB below reference level
FM Offset	
Resolution	400 Hz nominal
FM Deviation (FM GAIN)	
Resolution	1 kHz/volt nominal
Range	10 kHz/volt to 1 MHz/volt
Bandwidth (6 dB)	FM deviation/2
FM Linearity (for modulating frequency < bandwidth/100)	≤ 1% of FM deviation + 290 Hz

Measurement Detector Types	Positive Peak, Quasi-Peak, and Average	
	Quasi-Peak and Average time constants conform with CISPR Pub. 16.	
(Option 101 and Option 301)	Negative Peak	
(Option 703)	Delete Quasi-Peak and Average	


IF Overload Detector	Available in EMC analyzer mode only.
	Detects overload of the analyzer video circuitry.

Input Attenuation Uncertainty*	
Attenuator Setting	
0 dB	$\pm 0.5~\mathrm{dB}$
10 dB	Reference
20 dB	$\pm 0.5 \text{ dB}$
30 dB	±0.6 dB
40 dB	±0.8 dB
50 d B	±1.0 dB
60 d B	$\pm 1.2~\mathrm{dB}$

 $^{^*}$ Referenced to 10 dB input attenuator setting from 9 kHz to 1.8 GHz. See the "Frequency Response" table under "Specifications".

Input Attenuator Repeatability	
300 MHz	±0.03 dB
1.8 GHz	±1.0 dB

RF Input SWR	(Attenuator setting 10 to 60 dB)
	1.35:1

Immunity Testing	
Radiated Immunity	When tested at 3 V/m according to IEC 801-3/1984 the displayed average noise level will be within specifications over the full immunity test frequency range of 27 to 500 MHz except that at immunity test frequencies of 278.6 MHz \pm selected IF bandwidth and 321.4 MHz \pm selected IF bandwidth the displayed average noise level may be up to $+62~\mathrm{dB}\mu\mathrm{V}$. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to $+37~\mathrm{dB}\mu\mathrm{V}$ displayed on the screen.
Electrostatic Discharge	When an air discharge of up to 8 kV according to IEC 801-2/1991 occurs to the shells of the BNC connectors on the rear panel of the instrument spikes may be seen on the CRT display. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.
Electrical Fast Transient	When subjected to Electrical Fast Transient testing per EN 50082-1/EIC 801-4 noise may appear on the display of the analyzer during the application of the test voltage.

Analog + Mode and Negative Peak Detector Mode (Options 101 and 301)

These modes do not utilize the full set of internal amplitude corrections. Therefore, in these modes, some analyzer amplitude specifications are reduced to characteristics. Characteristics provide useful but nonwarranted information about instrument performance.

In these modes, the following analyzer specifications remain as specifications:

Amplitude Range

Calibrator Output

Maximum Safe Input Level

In these modes, the following analyzer specifications are reduced to characteristics:

Gain Compression Reference Level

Displayed Average Noise Level IF Bandwidth Switching Spurious Responses Linear to Log Switching Residual Responses Display Scale Fidelity

Display Range Display Scale Fidelity for Narrow Bandwidths

Finally, the following analyzer specifications are replaced by the characteristics which follow in this subsection:

Marker Readout Resolution Frequency Response

Marker Readout Resolution	
(digitizing resolution)	
Log Scale	±0.31 dB
Linear Scale	
$frequency \le 1 GHz$	$\pm 0.59\%$ of reference level
frequency > 1 GHz	$\pm 1.03\%$ of reference level

Frequency Response in Analog + Mode	(10 dB input attenuation, for spans ≤ 20 MHz)	
	Absolute* Relative Flat	
	±1.9 dB	$\pm 1.4~\mathrm{dB}$
* Referenced to 300 MHz CAL OUT.		
† Referenced to midpoint between highest and lowest frequency response deviations.		

Option Characteristics

TV Trigger Characteristics (Options 101, 102, and 301)

TV Trigger	Triggers sweep of the analyzer after the sync pulse of a selected line of a TV video field.
Carrier Level for Trigger	Top 60% of linear display
Compatible Formats	NTSC, PAL, SECAM
Field Selection	Even, odd, non-interlaced
Trigger Polarity	Positive, negative
Line Selection	10 to 1021

Tracking Generator Characteristics (Option 010)

· ·	,	
Output Tracking		
Drift		
(usable in 10 kHz bandwidth after 30-minute warmup)	1 kHz/5 minutes	
Spurious Outputs (>1.8 GHz to 4.0 GHz)		
$+ 107 \mathrm{dB}\mu \mathrm{V} \mathrm{output}$		
Harmonic	<-20 dBc	
Nonharmonic	<-40 dBc	
2121.4 MHz Feedthrough	$<$ + 62 dB μ V	
RF Power-Off Residuals		
100 kHz to 1.8 GHz	$<-8 \mathrm{dB}\mu \mathrm{V}$	
Output Attenuator		
Repeatability	+0.2 dB	

Option Characteristics

Output VSWR	
0 dB Attenuator	<2.5:1
10 dB Attenuator	<1.6:1

Dynamic Range (difference between maximum	
power out and tracking generator feedthrough)	
100 kHz to 1.8 GHz	>106 dB

TRACKING GENERATOR OUTPUT ACCURACY, Option 010 (after CAL TRK GEN in auto-coupled mode)

(after CAL TRK GEN in auto-coupled mode)					
TG Output	Attenuator	Relative	Absolute	Relative	Absolute
Power Level	Setting	Accuracy	Accuracy	Accuracy	Accuracy
		(at 300 MHz	(at 300 MHz)	(referred to	(+0.2 dB/GHz)*
		referred to		+87 $dB\mu V$)	
		+ 87 dBµV)		(+0.2 dB/GHz)*	
$^+$ 107 to $^+$ 96.1 dB μV	0 dB	±1.25 dB	$\pm 2.25~\mathrm{dB}$	$\pm 2.75~\mathrm{dB}$	±3.75 dB
$+96$ to $+86.1~dB\mu V$	10 dB	±0.75 dB	±1.75 dB	±2.25 dB	±3.25 dB
$+87~dB\mu V$	10 dB	0 dB Reference	±1.0 dB	±1.50 dB	±2.50 dB
$+86$ to $+76.1$ dB μ V	20 dB	±1.25 dB	±2.25 dB	$\pm 2.75~\mathrm{dB}$	±3.75 dB
$+76~to~+66.1~dB\mu V$	30 dB	±1.35 dB	±2.35 dB	±2.85 dB	±3.85 dB
$+66$ to $+56.1$ dB μ V	40 dB	±1.55 dB	$\pm 2.55~\mathrm{dB}$	±3.05 dB	±4.05 dB
$+56$ to $+46.1~dB\mu V$	50 dB	±1.75 dB	±2.75 dB	±3.25 dB	±4.25 dB
$+46$ to $+37$ $dB\mu V$	60 dB	±1.95 dB	±2.95 dB	±3.45 dB	±4.45 dB
	l	l			

 $^{^{\}ast}$ Add 0.2 dB/GHz of tuned frequency to the value in this column for complete accuracy specification relative to frequency.

Front-Panel Inputs and Outputs

INPUT 50Ω	
Connector	Type N female
Impedance	50 Ω nominal

RF OUT (Option 010)	
Connector	Type N female
Impedance	50 Ω nominal
Maximum Safe Reverse Level	+ 127 dBμV (0.1 W), 25 Vdc

PROBE POWER*	
Voltage/Current	\pm 15 Vdc, \pm 7% at 150 mA max.
	$-12.6~{ m Vdc} \pm 10\%$ at 150 mA max.

 $^{^{\}ast}$ Total current drawn from the +15 Vdc on the PROBE POWER and the AUX INTERFACE cannot exceed 150 mA. Total current drawn from the -12.5 Vdc on the PROBE POWER and the -15 Vdc on the AUX INTERFACE cannot exceed 150 mA.

CAL OUT	
Connector	BNC female
Impedance	50 Ω nominal

Rear-Panel Inputs and Outputs

10 MHz REF OUTPUT	
Connector	BNC female
Impedance	50 Ω nominal
Output Amplitude	$>$ 107 dB μ V

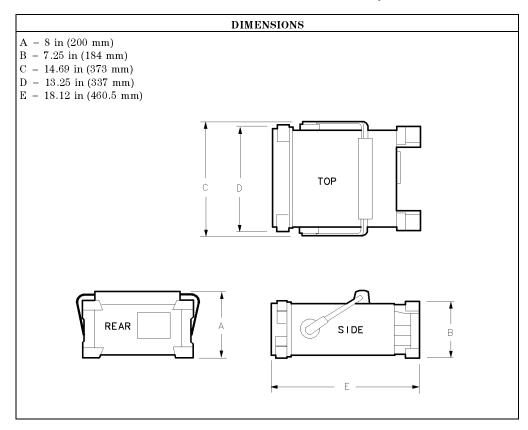
EXT REF IN	
Connector	BNC female
	Note: Analyzer noise sideband and spurious response performance may be affected by the
	quality of the external reference used.
	quantity of the encountries are an
Input Amplitude Range	$+105\ { m to}\ +117\ { m dB}\mu{ m V}$
Frequency	10 MHz
AUX IF OUTPUT	
Frequency	21.4 MHz
Amplitude Range	$+97$ to $+47$ dB μ V
Impedance	50 Ω nominal
AUX VIDEO OUTPUT	
Connector	BNC female
Amplitude Range	0 to 1 V (uncorrected)
EARPHONE (All except Option 703)	
Connector	1/8 inch monaural jack
EXT ALC INPUT (Option 010)	
Impedance	$1~\mathrm{M}\Omega$
Polarity	Positive or negative
Range	-66 dBV to +6 dBV
Connector	BNC
EXT KEYBOARD	Interface compatible with HP part number
	C1405 Option ABA and most IBM/AT non-auto
	switching keyboards.
EXT TRIG INPUT	
Connector	BNC female
Trigger Level	Positive edge initiates sweep in EXT TRIG mode
TITESCI DEVEL	(TTL).

4-22 HP 8591EM Specifications and Characteristics

HI-SWEEP IN/OUT	
Connector	BNC female
Output	High = sweep, Low = retrace (TTL)
Input	Open collector, low stops sweep.

MONITOR OUTPUT (EMC Analyzer Display)	
Connector	BNC female
Format	
SYNC NRM	Internal Monitor
SYNC NTSC	NTSC Compatible 15.75 kHz horizontal rate 60 Hz vertical rate
SYNC PAL	PAL Compatible 15.625 kHz horizontal rate 50 Hz vertical rate

REMOTE INTERFACE	
HP-IB	
HP-IB Codes	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28
RS-232 (Option 023)	25 pin subminiature D-shell, female
Parallel (Option 024)	25 pin subminiature D-shell, female


SWEEP OUTPUT	
Connector	BNC female
Amplitude	0 to + 10 V ramp

TV TRIG OUT (Options 101, 102, and 301)	
Connector	BNC female
Amplitude	Negative edge corresponds to start of the selected TV line after sync pulse (TTL).

AUX INTERFACE				
Connector Type: 9 Pin Subminiature "D" Connector Pinout				
Pin #	Function	Current	"Logic" Mode	"Serial Bit" Mode
1	Control A	=	TTL Output Hi/Lo	TTL Output Hi/Lo
2	Control B	_	TTL Output Hi/Lo	TTL Output Hi/Lo
3	Control C	_	TTL Output Hi/Lo	Strobe
4	Control D	_	TTL Output Hi/Lo	Serial Data
5	Control I	_	TTL Input Hi/Lo	TTL Input Hi/Lo
6	Gnd	_	Gnd	Gnd
7†	$-15~\mathrm{V_{dc}}~\pm7\%$	150 mA	_	_
8*	$+5~V_{dc}~\pm5\%$	150 mA	_	_
9†	+ 15 V _{dc} ±5%	150 mA	_	_

^{*} Exceeding the +5 V current limits may result in loss of factory correction constants. † Total current drawn from the +15 V $_{\rm dc}$ on the PROBE POWER and the AUX INTERFACE cannot exceed 150 mA. Total current drawn from the -12.6 V $_{\rm dc}$ on the PROBE POWER and the $-15~V_{\rm dc}$ on the AUX INTERFACE cannot exceed 150 mA.

WEIGHT		
Net		
HP 8591EM	14.4 kg (32 lb)	
Shipping		
HP 8591EM	17.1 kg (38 lb)	

Regulatory Information

The information on the following section applies to the HP 8591EM EMC analyzer.

DECLARATION OF CONFORMITY

according to ISO/IEC Guide 22 and EN 45014

Manufacturer's Name: Hewlett-Packard Co.

Manufacturer's Address: Santa Rosa Systems Division

1400 Fountaingrove Parkway

Santa Rosa, CA 95403

USA

declares that the product

Product Name: EMC Analyzer

Model Number: HP 8591EM, HP 8593EM, HP 8594EM,

HP 8595EM, HP 8596EM

Product Options: This declaration covers all options of the

above products.

conforms to the following Product specifications:

Safety: IEC 348:1978/HD 401 S1:1981

CAN/CSA-C22.2 No. 231 (Series M-89)

EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A

IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz

IEC 801-4:1988/EN 50082-1:1992 0.5 kV Sig. Lines, 1 kV Power Lines

Supplementary Information:

The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC.

Rohnert Park, California, USA

16 Jan. 1995

Date

Dixon Browder/Quality Manager

HP 8591EM Specifications and Characteristics

4.2

European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Department ZQ/Standards Europe, Herrenberger Strasse 130, D-71034 Böblinger, Germany (FAX +49-7031-14-3143)

Regulatory Information

Notice for Germany: Noise Declaration

LpA < 70 dB am Arbeitsplatz (operator position) normaler Betrieb (normal position) nach DIN 45635 T. 19 (per ISO 7779)

HP 8593EM Specifications and Characteristics

This chapter contains specifications and characteristics for the HP 8593EM EMC analyzer.

The specifications and characteristics in this chapter are listed separately. The specifications are described first, then followed by the characteristics.

General General specifications and characteristics.

Frequency Frequency-related specifications and characteristics. **Amplitude** Amplitude-related specifications and characteristics.

Option Option-related specifications and characteristics.

Input, output and physical characteristics. Physical

The distinction between specifications and characteristics is described as follows.

- Specifications describe warranted performance over the temperature range 0 °C to +55 °C (unless otherwise noted). The EMC analyzer will meet its specifications under the following conditions:
 - □ The instrument is within the one year calibration cycle.
 - □ 2 hours of storage at a constant temperature within the operating temperature range.
 - □ 30 minutes after the EMC analyzer is turned on.
 - □ After the CAL FREQ, CAL AMP, and CAL YTF routines have been run.
- Characteristics provide useful, but nonwarranted information about the functions and performance of the EMC analyzer. Characteristics are specifically identified.
- Typical Performance, where listed, is not warranted, but indicates performance that most units will exhibit.
- Nominal Value indicates the expected, but not warranted, value of the parameter.

General Specifications

T P	
Temperature Range	
Operating	0 °C to +55 °C
Storage	-40 °C to +75 °C
EMI Compatibility	Conducted and radiated emission is in
	compliance with CISPR Pub. 11/1990 Group 1
	Class A.
Audible Noise	<37.5 dBA pressure and <5.0 Bels power (ISODP7779)
Power Requirements	
ON (LINE 1)	90 to 132 V rms, 47 to 440 Hz
	195 to 250 V rms, 47 to 66 Hz
	Power consumption <500 VA; <180 W
Standby (LINE 0)	Power consumption <7 W
	·
Environmental Specifications	Type tested to the environmental specifications
	of Mil-T-28800 class 5

Frequency Range		9 kHz to 22.0 GHz
	(Options 026 or 027)	9 kHz to 26.5 GHz
Band	LO Harmonic (N)	
0	1-	9 kHz to 2.9 GHz
1	1-	2.75 GHz to 6.5 GHz
2	2—	6.0 GHz to 12.8 GHz
3	3—	12.4 GHz to 19.4 GHz
4	4—	19.1 GHz to 22.0 GHz
(Options 026 or 027)		
4	4—	19.1 GHz to 26.5 GHz

Frequency Reference	
Aging	$\pm 2 \times 10^{-6}$ /year
Settability	$\pm 0.5 \times 10^{-6}$
Temperature Stability	$\pm 5 \times 10^{-6}$

Precision Frequency Reference (Option 004)	
Aging	$\pm 1 \times 10^{-7}/\text{year}$
Settability	$\pm 1 \times 10^{-8}$
Temperature Stability	$\pm 1 \times 10^{-8}$

Frequency Readout Accuracy	
(Start, Stop, Center, Marker)	±(frequency readout × frequency reference
	error* + span accuracy + 1% of span + 20% of
	$[IF BW + 100 Hz \times N^{\dagger})^{\ddagger}$

^{*} frequency reference error = (aging rate \times period of time since adjustment + initial achievable accuracy + temperature stability). See "Frequency Characteristics."

[†] N = LO harmonic. See "Frequency Range." ‡ See "Drift" under "Stability" in Frequency Characteristics.

Marker Count Accuracy [†]	
Frequency Span ≤10 MHz x N [‡]	±(marker frequency × frequency reference error* + counter resolution + 100 Hz × N [‡])
Frequency Span > 10 MHz × N [‡]	\pm (marker frequency \times frequency reference error* + counter resolution + 1 kHz \times N [‡])
Counter Resolution	
Frequency Span ≤ 10 MHz x N [‡]	Selectable from 10 Hz to 100 kHz
Frequency Span > 10 MHz \times N ^{\ddagger}	Selectable from 100 Hz to 100 kHz

 $^{^*}$ frequency reference error = (aging rate \times period of time since adjustment + initial achievable accuracy and temperature stability). See "Frequency Characteristics."

 $^{^{\}ddagger}$ N = LO harmonic. See "Frequency Range."

Frequency Span	
Range	0 Hz (zero span), (1 kHz \times N ^{\dagger}) to 19.25 GHz*
Resolution	Four digits or 20 Hz \times N ^{\dagger} , whichever is greater.
Accuracy (single band spans)	
Span $\leq 10 \text{ MHz} \times \text{N}^{\dagger}$	±2% of span [‡]
Span $> 10 \text{ MHz} \times \text{ N}^{\dagger}$	±3% of span

^{*} Maximum span is 23.25 GHz for Option 026 or 027.

[†] N – LO harmonic. See "Frequency Range." ‡ For spans $< 10 \text{ kHz} \times \text{N}^{\dagger}$, add an additional 10 Hz \times N[†] resolution error.

Frequency Sweep Time	
Range	
	20 ms to 100 s
(Options 101 and 301)	$20 \mu s$ to $100 s$ for span = $0 Hz$
Accuracy	
20 ms to 100 s	±3%
$20~\mu s$ to $<20~ms$ (Options 101 and 301)	±2%
Sweep Trigger	Free Run, Single, Line, Video, External

5.4 HP 8593EM Specifications and Characteristics

[†] Marker level to displayed noise level > 25 dB, IF BW/Span \geq 0.01. Span \leq 300 MHz. Reduce SPAN annotation is displayed when IF BW/Span < 0.01.

IF Bandwidths	
Measurement	200 Hz, 9 kHz, and 120 kHz (6 dB EMC bandwidths)
	1 MHz (6 dB bandwidth $\pm 10\%$)
Diagnostic	30 Hz to 300 kHz, 3 dB bandwidths in 1,3,10 steps ($\pm 20\%$
	characteristic),
	also 3 MHz and 5 MHz.

(1 kHz IF BW, 30 Hz Avg BW and sample detector) ≤-90 dBc/Hz + 20 Log N*
≤-90 dBc/Hz + 20 Log N**
≤-100 dBc/Hz + 20 Log N*
≤-105 dBc/Hz + 20 Log N*
$\leq (250 \times \text{N}^*) \text{ Hz pk-pk in } 100 \text{ ms}$
$\leq (30 \times \text{N}^*) \text{ Hz pk-pk in } 300 \text{ ms}$
≤-65 dBc + 20 Log N*

Calibrator Output Frequency	300 MHz ±(freq. ref. error* × 300 MHz)	
* frequency reference error = (aging rate x period of time since adjustment + initial achievable		
accuracy + temperature stability). See "Frequency Characteristics."		

Comb Generator Frequency	100 MHz fundamental frequency	
Accuracy	±0.007% of comb tooth frequency	

Amplitude specifications do not apply for Analog+ mode and negative peak detector mode except as noted in "Amplitude Characteristics."

Amplitude Range	$-22 \text{ dB}\mu\text{V to } + 137 \text{ dB}\mu\text{V}$
-----------------	---

+ 137 dB μ V (1 W, 7.1 V rms), input attenuation \geq 10 dB in bands 1 through 4.

 $+157~\mathrm{dB}\mu\mathrm{V}$ (100 W) for <10 $\mu\mathrm{s}$ pulse width and <1% duty cycle, input

Maximum Safe Input Level

Average Continuous Power Peak Pulse Power

attenuation ≥30 dB.

1 00011 1 01100 1 0 11 0

dc

0 Vdc

Quasi-Peak Detector Specifications (All except Option 703)

The specifications for Quasi-Peak Detector have been based on the following:

- The EMC analyzer displays the quasi-peak amplitude of pulsed radio frequency (RF) or continuous wave (CW) signals.
- Amplitude response conforms with Publication 16 of Comité International Spécial des Perturbations Radioélectriques (CISPR) Section 1, Clause 2.

Absolute amplitude accuracy is the sum of the pulse amplitude response relative to the reference, plus the reference pulse amplitude accuracy, plus the EMC analyzer amplitude accuracy (calibrator output, reference level, frequency response, input attenuator, IF bandwidth switching, linear display scale fidelity, and gain compression).

Relative Quasi-Peak Response to a CISPR Pulse (dB) (All except Option 703)			
	Frequency Band		
Pulse Repetition	120 kHz EMI BW	9 kHz EMI BW	200 Hz EMI BW
Frequency (Hz)	0.03 to 1 GHz	0.15 to 30 MHz	10 to 150 kHz
1000	+8.0 ± 1.0	$+\ 4.5\ \pm\ 1.0$	_
100	0 dB (reference)*	0 dB (reference)*	$+ 4.0 \pm 1.0$
60	_	_	$+3.0 \pm 1.0$
25	=	=	0 dB (reference)*
20	-9.0 ± 1.0	-6.5 ± 1.0	_
10	-14.0 ± 1.5	-10.0 ± 1.5	-4.0 ± 1.0
5	_	_	-7.5 ± 1.5
2	-26.0 ± 2.0	-20.5 ± 2.0	-13.0 ± 2.0
1	-28.5 ± 2.0	-22.5 ± 2.0	-17.0 ± 2.0
Isolated Pulse	-31.5 ± 2.0	-23.5 ± 2.0	-19.0 ± 2.0

 $^{^{*}}$ Reference pulse amplitude accuracy relative to the CW signal is < 1.5 dB as specified in CISPR

CISPR reference pulse: 0.044 $\mu\rm \, Vs$ for 30 MHz to 1 GHz, 0.316 $\mu\rm \, Vs$ for 15 kHz to 30 MHz, and $13.5~\mu\mathrm{Vs}~\pm1.5~\mu\mathrm{Vs}$ for 9 kHz to 150 kHz.

Gain Compression [†]	
>10 MHz	\leq 0.5 dB (total power at input mixer* = 97 dB μ V)

^{*} Mixer Power Level (dB μ V) = Input Power (dB μ V) - Input Attenuation (dB).

[†] If IF BW \leq 300 Hz, this applies only if signal separation \geq 4 kHz and signal amplitudes \leq Reference Level + 10 dB.

Displayed Average Noise Level	(Input terminated, 0 dB attenuation, 30 Hz AVG BW, sample detector	
	1 kHz IF BW	30 Hz IF BW
400 kHz to 2.9 GHz	≤-5 dBμV	\leq -20 dB μ V
$2.75~\mathrm{GHz}$ to $6.5~\mathrm{GHz}$	$\leq -7 \mathrm{dB}\mu\mathrm{V}$	\leq -22 dB μ V
6.0 GHz to 12.8 GHz	≤ + 5 dBμ V	\leq - 10 dB μ V
12.4 GHz to 19.4 GHz	≤ + 9 dBμV	\leq -6 dB μ V
19.1 GHz to 22 GHz	\leq + 15 dB μ V	$\leq 0 dB \mu V$
19.1 GHz to 26.5 GHz (Options 026 and 027)	\leq + 20 dB μ V	\leq +5 dB μ V

Spurious Responses

Second Harmonic Distortion

 $10~\mathrm{MHz}$ to $2.9~\mathrm{GHz}$

> 2.75 GHz

Third Order Intermodulation Distortion

> 10 MHz

Other Input Related Spurious

9 kHz to 18 GHz

 $18~\mathrm{GHz}$ to $22~\mathrm{GHz}$

<-70 dBc for +67 dB μ V tone at input mixer.*

<-100 dBc for +97 dB μ V tone at input mixer*

(or below displayed average noise level).

<-70~dBc for two $+77~dB\mu V$ tones at input mixer* and >50~kHzseparation.

< -65 dBc at \geq 30 kHz offset, for +87 dB μ V tone at input mixer \leq 18 GHz.

< -60 dBc at \geq 30 kHz, for +87 dB μ V tone at input mixer \leq 22 GHz.

eight divisions

Residual Responses	(Input terminated and 0 dB attenuation)
150 kHz to 2.9 GHz (Band 0)	$< +17 \mathrm{dB}\mu\mathrm{V}$
2.75 GHz to 6.5 GHz (Band 1)	$< + 17 \text{ dB} \mu \text{V}$

Display Range

Log Scale

0 to -70 dB from reference level is calibrated; 0.1, 0.2, 0.5 dB/division and 1 to $20~\mathrm{dB/division}$ in $1~\mathrm{dB}$ steps; eight divisions displayed.

Linear Scale

Scale Units

dBm, dBmV, dB μ V, mV, mW, nV, nW, pW, μ V, μ W, V, and W

Marker Readout Resolution	0.05 dB for log scale	
	0.05% of reference level for linear scale	
Fast Sweep Times for Zero Span		
20 μs to 20 ms (Option 101 or 301)		
Frequency $\leq 1 \text{ GHz}$	0.7% of reference level for linear scale	
Frequency > 1 GHz	1.0% of reference level for linear scale	

^{*} Mixer Power Level $(dB\mu V)$ = Input Power $(dB\mu V)$ - Input Attenuation (dB).

