

ABR Functional Testing

Agilent Technologies Broadband Series Test System

E6287A

Product Features

- Control of ABR parameters for simultaneous source and destination emulation
- ABR traffic generation; user and RM cells up to 149.76 Mb/s
- Ability for source to misbehave
- Use existing BSTS modules to maximize equipment reuse and minimize cost associated with ABR testing
- Comprehensive set of measurements to monitor ABR functionality in real-time
- Compliant to ATM Forum Traffic Management Specification Version 4.0 testing

The Available Bit Rate (ABR) service category is the most complex ATM traffic type yet defined by the ATM Forum. The variety of feedback mechanisms, parameters, rules, and real-time response expectations all combine to make the implementation of ABR on a switch a complex issue.

The Agilent Technologies E6287A ABR Emulator turns the industry-standard Agilent Broadband Series Test System (BSTS) into a powerful and flexible tool to test the complexities of ABR. This solution will allow you to develop and deliver ABR functionality to your customers in the shortest possible time.

In order to be confident in the functionality and reliability of your ABR implementation you can now use the BSTS to monitor switch marking behavior, measure switch reaction times, check the interaction with signalling, and measure the overall Quality of Service (QoS).

The BSTS ABR solution allows you to generate ABR traffic at rates up to 155 Mb/s, decode resource management (RM) cells, and analyze ABR flows. You can setup an SVC ABR connection and test a switch's ability to correctly

negotiate, connect, transport, and clear ABR calls. A range of measurements are available to determine the functional performance of an ABR connection including cell loss, AAL-5 frame error and RM-cell error.

The ABR Emulator works with existing BSTS modules to form part of the complete ABR test solution.

Typical Applications

The BSTS ABR solution is ideal for network equipment manufacturers and service providers who need to test the functional performance of ABR on ATM switches. The Agilent E6287A ABR Emulator can be used with a range of BSTS modules to answer the following questions:

- Can my switch create and support an ABR connection correctly?
- Does my switch cope with misbehaving ABR sources?
- Is my switch able to control ABR sources to avoid congestion?
- Does my switch generate out-of-rate cells when it is supposed to?
- Does my switch mark cells when it is supposed to?
- How long does it take my switch to react to the presence or absence of congestion?
- Does my switch's "Use it or lose it" feature work correctly?

Key Product Features

ABR Emulation

The Agilent E6287A can perform both ABR source and destination behavior for a single ABR connection with complete control over a number of ABR parameters such as MCR, RIF, Nrm, ICR, RDF and ADTF.

ABR Traffic Generation

The BSTS ABR solution allows you to generate ABR traffic at rates up to 149.76 Mb/s including the generation of both forward and backward ABR RM cells.

ABR Decodes

The BSTS ABR solution is capable of decoding ABR traffic using the Agilent E4209A/B Cell Protocol Processor or ATM line interface.

Statistics

The BSTS ABR solution allows you to take a range of measurements to determine the functional attributes of an ABR connection including:

Cell Counts:

· ABR RM cell count

Cell Rates:

- Throughput
- ABR RM cell rate

Cell Ratios:

• Cell loss ratio (CLR)

AAL-5 PDU Count:

- Total AAL-5 PDUs
- Total errored AAL-5 PDUs

Line Utilization:

- Transmit line utilization
- Receive line utilization

Applicable Standards

The BSTS ABR solution complies with:

- ATM Forum's Traffic Management Specification Version 4.0, April 1996
- ITU-T Recommendation I.371.

ABR Flow Control Mechanisms Supported

The Agilent E6287A ABR Emulator supports all four varieties of ABR flow control mechanisms as defined by ATM Forum Traffic Management 4.0 specification including:

- EFCI marking
- Relative rate marking
- Explicit rate marking
- VS/VD control

Integrated ATM Forum Traffic Management 4.0 Testing

To complete a comprehensive TM 4.0 conformance test you will need to emulate various scenarios that specify a range of services running over CBR, VBR, UBR and ABR

connections. The ABR Emulator can be used in conjunction with the Agilent E4209B Cell Protocol Processor to provide a stimulus/response ATM traffic solution for the other service categories including CBR, VBR, and UBR.

