

Multiport UNI Signalling Performance Test Solution

Agilent Technologies Broadband Series Test System

E1600A, E1601A, E1602A Multiport, Real-World, Performance Test

Agilent E4210B Broadband Series Test System with five Agilent E1600A UNI Signalling Multiport Test modules installed.

The Agilent Technologies E1600A Multiport UNI Signalling Performance test solution generates real-world signalling traffic at high rates and provides continuous real-time measurements across multiple ports. Your Agilent Broadband Series Test System equipped with this solution becomes a powerful tool for determining the signalling capabilities of an ATM switch or network, quickly, easily and reliably.

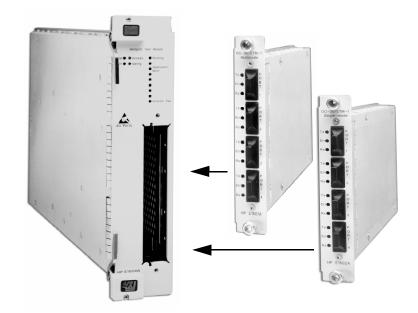
Through the specification of the call attempt rate, call duration,

source and destination addresses, and SETUP parameters you are able to simulate, in a controlled and deterministic fashion, real-world signalling conditions.

An extensive set of measurements and events are provided to allow you to determine the performance of the system under test. All measurements are made in a continuous and real-time fashion to ensure that a reliable and accurate picture of the switch's ATM signalling performance can be made.

Multiport Testing

- Configure up to 5 modules (20 ports) in a single integrated test system
- Generate realistic SVC call generation profiles up to a total of 9,000,000 busy hour calls at 2,500 calls/s per system
- Maintain up to 125,000 simultaneous active connections per system
- Stress the Connection Admission Control function with high call volumes and control over traffic contract parameters
- Measure time-correlated SVC call statistics on all ports simultaneously
- Capture, decode and display interleaved, multiport signalling and ILMI PDU captures


Performance Benchmarking

- Maximum active call capacity
- Ratio of accepted, rejected, cleared and unreleased calls to outgoing call attempts
- Ratio of received, accepted, rejected and cleared calls to incoming call attempts
- Distribution of clearing causes for incoming and outgoing call attempts
- Variation of SVC setup and teardown times versus call attempt rates and active call levels

Test Automation

- User Programming Environment simplifies regression test development and ensures repeatability
- Users can integrate their own scripts into test configurations

The Agilent E1601A or Agilent E1602A plug into the Agilent E1600A Multiport Test Module to provide four full-duplex OC-3c connections.

Typical Applications

The solution is ideal for network equipment manufacturers to:

- characterize switch signalling performance
- verify signalling performance targets
- maximize and fine tune switch signalling performance
- differentiate switch capabilities against the competition based on signalling performance
- provide concrete, real-world performance data in order to generate independently verified product performance figures

The solution is also ideal for service providers who need to:

- independently verify signalling performance claims by manufacturers
- independently evaluate the signalling performance of switches under specific load conditions
- decide which switch to use for a specific application or role
- characterize and tune network performance
- guarantee network performance and reliability

Product Components

The Agilent Multiport UNI Signalling Performance Test solution requires a BSTS base and consists of three components:

- Agilent E1600A Multiport Test Module — a dual slot VXI module that provides the core load generation and measurement hardware and incorporates the UNI signalling performance test software.
- Agilent E1601A Quad OC-3c/STM-1 Multimode Port Adapter — This plugs into the Multiport Test Module and provides four full-duplex OC-3c connections.
- Agilent E1602A Quad OC-3c/STM-1 Single-mode Port Adapter— This plugs into the Multiport Test Module and provides four full-duplex OC-3c connections

Key Features

High Performance

- Generates signalling load up to 750 call setups, or 500 call setups and teardowns per second per module
- On a single module the test load can be flexibly distributed from one through to all four ports
- Generates up to 25,000 simultaneous active calls per module
- Up to 5 modules per system

Real-World Testing

- Up to 20 ports in one system to simulate a large number of UNI interfaces
- Generates constant, stepped or random-burst call initiation profiles
- Generates calls with fixed, random or infinite call durations
- Sequential or random end-station address selection

E1600A, E1601A, E1602A

UNI Standards

- Supports ATM Forum UNI 3.0, 3.1, and 4.0
- ILMI for address registration and polling
- Point-to-point connections

Performance Statistics

- Detects and collects signalling errors and events in real-time
- Calls successfully established, calls attempted, calls active, calls outstanding, calls rejected
- Minimum, maximum, average call setup time
- Minimum, maximum, average call teardown time
- RELEASE cause distribution
- Signalling protocol error monitoring
- Physical, ATM and AAL alarm and error monitoring