Reference Level	
Range	
Log Scale	Minimum amplitude to maximum amplitude*
Linear Scale	$+8\mathrm{dB}\mu\mathrm{V}$ to maximum amplitude *
Resolution	
Log Scale	$\pm 0.01 \text{ dB}$
Linear Scale	$\pm 0.12\%$ of reference level
Accuracy	(referenced to $+87~dB\mu V$ reference level, 10 dB input attenuation, at a single frequency, in a fixed IF BW)
$107~\mathrm{dB}\mu\mathrm{V}$ to $+47.1~\mathrm{dB}\mu\mathrm{V}$	$\pm (0.3 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
$+47\mathrm{dB}\mu\mathrm{V}$ and below	
1 kHz to 3 MHz IF BW	$\pm (0.6 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
30 Hz to 300 Hz IF BW	$\pm (0.7 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$

(10 dB input attenuation)	
$\mathbf{Absolute}^*$	Relative Flatness [†]
$\pm 1.5~\mathrm{dB}$	$\pm 1.0~\mathrm{dB}$
$\pm 2.0~\mathrm{dB}$	$\pm 1.5~\mathrm{dB}$
$\pm 2.5~\mathrm{dB}$	$\pm 2.0~\mathrm{dB}$
$\pm 3.0~\mathrm{dB}$	$\pm 2.0~\mathrm{dB}$
$\pm 3.0~\mathrm{dB}$	$\pm 2.0~\mathrm{dB}$
$\pm 5.0~\mathrm{dB}$	$\pm 2.0~\mathrm{dB}$
	Absolute* ±1.5 dB ±2.0 dB ±2.5 dB ±3.0 dB ±3.0 dB

Calibrator Output	
Amplitude	$+87~\mathrm{dB}\mu\mathrm{V}~\pm0.4~\mathrm{dB}$

Absolute Amplitude Calibration Repeatability*	±0.15 dB

* Repeatability in the measured absolute amplitude of the CAL OUT signal at the reference settings after CAL FREQ and CAL AMPTD self-calibration. Absolute amplitude reference settings are: Reference Level +87 dB μ V; Input Attenuation 10 dB; Center Frequency 300 MHz; IF BW 3 kHz; Averaging BW 300 Hz; Scale Linear; Span 50 kHz; Sweep Time Coupled, Top Graticule (reference level), Corrections ON.

Input Attenuator	
Range	0 to 70 dB, in 10 dB steps

IF Bandwidth Switching Uncertainty	(At reference level, referenced to 3 kHz IF BW)
3 kHz to 3 MHz IF BW	±0.4 dB
1 kHz IF BW	±0.5 dB
30 Hz to 300 Hz IF BW	$\pm 0.6 \text{ dB}$

|--|

Display Scale Fidelity	
Log Maximum Cumulative	
0 to -70 dB from Reference Level	
3 kHz to 3 MHz IF BW	\pm (0.3 dB + 0.01 x dB from reference level)
IF BW $\leq 1 \text{ kHz}$	\pm (0.4 dB + 0.01 $ imes$ dB from reference level)
Log Incremental Accuracy	
0 to -60 dB from Reference Level	$\pm 0.4 \text{ dB/4 dB}$
Linear Accuracy	$\pm 3\%$ of reference level

Option Specifications

Tracking Generator Specifications (Option 010)

All specifications apply over 0 °C to +55 °C. The EMC-analyzer/trackinggenerator combination will meet its specifications after 2 hours of storage at a constant temperature within the operating temperature range, 30 minutes after the EMC-analyzer/tracking-generator is turned on and after CAL FREQ, CAL AMPTD, CAL TRK GEN, and TRACKING PEAK have been run.

Warm-Up	30 minutes
Output Frequency	
Range	9 kHz to 2.9 GHz
Output Power Level	
Range	$+106\mathrm{dB}\mu\mathrm{V}$ to $+41\mathrm{dB}\mu\mathrm{V}$
1	

Output Power Level	
Range	$+106~\mathrm{dB}\mu\mathrm{V}$ to $+41~\mathrm{dB}\mu\mathrm{V}$
Resolution	0.1 dB
Absolute Accuracy (at 25 °C ±10 °C)	
$(+87~\mathrm{dB}\mu\mathrm{V}~\mathrm{at}~300~\mathrm{MHz})$	±0.75 dB
Vernier*	
Range	9 dB
Accuracy (at 25 °C ±10 °C)	
(+87 dB μ V at 300 MHz, 16 dB attenuation)	
Incremental	±0.20 dB/dB
Cumulative	±0.50 dB total
Output Attenuator	
Range	0 to 56 dB in 8 dB steps
* See the Output Accuracy table in "Option Characteristics."	

Option Specifications

Output Power Sweep	
Range	$(+97~dB\mu V~to~+106~dB\mu V)$ – (Source Attenuator Setting)
Resolution	0.1 dB

Output Flatness	
(referenced to 300 MHz, +87 dBµV)	
Frequency > 10 MHz	±2.0 dB
Frequency ≤ 10 MHz	±3.0 dB

Spurious Output (+106 dBµV output)	
Harmonic Spurs from 9 kHz to 2.9 GHz	
TG Output 9 kHz to 20 kHz	≤-15 dBc
TG Output 20 kHz to 2.9 GHz	≤-25 dBc
Nonharmonic Spurs from 9 kHz to 2.9 GHz TG Output 9 kHz to 2.0 GHz TG Output 2.0 GHz to 2.9 GHz	≤-27 dBc ≤-23 dBc
LO Feedthrough LO Frequency 3.9217 to 6.8214 GHz	≤ + 91 dB µ V

Tracking Generator Feedthrough	
400 kHz to 2.9 MHz	$<-5 \text{ dB}\mu\text{V}$

Frequency Characteristics

These are not specifications. Characteristics provide useful but nonwarranted information about instrument performance.

Frequency Reference	
Initial Achievable Accuracy	$\pm 0.5 \times 10^{-6}$
Aging	$\pm 1.0 \times 10^{-7} / \text{day}$

Precision Frequency Reference (Option 004)	
Aging	5 x 10 ⁻¹⁰ /day, 7-day average after being
	5 x 10 ⁻¹⁰ /day, 7-day average after being powered on for 7 days.
Warm-Up	1×10^{-8} after 30 minutes on.
Initial Achievable Accuracy	$\pm 2.2 \times 10^{-8}$ after being powered on for 24
	hours.

Stability	
Drift* (after warmup at stabilized temperature)	
	$\leq (2 \times N^{\dagger}) \text{ kHz/minute of sweep time*}$

^{*} Because the analyzer is locked at the center frequency before each sweep, drift occurs only during the time of one sweep. For Line, Video, or External trigger, additional drift occurs while waiting for the appropriate trigger signal.

 $^{^{\}dagger}$ N = LO harmonic. See "Frequency Range."

Diagnostic IF Bandwidths	
Shape	Synchronously tuned four poles. Approximately Gaussian shape.
60 dB/3 dB Bandwidth Ratio IF Bandwidth	
100 kHz to 3 MHz	15:1
30 kHz	16:1
3 kHz to 10 kHz	15:1
1 kHz	16:1
40 dB/3 dB Bandwidth Ratio IF Bandwidth	
30 Hz to 300 Hz	10:1

Frequency Characteristics

	Averaging	Bandwidth	(-3 dB)
--	-----------	-----------	----------

Range

Shape

 $1~\rm{Hz}$ to $1~\rm{MHz},$ selectable in 1, 3, $10~\rm{increments},$ accuracy $\pm30\%$ and $3~\rm{MHz}.$ Averaging bandwidths may be selected manually, or coupled to IF bandwidth and frequency span.

and frequency spa

Post detection, single pole low-pass filter used to average displayed noise. Bandwidths below 30 Hz are digital bandwidths with anti-aliasing filtering.

FFT Bandwidth Factors			
	FLATTOP	HANNING	UNIFORM
Noise Equivalent Bandwidth*	3.63×	1.5×	1×
3 dB Bandwidth*	3.60×	1.48×	1×
Sidelobe Height	<-90 dB	−32 dB	−13 dB
Amplitude Uncertainty	0.10 dB	1.42 dB	$3.92~\mathrm{dB}$
Shape Factor (60 dB BW/3 dB BW)	2.6	9.1	>300

These are not specifications. Characteristics provide useful but nonwarranted information about instrument performance.

Log Scale Switching Uncertainty	Negligible error
•	

Demod Tune Listen	Internal speaker, rear panel earphone jack and front-panel volume control.
(All except Option 703)	Adjustable squelch control mutes the audio signal to the speaker/earphone
	jack based on the level of the demodulated signal above 22 kHz. An
	uncalibrated demodulated signal is available on the AUX VIDEO OUT
	connector at the rear panel.

Quasi-Peak Detector (All except Option 703)	
Measurement Range	
Displayed	70 dB
Total	115 dB

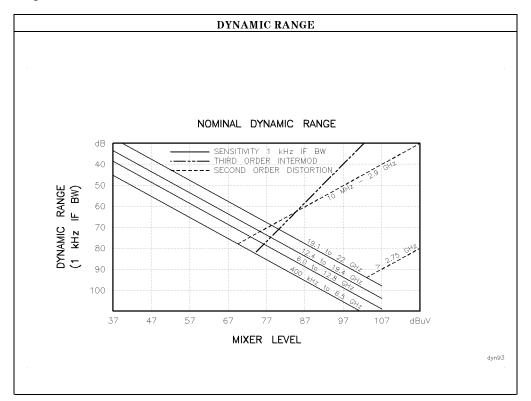
FM Demodulation (All except Option 703)	
Input Level	$>$ (+47 dB μ V + attenuator setting)
Signal Level	0 to -30 dB below reference level
FM Offset	
Resolution	400 Hz nominal
FM Deviation (FM GAIN)	
Resolution	1 kHz/volt nominal
Range	10 kHz/volt to 1 MHz/volt
Bandwidth (6 dB)	FM deviation/2
FM Linearity (for modulating frequency < bandwidth/100)	≤ 1% of FM deviation + 290 Hz

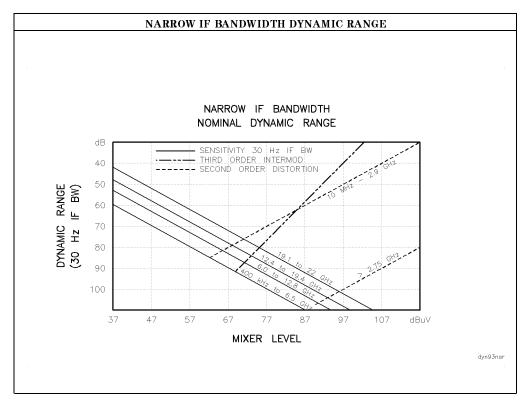
Measurement Detector Types	Positive Peak, Quasi-Peak, and Average	
	Quasi-Peak and Average time constants conform with CISPR Pub. 16.	
(Option 101 and Option 301)	Negative Peak	
(Option 703)	Delete Quasi-Peak and Average	

IF Overload Detector	Available in EMC analyzer mode only.	
	Detects overload of the analyzer video circuitry.	

Input Attenuation Uncertainty*			
Attenuator Setting	9 kHz to 12.4 GHz	12.4 to 19 GHz	19 to 22 GHz
0 dB	±0.75 dB	$\pm 1.0~\mathrm{dB}$	$\pm 1.0~\mathrm{dB}$
10 dB	Reference	Reference	Reference
20 dB	±0.75 dB	$\pm 0.75~\mathrm{dB}$	$\pm 1.0~\mathrm{dB}$
30 dB	±0.75 dB	$\pm 1.0~\mathrm{dB}$	$\pm 1.25~\mathrm{dB}$
$40~\mathrm{dB}$	±0.75 dB	$\pm 1.25~\mathrm{dB}$	$\pm 2.0~\mathrm{dB}$
50 dB	±1.0 dB	$\pm 1.5~\mathrm{dB}$	$\pm 2.5~\mathrm{dB}$
60 dB	$\pm 1.5~\mathrm{dB}$	$\pm 2.0~\mathrm{dB}$	$\pm 3.0~\mathrm{dB}$
70 dB	±2.0 dB	$\pm 2.5~\mathrm{dB}$	$\pm 3.5~\mathrm{dB}$

 $^{^{\}ast}$ Referenced to 10 dB input attenuator setting. See the "Frequency Response" table under "Specifications".


Input Attenuator 10 dB Step Uncertainty	(Attenuator setting 10 to 70 dB)
Center Frequency	
9 kHz to 19 GHz	±1.0 dB/10 dB
19 GHz to 22 GHz	±1.5 dB/10 dB


Input Attenuator Repeatability	±0.05 dB
--------------------------------	----------

RF Input SWR	
10 dB attenuation	
Frequency	
300 MHz	1.15:1
10 dB to 70 dB attenuation	
Band	
9 kHz to 2.9 GHz	1.3:1
2.75 GHz to 6.5 GHz	1.5:1
6.0 GHz to 12.8 GHz	1.6:1
12.4 GHz to 19.4 GHz	2.0:1
19.1 GHz to 22.0 GHz	3.0:1

Unpeaked Frequency Response	(10 dB input attenuation)	
Without Preselector Peaking, Span ≤ 50 MHz	Absolute*	Relative Flatness [†]
2.75 GHz to 6.5 GHz	±4.0 dB	$\pm 3.5~\mathrm{dB}$
6.0 GHz to 12.8 GHz	±4.5 dB	$\pm 4.0~\mathrm{dB}$
12.4 GHz to 19.4 GHz	±6.0 dB	$\pm 5.0~\mathrm{dB}$
19.1 GHz to 22 GHz	±6.0 dB	$\pm 5.0~\mathrm{dB}$

^{*} Referenced to 300 MHz CAL OUT.
† Referenced to midpoint between highest and lowest frequency response deviations.

Immunity Testing	
Radiated Immunity	When tested at 3 V/m according to IEC 801-3/1984 the displayed average noise level will be within specifications over the full immunity test frequency range of 27 to 500 MHz except that at immunity test frequencies of 278.6 MHz \pm selected IF bandwidth and 321.4 MHz \pm selected IF bandwidth the displayed average noise level may be up to $+62~\mathrm{dB}\mu\mathrm{V}$. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to $+37~\mathrm{dB}\mu\mathrm{V}$ displayed on the screen.
Electrostatic Discharge	When an air discharge of up to 8 kV according to IEC 801-2/1991 occurs to the shells of the BNC connectors on the rear panel of the instrument spikes may be seen on the CRT display. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.
Electrical Fast Transient	When subjected to Electrical Fast Transient testing per EN 50082-1/EIC 801-4 noise may appear on the display of the analyzer during the application of the test voltage.

Analog + Mode and Negative Peak Detector Mode (Options 101 and 301)

These modes do not utilize the full set of internal amplitude corrections. Therefore, in these modes, some analyzer amplitude specifications are reduced to characteristics. Characteristics provide useful but nonwarranted information about instrument performance.

In these modes, the following analyzer specifications remain as specifications:

Amplitude Range

Calibrator Output

Maximum Safe Input Level

In these modes, the following analyzer specifications are reduced to characteristics:

Gain Compression Reference Level

Displayed Average Noise Level IF Bandwidth Switching Spurious Responses Linear to Log Switching Residual Responses Display Scale Fidelity

Display Range Display Scale Fidelity for Narrow Bandwidths

Finally, the following analyzer specifications are replaced by the characteristics which follow in this subsection:

Marker Readout Resolution Frequency Response

Marker Readout Resolution	
(digitizing resolution)	
Log Scale	±0.31 dB
Linear Scale	
$frequency \le 1 GHz$	$\pm 0.59\%$ of reference level
frequency > 1 GHz	$\pm 1.03\%$ of reference level

Frequency Response in Analog + Mode	(10 dB input attenuat	(10 dB input attenuation, for spans \leq 20 MHz)	
Preselector peaked in band > 0			
	Absolute*	Relative Flatness [†]	
9 kHz to 2.9 GHz	±2.0 dB	$\pm 1.5~\mathrm{dB}$	
2.75 GHz to 6.4 GHz	$\pm 2.5~\mathrm{dB}$	$\pm 2.0~\mathrm{dB}$	
6.0 GHz to 12.8 GHz	±3.0 dB	$\pm 2.5~\mathrm{dB}$	
12.4 GHz to 19.4 GHz	$\pm 3.5~\mathrm{dB}$	$\pm 2.5~\mathrm{dB}$	
19.1 GHz to 22 GHz	$\pm 3.5~\mathrm{dB}$	$\pm 2.5~\mathrm{dB}$	
19.1 GHz to 26.5 GHz (Option 026 or 027)	±5.5 dB	$\pm 2.5~\mathrm{dB}$	

Referenced to 300 MHz CAL OUT.

Referenced to midpoint between highest and lowest frequency response deviations.

Option Characteristics

TV Trigger Characteristics (Options 101, 102, and 301)

TV Trigger	Triggers sweep of the analyzer after the sync pulse of a selected line of a TV video field.
Carrier Level for Trigger Compatible Formats	Top 60% of linear display NTSC, PAL, SECAM
Field Selection	Even, odd, non-interlaced
Trigger Polarity	Positive, negative
Line Selection	10 to 1021

Tracking Generator Characteristics (Option 010)

Tracking Drift	
(Usable in a 1 kHz IF BW after 5-minute warmup)	1.5 kHz/5 minute

RF Power Off Residuals	
9 kHz to 2.9 GHz	$<-13 \text{ dB}\mu\text{ V}$

Dynamic Range (difference between maximum power out and tracking generator feedthrough)

Output Attenuator Repeatability	
9 kHz to 300 MHz	±0.1 dB
300 MHz to 2.0 GHz	±0.2 dB
2.0 GHz to 2.9 GHz	±0.3 dB

Output VSWR	
0 dB Attenuator	<3.0:1
8 dB Attenuator	<1.5:1

5-22 HP 8593EM Specifications and Characteristics

Option Characteristics

TRACKING GENERATOR OUTPUT ACCURACY, Option 010 (after CAL TRK GEN in auto-coupled mode, Frequency > 10 MHz, 25°C ± 10°C)					
TG Output Power Level	Attenuator Setting	Relative Accuracy (at 300 MHz referred to +87 dB\(\mu V \)	Absolute Accuracy (at 300 MHz)	Relative Accuracy (referred to +87 dBµV)	Absolute Accuracy
+ 106 to +97 dBμV	0 d B	1.0 dB	1.75 dB	3.0 dB	3.75 dB
+97 to +89 dBμV	8 dB	1.5 dB	2.25 dB	3.5 dB	4.25 dB
$+87~\mathrm{dB}\mu\mathrm{V}$	16 dB	Reference	0.75 dB	2.0 dB	2.75 dB
$+89 \text{ to } +81 \text{ dB}\mu\text{V}$	16 dB	1.0 dB	1.75 dB	3.0 dB	3.75 dB
$+81 \text{ to } +73 \text{ dB}\mu\text{V}$	24 dB	1.5 dB	2.25 dB	3.5 d B	4.25 dB
$+73$ to $+65$ dB μ V	32 dB	1.6 dB	2.35 dB	3.6 dB	4.35 dB
$+65 \text{ to } +57 \text{ dB}\mu\text{V}$	40 dB	1.8 dB	2.55 dB	3.8 dB	4.55 dB
$+57$ to $+49$ dB μ V	48 dB	2.0 dB	2.75 dB	4.0 dB	4.75 dB
$+49 \text{ to } +41 \text{ dB}\mu\text{ V}$	56 dB	2.1 dB	2.85 dB	4.1 dB	4.85 dB

Front-Panel Inputs and Outputs

INPUT 50Ω	
Connector	Type N female
Impedance	50 Ω nominal
INPUT 50Ω (Option 026)	
Connector	APC 3.5 male
Impedance	50 Ω nominal
INPUT 50Ω (Option 027)	
Connector	Type N female with adapter to SMA female
Impedance	50 Ω nominal

100 MHz COMB OUT	
Connector	SMA female
Output Level	$+134~\mathrm{dB}\mu\mathrm{V}$
Frequency	100 MHz fundamental

RF OUT (Option 010)	
Connector	Type N female
Impedance	50 Ω nominal

PROBE POWER*	
Voltage/Current	$+$ 15 Vdc, $\pm 7\%$ at 150 mA max.
	$-12.6 \text{ Vdc} \pm 10\% \text{ at } 150 \text{ mA max}.$

 $^{^{*}}$ Total current drawn from the +15 Vdc on the PROBE POWER and the AUX INTERFACE cannot exceed 150 mA. Total current drawn from the -12.5 Vdc on the PROBE POWER and the -15 Vdc on the AUX INTERFACE cannot exceed 150 mA.

CAL OUT	
Connector	BNC female
Impedance	50 Ω nominal

Rear-Panel Inputs and Outputs

10 MHz REF OUTPUT		
Connector	BNC female	
Impedance	50 Ω nominal	
Output Amplitude	$>$ 107 dB μ V	
EXT REF IN		
Connector	BNC female	
	Note: Analyzer noise sideband and spurious response performance may be affected by the quality of the external reference used.	
Input Amplitude Range	$+$ 105 to $+$ 117 dB μ V	
Frequency	10 MHz	
AUX IF OUTPUT		
Frequency	21.4 MHz	
Amplitude Range	$+97$ to $+47$ dB μ V	
Impedance	50 Ω nominal	
AUX VIDEO OUTPUT		
Connector	BNC female	
Amplitude Range	0 to 1 V (uncorrected)	
EARPHONE (All except Option 703)		
Connector	1/8 inch monaural jack	
EXT ALC INPUT (Option 010)		
Input Impedance	>10 kΩ	
Polarity	Use with negative detector	
EXT KEYBOARD	Interface compatible with HP part number C1405 Option ABA and most IBM/AT non-auto switching keyboards.	

EXT TRIG INPUT	
Connector	BNC female
Trigger Level	Positive edge initiates sweep in EXT TRIG mode (TTL).

LO OUTPUT (Option 009 or 010)	Note: LO output must be terminated in 50 Ω.
Connector	SMA female
Impedance	50 Ω nominal
Frequency Range	3.0 to 6.8214 GHz
Output Level	$+118$ to $+125$ dB μ V

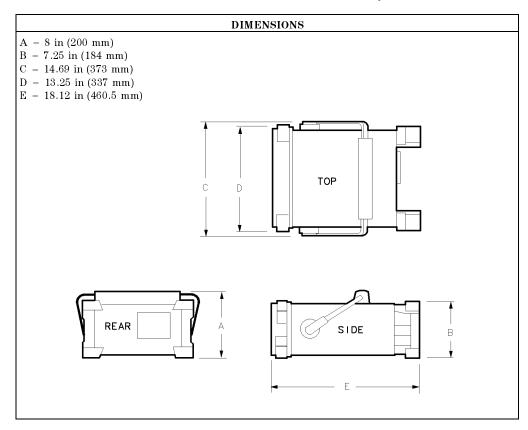
SWEEP + TUNE OUTPUT (Option 009)	
Connector	BNC female
Impedance (dc coupled)	2 kΩ
Range	0 to +10 V
Sweep + Tune Output	0.36 V/GHz of center frequency

HI-SWEEP IN/OUT	
Connector	BNC female
Output	High = sweep, Low = retrace (TTL)
Input	Open collector, low stops sweep.

MONITOR OUTPUT (EMC Analyzer Display)	
Connector	BNC female
Format	
SYNC NRM	Internal Monitor
SYNC NTSC	NTSC Compatible
	15.75 kHz horizontal rate
	60 Hz vertical rate
SYNC PAL	PAL Compatible
	15.625 kHz horizontal rate
	50 Hz vertical rate

REMOTE INTERFACE	
HP-IB	
HP-IB Codes	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28
RS-232 (Option 023)	25 pin subminiature D-shell, female
Parallel (Option 024)	25 pin subminiature D-shell, female

SWEEP OUTPUT	
Connector	BNC female
Amplitude	0 to + 10 V ramp


TV TRIG OUT (Options 101, 102, and 301)	
Connector	BNC female
<u> </u>	Negative edge corresponds to start of the
	selected TV line after sync pulse (TTL).

AUX INTERFACE				
Connector Type: 9 Connector Pinout	Connector Type: 9 Pin Subminiature "D" Connector Pinout			
Pin #	Function	Current	"Logic" Mode	"Serial Bit" Mode
1	Control A		TTL Output Hi/Lo	TTL Output Hi/Lo
2	Control B	_	TTL Output Hi/Lo	TTL Output Hi/Lo
3	Control C	_	TTL Output Hi/Lo	Strobe
4	Control D	_	TTL Output Hi/Lo	Serial Data
5	Control I	_	TTL Input Hi/Lo	TTL Input Hi/Lo
6	Gnd	_	Gnd	Gnd
7†	$-15~V_{dc}~\pm7\%$	150 mA	_	_
8*	$+5~V_{dc}~\pm5\%$	150 mA	_	_
9†	+ 15 V _{dc} ±5%	150 mA	_	_

 $^{^{*}}$ Exceeding the +5 V current limits may result in loss of factory correction constants.

 $^{^\}dagger$ Total current drawn from the $+15~V_{\rm dc}$ on the PROBE POWER and the AUX INTERFACE cannot exceed 150 mA. Total current drawn from the $-12.6~V_{\rm dc}$ on the PROBE POWER and the $-15~V_{\rm dc}$ on the AUX INTERFACE cannot exceed 150 mA.

WEIGHT	
Net	
HP 8593EM	16.4 kg (36 lb)
Shipping	
HP 8593EM	19.1 kg (42 lb)

Regulatory Information

The information on the following section applies to the HP 8593EM EMC analyzer.

DECLARATION OF CONFORMITY

according to ISO/IEC Guide 22 and EN 45014

Manufacturer's Name: Hewlett-Packard Co.

Manufacturer's Address: Santa Rosa Systems Division

1400 Fountaingrove Parkway

Santa Rosa, CA 95403

USA

declares that the product

Product Name: EMC Analyzer

Model Number: HP 8591EM, HP 8593EM, HP 8594EM,

HP 8595EM, HP 8596EM

Product Options: This declaration covers all options of the

above products.

conforms to the following Product specifications:

Safety: IEC 348:1978/HD 401 S1:1981

CAN/CSA-C22.2 No. 231 (Series M-89)

EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A

IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz

IEC 801-4:1988/EN 50082-1:1992 0.5 kV Sig. Lines, 1 kV Power Lines

Supplementary Information:

The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC.

Rohnert Park, California, USA

16 Jan. 1995

Date

Dixon Browder/Quality Manager

HP 8593EM Specifications and Characteristics

5.3

European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Department ZQ/Standards Europe, Herrenberger Strasse 130, D-71034 Böblinger, Germany (FAX +49-7031-14-3143)

Regulatory Information

Notice for Germany: Noise Declaration

LpA < 70 dBam Arbeitsplatz (operator position) normaler Betrieb (normal position) nach DIN 45635 T. 19 (per ISO 7779)

HP 8594EM Specifications and Characteristics

This chapter contains specifications and characteristics for the HP 8594EM EMC analyzer.

The specifications and characteristics in this chapter are listed separately. The specifications are described first, then followed by the characteristics.

General General specifications and characteristics.

Frequency Frequency-related specifications and characteristics. **Amplitude** Amplitude-related specifications and characteristics.

Option Option-related specifications and characteristics.

Input, output and physical characteristics. Physical

The distinction between specifications and characteristics is described as follows.

- Specifications describe warranted performance over the temperature range 0 °C to +55 °C. The EMC analyzer will meet its specifications under the following conditions:
 - □ The instrument is within the one year calibration cycle.
 - □ 2 hours of storage at a constant temperature within the operating temperature range.
 - □ 30 minutes after the EMC analyzer is turned on.
 - □ After the CAL FREQ and CAL AMP routines have been run.
- Characteristics provide useful, but nonwarranted information about the functions and performance of the EMC analyzer. Characteristics are specifically identified.
- Typical Performance, where listed, is not warranted, but indicates performance that most units will exhibit.
- Nominal Value indicates the expected, but not warranted, value of the parameter.