Investment Protection

The BSTS ABR solution leverages off the functionality of existing BSTS modules protecting your current investment in the BSTS. Leveraging off commonly used modules such as the Agilent E4209A/B Cell Protocol Processor or Agilent E4214B UNI4.0Signalling Test Software provides you with a low cost solution for testing the complexities of ABR with minimal incremental cost. Additional modules that can be used with the Agilent E6287A ABR Emulator include:

- Any existing BSTS ATM Line Interfaces from 1.5 Mb/s to 622 Mb/s
- Agilent E4209B Cell Protocol Processor (CPP)
- Agilent E4214B UNI Signalling Test Software
- Agilent E4223A Policing and Traffic Characterization Test Software

ABR Testing Solution Note

ABR Technology Overview and Testing Challenges, an Agilent application note, is available and can be obtained by contacting your local Agilent sales representative.

This application note provides an overview of ABR technology and some of the challenges faced when testing the complexities of ABR.

Configuration and Use With Other BSTS Modules and Applications

The ABR Emulator works with the following existing BSTS modules in order to form the complete ABR test solution:

- Any existing BSTS ATM Line Interfaces from 1.5 Mb/s to 622 Mb/s
- Agilent E4209B Cell Protocol Processor (CPP)
- Agilent E4214B UNI 4.0 Signalling Test Software
- Agilent E4223A Policing and Traffic Characterization Test Software

Since the Agilent BSTS is a flexible and modular ATM/B-ISDN test platform, you can maximize the return on your test equipment investment by selecting a chassis, line interfaces, dedicated hardware modules, and test software that suit your specific needs. Remember that you can always add extra software or modules at any time.

Warranty & Support Options

Hardware

All BSTS hardware components are warranted for a period of 3 years. Products must be returned to an authorized Agilent service center for service.

Software

Agilent Broadband Series Test System software and firmware products are supplied on transportable media such as disk, CD-ROM or integrated circuits. The warranty covers physical defects in the media, and defective media is replaced at no charge during the warranty period. When installed in an Agilent Broadband Series Test System, the software/firmware media has the same warranty period as the product.

Product Numbers

• E6287A	ABR Emulator
----------	--------------

• **E4200B** BSTS Form-7 Transportable Chassis

• E4210B BSTS Form-13 Mainframe Chassis

• E4209A/B Cell Protocol Processor

• E4214B UNI 4.0 Signalling Test Software

• E4223A Policing and Traffic Characterization Test Software

Technical Specifications

ABR Emulator module

General Characteristics

ABR flow control:

- Emulates ABR source and destination behavior on one channel; can do both simultaneously
- Supports all ABR flow control methods; EFCI, RR, ER, and VS/VD

ABR service class traffic:

- Generates user test cells on one channel; source rate responds to BRM cells
- · Generates FRM and BRM cells as appropriate
- Generates in-rate or out-of-rate RM cells as appropriate

Real-time display of ABR connection status:

Bandwidths for active, available, received RM cells

155 Mb/s cell bus:

 Interworks with BSTS line interface and protocol analysis modules

Connection & Emulation Controls

Emulation (source and destination behavior):

· On (default) or off

In-rate RM and user cell generation:

• Enable (default) or disable

Out-of-rate RM cell generation:

• Enable (default) or disable

Loopback RM cells:

• Enable (default) or disable

Out-of-rate RM Cell Generation

- Up to 10 out-of-rate RM cells/second can be generated (see flow diagram on page 5)
- Has the effect of sharing out-of-rate bandwidth between FRM and BRM cell generation
- Can be disabled if chosen

Real-Time ABR Connection Status

Active:

• Total user cell and RM cell bandwidth generated by the ABR Emulator module (c/s)

Available

 Unused bandwidth available for user and RM cell generation by the ABR Emulator module (c/s)

LCR (Line cell rate):