Correlated Measurements

- Tests running across up to 20 ports can be started at the touch of a button
- Measurements, PDU capture and events are synchronised across all ports and logged with a common timestamp

Programmability

- C based API for test automation
- Statistics logged to disk in ASCII format for easy post-test analysis
- Session and module configuration save and restore
- User-definable script invoked at end of test to allow for easy integration into existing regression test system
- User-configurable pass/fail indication integrated into standard GUI

Investment Protection

- Cost effective port adapters mean that you do not need to replace the whole module when connecting to a different physical layer
- Integrates into existing BSTS systems. You do not need to buy a new system

- Consistent with existing BSTS GUI and system
- Complete functional, conformance, and now, performance testing in the one system

Scaleability

 Seamless scaleability of the test system means that you are able to match the performance increases of the SUT over time

Configuration and Use with Other BSTS Line Interfaces, Hardware Modules and Test Software

Minimum BSTS system requirements

- Agilent E4200B or Agilent E4210B with V743 PA-RISC Controller with 32 MB memory and a minimum of a 2 GB hard drive
- HP-UX 10.20 operating system

Note

 The Agilent E4200B (five user slots) supports a maximum of two Agilent E1600A Multiport Test Modules. The Agilent E4210B (11 user slots) supports a maximum of five Multiport Test Modules. Multiport Test Modules and CPP/LIF combinations can operate in the same chassis.

Warranty and Support Options

Hardware

All BSTS hardware components are warranted for a period of three years. Products must be returned to an authorized Agilent service center for service. At the time of purchase, you may select warranty option W01, a no-charge option which converts the standard three year return to Agilent warranty to a one year on-site warranty.

Software

Agilent Broadband Series Test System software and firmware products are supplied on transportable media such as diskette, CD-ROM or integrated circuits. The warranty covers physical defects in the media, and defective media is replaced at no charge during the warranty period. When installed in an Agilent Broadband Series Test System, the software/firmware media has the same warranty period as the product.

Product Numbers

• E1600A

• E4210B

LIUUUA	Performance Test software
• E1601A	Quad OC-3c/STM-1 Multimode Port Adapter
• E1602A	Quad OC-3c/STM-1 Single-mode Port Adapter
• E4200B	BSTS Form-7 Transportable Base

BSTS Form-13 Mainframe Base

Multiport Test Module incorporating LIMI Signalling

Agilent E1600A Multiport Test Module Incorporating the UNI Signalling Performance Test Software

Introduction

The UNI signalling performance test application provides "real world" signalling load generation and signalling performance analysis on the Agilent Broadband Series Test System.

Performance

The module's performance can be focused on a single port or distributed arbitrarily across all ports of the port adapter.

Signalling Performance

Call establishments	 750 (calls/s) (setup, connect, conn_ack)
Cyclic calls	500 (calls/s) (setup, connect, conn_ack, release, rel_complete)
Simultaneously active calls	• 25,000

Signalling Parameters

Module-wide

Signalling channels per port	• 1
Supported Protocols	ATM Forum UNI 3.0
	ATM Forum UNI 3.1
	ATM Forum UNI 4.0
Protocol Timers	• T301 T302 T303 T304 T308 T309
	• T310 T313 T316 T317 T322 T331
	• T397 T398 T399
Automatic L3 RESTART generation	Enable/disable

Per Port

Signalling VP/VC	• Full VPI/VCI range (default = 0/5)
Peak Cell Rate (PCR)	• 0.02% to100% of line rate
Address formats	E.164 native
	NSAP DCC
	NSAP ICI
	 NSAP E.164

Local Ports Address Specification

A unique ATM address must be assigned to each port so that they can act as endpoints in ATM signalling dialogs. Both Manual and ILMI address assignment is supported.

Manual Address Assignment

User defined	 Enter a complete ATM address for each port
Random	The annlication randomly assigns addresses

ILMI Address Assignment

User defined • Enter the user part

ILMI Address Assignment

Random • The application randomly assigns the user part

ILMI Configuration

ILMI channels per port	• 1
VP/VC	• Full VPI/VCI range (default = 0/16)
Keep Alive protocol	Automatically supported
Coldstart	Can be manually generated on a per port basis

Destination Address Specification

The user can specify the set of destination addresses and call sequence for call initiation on each port.