General Specifications

Temperature Range	
Operating	0 °C to +55 °C
Storage	-40 °C to +75 °C
EMI Compatibility	Conducted and radiated emission is in compliance with CISPR Pub. 11/1990 Group 1 Class A.
Audible Noise	<37.5 dBA pressure and <5.0 Bels power (ISODP7779)
	·
Power Requirements	
ON (LINE 1)	90 to 132 V rms, 47 to 440 Hz
	195 to 250 V rms, 47 to 66 Hz
	Power consumption <500 VA; <180 W
Standby (LINE 0)	Power consumption <7 W
Environmental Specifications	Type tested to the environmental specifications of Mil-T-28800 class 5

Frequency Specifications

Frequency Range	
dc Coupled	9 kHz to 2.9 GHz
ac Coupled	100 kHz to 2.9 GHz

Frequency Reference	
Aging	$\pm 2 \times 10^{-6}$ /year
Settability	$\pm 0.5 \times 10^{-6}$
Temperature Stability	$\pm 5 \times 10^{-6}$

Precision Frequency Reference (Option 004)	
Aging	$\pm 1 \times 10^{-7}/\text{year}$
Settability	$\pm 1 \times 10^{-8}$
Temperature Stability	$\pm 1 \times 10^{-8}$

Frequency Readout Accuracy	
(Start, Stop, Center, Marker)	±(frequency readout × frequency reference error* + span accuracy + 1% of span + 20% of IF BW + 100 Hz) [†]

 $^{^*}$ frequency reference error = (aging rate \times period of time since adjustment + initial achievable accuracy + temperature stability). See "Frequency Characteristics."

[†] See "Drift" under "Stability" in Frequency Characteristics.

Marker Count Accuracy [†]	
Frequency Span ≤ 10 MHz	±(marker frequency × frequency reference error* + counter resolution + 100 Hz)
Frequency Span >10 MHz	±(marker frequency × frequency reference error* + counter resolution + 1 kHz)
Counter Resolution	
Frequency Span ≤ 10 MHz	Selectable from 10 Hz to 100 kHz
Frequency Span > 10 MHz	Selectable from 100 Hz to 100 kHz

 $^{^*\} frequency\ reference\ error\ =\ (aging\ rate\ \times\ period\ of\ time\ since\ adjustment\ +\ initial\ achievable$ accuracy and temperature stability). See "Frequency Characteristics."

[†] Marker level to displayed noise level > 25 dB, IF BW/Span ≥ 0.01. Span ≤ 300 MHz. Reduce SPAN annotation is displayed when IF BW/Span < 0.01.

Frequency Specifications

Frequency Span	
Range	0 Hz (zero span), 1 kHz to 2.9 GHz
Resolution	Four digits or 20 Hz, whichever is greater.
Accuracy	
Span ≤10 MHz	±2% of span*
Span >10 MHz	±3% of span

Frequency Sweep Time		
Range		
	20 ms to 100 s	
(Options 101 and 301)	$20 \mu s$ to $100 s$ for span = $0 Hz$	
Accuracy		
20 ms to 100 s	±3%	
$20~\mu s$ to $<20~ms$ (Options 101 and 301)	±2%	
Sweep Trigger	Free Run, Single, Line, Video, External	

IF Bandwidths	
Measurement	200 Hz, 9 kHz, and 120 kHz (6 dB EMC bandwidths)
	1 MHz (6 dB bandwidth ±10%)
Diagnostic	30 Hz to 300 kHz, 3 dB bandwidths in 1,3,10 steps ($\pm 20\%$
	characteristic),
	also 3 MHz and 5 MHz.

Frequency Specifications

Stability	
Noise Sidebands	(1 kHz IF BW, 30 Hz AVG BW and sample detector)
>10 kHz offset from CW signal	≤-90 dBc/Hz
>20 kHz offset from CW signal	$\leq -100 \text{ dBc/Hz}$
>30 kHz offset from CW signal	$\leq -105 \text{ dBc/Hz}$
Residual FM	
$1~\mathrm{kHz}$ IF BW, $1~\mathrm{kHz}$ AVG BW	≤250 Hz pk-pk in 100 ms
$30~\mathrm{Hz}$ IF BW, $30~\mathrm{Hz}$ AVG BW	≤30 Hz pk-pk in 300 ms
System-Related Sidebands	
>30 kHz offset from CW signal	≤-65 dBc

 $^{{}^*\} frequency\ reference\ error\ =\ (aging\ rate\ \times\ period\ of\ time\ since\ adjustment\ +\ initial\ achievable$ accuracy + temperature stability). See "Frequency Characteristics."

Amplitude specifications do not apply for Analog+ mode and negative peak detector mode except as noted in "Amplitude Characteristics."

Amplitude Range	$-20~\mathrm{dB}\mu\mathrm{V}$ to $+137~\mathrm{dB}\mu\mathrm{V}$

Maximum Safe Input Level	
Average Continuous Power	$+137~\mathrm{dB}\mu\mathrm{V}$ (1 W, 7.1 V rms), input attenuation \geq 10 dB.
Peak Pulse Power	$+157~dB\muV$ (100 W) for <10 μs pulse width and <1% duty cycle, input attenuation $\geq \! 30~dB.$
dc	0 V (dc coupled)
	50 V (ac coupled)

Quasi-Peak Detector Specifications (All except Option 703)

The specifications for Quasi-Peak Detector have been based on the following:

- The EMC analyzer displays the quasi-peak amplitude of pulsed radio frequency (RF) or continuous wave (CW) signals.
- Amplitude response conforms with Publication 16 of Comité International Spécial des Perturbations Radioélectriques (CISPR) Section 1, Clause 2.

Absolute amplitude accuracy is the sum of the pulse amplitude response relative to the reference, plus the reference pulse amplitude accuracy, plus the EMC analyzer amplitude accuracy (calibrator output, reference level, frequency response, input attenuator, IF bandwidth switching, linear display scale fidelity, and gain compression).

Relative Quasi-Peak Response to a CISPR Pulse (dB) (All except Option 703)			
	Frequency Band		
Pulse Repetition	120 kHz EMI BW	9 kHz EMI BW	200 Hz EMI BW
Frequency (Hz)	0.03 to 1 GHz	0.15 to 30 MHz	10 to 150 kHz
1000	+8.0 ± 1.0	$+\ 4.5\ \pm\ 1.0$	_
100	0 dB (reference)*	0 dB (reference)*	$+4.0 \pm 1.0$
60	_	_	$+3.0 \pm 1.0$
25	=	=	0 dB (reference)*
20	-9.0 ± 1.0	-6.5 ± 1.0	_
10	-14.0 ± 1.5	-10.0 ± 1.5	-4.0 ± 1.0
5	_	_	-7.5 ± 1.5
2	-26.0 ± 2.0	-20.5 ± 2.0	-13.0 ± 2.0
1	-28.5 ± 2.0	-22.5 ± 2.0	-17.0 ± 2.0
Isolated Pulse	-31.5 ± 2.0	-23.5 ± 2.0	-19.0 ± 2.0

 $^{^{*}}$ Reference pulse amplitude accuracy relative to the CW signal is < 1.5 dB as specified in CISPR

CISPR reference pulse: 0.044 $\mu\rm \, Vs$ for 30 MHz to 1 GHz, 0.316 $\mu\rm \, Vs$ for 15 kHz to 30 MHz, and $13.5~\mu\mathrm{Vs}~\pm1.5~\mu\mathrm{Vs}$ for 9 kHz to 150 kHz.

Gain Compression [†]	
>10 MHz	\leq 0.5 dB (total power at input mixer* = 97 dB μ V)

^{*} Mixer Power Level (dB μ V) = Input Power (dB μ V) - Input Attenuation (dB).

[†] If IF BW \leq 300 Hz, this applies only if signal separation \geq 4 kHz and signal amplitudes \leq Reference Level + 10 dB.

Displayed Average Noise Level	(Input terminated, 0 dB attenuation, 30 Hz AVG BW, sample detector)	
	1 kHz IF BW	30 Hz IF BW
400 kHz to <5 MHz	$\leq 0 dB \mu V$	\leq -15 dB μ V
5 MHz to 2.9 GHz	\leq -5 dB μ V	\leq -20 dB μ V

Spurious Responses Second Harmonic Distortion >10 MHz

 $<-70~\mathrm{dBc}$ for $+67~\mathrm{dB}\mu\mathrm{V}$ tone at input mixer.*

Third Order Intermodulation Distortion > 10 MHz

<-70 dBc for two +77 dB μV tones at input mixer* and >50 kHz separation.

Other Input Related Spurious

< –65 dBc at $\ge \! 30$ kHz offset, for +87 dB $\!\mu V$ tone at input mixer $\le \! 2.9$ GHz.

* Mixer Power Level ($dB\mu V$) = Input Power ($dB\mu V$) - Input Attenuation (dB).

Residual Responses	(Input terminated and 0 dB attenuation)
150 kHz to 2.9 GHz	$+ 17 \mathrm{dB}\mu \mathrm{V}$

Display Range Log Scale 0 to -70 dB from reference level is calibrated; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps; eight divisions displayed. Linear Scale Scale Units dBm, dBmV, dB μ V, mV, mW, nV, nW, pW, μ V, μ W, V, and W

Marker Readout Resolution	0.05 dB for log scale
	0.05% of reference level for linear scale
Fast Sweep Times for Zero Span	
20 μs to 20 ms (Option 101 or 301)	
Frequency ≤ 1 GHz	0.7% of reference level for linear scale
Frequency > 1 GHz	1.0% of reference level for linear scale

Reference Level	
Range	
Log Scale	Minimum amplitude to maximum amplitude*
Linear Scale	$+8~\mathrm{dB}\mu\mathrm{V}$ to maximum amplitude *
Resolution	
Log Scale	±0.01 dB
Linear Scale	$\pm 0.12\%$ of reference level
Accuracy	(referenced to $+87~\mathrm{dB}\mu\mathrm{V}$ reference level, 10 dB input attenuation, at a single frequency, in a fixed IF BW)
$107~\mathrm{dB}\mu\mathrm{V}$ to $+47.1~\mathrm{dB}\mu\mathrm{V}$	$\pm (0.3 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
$+47~\mathrm{dB}\mu\mathrm{V}$ and below	
1 kHz to 3 MHz IF BW	$\pm (0.6 \text{ dB} + .01 \times \text{dB from} + 87 \text{dB}\mu\text{V})$
30 Hz to 300 Hz IF BW	$\pm (0.7 \text{ dB} + .01 \times \text{dB from} + 87 \text{dB}\mu\text{V})$
* See "Amplitude Range."	

Frequency Response (dc coupled)	(10 dB input attenuation)	
	Absolute*	Relative Flatness [†]
9 kHz to 2.9 GHz	±1.5 dB	$\pm 1.0~\mathrm{dB}$
* Referenced to 300 MHz CAL OUT. † Referenced to midpoint between highest and lowest frequency response deviations.		

Calibrator Output	
Amplitude	$+87~\mathrm{dB}\mu\mathrm{V}~\pm0.4~\mathrm{dB}$

Absolute Amplitude Calibration Repeatability*	±0.15 dB

 $^{^{\}ast}$ Repeatability in the measured absolute amplitude of the CAL OUT signal at the reference settings after CAL FREQ and CAL AMPTD self-calibration. Absolute amplitude reference settings are: Reference Level $+87~\mathrm{dB}\mu\mathrm{V}$; Input Attenuation 10 dB; Center Frequency 300 MHz; IF BW 3 kHz; AVG BW 300 Hz; Scale Linear; Span 50 kHz; Sweep Time Coupled, Top Graticule (reference level), Corrections ON, DC Coupled.

Input Attenuator	
Range	0 to 70 dB, in 10 dB steps

IF Bandwidth Switching Uncertainty	(At reference level, referenced to 3 kHz IF BW)
3 kHz to 3 MHz IF BW	±0.4 dB
1 kHz IF BW	±0.5 dB
30 Hz to 300 Hz IF BW	±0.6 dB

Linear to Log Switching	±0.25 dB at reference level
-------------------------	-----------------------------

Display Scale Fidelity	
Log Maximum Cumulative	
0 to -70 dB from Reference Level	
3 kHz to 3 MHz IF BW	\pm (0.3 dB + 0.01 \times dB from reference level)
IF BW $\leq 1 \text{ kHz}$	\pm (0.4 dB + 0.01 $ imes$ dB from reference level)
Log Incremental Accuracy	
0 to -60 dB from Reference Level	±0.4 dB/4 dB
Linear Accuracy	$\pm 3\%$ of reference level

Option Specifications

Tracking Generator Specifications (Option 010)

All specifications apply over 0 °C to +55 °C. The EMC-analyzer/trackinggenerator combination will meet its specifications after 2 hours of storage at a constant temperature within the operating temperature range, 30 minutes after the EMC-analyzer/tracking-generator is turned on and after CAL FREQ, CAL AMPTD, CAL TRK GEN, and TRACKING PEAK have been run.

Warm-Up	30 minutes	
Output Frequency		
Range	9 kHz to 2.9 GHz	

Output Power Level	
Range	$+106~\mathrm{dB}\mu\mathrm{V}$ to $+41~\mathrm{dB}\mu\mathrm{V}$
Resolution	0.1 dB
Absolute Accuracy (at 25 °C ±10 °C)	
$(+87 \text{ dB}\mu\text{V at } 300 \text{ MHz})$	±0.75 dB
Vernier*	
Range	9 dB
Accuracy (at 25 °C ±10 °C)	
(+87 dB μ V at 300 MHz, 16 dB attenuation)	
Incremental	±0.20 dB/dB
Cumulative	±0.50 dB total
Output Attenuator	
Range	0 to 56 dB in 8 dB steps

Option Specifications

Output Power Sweep	
Range	$(+97 \text{ dB}\mu\text{V to } + 106 \text{ dB}\mu\text{V})$ – (Source Attenuator Setting)
Resolution	0.1 dB

Output Flatness	
(referenced to 300 MHz, +87 dB μ V)	
Frequency > 10 MHz	±2.0 dB
Frequency ≤ 10 MHz	±3.0 dB

Spurious Output (+ 106 dB μ V output)	
Harmonic Spurs from 9 kHz to 2.9 GHz	
TG Output 9 kHz to 20 kHz	≤-15 dBc
TG Output 20 kHz to 2.9 GHz	≤-25 dBc
Nonharmonic Spurs from 9 kHz to 2.9 GHz	
TG Output 9 kHz to 2.0 GHz	≤-27 dBc
TG Output 2.0 GHz to 2.9 GHz	≤-23 dBc
LO Feedthrough	
LO Frequency 3.9217 to 6.8214 GHz	\leq + 91 dB μ V

Tracking Generator Feedthrough	
400 kHz to 5 MHz	< 0 dBµV
5 MHz to 2.9 GHz	$<-5 \text{ dB}\mu\text{V}$

Frequency Characteristics

These are not specifications. Characteristics provide useful but nonwarranted information about instrument performance.

Frequency Reference	
Initial Achievable Accuracy	$\pm 0.5 \times 10^{-6}$
Aging	$\pm 1.0 \times 10^{-7} / \text{day}$

Precision Frequency Reference (Option 004)	
Aging	5 x 10 ⁻¹⁰ /day, 7-day average after being
	5×10^{-10} /day, 7-day average after being powered on for 7 days.
Warm-Up	1×10^{-8} after 30 minutes on.
Initial Achievable Accuracy	$\pm 2.2 \times 10^{-8}$ after being powered on for 24
	hours.

Stability	
Drift* (after warmup at stabilized	
temperature)	
Frequency Span ≤10 MHz, Free Run	<2 kHz/minute of sweep time
* Because the analyzer is leaked at the center fr	aguanay hafara agah swaan drift agaws anly

Because the analyzer is locked at the center frequency before each sweep, drift occurs only during the time of one sweep. For Line, Video or External trigger, additional drift occurs while waiting for the appropriate trigger signal.

Diagnostic IF Bandwidths	
Shape	Synchronously tuned four poles. Approximately Gaussian shape.
60 dB/3 dB Bandwidth Ratio IF Bandwidth	
100 kHz to 3 MHz	15:1
30 kHz	16:1
3 kHz to 10 kHz	15:1
1 kHz	16:1
40 dB/3 dB Bandwidth Ratio IF Bandwidth	
30 Hz to 300 Hz	10:1

Frequency Characteristics

Shape

Averaging Bandwidth (-3 dB)	
	1 Hz to 1 MHz, selectable in 1, 3, 10 increments, accuracy $\pm 30\%$ and 3 MHz. Averaging bandwidths may be selected manually, or coupled to IF bandwidth and frequency span.

Post detection, single pole low-pass filter used to average displayed noise. Bandwidths below 30 Hz are digital bandwidths with anti-aliasing filtering.

FFT Bandwidth Factors			
	FLATTOP	HANNING	UNIFORM
Noise Equivalent Bandwidth*	3.63×	1.5×	1×
3 dB Bandwidth*	3.60×	1.48×	1×
Sidelobe Height	<-90 dB	−32 dB	−13 dB
Amplitude Uncertainty	0.10 dB	1.42 dB	$3.92~\mathrm{dB}$
Shape Factor (60 dB BW/3 dB BW)	2.6	9.1	>300

These are not specifications. Characteristics provide useful but nonwarranted information about instrument performance.

Log Scale Switching Uncertainty	Negligible error
•	

Demod Tune Listen	Internal speaker, rear panel earphone jack and front-panel volume control.
(All except Option 703)	Adjustable squelch control mutes the audio signal to the speaker/earphone jack based on the level of the demodulated signal above 22 kHz. An
	uncalibrated demodulated signal is available on the AUX VIDEO OUT
	connector at the rear panel.

Quasi-Peak Detector (All except Option 703)	
Measurement Range	
Displayed	70 dB
Total	115 dB

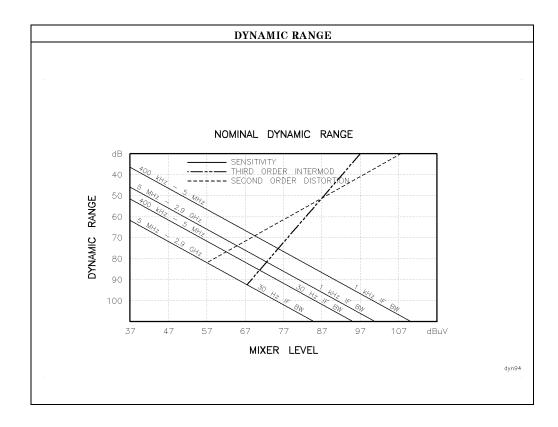
FM Demodulation (All except Option 703)	
Input Level	$>$ (+ 47 dB μ V + attenuator setting)
Signal Level	0 to -30 dB below reference level
FM Offset	
Resolution	400 Hz nominal
FM Deviation (FM GAIN)	
Resolution	1 kHz/volt nominal
Range	10 kHz/volt to 1 MHz/volt
Bandwidth (6 dB)	FM deviation/2
FM Linearity (for modulating frequency < bandwidth/100)	≤ 1% of FM deviation + 290 Hz

Measurement Detector Types	Positive Peak, Quasi-Peak, and Average	
	Quasi-Peak and Average time constants conform with CISPR Pub. 16.	
(Option 101 and Option 301)	Negative Peak	
(Option 703)	Delete Quasi-Peak and Average	

IF Overload Detector	Available in EMC analyzer mode only.
	Detects overload of the analyzer video circuitry.

Input Attenuation Uncertainty*		
Attenuator Setting		
0 dB	$\pm 0.2 \text{ dB}$	
10 dB	Reference	
20 dB	±0.4 dB	
$30~\mathrm{dB}$	±0.5 dB	
40 dB	±0.7 dB	
50 dB	±0.8 dB	
60 dB	±1.0 dB	
70 dB	±1.0 dB	

 $^{^{\}ast}$ Referenced to 10 dB input attenuator setting. See the "Frequency Response" table under "Specifications".


ac Coupled Insertion Loss*		
100 kHz to 300 kHz	0.7 dB	
300 kHz to 1 MHz	0.7 dB	
1 MHz to 100 MHz	0.05 dB	
100 MHz to 2.9 GHz	$0.05 \text{ dB} + (0.06 \times \text{F}^{\dagger}) \text{ dB}$	
* Referenced to dc coupled mode. † F = frequency in GHz.		

Input Attenuator 10 dB Step Uncertainty	(Attenuator setting 10 to 70 dB)
	±0.8 dB/10 dB

6-16 HP 8594EM Specifications and Characteristics

Input Attenuator Repeatability	±0.05 dB
--------------------------------	----------

RF Input SWR		
10 dB attenuation	dc Coupled	ac Coupled
Frequency		
300 MHz	1.15:1	1.4:1
10 dB to 70 dB attenuation		
Band		
100 kHz to 300 kHz	1.3:1	2.3:1
300 kHz to 1 MHz	1.3:1	1.4:1
1 MHz to 2.9 GHz	1.3:1	1.3:1

Immunity Testing	
Radiated Immunity	When tested at 3 V/m according to IEC 801-3/1984 the displayed average noise level will be within specifications over the full immunity test frequency range of 27 to 500 MHz except that at immunity test frequencies of 278.6 MHz \pm selected IF bandwidth and 321.4 MHz \pm selected IF bandwidth the displayed average noise level may be up to $+62~\mathrm{dB}\mu\mathrm{V}$. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to $+37~\mathrm{dB}\mu\mathrm{V}$ displayed on the screen.
Electrostatic Discharge	When an air discharge of up to 8 kV according to IEC 801-2/1991 occurs to the shells of the BNC connectors on the rear panel of the instrument spikes may be seen on the CRT display. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.
Electrical Fast Transient	When subjected to Electrical Fast Transient testing per EN 50082-1/EIC 801-4 noise may appear on the display of the analyzer during the application of the test voltage.

Analog + Mode and Negative Peak Detector Mode (Options 101 and 301)

These modes do not utilize the full set of internal amplitude corrections. Therefore, in these modes, some analyzer amplitude specifications are reduced to characteristics. Characteristics provide useful but nonwarranted information about instrument performance.

In these modes, the following analyzer specifications remain as specifications:

Amplitude Range

Calibrator Output

Maximum Safe Input Level

In these modes, the following analyzer specifications are reduced to characteristics:

Reference Level Gain Compression

Displayed Average Noise Level IF Bandwidth Switching Spurious Responses Linear to Log Switching Residual Responses Display Scale Fidelity

Display Scale Fidelity for Narrow Bandwidths Display Range

Finally, the following analyzer specifications are replaced by the characteristics which follow in this subsection:

Marker Readout Resolution Frequency Response

Marker Readout Resolution	
(digitizing resolution)	
Log Scale	±0.31 dB
Linear Scale	
frequency ≤ 1 GHz	$\pm 0.59\%$ of reference level
frequency > 1 GHz	$\pm 1.03\%$ of reference level

Frequency Response in Analog + Mode (dc coupled)	(10 dB input attenuat	tion, for spans ≤ 20 MHz)
	Absolute*	Relative Flatness [†]
9 kHz to 2.9 GHz	±2.0 dB	$\pm 1.5~\mathrm{dB}$
ų.		

Referenced to 300 MHz CAL OUT.

Referenced to midpoint between highest and lowest frequency response deviations.

Option Characteristics

TV Trigger Characteristics (Options 101, 102, and 301)

TV Trigger	Triggers sweep of the analyzer after the sync pulse of a selected line of a TV video field.
Carrier Level for Trigger Compatible Formats	Top 60% of linear display NTSC, PAL, SECAM
Field Selection	Even, odd, non-interlaced
Trigger Polarity	Positive, negative
Line Selection	10 to 1021

Tracking Generator Characteristics (Option 010)

Tracking Drift	
(Usable in a 1 kHz IF BW after 5-minute	1.5 kHz/5 minute
warmup)	

RF Power Off Residuals	
9 kHz to 2.9 GHz	$<-13~\mathrm{dB}\mu\mathrm{V}$

Dynamic Range (difference between maximum power out and tracking generator feedthrough)	
Frequency < 5 MHz	>106 dB
Frequency ≥ 5 MHz	>111 dB

Output Attenuator Repeatability	
9 kHz to 300 MHz	$\pm 0.1 \text{ dB}$
300 MHz to 2.0 GHz	±0.2 dB
2.0 GHz to 2.9 GHz	±0.3 dB

Option Characteristics

Ī	Output VSWR	
	0 dB Attenuator	<3.0:1
	8 dB Attenuator	<1.5:1

TRACKING GENERATOR OUTPUT ACCURACY, Option 010 (after CAL TRK GEN in auto-coupled mode, Frequency > 10 MHz, 25°C ± 10°C)					
TG Output Power Level	Attenuator Setting	Relative Accuracy (at 300 MHz referred to +87 dB\(\mu V \)	Absolute Accuracy (at 300 MHz)	Relative Accuracy (referred to $+87~\mathrm{dB}\mu\mathrm{V}$)	Absolute Accuracy
+ 106 to +97 dBμV	0 dB	1.0 dB	1.75 dB	3.0 dB	3.75 dB
+97 to +89 dBμV	8 dB	1.5 dB	2.25 dB	3.5 dB	4.25 dB
$+87~\mathrm{dB}\mu\mathrm{V}$	16 dB	Reference	0.75 dB	2.0 dB	2.75 dB
$+89 \text{ to } +81 \text{ dB}\mu\text{V}$	16 dB	1.0 dB	1.75 dB	3.0 dB	3.75 dB
$+81$ to $+73$ dB μ V	24 dB	1.5 dB	2.25 dB	3.5 dB	4.25 dB
$+73$ to $+65$ dB μ V	32 dB	1.6 dB	2.35 dB	3.6 dB	4.35 dB
$+65$ to $+57$ dB μ V	40 dB	1.8 dB	2.55 dB	3.8 dB	4.55 dB
$+57$ to $+49$ dB μ V	48 dB	2.0 dB	2.75 dB	4.0 dB	4.75 dB
+49 to +41 dBμV	56 dB	2.1 dB	2.85 dB	4.1 dB	4.85 dB

Front-Panel Inputs and Outputs

INPUT 50Ω	
Connector	Type N female
Impedance	50 Ω nominal

RF OUT (Option 010)	
Connector	Type N female
Impedance	50 Ω nominal

PROBE POWER*	
Voltage/Current	$+$ 15 Vdc, $\pm 7\%$ at 150 mA max.
	$-12.6~\mathrm{Vdc} \pm 10\mathrm{\%}$ at 150 mA max.

^{*} Total current drawn from the +15 Vdc on the PROBE POWER and the AUX INTERFACE cannot exceed 150 mA. Total current drawn from the -12.5 Vdc on the PROBE POWER and the -15 Vdc on the AUX INTERFACE cannot exceed 150 mA.