 Maximum cell rate supported by the selected line interface (c/s)

Received RM:

• Total received RM cell bandwidth (c/s)

ABR Emulation

Emulation Performance

Dependent on the distribution and contents of RM cells and emulation conditions:

- Up to 15,000 RM c/s
- Typically 5000 RM c/s for both FRM and BRM cell processing
- · The user is notified if emulation overload occurs

Source rate adjustment delay:

 \bullet Typically $<\!200~\mu s$ from receipt of BRM cell to adjustment of source rate

Destination loopback delay:

• Typically < 200 μs from receipt of FRM cell to internal queuing of BRM cell for transmission

Global Connection Parameters

ATM cell header: UNI or NNI (default)

- UNI mode: GFC = 0, VPI ≤ 255
- NNI mode: VPI ≤ 4096

Cell rates:

· Specified in c/s (cells per second)

User Test Cell Format continuous 8-cell repeating sequence

Adaptation layer type:

· combined AAL-1 and AAL-5 format

Payload type:

 PTI = user, no congestion; eighth cell indicates the end of the AAL-5 PDU

Cell loss priority:

• CLP = 0 (high priority)

Payload; 8-cell sequence:

- first octet of each cell contains a valid AAL-1 SN/SNP value
- eighth cell contains a valid AAL-5 trailer; UU, CPI, Length, CRC-32
- payload bytes which are not used by the adaptation layer contain an incrementing pattern, starting from 0x00 in each cell

Source Rate Behavior ACR (Allowed Cell Rate)

Start of emulation:

• ACR = ICR (Initial Cell Rate)

During emulation, the ACR responds to BRM cell information:

- ACR ≥ MCR (Minimum Cell Rate)
- ACR ≤ PCR (Peak Cell Rate)

The source rate is always adjusted to the ACR unless source rate override is enabled:

- Source rate may be held at a fixed user-specified value (c/s)
- Source rate may be held at a user-specified percentage of the sampled ACR; [0.01 x ACR] ≤ Source Rate ≤ [10 x ACR]; Source rate cannot exceed LCR

User-configurable ABR **Emulation Parameters**

Initial Cell Rate:

• $0 \le ICR \le PCR$; resolution = 1 c/s

Minimum Cell Rate:

• $0 \le MCR \le PCR$; resolution = 1 c/s

Peak Cell Rate:

- $0 \le PCR \le LCR$; resolution = 1 c/s;
- Note: When the PCR value is reduced, the instrument will automatically reduce ICR, MCR, or ER (if necessary) to ensure they do not exceed **PCR**

Rate Increase Factor:

• RIF = 2^n ; n = -15 to 0

Rate Decrease Factor:

• RDF = 2^n ; n = -15 to 0

FRM cell spacing:

• Nrm = 2^n ; n = 1 to 8

ACR Time Decrease Factor:

• $0.01 \text{ s} \le \text{ATDF} \le 10.23 \text{ s}$; resolution = 0.01 s

ABR Source Behavior

FRM Cell Fields

 Controlled during emulation

Current Cell Rate:

• CCR = sampled ACR value; determined from received BRM cells

Sequence Number:

• SN = incrementing, mod 2³²

Error Check Field:

• CRC-10 = valid

Cell Loss Priority:

- CLP = 0 (in-rate RM cells)
- CLP = 1 (out-of-rate RM cells)

FRM Cell Fields

• Static during emulation

Protocol ID:

• ID = 1 Direction:

• DIR = 0

BECN cell indicator:

• BN = 0;

Congestion Indicator:

• CI = 0

No Increase indicator:

• NI = 0 or1, as set by user

Request/Acknowledge:

• RA = 0

Explicit Rate:

• ER = value (c/s), as set by user

Minimum Cell Rate:

• MCR = value (c/s), as set by user

Queue Lenath:

• QL = 0

All Reserved octets:

• Res = 0

ABR Destination Behavior

General Characteristics

. On receiving a FRM cell, a BRM cell is sent at the earliest in-rate (CLP = 0) or out-of-rate (CLP = 1) opportunity