Generated Call Mix

Call type	Point-to-Point
Destinations per port	• 128
Call sequencing	Sequential
	 Random

Signalling Load

Call Initiation Profile

Constant	 Rate (calls/s)
Stepped	Initial rate (calls/s)
	 Step size (calls/s)
	 Step duration (s)
	 Final rate (calls/s)
Random Burst	Minimum rate (calls/s)
	 Maximum rate (calls/s)
	 Minimum duration (s)
	 Maximum duration (s)
	 Minimum gap (s)
	Maximum gap (s)

Call Duration

Fixed	All calls are held active for the same duration as specified by the user
	 Range 1 s to 12 hrs. Default is 10 s.
Random	 Calls are held active for a random duration (within the specified min. and max.)
	 Min. and max. range is 1 s to 12 hrs. Min. default is 10 s. Max. default is 60 s.
Infinite	Calls remain active until cleared externally or a RESTART occurs

SETUP Message Customization

For each port users can specify the contents of the SETUP message.

Information Elements

Configurable via GUI

- ATM Traffic Descriptor
- · Broadband Bearer Capability
- QoS Parameters

Information Elements

Configurable via file

- AAL Parameters
- Broadband Higher Layer Information
- Broadband Lower Layer Information
- Called Party Subaddress
- Calling Party Subaddress
- Broadband Sending Complete
- Transit Network Selection
- End to End Transit Delay

Additional Module-wide Parameters

Test Configuration

Test Description	 Brief description of the configuration that is included in all saved data files to aid identification
Call Attempt Limit	 Limit on the total number of call attempts to be made by the module during a single test. When this limit is reached during a test, call generation activity is halted on all ports
Reference clock	Internal Stratum-3 oscillator
	 Recovered (from the line)
Framing	• STS-3c
	• STM-1

Statistics

Measurements are made port by port and collected on a per second basis

Measurement Types

Current	Current (last measurement period)
(Cur)	 Final value of a measurement at the end of the last completed one-second measurement interval
Cumulative (Cum)	 Value of a measurement accumulated since the beginning of the current integration period up to the end of the last completed one-second measurement interval
Relative (Rel)	 Value of a measurement at the end of the last completed one-second measurement interval relative to its value at the end of the previous one-second measurement interval
System Group	
Elapsed Time	Total elapsed time since the test was started
PHY Group	
PhyErrSec.Cum	PHY layer errored seconds
ATM Group	
AtmErrSec.Cum	ATM layer errored seconds

AAL Group

Aal5CrcErr.Cum	 AAL5 CRC32 errors detected
Aal5LenErr.Cum	 AAL5 length errors detected
Aal5CpiErr.Cum	 AAL5 CPI errors detected

Signalling - General Group

CallsActive.Cur	 Calls initiated by this module or another party which are in the Active state by the end of the period
AttemptsToGo.Cur	 Call attempts remaining until the use defined call attempt limit is reached and the test terminated
Cleared.Rel	Calls cleared by this module in the
Cleared. Cum	current interval (i.e. transitioned fron the Release_Request state to the Nu state)
ClearPending.Cur	 Calls awaiting clearing confirmation (i.e. in the Release_Request state)
ErrL2Msg.Rel	 SAAL/SSCOP protocol errors due to
ErrL2Msg.Cum	bad or inopportune messages receive in the current interval
ErrL3Msg.Rel	 Signalling protocol errors due to bad of
ErrL3Msg.Cum	inopportune messages received in the current interval
CIrCause.Cum	 Number of times a particular CAUSE value was received in call clearing messages
CirCauseClass.Cum	 Number of times a particular CAUSE class was received in call clearing messages
MinTeardownTime.Cur	Time between entering the
MaxTeardownTime.Cur	Release_Request state and exiting that state as a result of receiving a
AvgTeardownTime.Cur	REL_COMPLETE message
MinTeardownTime.Cum	 Measurements are made to 1 μs resolution
MaxTeardownTime.Cum	
AvgTeardownTime.Cum	

Signalling - Outbound Calls Group

Attempts.Rel Attempts.Cum	 Calls initiated by this module (i.e. attempts to transmit a SETUP) in the current interval 		
Connected.Rel Connected.Cum	Calls initiated by this module which are established in the current interval (i.e.transitions from either the Call_Initiated or the Outgoing_Call_Proceeding states to the Active state)		
Failed.Rel Failed.Cum	 Pending calls that timed out (T303 or T310) prior to being connected 		

Signalling - Outbound Calls Group

Initiated.Rel Initiated.Cum	 SETUPs actually launched in the current interval (i.e. number of transitions into the Call_Initiated state)
Pending.Cur	 Calls in either the Call_Initiated or the Outgoing_Call_Proceeding states at the end of the interval
Rejected.Rel	 Pending calls cleared prior to being
Rejected.Cum	successfully established (i.e. received RELEASE prior to CONNECT)
LastConnectTime.Cur	 Time between sending the first SETUP and the most recently received CONNECT
	 Measurements made to 1 ms resolution
MinSetupTime.Cur	Time between entering the
MaxSetupTime.Cur	Call_Initiated state and entering the Active state
AvgSetupTime.Cur	Measurements made to 1µs resolution
MinSetupTime.Cum	
MaxSetupTime.Cum	
AvgSetupTime.Cum	