CAL OUT	
Connector	BNC female
Impedance	50 Ω nominal

Rear-Panel Inputs and Outputs

10 MHz REF OUTPUT	
Connector	BNC female
Impedance	50 Ω nominal
Output Amplitude	$> 107 \text{ dB}\mu\text{V}$

EXT REF IN	
Connector	BNC female
	Note: Analyzer noise sideband and spurious
	response performance may be affected by the
	quality of the external reference used.
Input Amplitude Range	$+105$ to $+117$ dB μ V
Frequency	10 MHz
AUX IF OUTPUT	
Frequency	21.4 MHz
Amplitude Range	$+97$ to $+47$ dB μ V
Impedance	50 Ω nominal
•	
AUX VIDEO OUTPUT	
Connector	BNC female
Amplitude Range	0 to 1 V (uncorrected)
EARPHONE (All except Option 703)	
Connector	1/8 inch monaural jack
EXT ALC INPUT (Option 010)	
Input Impedance	>10 kΩ
Polarity	Use with negative detector
EXT KEYBOARD	Interface compatible with HP part number
	C1405 Option ABA and most IBM/AT non-auto
	switching keyboards.
EXT TRIG INPUT	P. 17. 4
Connector	BNC female
Trigger Level	Positive edge initiates sweep in EXT TRIG mode
	(TTL).

LO OUTPUT (Option 009 or 010)	Note: LO output must be terminated in 50 Ω.
Connector	SMA female
Impedance	50 Ω nominal
Frequency Range	3.0 to 6.8214 GHz
Output Level	$+118$ to $+125$ dB μ V

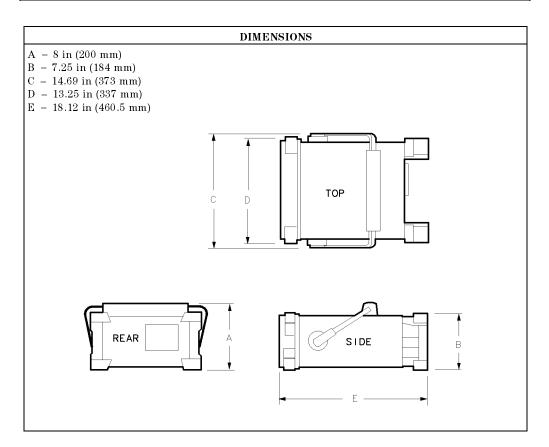
SWEEP + TUNE OUTPUT (Option 009)	
Connector	BNC female
Impedance (dc coupled)	2 kΩ
Range	0 to +10 V
Sweep + Tune Output	0.36 V/GHz of center frequency

HI-SWEEP IN/OUT	
Connector	BNC female
Output	High = sweep, Low = retrace (TTL)
Input	Open collector, low stops sweep.

MONITOR OUTPUT (EMC Analyzer Display)	
Connector	BNC female
Format	
SYNC NRM	Internal Monitor
SYNC NTSC	NTSC Compatible 15.75 kHz horizontal rate 60 Hz vertical rate
SYNC PAL	PAL Compatible 15.625 kHz horizontal rate 50 Hz vertical rate

REMOTE INTERFACE	
HP-IB	
HP-IB Codes	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28
RS-232 (Option 023)	25 pin subminiature D-shell, female
Parallel (Option 024)	25 pin subminiature D-shell, female

6-24 HP 8594EM Specifications and Characteristics


SWEEP OUT	PUT	
Connector		BNC female
Amplitude		0 to + 10 V ramp

TV TRIG OUT (Options 101, 102, and 301)	
Connector	BNC female
Amplitude	Negative edge corresponds to start of the
	selected TV line after sync pulse (TTL).

AUX INTERFACE					
Connector Type: 9 Connector Pinout	Connector Type: 9 Pin Subminiature "D" Connector Pinout				
Pin #	Function	Current	"Logic" Mode	"Serial Bit" Mode	
1	Control A	_	TTL Output Hi/Lo	TTL Output Hi/Lo	
2	Control B	_	TTL Output Hi/Lo	TTL Output Hi/Lo	
3	Control C	_	TTL Output Hi/Lo	Strobe	
4	Control D	_	TTL Output Hi/Lo	Serial Data	
5	Control I	_	TTL Input Hi/Lo	TTL Input Hi/Lo	
6	Gnd	_	Gnd	Gnd	
7†	$-15~\mathrm{V_{dc}}~\pm7\%$	150 mA	_	_	
8*	+5 V _{dc} ±5%	150 mA	_	_	
9†	+ 15 V _{dc} ±5%	150 mA	_	_	

^{*} Exceeding the +5 V current limits may result in loss of factory correction constants. † Total current drawn from the +15 V_{dc} on the PROBE POWER and the AUX INTERFACE cannot exceed 150 mA. Total current drawn from the $-12.6~\mathrm{V_{dc}}$ on the PROBE POWER and the $-15~V_{\rm dc}$ on the AUX INTERFACE cannot exceed 150 mA.

WEIGHT	
Net	
HP 8594EM	16.4 kg (36 lb)
Shipping	
HP 8594EM	19.1 kg (42 lb)

Regulatory Information

The information on the following section applies to the HP 8594EM EMC analyzer.

Regulatory Information

DECLARATION OF CONFORMITY

according to ISO/IEC Guide 22 and EN 45014

Manufacturer's Name: Hewlett-Packard Co.

Manufacturer's Address: Santa Rosa Systems Division

1400 Fountaingrove Parkway

Santa Rosa, CA 95403

USA

declares that the product

Product Name: EMC Analyzer

Model Number: HP 8591EM, HP 8593EM, HP 8594EM,

HP 8595EM, HP 8596EM

Product Options: This declaration covers all options of the

above products.

conforms to the following Product specifications:

Safety: IEC 348:1978/HD 401 S1:1981

CAN/CSA-C22.2 No. 231 (Series M-89)

EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A

IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz

IEC 801-4:1988/EN 50082-1:1992 0.5 kV Sig. Lines, 1 kV Power Lines

Supplementary Information:

The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC.

Rohnert Park, California, USA 16 Jan. 1995

Date

Dixón Browder/Quality Manager

6-28 HP 8594EM Specifications and Characteristics

European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Department ZQ/Standards Europe, Herrenberger Strasse 130, D-71034 Böblinger, Germany (FAX +49-7031-14-3143)

Regulatory Information

Notice for Germany: Noise Declaration

 $\mathrm{LpA} < 70~\mathrm{dB}$ am Arbeitsplatz (operator position) normaler Betrieb (normal position) nach DIN 45635 T. 19 (per ISO 7779)

			l

HP 8595EM Specifications and Characteristics

This chapter contains specifications and characteristics for the HP 8595EM EMC analyzer.

The specifications and characteristics in this chapter are listed separately. The specifications are described first, then followed by the characteristics.

General General specifications and characteristics.

Frequency Frequency-related specifications and characteristics. **Amplitude** Amplitude-related specifications and characteristics.

Option Option-related specifications and characteristics.

Input, output and physical characteristics. Physical

The distinction between specifications and characteristics is described as follows.

- Specifications describe warranted performance over the temperature range 0 °C to +55 °C. The EMC analyzer will meet its specifications under the following conditions:
 - □ The instrument is within the one year calibration cycle.
 - □ 2 hours of storage at a constant temperature within the operating temperature range.
 - □ 30 minutes after the EMC analyzer is turned on.
 - □ After the CAL FREQ, CAL AMP, and CAL YTF routines have been run.
- Characteristics provide useful, but nonwarranted information about the functions and performance of the EMC analyzer. Characteristics are specifically identified.
- Typical Performance, where listed, is not warranted, but indicates performance that most units will exhibit.
- Nominal Value indicates the expected, but not warranted, value of the parameter.

General Specifications

Temperature Range	
Operating	0 °C to +55 °C
Storage	-40 °C to $+75$ °C
EMI Compatibility	Conducted and radiated emission is in
	compliance with CISPR Pub. 11/1990 Group 1
	Class A.
Audible Noise	< 37.5 dBA pressure and < 5.0 Bels power
	(ISODP7779)
Power Requirements	
ON (LINE 1)	90 to 132 V rms, 47 to 440 Hz
	195 to 250 V rms, 47 to 66 Hz
	Power consumption <500 VA; <180 W
Standby (LINE 0)	Power consumption <7 W
Environmental Specifications	Type tested to the environmental specifications
	of Mil-T-28800 class 5

Frequency Specifications

Frequency Range	
dc Coupled	9 kHz to 6.5 GHz
ac Coupled	100 kHz to 6.5 GHz

Frequency Reference	
Aging	$\pm 2 \times 10^{-6}$ /year
Settability	$\pm 0.5 \times 10^{-6}$
Temperature Stability	$\pm 5 \times 10^{-6}$

Precision Frequency Reference (Option 004)	
Aging	$\pm 1 \times 10^{-7}$ /year
Settability	$\pm 1 \times 10^{-8}$
Temperature Stability	$\pm 1 \times 10^{-8}$

(Start, Stop, Center, Marker)	±(frequency readout × frequency reference error* + span accuracy + 1% of span + 20% of IF BW + 100 Hz) [†]

^{*} frequency reference error = (aging rate x period of time since adjustment + initial achievable accuracy + temperature stability). See "Frequency Characteristics."

[†] See "Drift" under "Stability" in Frequency Characteristics.

Marker Count Accuracy [†]	
Frequency Span ≤ 10 MHz	±(marker frequency × frequency reference error* + counter resolution + 100 Hz)
Frequency Span >10 MHz	±(marker frequency × frequency reference error* + counter resolution + 1 kHz)
Counter Resolution	
Frequency Span ≤ 10 MHz	Selectable from 10 Hz to 100 kHz
Frequency Span > 10 MHz	Selectable from 100 Hz to 100 kHz

^{*} frequency reference error = (aging rate x period of time since adjustment + initial achievable accuracy and temperature stability). See "Frequency Characteristics."

[†] Marker level to displayed noise level > 25 dB, IF BW/Span ≥ 0.01. Span ≤ 300 MHz. Reduce SPAN annotation is displayed when IF BW/Span < 0.01.

Frequency Specifications

Frequency Span		
Range	0 Hz (zero span), 1 kHz to 6.5 GHz	
Resolution	Four digits or 20 Hz, whichever is greater.	
Accuracy (single band spans)		
Span ≤10 MHz	±2% of span*	
Span > 10 MHz	±3% of span	
* For spans < 10 kHz, add an additional 10 Hz resolution error.		

Frequency Sweep Time	
Range	
	20 ms to 100 s
(Options 101 and 301)	$20 \mu s$ to $100 s$ for span = $0 Hz$
Accuracy	
20 ms to 100 s	±3%
$20~\mu s$ to $<20~ms$ (Options 101 and 301)	±2%
Sweep Trigger	Free Run, Single, Line, Video, External

IF Bandwidths	
Measurement	200 Hz, 9 kHz, and 120 kHz (6 dB EMC bandwidths)
	1 MHz (6 dB bandwidth ±10%)
Diagnostic	30 Hz to 300 kHz, 3 dB bandwidths in 1,3,10 steps (±20%
	characteristic),
	also 3 MHz and 5 MHz.

7.4 HP 8595EM Specifications and Characteristics

Frequency Specifications

(1 kHz IF BW, 30 Hz AVG BW and sample
detector)
≤-90 dBc/Hz
≤-100 dBc/Hz
$\leq -105 \text{ dBc/Hz}$
≤250 Hz pk-pk in 100 ms
≤30 Hz pk-pk in 300 ms
≤-65 dBc

Calibrator Output Frequency	300 MHz ±(freq. ref. error* x 300 MHz)
-----------------------------	--

^{*} frequency reference error = (aging rate \times period of time since adjustment + initial achievable accuracy + temperature stability). See "Frequency Characteristics."

Amplitude specifications do not apply for Analog+ mode and negative peak detector mode except as noted in "Amplitude Characteristics."

Amplitude Range	-20 dBµV to +137 dBµV

Maximum Safe Input Level	
Average Continuous Power	$+$ 137 dB μ V (1 W, 7.1 V rms), input attenuation \geq 10 dB above 2.75 GHz.
Peak Pulse Power	$+157~dB\muV$ (100 W) for <10 μs pulse width and <1% duty cycle, input attenuation $\geq \! 30~dB.$
dc	0 V (dc coupled)
	50 V (ac coupled)

Quasi-Peak Detector Specifications (All except Option 703)

The specifications for Quasi-Peak Detector have been based on the following:

- The EMC analyzer displays the quasi-peak amplitude of pulsed radio frequency (RF) or continuous wave (CW) signals.
- Amplitude response conforms with Publication 16 of Comité International Spécial des Perturbations Radioélectriques (CISPR) Section 1, Clause 2.

Absolute amplitude accuracy is the sum of the pulse amplitude response relative to the reference, plus the reference pulse amplitude accuracy, plus the EMC analyzer amplitude accuracy (calibrator output, reference level, frequency response, input attenuator, IF bandwidth switching, linear display scale fidelity, and gain compression).

Relative Quasi-	Relative Quasi-Peak Response to a CISPR Pulse (dB) (All except Option 703)		
	Frequency Band		
Pulse Repetition	120 kHz EMI BW	9 kHz EMI BW	200 Hz EMI BW
Frequency (Hz)	0.03 to 1 GHz	0.15 to 30 MHz	10 to 150 kHz
1000	+8.0 ± 1.0	$+\ 4.5\ \pm\ 1.0$	_
100	0 dB (reference)*	0 dB (reference)*	$+4.0 \pm 1.0$
60	_	_	$+3.0 \pm 1.0$
25	-	=	0 dB (reference)*
20	-9.0 ± 1.0	-6.5 ± 1.0	_
10	-14.0 ± 1.5	-10.0 ± 1.5	-4.0 ± 1.0
5	_	_	-7.5 ± 1.5
2	-26.0 ± 2.0	-20.5 ± 2.0	-13.0 ± 2.0
1	-28.5 ± 2.0	-22.5 ± 2.0	-17.0 ± 2.0
Isolated Pulse	-31.5 ± 2.0	-23.5 ± 2.0	-19.0 ± 2.0

 $^{^{*}}$ Reference pulse amplitude accuracy relative to the CW signal is < 1.5 dB as specified in CISPR

CISPR reference pulse: 0.044 $\mu\rm \, Vs$ for 30 MHz to 1 GHz, 0.316 $\mu\rm \, Vs$ for 15 kHz to 30 MHz, and $13.5~\mu\mathrm{Vs}~\pm1.5~\mu\mathrm{Vs}$ for 9 kHz to 150 kHz.

Gain Compression [†]	
>10 MHz	\leq 0.5 dB (total power at input mixer* = 97 dB μ V)

^{*} Mixer Power Level (dB μ V) = Input Power (dB μ V) - Input Attenuation (dB).

[†] If IF BW \leq 300 Hz, this applies only if signal separation \geq 4 kHz and signal amplitudes \leq Reference Level + 10 dB.

Displayed Average Noise Level	(Input terminated, 0 dB attenuation, 30 Hz AVG BW, sample detector)	
	1 kHz IF BW	30 Hz IF BW
400 kHz to 2.9 GHz	≤-3 dBμV	\leq -18 dB μ V
2.75 GHz to 6.5 GHz	\leq -5 dB μ V	\leq -20 dB μ V

Spurious Responses

Second Harmonic Distortion

>10 MHz >2.75 GHz <-70 dBc for +67 dB μ V tone at input mixer.* <-100 dBc for +97 dB μ V tone at input mixer* (or below displayed average noise level).

Third Order Intermodulation Distortion

> 10 MHz

 $<\!-70~\mathrm{dB}c$ for two $+77~\mathrm{dB}\mu\mathrm{V}$ tones at input mixer* and $>\!50~\mathrm{kHz}$ separation.

Other Input Related Spurious

< –65 dBc at $\geq\!30$ kHz offset, for +87 dB $\!\mu V$ tone at input mixer $\leq\!6.5$ GHz.

* Mixer Power Level (dB μ V) = Input Power (dB μ V) - Input Attenuation (dB).

Residual Responses	(Input terminated and 0 dB attenuation)
150 kHz to 6.5 GHz	$< +17 \mathrm{dB}\mu\mathrm{V}$

Display Range	
Log Scale	0 to -70 dB from reference level is calibrated; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps; eight divisions displayed.
Linear Scale	eight divisions
Scale Units	dBm, dBmV, dB μ V, mV, mW, nV, nW, pW, μ V, μ W, V, and W

Marker Readout Resolution	0.05 dB for log scale
	0.05% of reference level for linear scale
Fast Sweep Times for Zero Span	
$20~\mu s$ to $20~ms$ (Option 101 or 301)	
Frequency ≤ 1 GHz	0.7% of reference level for linear scale
Frequency > 1 GHz	1.0% of reference level for linear scale

7.8 HP 8595EM Specifications and Characteristics

Reference Level	
Range	
Log Scale	Minimum amplitude to maximum amplitude*
Linear Scale	$+ 8~dB\mu V$ to maximum amplitude *
Resolution	
Log Scale	$\pm 0.01 \text{ dB}$
Linear Scale	±0.12% of reference level
Accuracy	(referenced to $+87~\mathrm{dB}\mu\mathrm{V}$ reference level, 10 dB input attenuation, at a single frequency, in a fixed IF BW)
107 dBμV to +47.1 dBμV	$\pm (0.3 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
+ 47 dBμV and below 1 kHz to 3 MHz IF BW	1 (0 6 dP + 01 v dP from + 97 dP vV)
	$\pm (0.6 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}_{\mu}\text{V})$
30 Hz to 300 Hz IF BW	$\pm (0.7 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
* See "Amplitude Range."	

Frequency Response (dc coupled)	oupled) (10 dB input attenuation)	
	$\mathbf{Absolute}^*$	Relative Flatness [†]
9 kHz to 2.9 GHz	$\pm 1.5~\mathrm{dB}$	$\pm 1.0~\mathrm{dB}$
2.75 GHz to 6.5 GHz (preselector peaked)	$\pm 2.0~\mathrm{dB}$	$\pm 1.5~\mathrm{dB}$
* Referenced to 300 MHz CAL OUT. † Referenced to midpoint between highest and lowest frequency response deviations.		

Calibrator Output	
Amplitude	$+87~\mathrm{dB}\mu\mathrm{V}~\pm0.4~\mathrm{dB}$

Absolute Amplitude Calibration Repeatability*	±0.15 dB

 $^{^{}st}$ Repeatability in the measured absolute amplitude of the CAL OUT signal at the reference settings after CAL FREQ and CAL AMPTD self-calibration. Absolute amplitude reference settings are: Reference Level $+87~dB\mu V$; Input Attenuation 10 dB; Center Frequency 300 MHz; IF BW 3 kHz; AVG BW 300 Hz; Scale Linear; Span 50 kHz; Sweep Time Coupled, Top Graticule (reference level), Corrections ON, DC Coupled.

Input Attenuator	
Range	0 to 70 dB, in 10 dB steps

IF Bandwidth Switching Uncertainty	(At reference level, referenced to 3 kHz IF BW)
3 kHz to 3 MHz IF BW	±0.4 dB
1 kHz IF BW	±0.5 dB
30 Hz to 300 Hz IF BW	±0.6 dB

Linear to Log Switching	±0.25 dB at reference level
-------------------------	-----------------------------

Display Scale Fidelity	
Log Maximum Cumulative	
0 to -70 dB from Reference Level	
3 kHz to 3 MHz IF BW	\pm (0.3 dB + 0.01 x dB from reference level)
IF BW $\leq 1 \text{ kHz}$	\pm (0.4 dB + 0.01 $ imes$ dB from reference level)
Log Incremental Accuracy	
0 to -60 dB from Reference Level	$\pm 0.4 \text{ dB/4 dB}$
Linear Accuracy	$\pm 3\%$ of reference level

Option Specifications

Tracking Generator Specifications (Option 010)

All specifications apply over 0 °C to +55 °C. The EMC-analyzer/trackinggenerator combination will meet its specifications after 2 hours of storage at a constant temperature within the operating temperature range, 30 minutes after the EMC-analyzer/tracking-generator is turned on and after CAL FREQ, CAL AMPTD, CAL TRK GEN, and TRACKING PEAK have been run.

Warm-Up	30 minutes		
Output Frequency			
Range	9 kHz to 2.9 GHz		
Output Power Level			
Range	± 106 dB uV to ± 41 dB uV		

Output Power Level	
Range	$+106~\mathrm{dB}\mu\mathrm{V}$ to $+41~\mathrm{dB}\mu\mathrm{V}$
Resolution	0.1 dB
Absolute Accuracy (at 25 °C ±10 °C)	
$(+87 \text{ dB}\mu\text{V at } 300 \text{ MHz})$	±0.75 dB
Vernier*	
Range	9 dB
Accuracy (at 25 °C ±10 °C)	
(+87 dB μ V at 300 MHz, 16 dB attenuation)	
Incremental	±0.20 dB/dB
Cumulative	±0.50 dB total
Output Attenuator	
Range	0 to 56 dB in 8 dB steps
* See the Output Accuracy table in "Option Chara	acteristics."

Option Specifications

Output Power Sweep	
Range	$(+97~\mathrm{dB}\mu\mathrm{V}~\mathrm{to}~+106~\mathrm{dB}\mu\mathrm{V})$ – (Source Attenuator Setting)
Resolution	0.1 dB

Output Flatness	
(referenced to 300 MHz, $+87 \text{ dB}\mu\text{V}$)	
Frequency > 10 MHz	$\pm 2.0~\mathrm{dB}$
Frequency ≤ 10 MHz	±3.0 dB

Spurious Output (+106 dBµV output)	
Harmonic Spurs from 9 kHz to 2.9 GHz	
TG Output 9 kHz to 20 kHz	≤-15 dBc
TG Output 20 kHz to 2.9 GHz	≤-25 dBc
Nonharmonic Spurs from 9 kHz to 2.9 GHz	
TG Output 9 kHz to 2.0 GHz	≤-27 dBc
TG Output 2.0 GHz to 2.9 GHz	≤-23 dBc
LO Feedthrough	
LO Frequency 3.9217 to 6.8214 GHz	\leq +91 dB μ V

Tracking Generator Feedthrough	
400 kHz to 2.9 GHz	<−3 dBµV

Frequency Characteristics

These are not specifications. Characteristics provide useful but nonwarranted information about instrument performance.

Frequency Reference	
Initial Achievable Accuracy	$\pm 0.5 \times 10^{-6}$
Aging	$\pm 1.0 \times 10^{-7} / \text{day}$

Precision Frequency Reference (Option 004)	
Aging	5 x 10 ⁻¹⁰ /day, 7-day average after being
	5 x 10 ⁻¹⁰ /day, 7-day average after being powered on for 7 days.
Warm-Up	1×10^{-8} after 30 minutes on.
Initial Achievable Accuracy	$\pm 2.2 \times 10^{-8}$ after being powered on for 24
	hours.

Stability			
Drift* (after warmup at stabilized			
temperature)			
Frequency Span ≤10 MHz, Free Run	<2 kHz/minute of sweep time		
* Recourse the analyzer is looked at the center frequency before each sweep drift accurs only			

Because the analyzer is locked at the center frequency before each sweep, drift occurs only during the time of one sweep. For Line, Video or External trigger, additional drift occurs while waiting for the appropriate trigger signal.

Diagnostic IF Bandwidths	
Shape	Synchronously tuned four poles. Approximately Gaussian shape.
60 dB/3 dB Bandwidth Ratio IF Bandwidth	
100 kHz to 3 MHz	15:1
30 kHz	16:1
3 kHz to 10 kHz	15:1
1 kHz	16:1
40 dB/3 dB Bandwidth Ratio IF Bandwidth	
30 Hz to 300 Hz	10:1

Frequency Characteristics

Averaging	Bandwidth	(-3)	dB)	
		. ~	,	

Range

 $1~\rm{Hz}$ to $1~\rm{MHz},$ selectable in 1, 3, $10~\rm{increments},$ accuracy $\pm30\%$ and $3~\rm{MHz}.$ Averaging bandwidths may be selected manually, or coupled to IF bandwidth and frequency span.

Shape

Post detection, single pole low-pass filter used to average displayed noise. Bandwidths below 30 Hz are digital bandwidths with anti-aliasing filtering.

FFT Bandwidth Factors			
	FLATTOP	HANNING	UNIFORM
Noise Equivalent Bandwidth*	$3.63\times$	1.5x	1×
3 dB Bandwidth*	3.60×	1.48×	1×
Sidelobe Height	<-90 dB	−32 dB	−13 dB
Amplitude Uncertainty	0.10 dB	1.42 dB	$3.92~\mathrm{dB}$
Shape Factor (60 dB BW/3 dB BW)	2.6	9.1	>300
* Multiply entry by one-divided-by-swee		₽.1	>500

These are not specifications. Characteristics provide useful but nonwarranted information about instrument performance.

Log Scale Switching Uncertainty	Negligible error
	•

(All except Option 703)	Internal speaker, rear panel earphone jack and front-panel volume control. Adjustable squelch control mutes the audio signal to the speaker/earphone jack based on the level of the demodulated signal above 22 kHz. An
	uncalibrated demodulated signal is available on the AUX VIDEO OUT connector at the rear panel.

Quasi-Peak Detector (All except Option 703)	
Measurement Range	
Displayed	70 dB
Total	115 dB

FM Demodulation (All except Option 703)	
Input Level	$>$ (+47 dB μ V + attenuator setting)
Signal Level	0 to -30 dB below reference level
FM Offset	
Resolution	400 Hz nominal
FM Deviation (FM GAIN)	
Resolution	1 kHz/volt nominal
Range	10 kHz/volt to 1 MHz/volt
Bandwidth (6 dB)	FM deviation/2
FM Linearity (for modulating frequency < bandwidth/100)	≤ 1% of FM deviation + 290 Hz

Measurement Detector Types	Positive Peak, Quasi-Peak, and Average	
	Quasi-Peak and Average time constants conform with CISPR Pub. 16.	
(Option 101 and Option 301)	Negative Peak	
(Option 703)	Delete Quasi-Peak and Average	

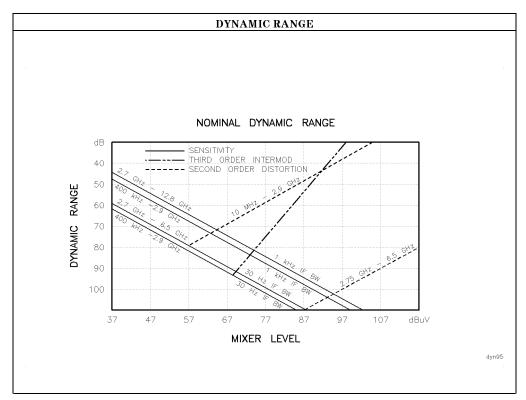
IF Overload Detector	Available in EMC analyzer mode only.
	Detects overload of the analyzer video circuitry.

Input Attenuation Uncertainty*	
Attenuator Setting	
0 dB	$\pm 0.2~\mathrm{dB}$
10 dB	Reference
$20~\mathrm{dB}$	$\pm 0.4~\mathrm{dB}$
30 dB	$\pm 0.5 \text{ dB}$
40 dB	$\pm 0.7 \text{ dB}$
50 dB	$\pm 0.8 \text{ dB}$
60 dB	$\pm 1.0~\mathrm{dB}$
70 dB	$\pm 1.0~\mathrm{dB}$

 $^{^{\}ast}$ Referenced to 10 dB input attenuator setting. See the "Frequency Response" table under "Specifications".

ac Coupled Insertion Loss*	
100 kHz to 300 kHz	0.7 dB
300 kHz to 1 MHz	0.2 dB
1 MHz to 100 MHz	0.07 dB
100 MHz to 2.9 GHz	$0.05 \text{ dB} + (0.06 \times \text{F}^{\dagger}) \text{ dB}$
2.9 GHz to 6.5 GHz	$0.05 \text{ dB} + (0.13 \times \text{F}^{\dagger}) \text{ dB}$
* Referenced to dc coupled mode.	
† F = frequency in GHz.	