Backward RM Cell Fields

• Note: unchanged means the destination copies the value from the received FRM cell into the BRM cell

Cell Loss Priority:

• CLP = unchanged

Protocol ID:

• ID = 1

Direction:

• DIR = 1

BECN cell indicator:

• BN = 0

Congestion Indicator:

- If a forward user cell with EFCI is received, CI = 1, otherwise CI = unchanged
- Note: The user can force CI = 1

No Increase indicator:

- NI = unchanged
- Note: The user can force NI = 1

Request/Acknowledge:

• RA = 0

Explicit Rate:

• ER = value (c/s), set to the minimum of: the ER value contained in the received FRM cell; or a user-specified value

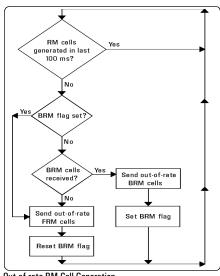
Minimum Cell Rate:

• MCR = unchanged

Current Cell Rate:

• CCR = unchanged

Queue Length:


• QL = unchanged

Sequence Number:

• SN = unchanged

Error Check Field:

• CRC-10 = valid

Out-of-rate RM Cell Generation

Protocol Analysis and Physical Layer Access

155 Mb/s Cell Bus Access to other BSTS modules

 AE: E6287A ABR Emulator Left-hand cell bus is compatible with the following BSTS modules:

- CPP: E4209A or E4209B Cell Protocol Processor with E4212A/B AAL test software and abrExtract conversion utility
- AE: additional E6287A ABR Emulator module Right-hand cell bus is compatible with the following BSTS modules:
- OPT: E6270A OAM Protocol Test module
- NEM: E4219A Network Impairment Emulator Module
- LIF: BSTS Line Interface module; see list below

Typical System Configurations

AE-LIF + AE-LIF

• End-to-end ABR source-to-destination emulation

CPP-AE-LIF

- ABR emulation with ABR flow control analysis:
- E4212A/B AAL test software decodes ABR RM cells
- abrExtract flow control analysis utility converts captured ABR RM cells into a log file that can be viewed graphically

AE-AE-AE-AE-LIF

• Multi-channel ABR testing (up to 4 channels)

AE-NEM-LIF

 ABR source or destination emulation with ATM impairments; test ABR flow control behavior under controlled cell loss conditions

AE-OPT-LIE

 ABR source or destination emulation with insertion of F4/F5 OAM cells; use for testing fault management or performance management

Supported Module Configurations

An ABR test instrument can consist of a maximum of 8 adiacent modules

 Multiple test instruments can operate within the same VXI chassis, under control of the Test Session Manager

Modules can be selected in the order shown below and cascaded from left to right to form a test instrument:

- 0.4 cascaded E4209B CPP modules; a single E4209A module can be substituted for the left-most E4209B module
- 0-4 cascaded AE modules
- 0-4 cascaded OPT modules
- 0-4 cascaded NEM modules
- 0-6 cascaded LIF modules in passthrough mode
- 1 active LIF module

Cell generation priority is from right to left:

- Priority order: LIF, NEM, OPT, AE, CPP
- The active LIF module is the timing master
- Cell opportunities that are not filled by one module can be passed on to modules on the left

Supported Line Interface Modules

SONET/SDH

- E1617A OC-1 optical
- E1612A STS-3c/STM-1 electrical
- E1697A OC-3c/STM-1 optical
- E4203A OC-3c/STM-1 optical
- E1618A Rel 1.1 622 Mb/s Optical Line Interface automatically configured for 155Mb/s cell bus operation

PDH (US)

- E1616A DS1/DS3
- E1695A DS3

PDH (Europe)

- E4201A E1
- E1610A E3

PDH (Japan)