Signalling - Inbound Calls Group

Accepted.Rel Accepted.Cum	 Inbound calls accepted (i.e. transitions into Active state) in the current interval
InPending.Cur	 Calls in the any of the Call_Present, Incoming_Call_Proceeding or the Connect_Request states at the end of the interval
Received.Rel Received.Cum	 Valid SETUPs received in the current interval (i.e. transitions into the InPending state)
InRejected.Rel InRejected.Cum	 Pending calls cleared prior to being successfully established (i.e. sent RELEASE or RELEASE_COMPLETE rather than CONNECT)

Events

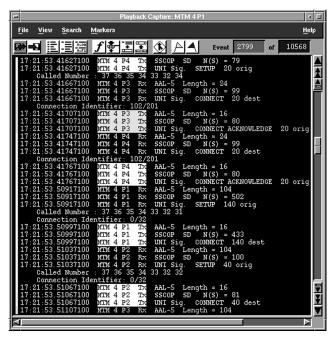
Asynchronously occurring events can be selected for logging.

Event Data

Timestamp	 Accurate to one millisecond
Port number	 Identifies the event's source port
Identifier	Uniquely identifies the type of event
Parameter	Integer parameter

Loggable Events

	System Control Group	Test started
		Test stopped
		Post-test script started
		Post-test script completed
		Post-test script aborted
		Test call attempts limit reached
		Call attempt rate set to N
		Cells discarded
Ī	System Errors Group	Module out of buffers
		Statistics logfile full
		Event logfile full
		Module call initiation limit reached
		Module open call limit reached
		Missed events
		Missed measurement updates
	ILMI Group	ILMI Coldstart initiated
		ILMI errored second
	L2 Group	• L2 link up
		• L2 link down
		• L2 protocol errored second
	L3 Group	L3 protocol errored second
_		L3 RESTART initiated
	Physical Group	Transmitter (on/off)
		Receiver alarm (on/off)


Logging

Measurements and events from the system are logged on a per port basis to user specified files on the controller. These results are saved in ASCII format suitable for importing into post-analysis packages such as spreadsheet, database or graphing tools.

The user can configure the maximum size of the logfiles and specify which statistics and events to \log .

Pass/Fail Analysis

The user can specify a command that is invoked once the test has completed. The command can analyze the test results and return a pass or fail indication to the application. The pass/fail outcome is displayed in the GUI.

Integrated Playback Capture Viewer.

Module Control

The user is able to invoke the following asynchronous actions on a port-by-port basis either before, during or after a test.

Port Actions

Abort Pass/Fail command	 Abort the pass/fail command that is invoked on completion of the test
ILMI Coldstart	Generate an ILMI Coldstart
Layer 3 RESTART	Generate a Layer 3 RESTART
Layer 2 Establish/Release	Establish or Release the Layer 2 logical link
Transmitter On or Off	Turn the transmitter on or off on the port adapter

Capture/Decode

Capture depth	 20,000 PDUs total across all ports
Capture channels	 Signalling and ILMI on each port
Timestamp accuracy	• 100 μs
Controls	 Enable/Disable capture per port
	 Start/Stop/Clear/View
Decode	 AAL-5, SSCOP, ILMI, UNI 3.0/3.1/4.0

UPE C-Library

The user can control the module through an application running on the system controller.