Input Attenuator 10 dB Step Uncertainty	(Attenuator setting 10 to 70 dB)	
	$\pm 0.8 \text{ dB/}10 \text{ dB}$	


7.16 HP 8595EM Specifications and Characteristics

Input Attenuator Repeatability	±0.05 dB
--------------------------------	----------

RF Input SWR		
10 dB attenuation	dc Coupled	ac Coupled
Frequency		
300 MHz	1.15:1	1.4:1
10 dB to 70 dB attenuation		
Band		
100 kHz to 300 kHz	1.3:1	2.3:1
300 kHz to 1 MHz	1.3:1	1.4:1
1 MHz to 2.9 GHz	1.3:1	1.3:1
2.9 GHz to 6.5 GHz	1.5:1	1.6:1

Unpeaked Frequency Response (dc coupled)	(10 dB input attenuation)	
Without Preselector Peaking, Span ≤ 50 MHz	${f Absolute}^*$	Relative Flatness [†]
2.75 GHz to 6.5 GHz	$\pm 4.0~\mathrm{dB}$	$\pm 3.5~\mathrm{dB}$

 $^{^{\}ast}$ Referenced to 300 MHz CAL OUT. † Referenced to midpoint between highest and lowest frequency response deviations.

Immunity Testing	
Radiated Immunity	When tested at 3 V/m according to IEC 801-3/1984 the displayed average noise level will be within specifications over the full immunity test frequency range of 27 to 500 MHz except that at immunity test frequencies of 278.6 MHz \pm selected IF bandwidth and 321.4 MHz \pm selected IF bandwidth the displayed average noise level may be up to $+62~\mathrm{dB}\mu\mathrm{V}$. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to $+37~\mathrm{dB}\mu\mathrm{V}$ displayed on the screen.
Electrostatic Discharge	When an air discharge of up to 8 kV according to IEC 801-2/1991 occurs to the shells of the BNC connectors on the rear panel of the instrument spikes may be seen on the CRT display. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.
Electrical Fast Transient	When subjected to Electrical Fast Transient testing per EN 50082-1/EIC 801-4 noise may appear on the display of the analyzer during the application of the test voltage.

Analog + Mode and Negative Peak Detector Mode (Options 101 and 301)

These modes do not utilize the full set of internal amplitude corrections. Therefore, in these modes, some analyzer amplitude specifications are reduced to characteristics. Characteristics provide useful but nonwarranted information about instrument performance.

In these modes, the following analyzer specifications remain as specifications:

Amplitude Range

Calibrator Output

Maximum Safe Input Level

In these modes, the following analyzer specifications are reduced to characteristics:

Reference Level Gain Compression

Displayed Average Noise Level IF Bandwidth Switching Spurious Responses Linear to Log Switching Residual Responses Display Scale Fidelity

Display Scale Fidelity for Narrow Bandwidths Display Range

Finally, the following analyzer specifications are replaced by the characteristics which follow in this subsection:

Marker Readout Resolution Frequency Response

Marker Readout Resolution	
(digitizing resolution)	
Log Scale	±0.31 dB
Linear Scale	
frequency ≤ 1 GHz	$\pm 0.59\%$ of reference level
frequency > 1 GHz	$\pm 1.03\%$ of reference level

Frequency Response in Analog + Mode (dc coupled)	(10 dB input attenuation, for spans ≤ 20 MHz)		
	Absolute*	Relative Flatness [†]	
9 kHz to 2.9 GHz	±2.0 dB	$\pm 1.5~\mathrm{dB}$	
2.75 GHz to 6.5 GHz (preselector peaked)	±2.5 dB	±2.0 dB	

Referenced to 300 MHz CAL OUT.

Referenced to midpoint between highest and lowest frequency response deviations.

Option Characteristics

TV Trigger Characteristics (Options 101, 102, and 301)

TV Trigger	Triggers sweep of the analyzer after the sync pulse of a selected line of a TV video field.
Carrier Level for Trigger	Top 60% of linear display
Compatible Formats	NTSC, PAL, SECAM
Field Selection	Even, odd, non-interlaced
Trigger Polarity	Positive, negative
Line Selection	10 to 1021

Tracking Generator Characteristics (Option 010)

Tracking Drift	
(Usable in a 1 kHz IF BW after 5-minute warmup)	1.5 kHz/5 minute
RF Power Off Residuals	

Dynamic Range	
(difference between maximum power out and tracking generator	>109 dB
feedthrough)	

Output Attenuator Repeatability	
9 kHz to 300 MHz	±0.1 dB
300 MHz to 2.0 GHz	±0.2 dB
2.0 GHz to 2.9 GHz	±0.3 dB

Option Characteristics

Output VSWR	
0 dB Attenuator	<3.0:1
8 dB Attenuator	<1.5:1

TRACKING GENERATOR OUTPUT ACCURACY, Option 010 (after CAL TRK GEN in auto-coupled mode, Frequency > 10 MHz, 25°C ± 10°C)						
TG Output Power Level	Attenuator Setting	Relative Accuracy (at 300 MHz referred to +87 dB\(\mu V \)	Absolute Accuracy (at 300 MHz)	Relative Accuracy (referred to +87 dBµV)	Absolute Accuracy	
+ 106 to +97 dBμV	0 dB	1.0 dB	1.75 dB	3.0 dB	3.75 dB	
$+97 \text{ to } +89 \text{ dB}\mu\text{V}$	8 dB	1.5 dB	2.25 dB	3.5 dB	4.25 dB	
$+87~\mathrm{dB}\mu\mathrm{V}$	16 dB	Reference	0.75 dB	2.0 dB	2.75 dB	
$+89 \text{ to } +81 \text{ dB}\mu\text{V}$	16 dB	1.0 dB	1.75 dB	3.0 dB	3.75 dB	
$+81$ to $+73$ dB μ V	24 dB	1.5 dB	2.25 dB	3.5 dB	4.25 dB	
$+73$ to $+65$ dB μ V	32 dB	1.6 dB	2.35 dB	3.6 dB	4.35 dB	
$+65 \text{ to } +57 \text{ dB}\mu\text{V}$	40 dB	1.8 dB	2.55 dB	3.8 dB	4.55 dB	
$+57 \text{ to } +49 \text{ dB}\mu\text{V}$	48 dB	2.0 dB	2.75 dB	4.0 dB	4.75 dB	
$+49 \text{ to } +41 \text{ dB}\mu\text{ V}$	56 dB	2.1 dB	2.85 dB	4.1 dB	4.85 dB	

Front-Panel Inputs and Outputs

INPUT 50Ω	
Connector	Type N female
Impedance	50 Ω nominal

RF OUT (Option 010)	
Connector	Type N female
Impedance	50 Ω nominal

PROBE POWER*	
Voltage/Current	$+$ 15 Vdc, $\pm 7\%$ at 150 mA max.
	$-12.6~\mathrm{Vdc} \pm 10\mathrm{\%}$ at 150 mA max.

^{*} Total current drawn from the +15 Vdc on the PROBE POWER and the AUX INTERFACE cannot exceed 150 mA. Total current drawn from the -12.5 Vdc on the PROBE POWER and the -15 Vdc on the AUX INTERFACE cannot exceed 150 mA.

CAL OUT	
Connector	BNC female
Impedance	50 Ω nominal

Rear-Panel Inputs and Outputs

10 MHz REF OUTPUT	
Connector	BNC female
Impedance	50 Ω nominal
Output Amplitude	$>107~\mathrm{dB}\mu\mathrm{V}$

EXT REF IN	
Connector	BNC female
	Note: Analyzer noise sideband and spurious
	response performance may be affected by the
	quality of the external reference used.
Input Amplitude Range	$+105$ to $+117$ dB μ V
Frequency	10 MHz
AUX IF OUTPUT	
Frequency	21.4 MHz
Amplitude Range	$+97$ to $+47$ dB μ V
Impedance	50 Ω nominal
AUX VIDEO OUTPUT	
Connector	BNC female
Amplitude Range	0 to 1 V (uncorrected)
EARPHONE (All except Option 703)	
Connector	1/9 inch managual is els
Connector	1/8 inch monaural jack
EXT ALC INPUT (Option 010)	
Input Impedance	>10 kΩ
Polarity	Use with negative detector
·	, , , , , , , , , , , , , , , , , , , ,
EXT KEYBOARD	Interface compatible with HP part number
	C1405 Option ABA and most IBM/AT non-auto switching keyboards.
EXT TRIG INPUT	
Connector	BNC female
Trigger Level	Positive edge initiates sweep in EXT TRIG mode (TTL).

LO OUTPUT (Option 009 or 010)	Note: LO output must be terminated in 50 Ω.
Connector	SMA female
Impedance	50 Ω nominal
Frequency Range	3.0 to 6.8214 GHz
Output Level	$+118$ to $+125$ dB μ V

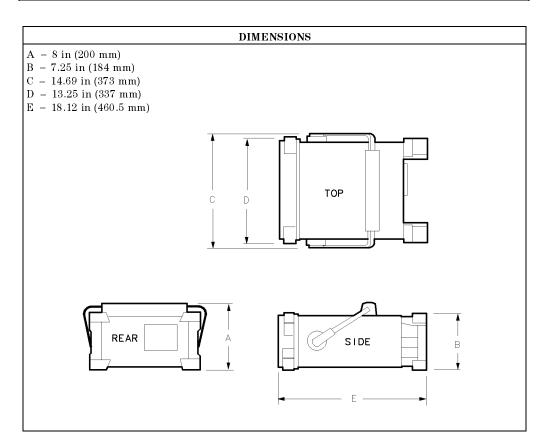
SWEEP + TUNE OUTPUT (Option 009)	
Connector	BNC female
Impedance (dc coupled)	2 kΩ
Range	0 to +10 V
Sweep + Tune Output	0.36 V/GHz of center frequency

HI-SWEEP IN/OUT	
Connector	BNC female
Output	High = sweep, Low = retrace (TTL)
Input	Open collector, low stops sweep.

MONITOR OUTPUT (EMC Analyzer Display)	
Connector	BNC female
Format	
SYNC NRM	Internal Monitor
SYNC NTSC	NTSC Compatible 15.75 kHz horizontal rate 60 Hz vertical rate
SYNC PAL	PAL Compatible 15.625 kHz horizontal rate 50 Hz vertical rate

REMOTE INTERFACE	
HP-IB	
HP-IB Codes	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28
RS-232 (Option 023)	25 pin subminiature D-shell, female
Parallel (Option 024)	25 pin subminiature D-shell, female

7-24 HP 8595EM Specifications and Characteristics


SWEEP OUTPUT	
Connector	BNC female
Amplitude	0 to + 10 V ramp

TV TRIG OUT (Options 101, 102, and 301)	
Connector	BNC female
Amplitude	Negative edge corresponds to start of the
	selected TV line after sync pulse (TTL).

AUX INTERFACE					
Connector Type: 9 Connector Pinout	Connector Type: 9 Pin Subminiature "D" Connector Pinout				
Pin #	Function	Current	"Logic" Mode	"Serial Bit" Mode	
1	Control A	_	TTL Output Hi/Lo	TTL Output Hi/Lo	
2	Control B	_	TTL Output Hi/Lo	TTL Output Hi/Lo	
3	Control C	_	TTL Output Hi/Lo	Strobe	
4	Control D	_	TTL Output Hi/Lo	Serial Data	
5	Control I	_	TTL Input Hi/Lo	TTL Input Hi/Lo	
6	Gnd	_	Gnd	Gnd	
7†	$-15~\mathrm{V_{dc}}~\pm7\%$	150 mA	_	_	
8*	+5 V _{dc} ±5%	150 mA	_	_	
9†	+ 15 V _{dc} ±5%	150 mA	_	_	

^{*} Exceeding the +5 V current limits may result in loss of factory correction constants. † Total current drawn from the +15 V_{dc} on the PROBE POWER and the AUX INTERFACE cannot exceed 150 mA. Total current drawn from the $-12.6~\mathrm{V_{dc}}$ on the PROBE POWER and the $-15~V_{\rm dc}$ on the AUX INTERFACE cannot exceed 150 mA.

WEIGHT		
Net		
HP 8595EM	16.4 kg (36 lb)	
Shipping		
HP 8595EM	19.1 kg (42 lb)	

Regulatory Information

The information on the following section applies to the HP 8595EM EMC analyzer.

Regulatory Information

DECLARATION OF CONFORMITY

according to ISO/IEC Guide 22 and EN 45014

Manufacturer's Name: Hewlett-Packard Co.

Manufacturer's Address: Santa Rosa Systems Division

1400 Fountaingrove Parkway

Santa Rosa, CA 95403

USA

declares that the product

Product Name: EMC Analyzer

Model Number: HP 8591EM, HP 8593EM, HP 8594EM,

HP 8595EM, HP 8596EM

Product Options: This declaration covers all options of the

above products.

conforms to the following Product specifications:

Safety: IEC 348:1978/HD 401 S1:1981

CAN/CSA-C22.2 No. 231 (Series M-89)

EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A

IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz

IEC 801-4:1988/EN 50082-1:1992 0.5 kV Sig. Lines, 1 kV Power Lines

Supplementary Information:

The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC.

Rohnert Park, California, USA 16 Jan. 1995

Date

Dixón Browder/Quality Manager

7-28 HP 8595EM Specifications and Characteristics

European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Department ZQ/Standards Europe, Herrenberger Strasse 130, D-71034 Böblinger, Germany (FAX +49-7031-14-3143)

Regulatory Information

Notice for Germany: Noise Declaration

 $\mathrm{LpA} < 70~\mathrm{dB}$ am Arbeitsplatz (operator position) normaler Betrieb (normal position) nach DIN 45635 T. 19 (per ISO 7779)

			l

HP 8596EM Specifications and Characteristics

This chapter contains specifications and characteristics for the HP 8596EM EMC analyzer.

The specifications and characteristics in this chapter are listed separately. The specifications are described first, then followed by the characteristics.

General General specifications and characteristics.

Frequency Frequency-related specifications and characteristics. **Amplitude** Amplitude-related specifications and characteristics.

Option Option-related specifications and characteristics.

Input, output and physical characteristics. Physical

The distinction between specifications and characteristics is described as follows.

- Specifications describe warranted performance over the temperature range 0 °C to +55 °C (unless otherwise noted). The EMC analyzer will meet its specifications under the following conditions:
 - □ The instrument is within the one year calibration cycle.
 - □ 2 hours of storage at a constant temperature within the operating temperature range.
 - □ 30 minutes after the EMC analyzer is turned on.
 - □ After the CAL FREQ, CAL AMP, and CAL YTF routines have been run.
- Characteristics provide useful, but nonwarranted information about the functions and performance of the EMC analyzer. Characteristics are specifically identified.
- Typical Performance, where listed, is not warranted, but indicates performance that most units will exhibit.
- Nominal Value indicates the expected, but not warranted, value of the parameter.

General Specifications

Temperature Range	
•	
Operating	0 °C to +55 °C
Storage	-40 °C to +75 °C
EMI Compatibility	Conducted and radiated emission is in
	compliance with CISPR Pub. 11/1990 Group 1
	Class A.
	-
Audible Noise	<37.5 dBA pressure and <5.0 Bels power
	(ISODP7779)
Power Requirements	
ON (LINE 1)	90 to 132 V rms, 47 to 440 Hz
	195 to 250 V rms, 47 to 66 Hz
	Power consumption <500 VA; <180 W
Standby (LINE 0)	Power consumption <7 W
•	
Environmental Specifications	Type tested to the environmental specifications
	of Mil-T-28800 class 5

Frequency Specifications

Frequency Range		
dc coupled		9 kHz to 12.8 GHz
ac coupled		100 kHz to 12.8 GHz
Band	LO Harmonic (N)	
0	1-	9 kHz to 2.9 GHz (dc coupled)
0	1-	100 kHz to 2.9 GHz (ac coupled)
1	1-	2.75 GHz to 6.5 GHz
2	2—	6.0 GHz to 12.8 GHz

Frequency Reference	
Aging	$\pm 2 \times 10^{-6}$ /year
Settability	$\pm 0.5 \times 10^{-6}$
Temperature Stability	$\pm 5 \times 10^{-6}$

Precision Frequency Reference (Option 004)	
Aging	$\pm 1 \times 10^{-7}$ /year
Settability	$\pm 1 \times 10^{-8}$
Temperature Stability	$\pm 1 \times 10^{-8}$

Frequency Readout Accuracy	
1 1 2	±(frequency readout × frequency reference error* + span accuracy + 1% of span + 20% of
	IF BW + $100 \text{ Hz} \times \text{N}^{\dagger})^{\ddagger}$

 $^{{}^*\} frequency\ reference\ error\ =\ (aging\ rate\ \times\ period\ of\ time\ since\ adjustment\ +\ initial\ achievable$ accuracy + temperature stability). See "Frequency Characteristics." † N = LO harmonic. See "Frequency Range."

[‡] See "Drift" under "Stability" in Frequency Characteristics.

Frequency Specifications

Marker Count Accuracy [†]	
Frequency Span ≤ 10 MHz × N [‡]	±(marker frequency × frequency reference error* + counter resolution + 100 Hz × N [‡])
Frequency Span > 10 MHz × N [‡]	\pm (marker frequency \times frequency reference error* + counter resolution + 1 kHz \times N [‡])
Counter Resolution	
Frequency Span ≤ 10 MHz x N [‡]	Selectable from 10 Hz to 100 kHz
Frequency Span > 10 MHz × N [‡]	Selectable from 100 Hz to 100 kHz

^{*} frequency reference error = (aging rate \times period of time since adjustment + initial achievable accuracy and temperature stability). See "Frequency Characteristics."

 $^{^{\}ddagger}$ N = LO harmonic. See "Frequency Range."

Frequency Span		
Range	0 Hz (zero span), (1 kHz \times N ^{\dagger}) to 12.8 GHz	
Resolution	Four digits or 20 Hz × N [†] , whichever is greater.	
Accuracy (single band spans)		
Span ≤10 MHz × N [†]	±2% of span*	
Span >10 MHz x N [†]	±3% of span	
* For spans $< 10 \text{ kHz} \times \text{N}^{\dagger}$, add an additional 10 Hz $\times \text{N}^{\dagger}$ resolution error. † N = LO harmonic. See "Frequency Range."		

Frequency Sweep Time	
Range	
	20 ms to 100 s
(Options 101 and 301)	$20 \mu s$ to $100 s$ for span = $0 Hz$
Accuracy	
20 ms to 100 s	±3%
$20~\mu s$ to $<\!20~ms$ (Options 101 and 301)	±2%
Sween Trigger	Free Run, Single, Line, Video, External

8.4 HP 8596EM Specifications and Characteristics

[†] Marker level to displayed noise level > 25 dB, IF BW/Span $\geq 0.01.$ Span ≤ 300 MHz. Reduce SPAN annotation is displayed when IF BW/Span < 0.01.

Frequency Specifications

IF Bandwidths	
Measurement	200 Hz, 9 kHz, and 120 kHz (6 dB EMC bandwidths)
	1 MHz (6 dB bandwidth $\pm 10\%$)
Diagnostic	30 Hz to 300 kHz, 3 dB bandwidths in 1,3,10 steps ($\pm 20\%$
	characteristic),
	also 3 MHz and 5 MHz.

Stability	
Noise Sidebands	(1 kHz IF BW, 30 Hz Avg BW and sample detector)
>10 kHz offset from CW signal	≤-90 dBc/Hz + 20 Log N*
>20 kHz offset from CW signal	≤-100 dBc/Hz + 20 Log N*
>30 kHz offset from CW signal	$\leq -105 \text{ dBc/Hz} + 20 \text{ Log N}^*$
Residual FM	
1 kHz IF BW, 1 kHz Avg BW	\leq (250 × N*) Hz pk-pk in 100 ms
30 Hz IF BW, 30 Hz Avg BW	\leq (30 × N*) Hz pk-pk in 300 ms
System-Related Sidebands	
>30 kHz offset from CW signal	\leq -65 dBc + 20 Log N*
* N = LO harmonic. See "Frequency Range."	"

Calibrator Output Frequency	300 MHz ±(freq. ref. error* × 300 MHz)	
* frequency reference error = (aging rate x period of time since adjustment + initial achievable		
accuracy + temperature stability). See "Frequency Characteristics."		

Comb Generator Frequency	100 MHz fundamental frequency
Accuracy	±0.007% of comb tooth frequency

Amplitude specifications do not apply for Analog+ mode and negative peak detector mode except as noted in "Amplitude Characteristics."

Amplitude Range	$-20 \text{ dB}\mu\text{V to } + 137 \text{ dB}\mu\text{V}$
-----------------	---

Maximum Safe Input Level

Average Continuous Power

Peak Pulse Power

dc

 $+137~\mathrm{dB}\mu\mathrm{V}$ (1 W, 7.1 V rms), input attenuation \geq 10 dB above 2.75 GHz.

 $+157~dB\mu V$ (100 W) for <10 μs pulse width and <1% duty cycle, input attenuation ${>}30~dB.$

0 V (dc coupled)

50 V (ac coupled)

Quasi-Peak Detector Specifications (All except Option 703)

The specifications for Quasi-Peak Detector have been based on the following:

- The EMC analyzer displays the quasi-peak amplitude of pulsed radio frequency (RF) or continuous wave (CW) signals.
- Amplitude response conforms with Publication 16 of Comité International Spécial des Perturbations Radioélectriques (CISPR) Section 1, Clause 2.

Absolute amplitude accuracy is the sum of the pulse amplitude response relative to the reference, plus the reference pulse amplitude accuracy, plus the EMC analyzer amplitude accuracy (calibrator output, reference level, frequency response, input attenuator, IF bandwidth switching, linear display scale fidelity, and gain compression).

Relative Quasi-	Relative Quasi-Peak Response to a CISPR Pulse (dB) (All except Option 703)		
	Frequency Band		
Pulse Repetition	120 kHz EMI BW	9 kHz EMI BW	200 Hz EMI BW
Frequency (Hz)	0.03 to 1 GHz	0.15 to 30 MHz	10 to 150 kHz
1000	+8.0 ± 1.0	$+\ 4.5\ \pm\ 1.0$	_
100	0 dB (reference)*	0 dB (reference)*	$+4.0 \pm 1.0$
60	_	_	$+3.0 \pm 1.0$
25	-	=	0 dB (reference)*
20	-9.0 ± 1.0	-6.5 ± 1.0	_
10	-14.0 ± 1.5	-10.0 ± 1.5	-4.0 ± 1.0
5	_	_	-7.5 ± 1.5
2	-26.0 ± 2.0	-20.5 ± 2.0	-13.0 ± 2.0
1	-28.5 ± 2.0	-22.5 ± 2.0	-17.0 ± 2.0
Isolated Pulse	-31.5 ± 2.0	-23.5 ± 2.0	-19.0 ± 2.0

 $^{^{*}}$ Reference pulse amplitude accuracy relative to the CW signal is < 1.5 dB as specified in CISPR

CISPR reference pulse: 0.044 $\mu\rm \, Vs$ for 30 MHz to 1 GHz, 0.316 $\mu\rm \, Vs$ for 15 kHz to 30 MHz, and $13.5~\mu\mathrm{Vs}~\pm1.5~\mu\mathrm{Vs}$ for 9 kHz to 150 kHz.

Gain Compression [†]	
>10 MHz	\leq 0.5 dB (total power at input mixer* = 97 dB μ V)

^{*} Mixer Power Level (dB μ V) = Input Power (dB μ V) - Input Attenuation (dB).

[†] If IF BW \leq 300 Hz, this applies only if signal separation \geq 4 kHz and signal amplitudes \leq Reference Level + 10 dB.

Displayed Average Noise Level	(Input terminated, 0 dB attenuation, 30 Hz AVG BW, sample detector)	
	1 kHz IF BW	30 Hz IF BW
400 kHz to 2.9 GHz	$\leq -3 dB\mu V$	\leq - 18 dB μ V
2.75 GHz to 6.5 GHz	≤-5 dBμV	\leq -20 dB μ V
6.0 GHz to 12.8 GHz	\leq +7 dB μ V	\leq -8 dB μ V

Spurious Responses	
Second Harmonic Distortion	
> 10 MHz	<-70 dBc for $+67$ dB μ V tone at input mixer.*
> 2.75 GHz	<-100 dBc for $+97$ dB μ V tone at input mixer* (or below displayed average noise level).
Third Order Intermodulation Distortion	
>10 MHz	<-70 dBc for two +77 dB μ V tones at input mixer* and >50 kHz separation.
Other Input Related Spurious	< –65 dBc at $\geq \! 30$ kHz offset, for $+87$ dB $\!\mu$ V tone at input mixer $\leq \! 12.8$ GHz.
* Mixer Power Level (dBµV) = Input	Power $(dB\mu V)$ – Input Attenuation (dB).

Residual Responses	(Input terminated and 0 dB attenuation)
150 kHz to 2.9 GHz (Band 0)	$<+17~\mathrm{dB}\mu\mathrm{V}$
2.75 GHz to 6.5 GHz (Band 1)	$< + 17 \text{ dB}\mu\text{V}$

Display Range	
Log Scale	0 to -70 dB from reference level is calibrated; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps; eight divisions displayed.
Linear Scale	eight divisions
Scale Units	dBm, dBmV, dB μ V, mV, mW, nV, nW, pW, μ V, μ W, V, and W

Marker Readout Resolution	0.05 dB for log scale	
	0.05% of reference level for linear scale	
Fast Sweep Times for Zero Span		
20 μs to 20 ms (Option 101 or 301)		
Frequency $\leq 1 \text{ GHz}$	0.7% of reference level for linear scale	
Frequency > 1 GHz	1.0% of reference level for linear scale	

Reference Level	
Range	
Log Scale	Minimum amplitude to maximum amplitude*
Linear Scale	$+8~\mathrm{dB}\mu\mathrm{V}$ to maximum amplitude*
Resolution	
Log Scale	$\pm 0.01 \text{ dB}$
Linear Scale	$\pm 0.12\%$ of reference level
Accuracy	(referenced to $+87~\mathrm{dB}\mu\mathrm{V}$ reference level, 10 dB input attenuation, at a single frequency, in a fixed IF BW)
$107~\mathrm{dB}\mu\mathrm{V}$ to $+47.1~\mathrm{dB}\mu\mathrm{V}$	$\pm (0.3 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
$+47~\mathrm{dB}\mu\mathrm{V}$ and below	
1 kHz to 3 MHz IF BW	$\pm (0.6 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
30 Hz to 300 Hz IF BW	$\pm (0.7 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$

Frequency Response (dc coupled)	(10 dB input attenuation)	
	$\mathbf{Absolute}^*$	Relative Flatness [†]
9 kHz to 2.9 GHz	$\pm 1.5~\mathrm{dB}$	$\pm 1.0~\mathrm{dB}$
2.75 GHz to 6.5 GHz (preselector peaked)	$\pm 2.0~\mathrm{dB}$	$\pm 1.5~\mathrm{dB}$
6.0 GHz to 12.8 GHz (preselector peaked)	$\pm 2.5~\mathrm{dB}$	$\pm 2.0~\mathrm{dB}$
* Referenced to 300 MHz CAL OUT. † Referenced to midpoint between highest and lowest frequency response deviations.		