- E1613A J2 electrical
- E1614A J2 optical

Desktop ATM

- E1619B ATM25
- E1698A TAXI
- E4205A 155 Mb/s UTP-5

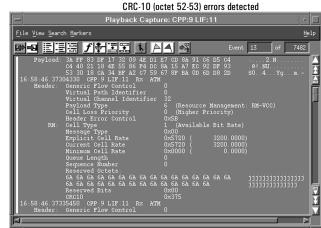
E4212A/B AAL Test Software for the CPP

Decodes captured RM cells

ID (octet 6)

- Message Type (octet 7); hexadecimal value representing:
- DIR (bit 8), BN (bit 7), CI (bit 6), NI (bit 5), RA (bit 4), Res (bits 3-1)

ER (octet 8-9)


CCR (octet 10-11)

MCR (octet 12-13)

QL (octet 14-17)

SN (octet 18-21)

Res (octet 22-51)

RM cell decode

abrExtract Utility

•	_	_	_		ı
u	е	n	е	гa	ı

Processes the CPP capture buffer:

- Extracts ABR flow control information from ABR cells
- Writes statistics to log files which can be viewed graphically, using the BSTS Log File Graphing Tool

Output

- A log file for FRM statistics
- A log file for BRM statistics

User-defined parameters

- VPI/ VCI
- NNI or UNI header format
- n; the maximum number of cells to extract from the CPP capture buffer; default is to extract all cells

Extracted statistics

Congestion Indication:

• the value of the CI bit in the RM cell

No Increase

• the value of the NI bit in the RM cell

Explicit Rate

• the value of the ER field in the RM cell

Current Cell Rate

• the value of the CCR field in the RM cell

Queue Length

• the value of the QL field in the RM cell

Sequence Number

 $\bullet \hspace{0.4cm}$ the value of the SN field in the RM cell

Minimum Cell Rate

• the value of the MCR field in the RM cell

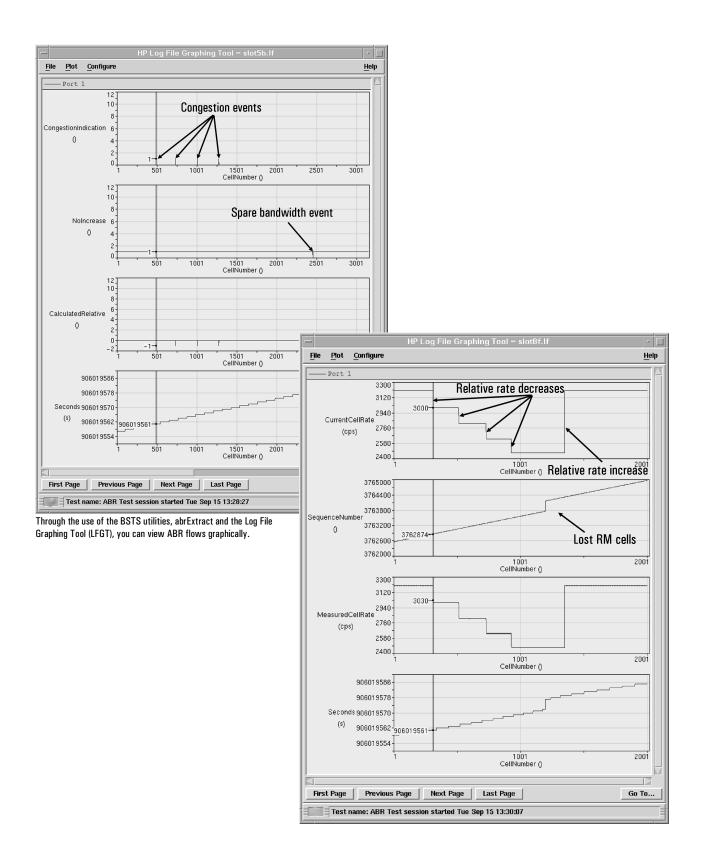
RM cell arrival time; used for correlation across multiple log files

- **Seconds**: the *seconds* portion of the RM cell capture timestamp
- Nanoseconds: the nanoseconds portion of the RM cell capture timestamp