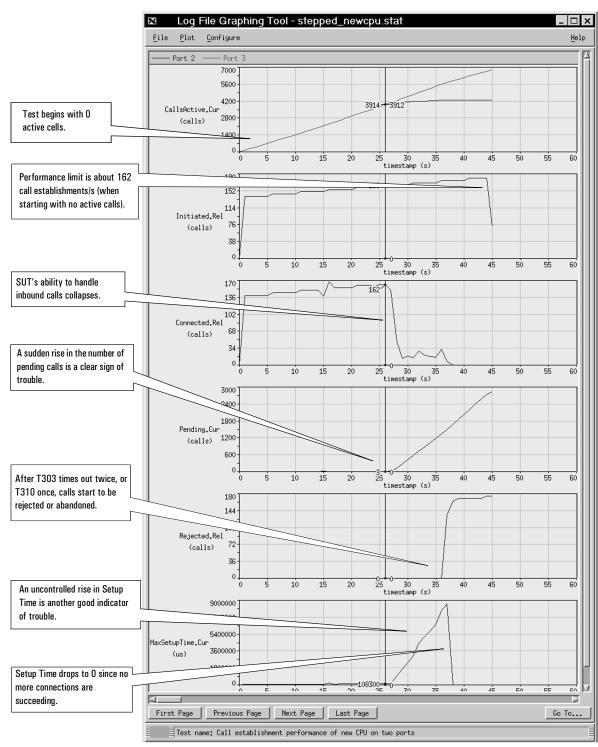
Application Specific UPE Functions

Configuration • Load configuration from a named file

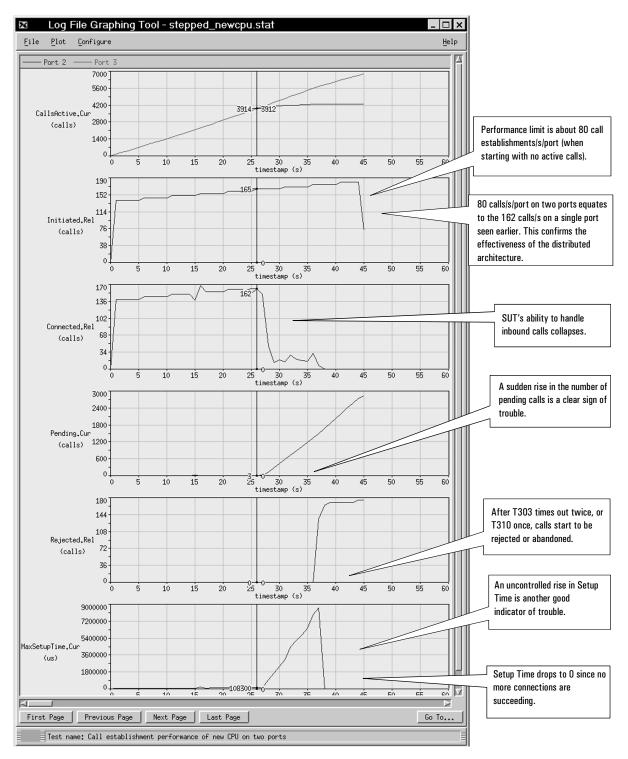
• Register addresses (via ILMI)

Application Specific UPE Functions

Status	Get Adapter type
	 Get Adapter port status
	 Get L2 status
	Get L3 status
	 Get ILMI status
	 Get Test status
Control	• Start
	 Stop
	• Establish L2
	Release L2
	 Generate L3 RESTART
	 Generate ILMI coldstart
	 Transmitter On/Off
Results	 Save test summary results to a named file.


Physical Specifications

Dimensions


Size (H x W x D)	• 260 x 60 x 365 mm
	 Dual slot VXI C-size module
	•
Weight	• 2.2 kg

Environmental

Operating Temperature	• 5 to 45 °C	
Storage Temperature	 - 40 to 65 °C 	
Humidity	• 10% to 90% (non-condensing)	

Dual port test: unidirectional call establishment only (Port 3 calling Port 2).

Quad port test: unidirectional call establishment only (Port 1 calling Port 3, Port 2 calling Port 4).

Agilent E1601A Quad OC-3c/STM-1 Multimode Port Adapter

Description

The Agilent E1601A Quad OC-3c/STM-1 Multimode Port Adapter provides basic physical layer connectivity for the Agilent E1600A Multiport Test Module. The port adapter plugs into the Multiport Test Module.

The port adapter provides SONET/SDH framing for the ATM cells generated in the transmit direction. The Synchronous Payload Envelope is aligned to a fixed pointer value, Section, Line and Path BIPs are calculated, the frame synchronous scrambler pattern is applied and the framing pattern is inserted.

In the receive direction frame alignment is achieved using the A1A2 framing pattern. Descrambling is applied. Pointer processing is carried out in order to align to the Synchronous Payload Envelope. If present, ATM cells are then extracted, descrambled and passed to the Multiport Test Module.

General

The interface provided by the port adapter complies with the ATM Forum UNI 3.1 Specification.