Calibrator Output	
Amplitude	$+87~\mathrm{dB}\mu\mathrm{V}~\pm0.4~\mathrm{dB}$

Absolute Amplitude Calibration Repeatability*	±0.15 dB
Repeated Inty	

* Repeatability in the measured absolute amplitude of the CAL OUT signal at the reference settings after CAL FREQ and CAL AMPTD self-calibration. Absolute amplitude reference settings are: Reference Level +87 dB μ V; Input Attenuation 10 dB; Center Frequency 300 MHz; IF BW 3 kHz; Averaging BW 300 Hz; Scale Linear; Span 50 kHz; Sweep Time Coupled, Top Graticule (reference level), Corrections ON, dc coupled.

Input Attenuator	
Range	0 to 70 dB, in 10 dB steps

IF Bandwidth Switching Uncertainty	(At reference level, referenced to 3 kHz IF BW)
3 kHz to 3 MHz IF BW	$\pm 0.4~\mathrm{dB}$
1 kHz IF BW	$\pm 0.5~\mathrm{dB}$
30 Hz to 300 Hz IF BW	±0.6 dB

|--|

Display Scale Fidelity	
Log Maximum Cumulative	
0 to -70 dB from Reference Level	
3 kHz to 3 MHz IF BW	\pm (0.3 dB + 0.01 \times dB from reference level)
IF BW $\leq 1 \text{ kHz}$	\pm (0.4 dB + 0.01 $ imes$ dB from reference level)
Log Incremental Accuracy	
0 to -60 dB from Reference Level	±0.4 dB/4 dB
Linear Accuracy	$\pm 3\%$ of reference level

Option Specifications

Tracking Generator Specifications (Option 010)

All specifications apply over 0 °C to +55 °C. The EMC-analyzer/trackinggenerator combination will meet its specifications after 2 hours of storage at a constant temperature within the operating temperature range, 30 minutes after the EMC-analyzer/tracking-generator is turned on and after CAL FREQ, CAL AMPTD, CAL TRK GEN, and TRACKING PEAK have been run.

	_
Warm-Up	30 minutes
Output Frequency	
Range	9 kHz to 2.9 GHz
Output Power Level	
Range	$+106~\mathrm{dB}\mu\mathrm{V}$ to $+41~\mathrm{dB}\mu\mathrm{V}$

0.1 dB Resolution Absolute Accuracy (at 25 °C ±10 °C) $(+87 \text{ dB}\mu\text{V at } 300 \text{ MHz})$ $\pm 0.75~\mathrm{dB}$ Vernier* Range 9 dB Accuracy (at 25 °C ±10 °C) $(+87 \text{ dB}\mu\text{V at } 300 \text{ MHz}, 16 \text{ dB attenuation})$ $\pm 0.20~\mathrm{dB/dB}$ Incremental ±0.50 dB total Cumulative Output Attenuator 0 to 56 dB in 8 dB steps Range

Option Specifications

Output Power Sweep	
Range	$(+97~\mathrm{dB}\mu\mathrm{V}~\mathrm{to}~+106~\mathrm{dB}\mu\mathrm{V})$ – (Source Attenuator Setting)
Resolution	0.1 dB

Output Flatness	
(referenced to 300 MHz, +87 dBµV)	
Frequency > 10 MHz	±2.0 dB
Frequency ≤ 10 MHz	±3.0 dB

4. 15. ID
≤-15 dBc
≤-25 dBc
$\leq -27 \text{ dBc}$
≤-23 dBc
\leq + 91 dB μ V

Tracking Generator Feedthrough	
400 kHz to 2.9 MHz	$<-3 \text{ dB}\mu\text{V}$

Frequency Characteristics

These are not specifications. Characteristics provide useful but nonwarranted information about instrument performance.

Frequency Reference	
Initial Achievable Accuracy	$\pm 0.5 \times 10^{-6}$
Aging	$\pm 1.0 \times 10^{-7} / \text{day}$

Precision Frequency Reference (Option 004)	
Aging	5 x 10 ⁻¹⁰ /day, 7-day average after being
	5×10^{-10} /day, 7-day average after being powered on for 7 days.
Warm-Up	1×10^{-8} after 30 minutes on.
Initial Achievable Accuracy	$\pm 2.2 \times 10^{-8}$ after being powered on for 24
	hours.

Stability	
Drift* (after warmup at stabilized temperature) Frequency Span \leq (10 \times N [†]) MHz	\leq (2 × N [†]) kHz/minute of sweep time*

^{*} Because the analyzer is locked at the center frequency before each sweep, drift occurs only during the time of one sweep. For Line, Video, or External trigger, additional drift occurs while waiting for the appropriate trigger signal.

 $^{^{\}dagger}$ N = LO harmonic. See "Frequency Range."

Diagnostic IF Bandwidths	
Shape	Synchronously tuned four poles. Approximately Gaussian shape.
60 dB/3 dB Bandwidth Ratio IF Bandwidth	
100 kHz to 3 MHz	15:1
30 kHz	16:1
3 kHz to 10 kHz	15:1
1 kHz	16:1
40 dB/3 dB Bandwidth Ratio IF Bandwidth	
30 Hz to 300 Hz	10:1

Frequency Characteristics

Averaging	Bandwidth	(-3	dB)
-----------	-----------	-----	-----

Range

 $1~\rm{Hz}$ to $1~\rm{MHz},$ selectable in 1, 3, $10~\rm{increments},$ accuracy $\pm30\%$ and $3~\rm{MHz}.$ Averaging bandwidths may be selected manually, or coupled to IF bandwidth and frequency span.

Shape

Post detection, single pole low-pass filter used to average displayed noise. Bandwidths below 30 Hz are digital bandwidths with anti-aliasing filtering.

FFT Bandwidth Factors			
	FLATTOP	HANNING	UNIFORM
Noise Equivalent Bandwidth*	3.63×	1.5×	1×
3 dB Bandwidth*	$3.60\times$	1.48×	1×
Sidelobe Height	<-90 dB	−32 dB	-13 dB
Amplitude Uncertainty	0.10 dB	1.42 dB	$3.92~\mathrm{dB}$
Shape Factor (60 dB BW/3 dB BW)	2.6	9.1	>300
* Multiply entry by one-divided-by-sweep time.			

These are not specifications. Characteristics provide useful but nonwarranted information about instrument performance.

Log Scale Switching Uncertainty	Negligible error
	•

Demod Tune Listen (All except Option 703)	Internal speaker, rear panel earphone jack and front-panel volume control. Adjustable squelch control mutes the audio signal to the speaker/earphone
	jack based on the level of the demodulated signal above 22 kHz. An
	uncalibrated demodulated signal is available on the AUX VIDEO OUT
	connector at the rear panel.

Quasi-Peak Detector (All except Option 703)	
Measurement Range	
Displayed	70 dB
Total	115 dB

FM Demodulation (All except Option 703)	
Input Level	$>$ (+47 dB μ V + attenuator setting)
Signal Level	0 to -30 dB below reference level
FM Offset	
Resolution	400 Hz nominal
FM Deviation (FM GAIN)	
Resolution	1 kHz/volt nominal
Range	10 kHz/volt to 1 MHz/volt
Bandwidth (6 dB)	FM deviation/2
FM Linearity (for modulating frequency < bandwidth/100)	≤ 1% of FM deviation + 290 Hz

Measurement Detector Types	Positive Peak, Quasi-Peak, and Average
	Quasi-Peak and Average time constants conform with CISPR Pub. 16.
(Option 101 and Option 301)	Negative Peak
(Option 703)	Delete Quasi-Peak and Average

IF Overload Detector	Available in EMC analyzer mode only.
	Detects overload of the analyzer video circuitry.

Input Attenuation Uncertainty*	
Attenuator Setting	
0 dB	$\pm 0.2~\mathrm{dB}$
10 dB	Reference
20 dB	$\pm 0.4~\mathrm{dB}$
30 dB	$\pm 0.5~\mathrm{dB}$
40 dB	$\pm 0.7~\mathrm{dB}$
50 dB	$\pm 0.8~\mathrm{dB}$
60 dB	$\pm 1.0~\mathrm{dB}$
70 dB	$\pm 1.0~\mathrm{dB}$

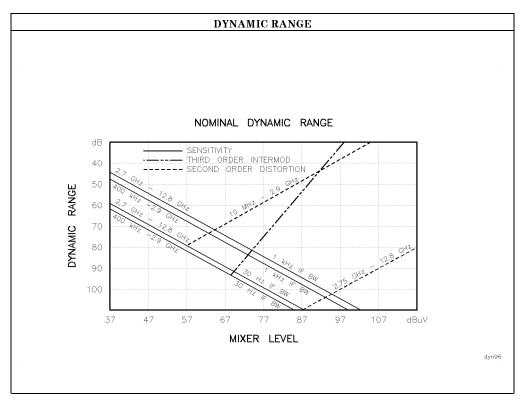
 $^{^{\}ast}$ Referenced to 10 dB input attenuator setting. See the "Frequency Response" table under "Specifications".

ac Coupled Insertion Loss*	
100 kHz to 300 kHz	0.7 dB
300 kHz to 1 MHz	0.2 dB
1 MHz to 100 MHz	0.07 dB
100 MHz to 2.9 GHz	$0.05 \text{ dB} + (0.06 \times \text{F}^{\dagger}) \text{ dB}$
2.9 GHz to 6.5 GHz	$0.05 \text{ dB} + (0.13 \times \text{F}^{\dagger}) \text{ dB}$
6.5 GHz to 12.8 GHz	$0.65 \text{ dB} + (0.04 \times \text{F}^{\dagger}) \text{ dB}$

^{*} Referenced to dc coupled mode.

 $[\]dagger$ F = frequency in GHz.

Input Attenuator 10 dB Step Uncertainty	(Attenuator setting 10 to 70 dB)
	±0.8 dB/10 dB


Input Attenuator Repeatability	±0.05 dB

RF Input SWR		_
10 dB attenuation	dc Coupled	ac Coupled
Frequency		
300 MHz	1.15:1	1.4:1
10 dB to 70 dB attenuation		
Band		
100 kHz to 300 kHz	1.3:1	2.3:1
300 kHz to 1 MHz	1.3:1	1.4:1
1 MHz to 2.9 GHz	1.3:1	1.3:1
2.9 GHz to 6.5 GHz	1.5:1	1.6:1
6.5 GHz to 12.8 GHz	1.6:1	1.9:1

Unpeaked Frequency Response (dc coupled)	(10 dB inp	ut attenuation)
Without Preselector Peaking, Span ≤ 50 MHz	Absolute*	Relative Flatness [†]
2.75 GHz to 6.5 GHz	±4.0 dB	$\pm 3.5~\mathrm{dB}$
6.0 GHz to 12.8 GHz	±4.5 dB	$\pm 4.0~\mathrm{dB}$

Referenced to 300 MHz CAL OUT.

[†] Referenced to midpoint between highest and lowest frequency response deviations.

Immunity Testing	
Radiated Immunity	When tested at 3 V/m according to IEC 801-3/1984 the displayed average noise level will be within specifications over the full immunity test frequency range of 27 to 500 MHz except that at immunity test frequencies of 278.6 MHz \pm selected IF bandwidth and 321.4 MHz \pm selected IF bandwidth the displayed average noise level may be up to $+62~\mathrm{dB}\mu\mathrm{V}$. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to $+37~\mathrm{dB}\mu\mathrm{V}$ displayed on the screen.
Electrostatic Discharge	When an air discharge of up to 8 kV according to IEC 801-2/1991 occurs to the shells of the BNC connectors on the rear panel of the instrument spikes may be seen on the CRT display. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.
Electrical Fast Transient	When subjected to Electrical Fast Transient testing per EN 50082-1/EIC 801-4 noise may appear on the display of the analyzer during the application of the test voltage.

Analog + Mode and Negative Peak Detector Mode (Options 101 and 301)

These modes do not utilize the full set of internal amplitude corrections. Therefore, in these modes, some analyzer amplitude specifications are reduced to characteristics. Characteristics provide useful but nonwarranted information about instrument performance.

In these modes, the following analyzer specifications remain as specifications:

Amplitude Range

Calibrator Output

Maximum Safe Input Level

In these modes, the following analyzer specifications are reduced to characteristics:

Reference Level Gain Compression

Displayed Average Noise Level IF Bandwidth Switching Spurious Responses Linear to Log Switching Residual Responses Display Scale Fidelity

Display Scale Fidelity for Narrow Bandwidths Display Range

Finally, the following analyzer specifications are replaced by the characteristics which follow in this subsection:

Marker Readout Resolution Frequency Response

Marker Readout Resolution	
(digitizing resolution)	
Log Scale	±0.31 dB
Linear Scale	
frequency ≤ 1 GHz	$\pm 0.59\%$ of reference level
frequency > 1 GHz	$\pm 1.03\%$ of reference level

Frequency Response in Analog + Mode (dc coupled)	(10 dB input attenuat	ion, for spans ≤ 20 MHz)
	Absolute*	Relative Flatness [†]
9 kHz to 2.9 GHz	±2.0 dB	$\pm 1.5~\mathrm{dB}$
2.75 GHz to 6.4 GHz (preselector peaked)	±2.5 dB	$\pm 2.0~\mathrm{dB}$
6.0 GHz to 12.8 GHz (preselector peaked)	±3.0 dB	$\pm 2.5~\mathrm{dB}$
* Referenced to 300 MHz CAL OUT.	_	

The Referenced to midpoint between highest and lowest frequency response deviations.

Option Characteristics

TV Trigger Characteristics (Options 101, 102, and 301)

TV Trigger	Triggers sweep of the analyzer after the sync pulse of a selected line of a TV video field.
Carrier Level for Trigger Compatible Formats	Top 60% of linear display NTSC, PAL, SECAM
Field Selection	Even, odd, non-interlaced
Trigger Polarity	Positive, negative
Line Selection	10 to 1021

Tracking Generator Characteristics (Option 010)

Tracking Drift	
(Usable in a 1 kHz IF BW after 5-minute warmup)	1.5 kHz/5 minute

RF Power Off Residuals	
9 kHz to 2.9 GHz	<-13 dBμV

Dynamic Range (difference between maximum power out and tracking generator feedthrough)

Output Attenuator Repeatability	
9 kHz to 300 MHz	±0.1 dB
300 MHz to 2.0 GHz	±0.2 dB
2.0 GHz to 2.9 GHz	±0.3 dB

Output VSWR	
0 dB Attenuator	<3.0:1
8 dB Attenuator	<1.5:1

8-20 HP 8596EM Specifications and Characteristics

Option Characteristics

TRACKING GENERATOR OUTPUT ACCURACY, Option 010 (after CAL TRK GEN in auto-coupled mode, Frequency > 10 MHz, 25°C ± 10°C)					
TG Output Power Level	Attenuator Setting	Relative Accuracy (at 300 MHz referred to +87 dB\(\mu V \)	Absolute Accuracy (at 300 MHz)	Relative Accuracy (referred to +87 dBµV)	Absolute Accuracy
+ 106 to +97 dBμV	0 d B	1.0 dB	1.75 dB	3.0 dB	3.75 dB
+97 to +89 dBμV	8 dB	1.5 dB	2.25 dB	3.5 dB	4.25 dB
$+87~\mathrm{dB}\mu\mathrm{V}$	16 dB	Reference	0.75 dB	2.0 dB	2.75 dB
$+89 \text{ to } +81 \text{ dB}\mu\text{V}$	16 dB	1.0 dB	1.75 dB	3.0 dB	3.75 dB
$+81 \text{ to } +73 \text{ dB}\mu\text{V}$	24 dB	1.5 dB	2.25 dB	3.5 dB	4.25 dB
$+73$ to $+65$ dB μ V	32 dB	1.6 dB	2.35 dB	3.6 dB	4.35 dB
$+65 \text{ to } +57 \text{ dB}\mu\text{V}$	40 dB	1.8 dB	2.55 dB	3.8 dB	4.55 dB
$+57$ to $+49$ dB μ V	48 dB	2.0 dB	2.75 dB	4.0 dB	4.75 dB
$+49$ to $+41$ dB μ V	56 dB	2.1 dB	2.85 dB	4.1 dB	4.85 dB

Front-Panel Inputs and Outputs

INPUT 50Ω	
Connector	Type N female
Impedance	50 Ω nominal

100 MHz COMB OUT	
Connector	SMA female
Output Level	$+ 134 \text{ dB}\mu\text{V}$
Frequency	100 MHz fundamental

RF OUT (Option 010)	
Connector	Type N female
Impedance	50 Ω nominal

PROBE POWER*	
Voltage/Current	+ 15 Vdc, ±7% at 150 mA max.
	$-12.6~{ m Vdc} \pm 10\%$ at 150 mA max.

 $^{^{\}ast}$ Total current drawn from the +15 Vdc on the PROBE POWER and the AUX INTERFACE cannot exceed 150 mA. Total current drawn from the -12.5 Vdc on the PROBE POWER and the -15 Vdc on the AUX INTERFACE cannot exceed 150 mA.

CAL OUT	
Connector	BNC female
Impedance	50 Ω nominal

Rear-Panel Inputs and Outputs

10 MII. DEE OUTDUT		
10 MHz REF OUTPUT	DNG 6 1	
Connector	BNC female	
Impedance	50 Ω nominal	
Output Amplitude	$>$ 107 dB μ V	
EXT REF IN		
Connector	BNC female	
	Note: Analyzer noise sideband and spurious	
	response performance may be affected by the	
	quality of the external reference used.	
Input Amplitude Range	$+105$ to $+117$ dB μ V	
Frequency	10 MHz	
Troquency	10 3311	
AVV VI OVERDIVE		
AUX IF OUTPUT	01.4 MH	
Frequency	21.4 MHz	
Amplitude Range	$+97$ to $+47$ dB μ V	
Impedance	50 Ω nominal	
AUX VIDEO OUTPUT		
Connector	BNC female	
Amplitude Range	0 to 1 V (uncorrected)	
EARPHONE (All except Option 703)		
Connector	1/8 inch monaural jack	
EXT ALC INPUT (Option 010)		
Input Impedance	>10 kΩ	
Polarity	Use with negative detector	
EXT KEYBOARD	Interface compatible with HP part number	
	C1405 Option ABA and most IBM/AT non-auto	
	switching keyboards.	

EXT TRIG INPUT	
Connector	BNC female
Trigger Level	Positive edge initiates sweep in EXT TRIG mode (TTL).

LO OUTPUT (Option 009 or 010)	Note: LO output must be terminated in 50 Ω .
Connector	SMA female
Impedance	50 Ω nominal
Frequency Range	3.0 to 6.8214 GHz
Output Level	$+118$ to $+125$ dB μ V

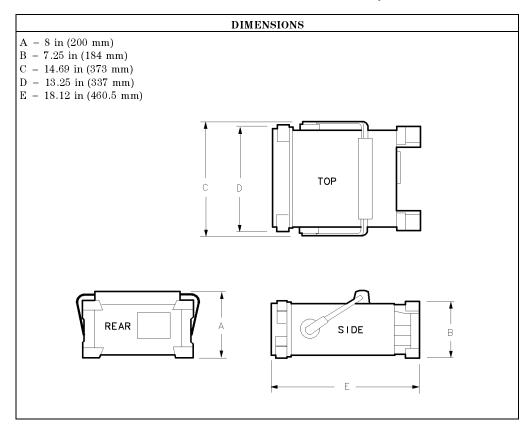
SWEEP + TUNE OUTPUT (Option 009)	
Connector	BNC female
Impedance (dc coupled)	2 kΩ
Range	0 to +10 V
Sweep + Tune Output	0.36 V/GHz of center frequency

HI-SWEEP IN/OUT	
Connector	BNC female
Output	High = sweep, Low = retrace (TTL)
Input	Open collector, low stops sweep.

MONITOR OUTPUT (EMC Analyzer Display)	
Connector	BNC female
Format	
SYNC NRM	Internal Monitor
SYNC NTSC	NTSC Compatible
	15.75 kHz horizontal rate
	60 Hz vertical rate
SYNC PAL	PAL Compatible
	15.625 kHz horizontal rate
	50 Hz vertical rate

REMOTE INTERFACE	
HP-IB	
HP-IB Codes	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28
RS-232 (Option 023)	25 pin subminiature D-shell, female
Parallel (Option 024)	25 pin subminiature D-shell, female

SWEEP OUTPUT	
Connector	BNC female
Amplitude	0 to + 10 V ramp


TV TRIG OUT (Options 101, 102, and 301)	
Connector	BNC female
Amplitude	Negative edge corresponds to start of the selected TV line after sync pulse (TTL).

	AUX INTERFACE			
Connector Type: 9 Pin Subminiature "D" Connector Pinout				
Pin #	Function	Current	"Logic" Mode	"Serial Bit" Mode
1	Control A		TTL Output Hi/Lo	TTL Output Hi/Lo
2	Control B	-	TTL Output Hi/Lo	TTL Output Hi/Lo
3	Control C	_	TTL Output Hi/Lo	Strobe
4	Control D	_	TTL Output Hi/Lo	Serial Data
5	Control I	_	TTL Input Hi/Lo	TTL Input Hi/Lo
6	Gnd	_	Gnd	Gnd
7 [†]	$-15~V_{dc}~\pm7\%$	150 mA	_	_
8*	$+5~V_{dc}~\pm5\%$	150 mA	_	_
9†	+ 15 V _{dc} ±5%	150 mA	_	_

 $^{^{*}}$ Exceeding the +5 V current limits may result in loss of factory correction constants.

 $^{^\}dagger$ Total current drawn from the $+15~V_{\rm dc}$ on the PROBE POWER and the AUX INTERFACE cannot exceed 150 mA. Total current drawn from the $-12.6~V_{\rm dc}$ on the PROBE POWER and the $-15~V_{\rm dc}$ on the AUX INTERFACE cannot exceed 150 mA.

WEIGHT		
Net		
HP 8596EM	16.4 kg (36 lb)	
Shipping		
HP 8596EM	19.1 kg (42 lb)	

Regulatory Information

The information on the following section applies to the HP 8596EM EMC analyzer.

DECLARATION OF CONFORMITY

according to ISO/IEC Guide 22 and EN 45014

Manufacturer's Name: Hewlett-Packard Co.

Manufacturer's Address: Santa Rosa Systems Division

1400 Fountaingrove Parkway

Santa Rosa, CA 95403

USA

declares that the product

Product Name: EMC Analyzer

Model Number: HP 8591EM, HP 8593EM, HP 8594EM,

HP 8595EM, HP 8596EM

Product Options: This declaration covers all options of the

above products.

conforms to the following Product specifications:

Safety: IEC 348:1978/HD 401 S1:1981

CAN/CSA-C22.2 No. 231 (Series M-89)

EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A

IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz

IEC 801-4:1988/EN 50082-1:1992 0.5 kV Sig. Lines, 1 kV Power Lines

Supplementary Information:

The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC.

Rohnert Park, California, USA

16 Jan. 1995

Date

Dixon Browder/Quality Manager

HP 8596EM Specifications and Characteristics

8.2

European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Department ZQ/Standards Europe, Herrenberger Strasse 130, D-71034 Böblinger, Germany (FAX +49-7031-14-3143)

Regulatory Information

Notice for Germany: Noise Declaration

LpA < 70 dBam Arbeitsplatz (operator position) normaler Betrieb (normal position) nach DIN 45635 T. 19 (per ISO 7779)

Characteristics for the EMC Analyzer with the RF Filter Section

This chapter contains characteristics for the HP 8590 EM-Series EMC Analyzer with the HP 85420E Option 1EM RF filter section.

General General characteristics.

Frequency Frequency-related characteristics. **Amplitude** Amplitude-related characteristics.

Physical Input, output and physical characteristics.

- Optimal performance is achieved under the following conditions:
 - □ The instrument is within the one year calibration cycle.
 - □ 2 hours of storage at a constant temperature within the operating temperature range.
 - □ 30 minutes after the EMC analyzer with the RF filter section is turned on.
 - □ After the CAL FREQ and CAL AMP (or the CAL ALL) routines have been
 - □ After the CAL YTF routine has been run on the HP 8595EM or the HP 8596EM.
- Characteristics provide useful, but nonwarranted information about the functions and performance of the EMC analyzer.
- Typical Performance, where listed, is not warranted, but indicates performance that most units will exhibit.
- Nominal Value indicates the expected, but not warranted, value of the parameter.

General Characteristics

Temperature Range	
Operating	0 °C to +55 °C
Storage	-40 °C to +75 °C

EMI Compatibility	Conducted and radiated emission is in
	compliance with CISPR Pub. 11/1990 Group 1
	Class A.

Audible Noise	<37.5 dBA pressure and <5.5 Bels power
	(ISODP7779)

Power Requirements		
ON (LINE 1)		90 to 132 V rms, 47 to 440 Hz
		195 to 250 V rms, 47 to 66 Hz
	EMC Analyzer	Power consumption <500 VA; <180 W
	RF Filter Section	Power consumption <115 VA; <85 W
Standby (LINE 0)	EMC Analyzer	Power consumption <7 W

Environmental Characteristics	Type tested to the environmental specifications of
	Mil-T-28800 class 5

These are not specifications. Characteristics provide useful but nonwarranted information about instrument performance.

Frequency Range	9	
Input 1		9 kHz to 50 MHz
Input 2	HP 8591EM	20 MHz to 1.8 GHz
	HP 8594EM, HP 8595EM, HP 8596EM	20 MHz to 2.9 GHz
Bypass	HP 8591EM	9 kHz to 1.8 GHz
	HP 8594EM	9 kHz to 2.9 GHz
	HP 8595EM	9 kHz to 6.5 GHz
	HP 8596EM	9 kHz to 12.8 GHz

Single Band Range*	
Band 0	9 kHz to 2.9 GHz [†]
Band 1	$2.75~\mathrm{GHz}\mathrm{to}~6.5~\mathrm{GHz}^\dagger$
Band 2	6.0 GHz to $12.8~\mathrm{GHz}^\dagger$
* Bypass only. † Refer to "Frequency Range" in this section for the maximum frequency range of the EMC analyzer.	

Frequency Reference	
Aging	$\pm 1.0 \times 10^{-7}$ /day
	$\pm 2 \times 10^{-6}$ /year
Settability	$\pm 0.5 \times 10^{-6}$
Temperature Stability	$\pm 5 \times 10^{-6}$
Initial Achievable Accuracy	$\pm 0.5 \times 10^{-6}$

Precision Frequency Reference (Option 004)	
Aging	5 x 10 ⁻¹⁰ /day, 7-day average after being powered on for 7 days.
	$\pm 1 \times 10^{-7}/\text{year}$
Settability	$\pm 1 \times 10^{-8}$
Temperature Stability	$\pm 1 \times 10^{-8}$
Warm-Up	1×10^{-8} after 30 minutes on.
Initial Achievable Accuracy	$\pm 2.2 \times 10^{-8}$ after being powered on for 24 hours.