Derived Statistics

Measured Cell Rate; gives an indication of the instantaneous cell rate:

measured cell rate = $N_{user} / (t_{RM2} - t_{RM1})$


- where N_{user} is the number of user cells, matching the specified VPI/VCI, and occurring between two RM cells:
- $t_{RM1} \ \& \ t_{RM2}$ are the capture timestamps of the two RM cells

Interarrival Time

• the time between two successive RM cells

Relative Rate Movement (RRM); based on the CI & NI bit values; RRM =

- +1; indicates a relative rate increase
- 0; indicates no change
- -1; indicates a relative rate decrease

Mechanical Specifications

Size and Weight

Size	• 1 slot C-size VXI card
Weight	• 1.3 kg (2.9 lb) nominal

Front Panel LED Indicators

Tx	 On for 50 ms each time an ATM cell on an enabled connection is transmitted (forwarded to the LIF module)
Rx	 On for 50 ms each time an ATM cell on an enabled connection is received (forwarded from the LIF module)

Environmental Operation Conditions

Operating Temperature	•	0°C to 55°C
Storage Temperature	•	-40°C to 70°C
Humidity	•	0% to 95% relative humidity from 25°C to 40°C

Applicable Standards

ABR Functions

- ITU-T I.371 Traffic Control and Congestion Control in B-ISDN, October 1996
- ATM Forum Traffic Management Specification TM4.0, April 1996

Acronyms

AAL ATM Adaptation Layer
ABR Available Bit Rate
ACR Allowed Cell Rate

AE Agilent E6287A ABR Emulator module

ASP Agilent E1609A 0-622 Mb/s ATM Stream Processor

ATDF ACR Time Decrease Factor

BN Backward Explicit Congestion Notification cell indicator (RM cell)

BRM Backward Resource Management

CBR Constant Bit Rate

CI Congestion Indicator (RM cell)

CLP Cell Loss Priority

CPI Common Part Indicator (AAL-5)

CPP Agilent E4209A or E4209B Cell Protocol Processor

DIR Direction (RM cell)

EFCI Explicit Forward Congestion Indication

ER Explicit Rate

FRM Forward Resource Management

ICR Initial Cell Rate
ID Protocol ID (RM cell)
LCR Line Cell Rate

LIF BSTS Line Interface module

MCR Minimum Cell Rate

NEM Agilent E4219A Network Impairment Emulator Module

NI No Increase indicator (RM cell)