Input and Output

Ports

Connector

Style	Full Duplex
Optical Receiver	
Input	 1300 nm multimode PIN photodetector as per ANSI T1E1.2 (Multimode T_B Interface)
Sensitivity	• - 30 dBm (average)
Maximum Innut Power	• - 14 dRm (average)

• Duplex SC

Optical Transmitter

Output	 1300 nm multimode LED as per ANSI T1E1.2 (Multimode T_B Interface)
Average Launch Power	• -14 to - 20 dBm
Connector	Duplex SC
Safety	Complies with EN60825

LED Status Indicators

Transmitter active	Red LED indicating that the transmitter is active
Signal	 Green LED indicating a compliant input is being received
Error	 Yellow LED indicating an error or alarm is being received

Operating Modes

Full Duplex	
(Terminal mode)	

• Independent transmitter and receiver operation

Timing Modes

Timing source

Internal	Internal Stratum 3 oscillator
Rx Recovered (default)	Each port's transmit clock is derived from the received signal of that port

Formats

Framing Formats

SONET	 STS-3c as per ANSI T1.105.00, and Bellcore GR-CORE-253
SDH	 STM-1 as per ITU-T G.707

Scrambling

SONET	•	Frame synchronous scrambler as per Bellcore GR-CORE-253 and ITU-T G.707
SDH	•	Self Synchronizing Scrambler (SSS) as per ITU-T Rec I.432

Overhead Data

SONET/SDH Overhead Generation

SONET	 STS-3c as per ANSI T1.105.00, and Bellcore GR-CORE-253
SDH	• STM-1 as per ITU-T G.707

Alarm and Error Generation

SONET/SDH Alarm Control

Loss of Signal	 On/off
RDI-L/MS-RDI	 Generated automatically when AIS-L/MS-AIS or incoming section defect detected
REI-L/MS-REI	Generated automatically from B2 error count
RDI-P/P-RDI	 Generated automatically when incoming VC server or trailer signal failure detected or when LOCA occurs
REI-P/P-REI	Generated automatically from B3 error count

Alarm and Error Detection

SONET/SDH Measurements

Physical Alarm • Errored second

The Physical Alarm is a summation of the following SONET/SDH and ATM conditions. If any one of these conditions occur then the physical alarm is indicated.

Alarm conditions

BIP Errors	Section/RS-BIP errors detected
	 Line/MS-BIP errors detected
	 Path BIP errors detected
LOS (alarm)	Loss of Signal
LOF (alarm)	Loss of Frame
OOF (error)	Out of Frame
Line-AIS/MS-AIS (alarm)	SONET: Line-AIS condition detected
	 SDH: MS-AIS condition detected
Line-RDI/MS-RDI (alarm)	SONET: Line-RDI condition detected
	 SDH: MS-RDI condition detected
LOP (alarm)	Loss of pointer synchronization
Path AIS (alarm)	Path AIS condition detected
Path-RDI (alarm)	Path RDI condition detected
LOCA (alarm)	Loss of Cell Alignment
HEC Error	Header Error Control error (multi-bit)

Safety and EMC

The port adapter complies with the EN60825-1, EN61010-1, EN55011 and EN50082-1 safety and EMC standards.

Physical Specifications

Dimensions

Size (H x W x D)	• 160 x 26 x 235 mm
	 Plugs into an Agilent E1600A module
Weight	• 0.45 kg

Environmental

Operating Temperature	• 5 to 45 °C
Storage Temperature	 - 40 to 70 °C
Humidity	 10% to 90% (non-condensing)

Agilent E1602A Quad OC-3c/STM-1 Single-mode Port Adapter

Description

The Agilent E1602A Quad OC-3c/STM-1 Single-mode Port Adapter provides basic physical layer connectivity for the Agilent E1600A Multiport Test Module. The port adapter plugs into the Multiport Test Module.

The port adapter provides SONET/SDH framing for the ATM cells generated in the transmit direction. The Synchronous Payload Envelope is aligned to a fixed pointer value, Section, Line and Path BIPs are calculated, the frame synchronous scrambler pattern is applied and the framing pattern is inserted.

In the receive direction frame alignment is achieved using the A1A2 framing pattern. Descrambling is applied. Pointer processing is carried out in order to align to the Synchronous Payload Envelope. If present, ATM cells are then extracted, descrambled and passed to the Multiport Test Module.

General

The interface provided by the port adapter complies with the ATM Forum UNI 3.1 Specification.

• 4

• Full Duplex

• Duplex SC

Input and Output

Ports

Number

Connector

Style

Optical Receiver		
	Input	 1300 nm PIN photodetector as per ITU-T G.957 (Short Haul), GR-253-CORE (Intermediate Reach), ANSI T1E1.2 (Single-mode U_B and T_B Interfaces)
	Sensitivity	• - 31 dBm (average)
	Max Input Power	-8 dBm (average)

Optical Transmitter

Output	 1300 nm Class 1 laser as per ITU-T G.957 (Short Haul), GR-253-CORE (Intermediate Reach), ANSI T1E1.2 (Single-mode U_B and T_B Interfaces)
Average Launch Power	• - 8 to - 15 dBm
Connector	Duplex SC
Safety	 Class 1 laser. Complies with FDA Standard 21 CFR Ch1 and EN60825