Frequency Readout Accuracy (Start, Stop, Center, Marker)	±(frequency readout × frequency reference error* + span accuracy + 1% of span + 20% of IF BW + 200 Hz) [†]
* frequency reference error = (aging rate x period of time since adjustment + initial achievable accuracy + temperature stability). † See "Drift".	

Marker Count Accuracy	
Frequency Span	
\leq 10 MHz × N [‡]	±(marker frequency × frequency reference error* + counter resolution + 200 Hz)
$>10 \text{ MHz} \times \text{N}^{\ddagger}$	±(marker frequency × frequency reference error* + counter resolution + 2 kHz)
Counter Resolution	
Frequency Span	
\leq 10 MHz \times N ^{\ddagger}	Selectable from 10 Hz to 100 kHz
$> 10 \text{ MHz} \times \text{N}^{\ddagger}$	Selectable from 100 Hz to 100 kHz

^{*} frequency reference error = (aging rate \times period of time since adjustment + initial achievable accuracy and temperature stability).

9.4 Characteristics for the EMC Analyzer with the RF Filter Section

[†] Marker level to displayed noise level > 25 dB, IF BW/Span $\geq 0.01.$ Span ≤ 300 MHz. Reduce SPAN annotation is displayed when IF BW/Span < 0.01.

 $[\]ddagger$ N=1 (except for the HP 8596EM from 6.0 GHz to 12.8 GHz, where N=2)

Frequency Span	
Range	0 Hz (zero span), (1 kHz \times N#) to maximum frequency range limit of the EMC analyzer $\!\!\!\!\!\!^{\dagger}$
Resolution	Four digits or (20 Hz \times N#), whichever is greater.
Accuracy*	
Span ≤10 MHz × N#	$\pm 2\%$ of span [‡]
Span > 10 MHz × N#	±3% of span

 $^{^{\}ast}$ Sweeptime > 75 ms and single-band spans.

[#] $N\!=\!1$ (except for the HP 8596EM from 6.0 GHz to 12.8 GHz, where $N\!=\!2)$

Frequency Sweep Time	
Range	
	20 ms to 100 s
(Option 101 and 301)	$20 \mu s$ to $100 s$ for span = $0 Hz$
Sweep Trigger	Free Run, Single, Line, Video, External

IF Bandwidths	
Measurement	200 Hz, 9 kHz, and 120 kHz (6 dB EMC bandwidths)
	1 MHz (6 dB bandwidth ±10%)
Diagnostic	30 Hz to 300 kHz, 3 dB bandwidths in 1,3,10 steps (±20% characteristic), also 3 MHz and 5 MHz. Four-pole synchronously-tuned, approximately Gaussian shape.

[†] Refer to the "Frequency Range" table in this section for the maximum frequency range of the EMC analyzer.

 $[\]mbox{\sc t}$ For spans < 10 kHz, add an additional 10 Hz resolution error.

(1 kHz IF BW, 30 Hz Avg BW and sample detector)
\leq -90 dBc/Hz + 20 Log N*
≤-100 dBc/Hz + 20 Log N*
\leq -105 dBc/Hz + 20 Log N*
\leq (250 Hz pk-pk \times N*) in 100 ms
\leq (30 Hz pk-pk \times N*) in 300 ms
≤-65 dBc + 20 Log N*

Calibrator Output Frequency	300 MHz ±(frequency reference error* x 300 MHz)
* frequency reference error = (aging rate x period of time since adjustment + initial achievable	

^{*} frequency reference error = (aging rate x period of time since adjustment + initial achievable accuracy + temperature stability).

Input Filter Bandwidths	Frequency Range	Filter Type
	9 kHz to 74 kHz	fixed
	74 kHz to 198 kHz	fixed
	198 kHz to 525 kHz	fixed
	525 kHz to 1025 kHz	fixed
	1 MHz to 2 MHz	fixed
	2 MHz to 6 MHz	tunable (20%, 3 dB)
	6 MHz to 17 MHz	tunable (10%, 3 dB)
	17 MHz to 29 MHz	tunable (7%, 3 dB)
	29 MHz to 52 MHz	tunable (8%, 3 dB)
	52 MHz to 98 MHz	tunable (6%, 3 dB)
	98 MHz to 152 MHz	tunable (6%, 3 dB)
	152 MHz to 216 MHz	tunable (6%, 3 dB)
	216 MHz to 330 MHz	tunable (5%, 3 dB)
	330 MHz to 500 MHz	tunable (5%, 3 dB)
	0.5 GHz to 1 GHz	tunable (4%, 3 dB)
	1 GHz to 2.9 GHz*	fixed
	1 GHz to 6.5 GHz*	fixed

 $[^]st$ Refer to "Frequency Range" in this section for the maximum frequency range of the EMC analyzer.

Drift (after warmup at stabilized temperature)	
Frequency Span ≤ 10 MHz	\leq (2 kHz × N [†])/minute of sweep time*

 $[^]st$ Because the analyzer is locked at the center frequency before each sweep, drift occurs only during the time of one sweep. For Line, Video, or External trigger, additional drift occurs while waiting for the appropriate trigger signal.

 $^{^{\}dagger}$ N=1 (except for the HP 8596EM from 6.0 GHz to 12.8 GHz, where N=2)

Averaging Bandwidth (-3 dB)	
Range	1 Hz to 1 MHz, selectable in 1, 3, 10 increments, accuracy $\pm 30\%$ and 3 MHz. Averaging bandwidths may be selected manually, or coupled to IF bandwidth and frequency span.
Shape	Post detection, single pole low-pass filter used to average displayed noise. Bandwidths below 30 Hz are digital bandwidths with anti-aliasing filtering.

FLATTOP	HANNING	UNIFORM
3.63×	1.5x	1×
$3.60\times$	1.48×	1×
<-90 dB	−32 dB	−13 dB
0.10 dB	1.42 dB	$3.92~\mathrm{dB}$
2.6	9.1	>300
	3.63x 3.60x <-90 dB 0.10 dB	3.63x 1.5x 3.60x 1.48x <-90 dB -32 dB 0.10 dB 1.42 dB

These are not specifications. Characteristics provide useful but nonwarranted information about instrument performance.

Amplitude Range	$-39 \text{ dB}\mu\text{V to } + 137 \text{ dB}\mu\text{V}$
-----------------	---

Maximum Safe Input Level	
Average Continuous Power	
Input 1 and Input 2	$<~+137~\mathrm{dB}\mu\mathrm{V}$
Bypass	$< +137 \text{ dB}\mu\text{V}$ (Input Attenuation $\geq 10 \text{ dB}$)
Peak Pulse Power	
Input 1	< 2000 W peak for 10 μs and > 20 dB input attenuation
Input 2	<100 W for $<10~\mu s$ pulse width $<1\%$ duty cycle and >30 dB input attenuation
Bypass	<50 W for $<10~\mu s$ pulse width $<1\%$ duty cycle and >30 dB input attenuation
dc	0 Vdc

Display Range	
0	0 to -70 dB from reference level is calibrated; 0.1, 0.2, 0.5 dB/division and 1 to 20 dB/division in 1 dB steps; eight divisions displayed.
Linear Scale	eight divisions
Scale Units	dBm, dBmV, dB μ V, mV, mW, nV, nW, pW, μ V, μ W, V, and W

Marker Readout Resolution	0.05 dB for log scale
	0.05% of reference level for linear scale
Fast Sweep Times for Zero Span	
20 μs to 20 ms (Option 101 or 301)	
Frequency ≤ 1 GHz	0.7% of reference level for linear scale
Frequency > 1 GHz	1.0% of reference level for linear scale

RF Filter Section Amplification	(Input 1 and Input 2 only)
Fixed Gain	15 dB ±0.5 dB
Preamplification	$12 \text{ dB} \pm 0.5 \text{ dB}$

	Input 1	Input 2	Bypass
Displayed Average Noise Level 400 kHz	` 1	ed, 0 dB attenuation, Avg BW, sample dete	,
Preamp Off	$< -31 \text{ dB}\mu\text{V}$	$< -31~\mathrm{dB}\mu\mathrm{V}$	$<$ - 18 dB μ V
Preamp On	$< -39 \mathrm{dB}\mu\mathrm{V}$	$< -39~\mathrm{dB}\mu\mathrm{V}$	
Second Harmonic Intercept* 1 MHz < f < 1 GHz			
Preamp Off	$> 122~\mathrm{dB}\mu\mathrm{V}$	$> 122~\mathrm{dB}\mu\mathrm{V}$	
Preamp On	$> 110~\mathrm{dB}\mu\mathrm{V}$	$> 110~\mathrm{dB}\mu\mathrm{V}$	
Third Order Intercept [†] > 10 MHz			
Preamp Off	$> +98 dB\mu V$	$> +98 \mathrm{dB}\mu\mathrm{V}$	$>$ +5 dB μ V
Preamp On	$> +89 \mathrm{dB}\mu\mathrm{V}$	$> +89~\mathrm{dB}\mu\mathrm{V}$	
Residual Responses	(Input terminated, in Bypass)	0 dB attenuation, Pr	reamp On except
> 150 kHz	$< +10 \mathrm{dB}\mu\mathrm{V}$	$<$ + 10 dB μ V	$<$ - 17 dB μ V
Input VSWR			
0 dB input attenuation	< 2:1	< 2:1	< 3:1
10 dB input attenuation			
100 kHz to 1 GHz	< 1.2:1	< 1.2:1	< 2:1
$> 1 \mathrm{~GHz}$	< 1.6:1	< 1.6:1	< 2:1

 $^{^{*}}$ Indicated characteristic was derived from measured harmonic levels for a $-40~\mathrm{dB}$ input signal.

two $+77~dB\mu V$ CW signals at the input.

Other Input Related Spurious*	< -65 dBc

^{* 30} kHz offset for $+87~dB\mu V$ tone at the mixer \leq the maximum frequency range limit of the EMC analyzer[†],

Power at the input mixer = input power = input attenuation + RF filter section amplification \dagger Refer for the "Frequency Range" table in this section for the maximum frequency range of the EMC analyzer.

9-10 Characteristics for the EMC Analyzer with the RF Filter Section

[†] Signal separation > 50 kHz. Indicated characteristic was derived from measured distortion products for

f > 10 MHz.

Gain Compression*	
10 MHz	< 0.5 dB

^{*} Indicated characteristic is derived from measured distortion at the input mixer of $+97~dB\mu\,V$ Power at the input mixer = input power - input attenuation + RF filter section amplification. If the IF BW is \leq 300 Hz, this applies only if signal separation is \geq 4 kHz and signal amplitudes \leq

Reference Level	
Range	
Log Scale	Minimum amplitude to maximum amplitude*
Linear Scale	$+8~{ m dB}\mu{ m V}$ to maximum amplitude *
Resolution	
Log Scale	$\pm 0.01 \text{ dB}$
Linear Scale	$\pm 0.12\%$ of reference level
Accuracy	(referenced to $+87~dB\mu V$ reference level, 10 dB input attenuation, at a single frequency, in a fixed IF BW)
$107~\mathrm{dB}\mu\mathrm{V}$ to $+47.1~\mathrm{dB}\mu\mathrm{V}$	$\pm (0.3 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
$+47~\mathrm{dB}\mu\mathrm{V}$ and below	
1 kHz to 3 MHz IF BW	$\pm (0.6 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
30 Hz to 300 Hz IF BW	$\pm (0.7 \text{ dB} + .01 \times \text{dB from} + 87 \text{ dB}\mu\text{V})$
* See "Amplitude Range."	

nse [*]	
	±2.0 dB
	±2.0 dB
9 kHz to 2.9 GHz	±2.5 dB
$2.75~\mathrm{GHz}$ to $6.5~\mathrm{GHz}$	$\pm 3.5~\mathrm{dB}$
$6.0~\mathrm{GHz}$ to $12.8~\mathrm{GHz}$	±5.0 dB
	9 kHz to 2.9 GHz 2.75 GHz to 6.5 GHz

Calibrator Output	
Amplitude	$+87~\mathrm{dB}\mu\mathrm{V}\pm0.4~\mathrm{dB}$

IF Bandwidth Switching Uncertainty	(At reference level, referenced to 3 kHz IF BW)
3 kHz to 3 MHz IF BW	±0.4 dB
1 kHz IF BW	±0.5 dB
30 Hz to 300 Hz IF BW	±0.6 dB

Linear to Log Switching	±0.25 dB at reference level

Display Scale Fidelity	
Log Maximum Cumulative	
0 to -70 dB from Reference Level	
3 kHz to 3 MHz IF BW	\pm (0.3 dB + 0.01 $ imes$ dB from reference level)
IF BW $\leq 1 \text{ kHz}$	\pm (0.4 dB + 0.01 $ imes$ dB from reference level)
Log Incremental Accuracy	
0 to -60 dB from Reference Level	±0.4 dB/4 dB
Linear Accuracy	$\pm 3\%$ of reference level

9-12 Characteristics for the EMC Analyzer with the RF Filter Section

Quasi-Peak Detector Characteristics (All except Option 703)

- The EMC analyzer displays the quasi-peak amplitude of pulsed radio frequency (RF) or continuous wave (CW) signals.
- Amplitude response conforms with Publication 16 of Comité International Spécial des Perturbations Radioélectriques (CISPR) Section 1, Clause 2.

Absolute amplitude accuracy is the sum of the pulse amplitude response relative to the reference, plus the reference pulse amplitude accuracy, plus the EMC analyzer amplitude accuracy (calibrator output, reference level, frequency response, input attenuator, IF bandwidth switching, linear display scale fidelity, and gain compression).

Relative Quasi-Peak Response to a CISPR Pulse (dB) (All except Option 703)			
	Frequency Band		
Pulse Repetition	120 kHz EMI BW	9 kHz EMI BW	200 Hz EMI BW
Frequency (Hz)	0.03 to 1 GHz	0.15 to 30 MHz	10 to 150 kHz
1000	+8.0 ± 1.0	$+\ 4.5\ \pm\ 1.0$	_
100	0 dB (reference)*	0 dB (reference)*	$+4.0 \pm 1.0$
60	_	_	$+3.0 \pm 1.0$
25	_	_	0 dB (reference)*
20	-9.0 ± 1.0	-6.5 ± 1.0	_
10	-14.0 ± 1.5	-10.0 ± 1.5	-4.0 ± 1.0
5	_	_	-7.5 ± 1.5
2	-26.0 ± 2.0	-20.5 ± 2.0	-13.0 ± 2.0
1	-28.5 ± 2.0	-22.5 ± 2.0	-17.0 ± 2.0
Isolated Pulse	-31.5 ± 2.0	-23.5 ± 2.0	-19.0 ± 2.0

 $[^]st$ Reference pulse amplitude accuracy relative to the CW signal is $< 1.5\,$ dB as specified in CISPR

CISPR reference pulse: $0.044~\mu Vs$ for 30~MHz to 1~GHz, $0.316~\mu Vs$ for 15~kHz to 30~MHz, and $13.5~\mu\mathrm{Vs}~{\pm}1.5~\mu\mathrm{Vs}$ for 9 kHz to 150 kHz.

Quasi-Peak Detector (All except Option 703)	
Measurement Range	
Displayed	70 dB
Total	115 dB

Input Attenuator	
Range	0 to 50 dB, in 10 dB steps
Uncertainty*	
Input 1 and Input 2	±0.5 dB
Bypass	±1.0 dB
10 dB Step Uncertainty	±1.0 dB/10 dB
Repeatability	±0.05 dB
* Referenced to 10 dB input attenuator setting.	

Measurement Detector Types	Positive Peak, Quasi-Peak, and Average
	Quasi-Peak and Average time constants conform with CISPR Pub. 16.
(Option 101 and Option 301)	Negative Peak
(Option 703)	Delete Quasi-Peak and Average

Overload Detectors	Available in EMC analyzer mode only.
IF overload	Detects overload of the analyzer video circuitry.
RF overload	Detects overload of the RF Filter Section circuitry.

FM Demodulation (All except Option 703)	
Input Level	$>$ (+47 dB μ V + attenuator setting)
Signal Level	0 to -30 dB below reference level
FM Offset	
Resolution	400 Hz nominal
FM Deviation (FM GAIN)	
Resolution	1 kHz/volt nominal
Range	10 kHz/volt to 1 MHz/volt
Bandwidth (6 dB)	FM deviation/2
FM Linearity (for modulating frequency < bandwidth/100)	≤ 1% of FM deviation + 290 Hz

(All except Option 703)	Internal speaker, rear panel earphone jack and front-panel volume control. Adjustable squelch control mutes the audio signal to the speaker/earphone jack based on the level of the demodulated signal above 22 kHz. An uncalibrated demodulated signal is available on the AUX VIDEO OUT
	connector at the rear panel.

Immunity Testing	
Radiated Immunity	When tested at 3 V/m according to IEC 801-3/1984 the displayed average noise level will be within specifications over the full immunity test frequency range of 27 to 500 MHz except that at immunity test frequencies of 278.6 MHz \pm selected IF bandwidth and 321.4 MHz \pm selected IF bandwidth the displayed average noise level may be up to $+62~\mathrm{dB}\mu\mathrm{V}$. When the analyzer tuned frequency is identical to the immunity test signal frequency there may be signals of up to $+37~\mathrm{dB}\mu\mathrm{V}$ displayed on the screen.
Electrostatic Discharge	When an air discharge of up to 8 kV according to IEC 801-2/1991 occurs to the shells of the BNC connectors on the rear panel of the instrument spikes may be seen on the CRT display. Discharges to center pins of any of the connectors may cause damage to the associated circuitry.
Electrical Fast Transient	When subjected to Electrical Fast Transient testing per EN 50082-1/EIC 801-4 noise may appear on the display of the analyzer during the application of the test voltage.

Physical Characteristics

EMC Analyzer Front-Panel Inputs and Outputs

INPUT 50Ω	
Connector	Type N female
Impedance	50 Ω nominal

RF OUT (Option 010)	
Connector	Type N female
Impedance	50 Ω nominal
Maximum Safe Reverse Level	+ 127 dBµV (0.1 W), 25 Vdc

PROBE POWER*	
Voltage/Current	+ 15 Vdc, ±7% at 150 mA max.
	$-12.6~{ m Vdc} \pm 10\%$ at 150 mA max.

 $^{^{*}}$ Total current drawn from the +15 Vdc on the PROBE POWER and the AUX INTERFACE cannot exceed 150 mA. Total current drawn from the -12.5 Vdc on the PROBE POWER and the -15 Vdc on the AUX INTERFACE cannot exceed 150 mA.

CAL OUT	
Connector	BNC female
Impedance	50 Ω nominal

EMC Analyzer Rear-Panel Inputs and Outputs

10 MHz REF OUTPUT	
Connector	BNC female
Impedance	50 Ω nominal
Output Amplitude	$> 107 \text{ dB}\mu\text{V}$

EXT REF IN	
Connector	BNC female
	Note: Analyzer noise sideband and spurious
	response performance may be affected by the
	quality of the external reference used.
Input Amplitude Range	$+105$ to $+117$ dB μ V
Frequency	10 MHz
AUX IF OUTPUT	
Frequency	21.4 MHz
Amplitude Range	$+97$ to $+47$ dB μ V
Impedance	50 Ω nominal
AUX VIDEO OUTPUT	
Connector	BNC female
Amplitude Range	0 to 1 V (uncorrected)
EARPHONE (All except Option 703)	
Connector	1/8 inch monaural jack
EXT ALC INPUT (Option 010)	
Impedance	1 ΜΩ
Polarity	Positive or negative
Range	-66 dBV to +6 dBV
Connector	BNC
EXT KEYBOARD	Interface compatible with HP part number
	C1405 Option ABA and most IBM/AT non-auto
	switching keyboards.
EXT TRIG INPUT	
Connector	BNC female
	DNO Temate
Trigger Level	Positive edge initiates sweep in EXT TRIG mode

HI-SWEEP IN/OUT	
Connector	BNC female
Output	High = sweep, Low = retrace (TTL)
Input	Open collector, low stops sweep.

MONITOR OUTPUT (EMC Analyzer Display)	
Connector	BNC female
Format	
SYNC NRM	Internal Monitor
SYNC NTSC	NTSC Compatible 15.75 kHz horizontal rate 60 Hz vertical rate
SYNC PAL	PAL Compatible 15.625 kHz horizontal rate 50 Hz vertical rate

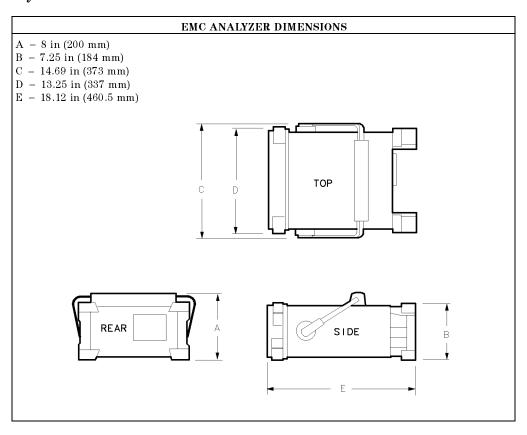
REMOTE INTERFACE	
HP-IB	
HP-IB Codes	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28
RS-232 (Option 023)	25 pin subminiature D-shell, female
Parallel (Option 024)	25 pin subminiature D-shell, female

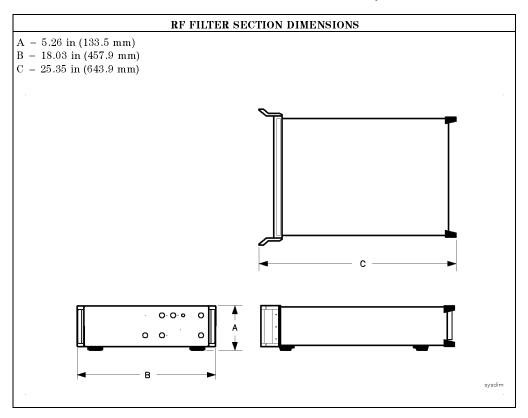
SWEEP OUTPUT	
Connector	BNC female
Amplitude	0 to + 10 V ramp

TV TRIG OUT (Options 101, 102, and 301)	
Connector	BNC female
Amplitude	Negative edge corresponds to start of the selected TV line after sync pulse (TTL).

9-18 Characteristics for the EMC Analyzer with the RF Filter Section

	A	UX INTERFACE		
Connector Type: 9 Connector Pinout	9 Pin Subminiature "D)"		
Pin #	Function	Current	"Logic" Mode	"Serial Bit" Mode
1	Control A	_	TTL Output Hi/Lo	TTL Output Hi/Lo
2	Control B	_	TTL Output Hi/Lo	TTL Output Hi/Lo
3	Control C	_	TTL Output Hi/Lo	Strobe
4	Control D	_	TTL Output Hi/Lo	Serial Data
5	Control I	_	TTL Input Hi/Lo	TTL Input Hi/Lo
6	Gnd	_	Gnd	Gnd
7†	$-15~V_{\rm dc}~\pm7\%$	150 mA	_	_
8*	+ 5 V _{dc} ±5%	150 mA	_	_
9†	+ 15 V _{dc} ±5%	150 mA	_	_


^{*} Exceeding the +5 V current limits may result in loss of factory correction constants. † Total current drawn from the +15 V $_{\rm dc}$ on the PROBE POWER and the AUX INTERFACE cannot exceed 150 mA. Total current drawn from the -12.6 V $_{\rm dc}$ on the PROBE POWER and the $-15~V_{\rm dc}$ on the AUX INTERFACE cannot exceed 150 mA.


WEIGHT		
EMC Analyzer		
Net		
HP 8591EM	14.4 kg (32 lb.)	
HP 8594EM	16.4 kg (36 lb.)	
HP 8595EM	16.4 kg (36 lb.)	
HP 8596EM	16.4 kg (36 lb.)	
Shipping		
HP 8591EM	17.1 kg (38 lb.)	
HP 8594EM	19.1 kg (42 lb.)	
HP 8595EM	19.1 kg (42 lb.)	
HP 8596EM	19.1 kg (42 lb.)	

RF Filter Section Front-Panel Inputs and Outputs

INPUT 1	
Connector	Type N female
Impedance	50 Ω nominal
INPUT 2	
Connector	Type N female
Impedance	50 Ω nominal
300 MHz Input	
Connector	Type N female
Impedance	50 Ω nominal
Tracking Generator Input	
Connector	Type N female
Impedance	50 Ω nominal

Tracking Generator Output	
Connector	Type N female
Impedance	50 Ω nominal
RF Output	
Connector	Type N female
Impedance	50 Ω nominal
ALC	
	Negative Detector
High Sweep Output	P-Panel Inputs and Outputs
Connector	SMA female
Output	High = sweep, Low = retrace (TTL)
•	1 0 1
SWEEP RAMP INPUT	
	SMA female
SWEEP RAMP INPUT	
SWEEP RAMP INPUT Connector	SMA female
SWEEP RAMP INPUT Connector Amplitude AUX Interface	SMA female 0 to +10 V ramp
SWEEP RAMP INPUT Connector Amplitude	SMA female
SWEEP RAMP INPUT Connector Amplitude AUX Interface Connector	SMA female 0 to +10 V ramp
SWEEP RAMP INPUT Connector Amplitude AUX Interface Connector Service Bus	SMA female 0 to +10 V ramp 9-pin subminiature
SWEEP RAMP INPUT Connector Amplitude AUX Interface Connector	SMA female 0 to +10 V ramp
SWEEP RAMP INPUT Connector Amplitude AUX Interface Connector Service Bus	SMA female 0 to +10 V ramp 9-pin subminiature
SWEEP RAMP INPUT Connector Amplitude AUX Interface Connector Service Bus	SMA female 0 to + 10 V ramp 9-pin subminiature HP-IB Compatible

			l

Customer Support

Your EMC analyzer is built to provide dependable service. It is unlikely that you will experience a problem. However, Hewlett-Packard's worldwide sales and service organization is ready to provide the support you need.

If You Have a Problem

Before calling Hewlett-Packard or returning the EMC analyzer for service, please make the checks listed in "Check the Basics." If you still have a problem, please read the warranty printed at the front of this manual. If your EMC analyzer is covered by a separate maintenance agreement, please be familiar with its terms.

Hewlett-Packard offers several maintenance plans to service your EMC analyzer after warranty expiration. Call your HP Sales and Service Office for full details.

If you want to service the EMC analyzer yourself after warranty expiration, contact your HP Sales and Service Office to obtain the most current test and maintenance information.

Calling HP Sales and Service Offices

Sales and service offices are located around the world to provide complete support for your EMC analyzer. To obtain servicing information or to order replacement parts, contact the nearest Hewlett-Packard Sales and Service office listed in Table 10-1. In any correspondence or telephone conversations, refer to the EMC analyzer by its model number and full serial number. With this information, the HP representative can quickly determine whether your unit is still within its warranty period.