Nrm FRM cell spacing

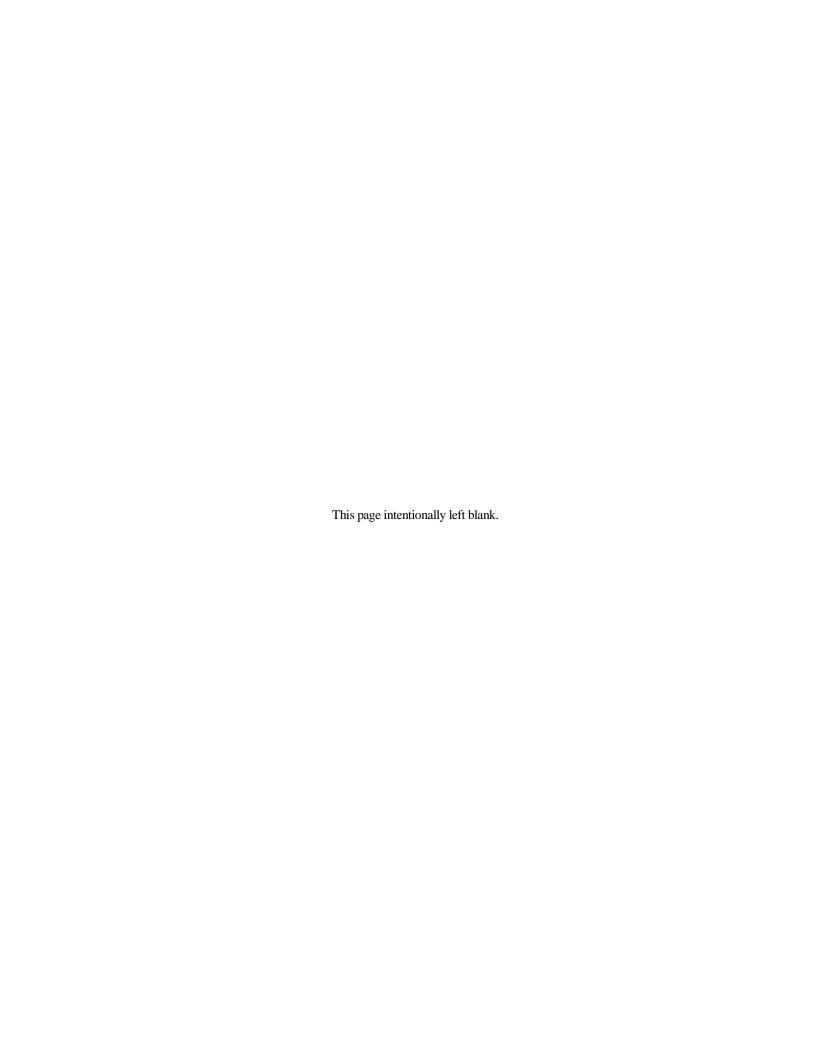
OPT E6270A OAM Protocol Test module

PCR Peak Cell Rate
PTI Payload Type Indicator
QL Queue Length (RM cell)
RA Request/Acknowledge (RM cell)

RDF Rate Decrease Factor
RIF Rate Increase Factor

RM Resource Management (forward and backward)

RR Relative Rate


SN/SNP Sequence Number/ Sequence Number Protection (AAL-1)

UBR Unspecified Bit Rate

UU User-to-User Indication (AAL-5)

VBR Variable Bit Rate

VS/VD Virtual Source/ Virtual Destination

Agilent Technologies Broadband Series Test System

The Agilent Technologies BSTS is the industry-standard ATM/BISDN test system for R&D engineering, product development, field trials and QA testing. The latest leading edge, innovative solutions help you lead the fast-packet revolution and reshape tomorrow's networks. It offers a wide range of applications:

- ATM traffic management and signalling
- Packet over SONET/SDH (POS)
- switch/router interworking and performance
- third generation wireless tesing
- complete, automated conformance testing

The BSTS is modular to grow with your testing needs. Because we build all BSTS products without shortcuts according to full specifications, you'll catch problems other test equipment may not detect.

www.Agilent.com/comms/BSTS

United States:

Agilent Technologies Test and Measurement Call Center P.O. Box 4026 Englewood, CO 80155-4026 1-800-452-4844

Canada:

Agilent Technologies Canada Inc. 5150 Spectrum Way Mississauga, Ontario L4W 5G1 1-877-894-4414

Europe:

Agilent Technologies European Marketing Organisation P.O. Box 999 1180 AZ Amstelveen The Netherlands (31 20) 547-9999

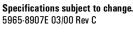
Japan:

Agilent Technologies Japan Ltd. Measurement Assistance Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192-8510, Japan Tel: (81) 426-56-7832 Fax: (81) 426-56-7840

Latin America:

Agilent Technologies Latin American Region Headquarters 5200 Blue Lagoon Drive, Suite #950 Miami, Florida 33126 U.S.A. Tel: (305) 267-4245 Fax: (305) 267-4286

Asia Pacific:


Agilent Technologies 19/F, Cityplaza One, 1111 King's Road, Taikoo Shing, Hong Kong, SAR Tel: (852) 2599-7889 Fax: (852) 2506-9233

Australia/New Zealand:

Agilent Technologies Australia Pty Ltd 347 Burwood Highway Forest Hill, Victoria 3131 Tel: 1-800-629-485 (Australia) Fax: (61-3) 9272-0749 Tel: 0-800-738-378 (New Zealand)

Fax: (64-4) 802-6881

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited. Copyright © 2000 Agilent Technologies