LED Status Indicators

Transmitter active	 Red LED indicating that the transmitter is active
Signal	Green LED indicating a compliant input is being received
Error	Yellow LED indicating an error or alarm is being received

Operating Modes

Full Duplex	 Independent transmitter and receiver operation
(Terminal mode)	·

Timing Modes

Timing Source

Internal	 Internal Stratum 3 oscillator
Rx Recovered (default)	 Each port's transmit clock is derived from the received signal of that port

Formats

Framing Formats

SONET	 STS-3c as per ANSI T1.105.00, and Bellcore GR-CORE-253
SDH	 STM-1 as per ITU-T G.707

Scrambling

SONET	 Frame synchronous scrambler as per Bellcore GR-CORE-253 and ITU-T G.707
SDH	 Self Synchronizing Scrambler (SSS) as per ITU-T Rec I 432

Overhead Data

SONET/SDH Overhead Generation

SONET	 STS-3c as per ANSI T1.105.00, and Bellcore GR-CORE-253
SDH	 STM-1 as per ITU-T G.707

Alarms and Error Generation

SONET/SDH Alarm Control

Loss of Signal • On/off

SONET/SDH Alarm Control

RDI-L/MS-RDI	 Generated automatically when AIS-L/MS-AIS or incoming section defect detected
REI-L/MS-REI	 Generated automatically from B2 error count
RDI-P/P-RDI	 Generated automatically when incoming VC server or trailer signal failure detected or when LOCA occurs
RFI-P/P-RFI	Generated automatically from B3 error count

Alarm and Error Detection

SONET/SDH Measurements

Physical Alarm • Errored second

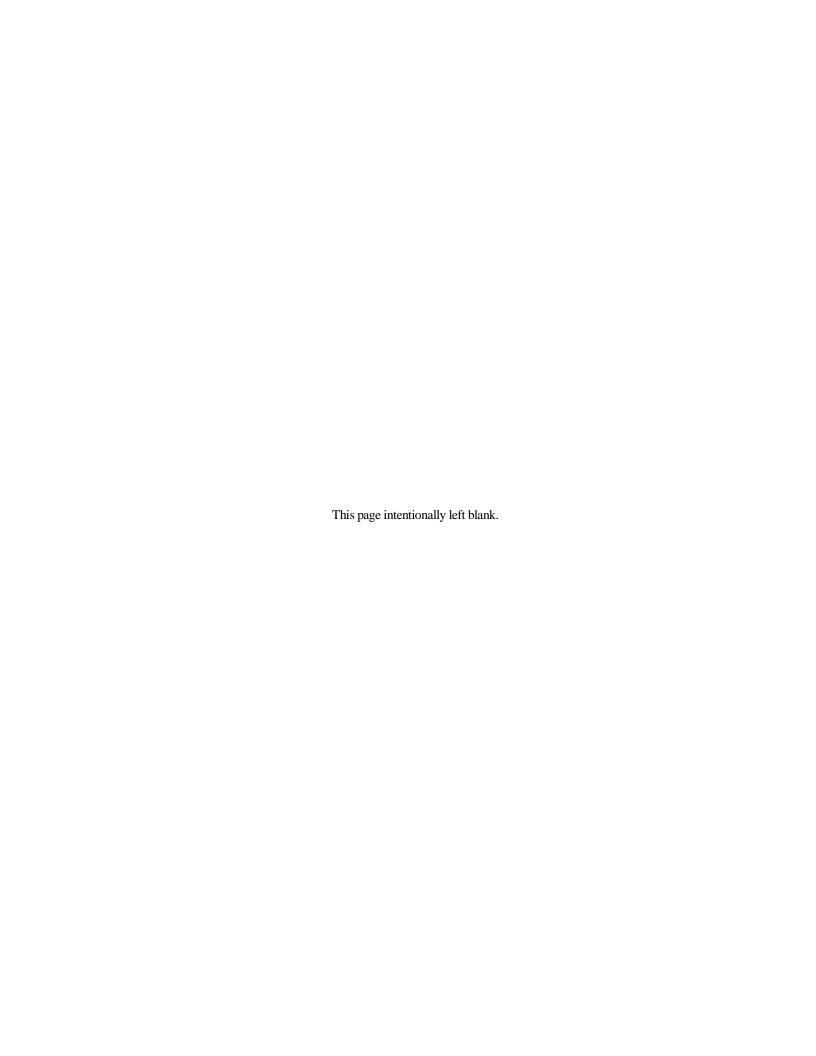
The Physical Alarm is a summation of the following SONET/SDH and ATM conditions. If any one of these conditions occur then the physical alarm is indicated.