Check the Basics

In general, a problem can be caused by a hardware failure, a software error, or a user error. Often problems may be solved by repeating what was being done when the problem occurred. A few minutes spent in performing these simple checks may eliminate time spent waiting for instrument repair.

If Your EMC Analyzer Does Not Turn On

- ☐ Check that the EMC analyzer is plugged into the proper ac power source.
- □ Check that the line socket has power.
- ☐ Check that the rear-panel voltage selector switches are set correctly.
- □ Check that the line fuses are good.
- □ Check that the EMC analyzer is turned on.

If the EMC Analyzer Cannot Communicate Via HP-IB

- □ Verify that the proper HP-IB address has been set.
- □ Verify that there are no equipment address conflicts.
- □ Check that the other equipment and cables are connected properly and operating correctly.
- □ Verify that the HP-IB cable is connected to the EMC analyzer.
- □ Verify that the HP-IB cable is not connected to the RF filter section if your system includes an RF filter section.

Verification of Proper Operation

- □ Check that the test being performed and the expected results are within the specifications and capabilities of the EMC analyzer.
- □ Check the operation by performing the operation verification procedures in Chapter 2 of the *HP 8590 EM-Series EMC Analyzer Verification Guide*. Record all results in the operation verification test record.

Error Messages

□ Check the EMC analyzer display for error messages. Refer to Appendix A of the *HP 8590 EM-Series EMC Analyzer Quick Reference Guide*.

If the EMC Analyzer with the RF Filter Section Does Not Seem to be Working

- □ Check that the ac power is connected to the system as described above in "If Your EMC Analyzer Does Not Turn On".
- □ Verify that the rear-panel auxiliary interface cable is properly connected.
- □ Verify that the rear-panel sweep ramp and high sweep cables are properly connected.
- □ Verify that the RF filter section DIP switch near the service bus connecter is set to the normal mode.

If the RF Filter Section Does Not Power Off

□ Verify that the service power switch on the RF filter section is set to normal mode.

Additional Support Services

CompuServe

CompuServe, the worldwide electronic information utility, provides technical information and support for EMC instrumentation and communication with other EMI users.

With a CompuServe account and a modem-equipped computer, simply type GO HPSYS and select the EMC system section to get information on documentation, application notes, product notes, service notes, software, firmware revision listings, data sheets, and more.

If you are not a member of CompuServe and would like to join, call CompuServe and take advantage of the Free Introductory Membership. The membership includes the following:

- An introductory usage credit to CompuServe
- A private User ID and Password
- A complimentary subscription to CompuServe's monthly computing publication, *CompuServe Magazine*

To take advantage of the CompuServe Free Introductory Membership offer, call one of the telephone numbers below and ask for Representative Number 999.

Country	Toll-Free	Direct
Argentina	_	(+54) 01-372-7883
Australia	008-023-158	(+61) 2-410-4555
Canada	_	(+1) 614-457-8650
Chile	_	$(+56)\ 2\text{-}696\text{-}8807$
Germany	0130 86 4643	(+49)(+89)66550-222
Hong Kong	_	(+852) 867-0102
Israel	_	$(+972)\ 3-290466$
Japan	0120-22-1200	(+81) 3-5471-5806
Korea	080-022-7400	(+82) 2-569-5400
New Zealand	0800-441-082	_
South Africa	_	(+27) 12-841-2530
Switzerland	155 31 79	_
Taiwan	_	(+886) 2-515-7035
United Kingdom	0800 289458	(+44)(+272)255111
United States	800-848-8990	(+1) 614-457-8650
Venezuela	_	(+58) 2-793-2984
Elsewhere	_	(+1) 614-457-8650

FAX Support Line

A fax sheet is provided at the end of this chapter as a method in which to directly contact the HP EMC support team in the event of a problem. The fax cover sheet provides EMC support team with information about your company, the product, and a detailed description about the problem.

Note	All items on the fax cover sheet <i>must</i> be completed in order to expedite your response. Any incomplete item may delay your
	response.

Simply copy the fax cover sheet, fill out the requested information, include any additional information sheets, and fax the sheet(s) to HP EMC Support at (707) 577-4200. Depending on the complexity of the problem, you should receive a response back within a few days.

Returning the EMC analyzer for Service

Use the information in this section if it is necessary to return the EMC analyzer to Hewlett-Packard.

Note

If you are returning an EMC analyzer with an RF filter section, you must package the units individually to avoid damage.

Package the EMC analyzer for shipment

Use the following steps to package the EMC analyzer for shipment to Hewlett-Packard for service:

- 1. Fill in a service tag (available at the end of this chapter) and attach it to the instrument. Please be as specific as possible about the nature of the problem. Send a copy of any or all of the following information:
 - Any error messages that appeared on the EMC analyzer display.
 - A completed operation verification test record located at the end of Chapter 3 in the HP 8590 EM-Series EMC Analyzer Verification Guide.
 - Any other specific data on the performance of the EMC analyzer.

CAUTION

Damage to the EMC analyzer can result from using packaging materials other than those specified. Never use styrene pellets in any shape as packaging materials. They do not adequately cushion the instrument or prevent it from shifting in the carton. Styrene pellets cause equipment damage by generating static electricity and by lodging in the fan.

- 2. Use the original packaging materials, if possible. You may also use strong shipping containers that are made of double-walled, corrugated cardboard with 159 kg (350 lb) bursting strength. The cartons must be both large enough and strong enough and allow at least 3 to 4 inches on all sides of the instrument for packing material. Containers and materials for factory shipments are also available through any Hewlett-Packard sales or service office.
- 3. Protect the front panel with cardboard.
- 4. Surround the instrument with at least 3 to 4 inches of packing material, or enough to prevent the instrument from moving in the carton. If packing foam is not available, the best alternative is SD-240 Air CapTM from Sealed

10.6 Customer Support

Air Corporation (Hayward, CA 94545). Air Cap looks like a plastic sheet covered with 1-1/4 inch air-filled bubbles. Use the pink Air Cap to reduce static electricity. Wrap the instrument several times in the material to both protect the instrument and prevent it from moving in the carton.

- 5. Seal the shipping container securely with strong nylon adhesive tape.
- 6. Mark the shipping container "FRAGILE, HANDLE WITH CARE" to ensure careful handling.
- 7. Retain copies of all shipping papers.

Table 10-1. Hewlett-Packard Sales and Service Offices

US FIELD OPERATIONS

Customer Information

Hewlett-Packard Company 19320 Pruneridge Avenue Cupertino, CA 95014, USA (800) 752-0900

Colorado

Hewlett-Packard Co. 24 Inverness Place, East Englewood, CO 80112 (303) 649-5000

New Jersey

120 W. Century Road Paramus, NJ 07653 (201)599-5000

California, Northern

Hewlett-Packard Co. 301 E. Evelyn Mountain View, CA 94041 (415) 694-2000

Georgia

Hewlett-Packard Co. 2000 South Park Place Atlanta, GA 30339 (404) 955-1500

Texas

930 E. Campbell Rd. Richardson, TX 75081 (214) 231-6101

California, Southern

Hewlett-Packard Co. 1421 South Manhattan Ave. Fullerton, CA 92631 (714) 999-6700

Illinois

Hewlett-Packard Co. 5201 Tollview Drive Rolling Meadows, IL 60008 (708) 255-9800

EUROPEAN FIELD OPERATIONS

Headquarters

Hewlett-Packard S.A. 150. Route du Nant-d'Avril 1217 Meyrin 2/Geneva Switzerland (41 22) 780.8111

Great Britain

Hewlett-Packard Ltd Eskdale Road, Winnersh Triangle Wokingham, Berkshire RF11 5DZ England (44 734) 696622

France

Hewlett-Packard France 1 Avenue Du Canada Zone D'Activite De Courtaboeuf 6000 Frankfurt 56 F-91947 Les Ulis Cedex France (33 1) 69 82 60 60

Germany

Hewlett-Packard GmbH Berner Strasse 117 West Germany (49 69) 500006-0

INTERCON FIELD OPERATIONS

Headquarters

Hewlett-Packard Company 3495 Deer Creek Rd. Palo Alto, California 94304-1316 (415) 857-5027

Australia.

Hewlett-Packard Australia Ltd. 31-41 Joseph Street Blackburn, Victoria 3130 (61 3) 895-2895

Canada.

Hewlett-Packard (Canada) Ltd. 17500 South Service Road Trans-Canada Highway Kirkland, Quebec H9J 2X8 Canada (514) 697-4232

China

China Hewlett-Packard Co. 38 Bei San Huan X1 Road Shuang 018 SlGustomer Support Hai Dian District Beijing, China (86 1) 256-6888

Japan

1-27-15 Yabe, Sagamihara Kanagawa 229, Japan (81 427) 59-1311

Singapore

Yokogawa-Hewlett-Packard Ltd. Hewlett-Packard Singapore (Pte.) Ltd 1150 Depot Road Singapore 0410 (65) 273-7388

Taiwan

Hewlett-Packard Taiwan 8th Floor, H-P Building 337 Fu Hsing North Road Taipei, Taiwan (886 2) 712-0404

Fax Cover Sheet

To: HP EMC Support	FAX Numbe	er: (707) 577-4200	Page of	
Date Transmitted:	Time Transmitted:			
From:				
Company:				
Address:				
			Mail Stop:	
Telephone Number (inclu	ide Country Cod	e):		
Fax Number (required): _				
Product:				
☐ HP 8591EM	☐ HP 8594EM	☐ HP 8596	6EM	
☐ HP 8593EM	☐ HP 8595 EM	Option(s):		
	EMC Ana	lyzer	RF Filter Section	
Serial Number(s):		<u> </u>		
Firmware Revision:				
Is the problem reproducible			No	
Detailed Problem Description			ny additional pages)	
10.10 Customer Support				

Index

1 100 MHz COMB OUT, 5-24, 8-22 10 MHz precision frequency reference output accuracy test, 2-5-8 10 MHz reference output accuracy test, 2-2-4 10 MHz REF OUTPUT, 4-21, 5-25, 6-22, 7-22, 8-23, 9-16 3 300 MHz Input, 9-20 A absolute amplitude accuracy HP 8593EM, 2-326-329 HP 8594EM, 2-326-329 HP 8595EM, 2-326-329 HP 8596EM, 2-326-329 HP 8596EM, 2-326-329 absolute amplitude calibration and resolution (IF) bandwidth test, 2-83-86 repeatability, 4-9, 5-9, 6-9, 7-9, 8-9 absolute amplitude, vernier, and power sweep accuracy	ALC output, 9-21 amplitude range, 4-6, 5-6, 6-6, 7-6, 8-6, 9-9 audible noise, 4-2, 5-2, 6-2, 7-2, 8-2, 9-2 AUX IF OUTPUT, 4-22, 5-25, 6-23, 7-23, 8-23, 9-17 INTERFACE, 4-23, 5-27, 6-25, 7-25, 8-25, 9-18, 9-21 VIDEO OUTPUT, 4-22, 5-25, 6-23, 7-23, 8-23, 9-17 averaging bandwidth (-3 dB), 4-13, 5-13, 6-13, 7-13, 8-13, 9-7 B before testing, 1-9 C cables recommended, 1-16 calibration cycle, 1-1 calibrator amplitude accuracy test, 2-93-97
power sweep accuracy HP 8591EM, 2-322–325 accessories	2-93-97 calibrator output amplitude, 4-9, 5-9, 6-9, 7-9, 8-9, 9-12
recommended, 1-13 ac coupled insertion loss, 6-16, 7-16, 8-16 adapters recommended, 1-15	frequency, 4-5, 5-5, 6-5, 7-5, 8-5, 9-6 CAL OUT, 4-21, 5-24, 6-22, 7-22, 8-22, 9-16

CISPR pulse response test, 2-385-401 specifications, 4-2, 5-2, 6-2, 7-2, comb generator frequency, 5-5, 8-5 8-2 comb generator frequency accuracy EXT ALC INPUT, 4-22, 5-25, 6-23, 7-23, HP 8593EM and HP 8596EM, 2-9-11 8-23, 9-17 CompuServe, 10-3 KEYBOARD, 4-22, 5-25, 6-23, 7-23, 8-23, 9-17 \mathbf{D} REF IN, 4-21, 5-25, 6-22, 7-22, declaration of conformity, 4-26, 5-30, 8-23, 9-16 6-27, 7-27, 8-28 TRIG INPUT, 4-22, 5-26, 6-23, demod tune listen, 4-15, 5-15, 6-15, 7-23, 8-24, 9-17 7-15, 8-15, 9-15 \mathbf{F} dimensions, 4-24, 5-28, 6-26, 7-26, 8-26, 9-21 fast time domain sweeps HP 8591EM, 2-314-317 display range, 4-8, 5-8, 6-8, 7-8, 8-8, 9-9 HP 8593EM, 2-318-321 HP 8594EM, 2-318-321 scale fidelity, 4-10, 5-10, 6-10, HP 8595EM, 2-318-321 7-10, 8-10, 9-12 HP 8596EM, 2-318-321 displayed average noise level, 4-7, 5-7, 6-7, 7-7, 8-7, 9-10 **FAX** displayed average noise level test form, 10-9 support, 10-4 HP 8591EM, 2-265-270 HP 8593EM, 2-271-279 FFT bandwidth factors, 4-14, 5-14, HP 8594EM, 2-280-284 6-14, 7-14, 8-14, 9-8 HP 8595EM, 2-286-291 filter section amplification, 9-9 HP 8596EM, 2-292-297 FM demodulation, 4-15, 5-15, 6-15, dynamic range, 4-12, 4-16, 4-20, 7-15, 8-15, 9-14 5-17, 5-18, 5-22, 6-17, 6-20, frequency range, 4-3, 5-3, 6-3, 7-3, 7-17, 7-20, 8-17, 8-20 8-3, 9-3 frequency readout accuracy, 4-3, \mathbf{E} 5-3, 6-3, 7-3, 8-3, 9-4 earphone, 4-22, 5-25, 6-23, 7-23, frequency readout and marker count 8-23, 9-17 accuracy test HP 8591EM and HP 8594EM, electrical fast transient, 4-17, 5-19, 6-17, 7-18, 8-18, 9-15 2 - 12 - 16electrostatic discharge, 4-17, 5-19, HP 8593EM, HP 8595EM, and HP 6-17, 7-18, 8-18, 9-15 8596EM, 2-17-22 EMI compatibility, 4-2, 5-2, 6-2, 7-2, frequency reference, 4-3, 4-13, 5-3, 8-2, 9-2 5-13, 6-3, 6-13, 7-3, 7-13, 8-3, environmental 8-13, 9-3

characteristics, 9-2

frequency response, 4-9, 5-9, 8-9, 9-11	HI-SWEEP IN/OUT, 4-22, 5-26, 6-24, 7-24, 8-24, 9-17
Analog+ mode, 4-18, 5-20, 8-19	, =1, = =1, = 1.
Analog+ mode (dc coupled), 6-19,	I
7-19	IF bandwidth, 4-4, 4-13, 5-4, 5-13,
dc coupled, 6-9, 7-9	6-4, 6-13, 7-4, 7-13, 8-4, 8-13,
unpeaked, 5-17, 7-17, 8-17	9-5
frequency response test	switching uncertainty, 4-10, 5-10,
HP 8591EM, 2-98-104	6-10, 7-10, 8-10, 9-12
HP 8593EM, 2-105-122	IF overload detector, 4-16, 5-16,
HP 8594EM, 2-123-130	6-16, 7-16, 8-16, 9-14
HP 8595EM, 2-131-140	immunity testing, 4-17, 5-19, 6-17,
	=
HP 8596EM, 2-141-152	7-18, 8-18, 9-15
frequency span, 4-3, 5-4, 6-4, 7-4,	INPUT 1, 9-20
8-4, 9-4	INPUT 2, 9-20
frequency span readout accuracy	INPUT 50Ω , 4-21, 5-24, 6-22, 7-22,
test	8-22, 9-16
HP 8591EM, 2-32-37	input attenuation uncertainty, 4-16,
HP 8593EM, HP 8594EM, HP	5-16, 6-16, 7-16, 8-16
8595EM, and HP 8596EM,	input attenuator, 4-9, 5-10, 6-9, 7-10,
2-38-43	8-10
frequency sweep time, 4-4, 5-4, 6-4,	10 dB step uncertainty, 5-16, 6-16,
7-4, 8-4, 9-5	7-16, 8-16, 9-13
C	range, 9-13
G	repeatability, 4-16, 5-16, 6-16,
gain compression, 4-7, 5-7, 6-7, 7-7,	7-17, 8-17, 9-13
8-7, 9-11	uncertainty, 9-13
HP 8591EM, 2-236-240	input filter bandwidths, 9-6
HP 8593EM, 2-241-247	input VSWR, 9-10
HP 8594EM, 2-248-252	-
HP 8595EM, 2-253-258	L
HP 8596EM, 2-259-264	linear to log switching, 4-10, 5-10, 6-10, 7-10, 8-10, 9-12
H	log scale switching uncertainty, 4-15,
harmonic spurious outputs	5-15, 6-15, 7-15, 8-15
HP 8591EM, 2-346-349	LO OUTPUT, 5-26, 6-23, 7-23, 8-24
HP 8593EM, 2-350–353	10 001101, 0 20, 0 20, 1 20, 0 21
HP 8594EM, 2-350-353	M
HP 8595EM, 2-350-353	marker
HP 8596EM, 2-350-353	count accuracy, 4-3, 5-3, 6-3, 7-3,
High Sweep Output, 9-21	
mgn sweep output, 9-41	8-3, 9-4

readout resolution, 4-8, 4-18, 5-8,	power level, 4-11, 5-11, 6-11, 7-11,
5-20, 6-8, 6-19, 7-8, 7-19, 8-8,	8-11
8-19, 9-9	power sweep, 4-11, 5-11, 6-11,
maximum safe input level, 4-6, 5-6,	7-11, 8-11
6-6, 7-6, 8-6, 9-9	tracking, 4-19
measurement detector types, 4-15,	VSWR, 4-19, 5-22, 6-20, 7-20, 8-20
$5\text{-}15,\ 6\text{-}15,\ 7\text{-}15,\ 8\text{-}15,\ 9\text{-}14$	n.
MONITOR OUTPUT, 4-23, 5-26, 6-24,	P
7-24, 8-24, 9-18	packaging the analyzer, 10-6
37	packing material, 10-6
N	performance test record
noise	HP 8591EM, 3-3-15
declaration, 4-28, 5-32, 6-29, 7-29,	HP 8593EM, 3-16-30
8-30	HP 8594EM, 3-31-43
sidebands test, 2-23–28	HP 8595EM, 3-44-56
non-harmonic spurious outputs	HP 8596EM, 3-57-70
HP 8591EM, 2-354-359	performance verification test record,
HP 8593EM, 2-360-366	1-9
HP 8594EM, 2-360-366	performance verification tests
HP 8595EM, 2-360-366	10 MHz precision frequency
HP 8596EM, 2-360-366	reference output accuracy,
0	2-5-8
	10 MHz reference output accuracy,
operation verification tests, 1-1	
other input related spurious, 9-10	absolute amplitude accuracy,
other input related spurious responses	2-326-329
test	absolute amplitude calibration and
HP 8591EM, 2-153-156	resolution (IF) bandwidth,
HP 8593EM, 2-157-165	2-83-86
HP 8594EM, 2-165-168	absolute amplitude, vernier, and
HP 8595EM, 2-169-173	power sweep accuracy,
HP 8596EM, 2-174-179	2-322–325
output	calibrator amplitude accuracy,
attenuator, 4-19	2-93-97
attenuator repeatability, 5-22,	CISPR pulse response, 2-385–401
6-20, 7-20, 8-20	comb generator frequency accuracy
flatness, 4-11, 5-12, 6-12, 7-12,	2-9-11
8-12	displayed average noise level,
frequency, 4-11, 5-11, 6-11, 7-11,	2-265–297
8-11	fast time domain sweeps, 2-314-321

frequency readout and marker	probe power, 4-21, 5-24, 6-22, 7-22,
count accuracy, 2-12-22	8-22, 9-16
frequency response, 2-98-152	problems, how to solve, 10-2
frequency span readout accuracy, 2-32–43	Q
gain compression, 2-236–264	quasi-peak detector
harmonic spurious outputs,	characteristics, 9-12
2-346-353	measurement range, 4-15, 5-15,
noise sidebands, 2-23–28	6-15, 7-15, 8-15, 9-13
non-harmonic spurious outputs, 2-354–366	specifications, 4-6, 5-6, 6-6, 7-6, 8-6
other input related spurious	Th.
responses, 2-153–179	R
power sweep range, 2-330–334	radiated immunity, 4-17, 5-19, 6-17,
reference level accuracy, 2-70–82	7-18, 8-18, 9-15
residual FM, 2-44–57	recommended
residual responses, 2-298–313	accessories, 1-13
resolution (IF) bandwidth accuracy	adapters, 1-15
switching uncertainties,	cables, 1-16
2-87-92	test equipment, 1-9, 1-10
scale fidelity, 2-61-69	reference level, 4-8, 5-8, 6-8, 7-8,
spurious response, 2-180-235	8-8, 9-11
sweep time accuracy, 2-58-60	reference level accuracy test
system related sidebands, 2-29-31	HP 8591EM, 2-70-75
tracking generator feedthrough,	HP 8593EM, HP 8594EM, HP
2-367-380	8595EM, and HP 8596EM,
tracking generator level flatness,	2-76-82
2-335–345	relative quasi-peak response to a
tracking generator LO feedthrough	CISPR pulse, 4-6, 5-6, 6-6, 7-6,
amplitude, 2-381–384	8-6, 9-13
periodic testing, 1-10	REMOTE INTERFACE, 4-23, 5-26,
power requirements, 4-2, 5-2, 6-2,	6-24, 7-24, 8-24, 9-18
7-2, 8-2, 9-2	residual FM test
power sweep range	HP 8591EM, 2-44-50
HP 8593EM, 2-330-334	HP 8593EM, HP 8594EM, HP
HP 8594EM, 2-330-334	8595EM, HP 8596EM, 2-51-57
HP 8595EM, 2-330-334	residual responses, 4-8, 5-8, 6-8, 7-8,
HP 8596EM, 2-330-334	8-8, 9-10
precision frequency reference, 4-3,	HP 8591EM, 2-298-302
4-13, 5-3, 5-13, 6-3, 6-13, 7-3,	HP 8593EM, 2-308-313
7-13, 8-3, 8-13, 9-3	HP 8594EM, 2-303-307

HP 8595EM, 2-308-313	sweep ramp input, 9-21
HP 8596EM, 2-308-313	sweep time accuracy test, 2-58-60
resolution (IF) bandwidth accuracy	SWEEP + TUNE OUTPUT, 5-26,
switching uncertainties test,	6-24, 7-24, 8-24
2-87-92	system related sidebands test, 2-29-31
RF filter section dimensions, 9-22	
RF Input SWR, 4-16, 5-16, 6-17, 7-17,	T
8-17	temperature
RF OUT, 4-21, 5-24, 6-22, 7-22, 8-22,	operating, 1-10
9-16	temperature range, 4-2, 5-2, 6-2,
RF output, 9-21	7-2, 8-2, 9-2
RF overload detector, 9-14	test equipment
RF power-off residuals, 4-19, 5-22,	recommended, 1-9, 1-10
6-20, 7-20, 8-20	testing
	prior to, 1-9
\mathbf{S}	test record, 1-9
sales and service offices, 10-7	HP 8591EM, 3-3-15
scale fidelity test, 2-61-69	HP 8593EM, 3-16-30
second harmonic intercept, 9-10	HP 8594EM, 3-31-43
self-calibration routines, 1-10	HP 8595EM, 3-44-56
service bus, 9-21	HP 8596EM, 3-57-70
service, returning for, 10-6	tests
shipping the analyzer, 10-6	10 MHz precision frequency
single band range, 9-3	reference output accuracy,
spurious output, 4-12, 4-19, 5-12,	2-5-8
6-12, 7-12, 8-12	10 MHz reference output accuracy,
spurious responses, 4-7, 5-7, 6-7,	2-2-4
7-7, 8-7	absolute amplitude accuracy,
spurious response test	2-326-329
HP 8591EM, 2-180-186	absolute amplitude calibration and
HP 8593EM, 2-187-200	resolution (IF) bandwidth,
HP 8594EM, 2-201-206	2-83-86
HP 8595EM, 2-207-221	absolute amplitude, vernier, and
HP 8596EM, 2-222-235	power sweep accuracy,
stability, 4-4, 4-13, 5-5, 5-13, 6-4,	2-322-325
6-13, 7-4, 7-13, 8-5, 8-13, 9-5,	calibrator amplitude accuracy,
9-7	2-93-97
support	CISPR pulse response, 2-385-401
FAX, 10-4	comb generator frequency accuracy
SWEEP OUTPUT, 4-23, 5-27, 6-25,	2-9-11
7-25, 8-25, 9-18	deciding which, 1-3

Index-6

displayed average noise level,	output, 9-20
2-265-297	output accuracy, 4-20, 5-23, 6-21,
fast time domain sweeps, 2-314–321	7-21, 8-21
frequency readout and marker	specifications, 4-11, 5-11, 6-11,
count accuracy, 2-12-22	7-11, 8-11
frequency response, 2-98-152	tracking generator feedthrough
frequency span readout accuracy,	HP 8591EM, 2-367-370
2-32-43	HP 8593EM, 2-376-380
gain compression, 2-236–264	HP 8594EM, 2-371-375
harmonic spurious outputs,	HP 8595EM, 2-376-380
2-346-353	HP 8596EM, 2-376-380
noise sidebands, 2-23-28	tracking generator level flatness
non-harmonic spurious outputs,	HP 8591EM, 2-335-338
2-354-366	HP 8593EM, 2-339-345
other input related spurious	HP 8594EM, 2-339-345
responses, 2-153–179	HP 8595EM, 2-339-345
power sweep range, 2-330-334	HP 8596EM, 2-339-345
reference level accuracy, 2-70-82	tracking generator LO feedthrough
residual FM, 2-44–57	amplitude
residual responses, 2-298–313	HP 8593EM, 2-381-384
resolution (IF) bandwidth accuracy	HP 8594EM, 2-381-384
switching uncertainties,	HP 8595EM, 2-381-384
2-87-92	HP 8596EM, 2-381-384
scale fidelity, 2-61-69	troubleshooting, 10-2
spurious response, 2-180–235	TV trigger, 4-19, 5-22, 6-20, 7-20,
sweep time accuracy, 2-58-60	8-20
system related sidebands, 2-29–31	TV TRIG OUT, 4-23, 5-27, 6-25, 7-25,
tracking generator feedthrough,	8-25, 9-18
2-367-380	
tracking generator level flatness,	U
2-335-345	unpeaked frequency response, 5-17,
tracking generator LO feedthrough	7-17, 8-17
amplitude, 2-381-384	
third order intercept, 9-10	\mathbf{W}
tracking drift, 5-22, 6-20, 7-20, 8-20	warm-up, 4-11, 5-11, 6-11, 7-11, 8-11
tracking generator	weight, 4-24, 5-28, 6-25, 7-25, 8-26,
feedthrough, 5-12, 6-12, 7-12, 8-12	9-19, 9-21
input, 9-20	