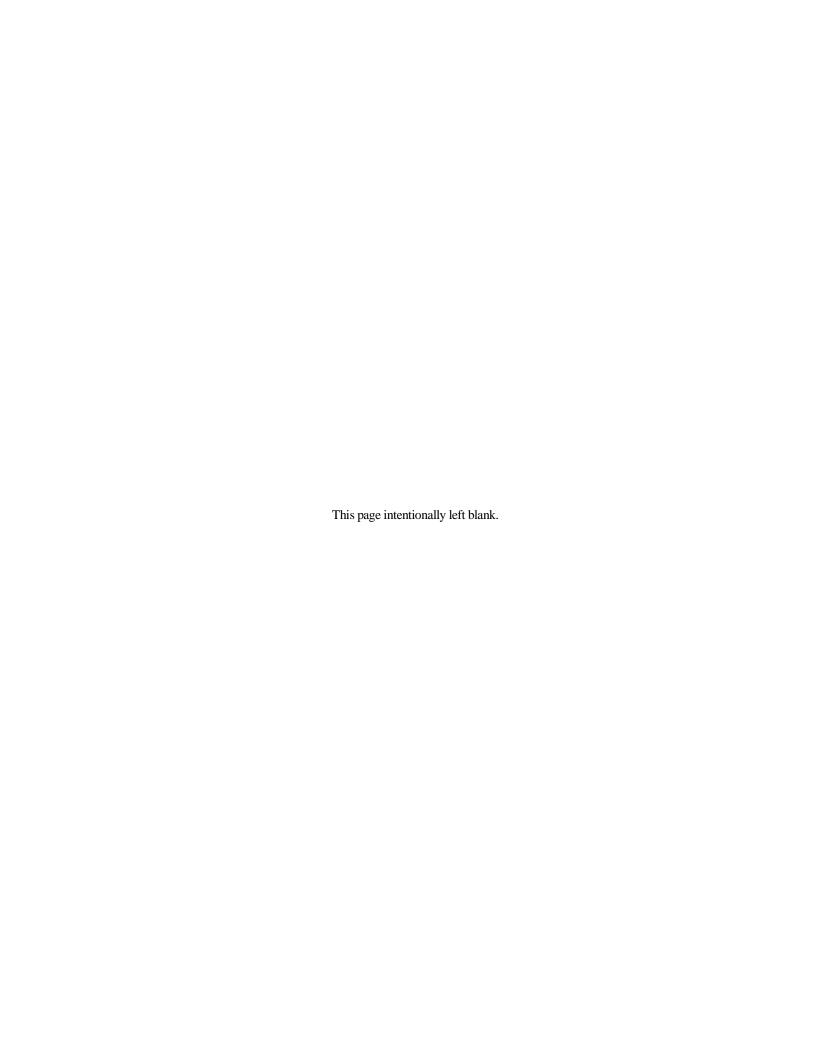
Alarm Conditions

BIP Errors	Section/RS-BIP errors detected
	 Line/MS-BIP errors detected
	 Path BIP errors detected
LOS (alarm)	Loss of Signal
LOF (alarm)	Loss of Frame
OOF (error)	Out of Frame
Line-AIS/MS-AIS (alarm)	SONET: Line-AIS condition detected
	 SDH: MS-AIS condition detected
Line-RDI/MS-RDI (alarm)	SONET: Line-RDI condition detected
	 SDH: MS-RDI condition detected
LOP (alarm)	Loss of pointer synchronization
Path AIS (alarm)	Path AIS condition detected
Path-RDI (alarm)	Path RDI condition detected
LOCA (alarm)	Loss of Cell Alignment
HEC Error	Header Error Control error (multi-bit)

Safety and EMC

The port adapter complies with the EN60825-1, EN61010-1, FDA Standard 21 CRF Ch1, EN55011 and EN50082-1 safety and EMC standards.


Physical Specifications - Agilent E1602A


Dimensions

Size (H x W x D)	• 160 x 26 x 235 mm
	 Plugs into an Agilent E1600A module
Weight	• 0.45 kg

Environmental

Operating Temperature	• 5 to 45 °C
Storage Temperature	• - 40 to 70 °C
Humidity	• 10% to 90% (non-condensing)

Agilent Technologies Broadband Series Test System

The Agilent Technologies BSTS is the industry-standard ATM/BISDN test system for R&D engineering, product development, field trials and QA testing. The latest leading edge, innovative solutions help you lead the fast-packet revolution and reshape tomorrow's networks. It offers a wide range of applications:

- ATM traffic management and signalling
- Packet over SONET/SDH (POS)
- switch/router interworking and performance
- third generation wireless tesing
- complete, automated conformance testing

The BSTS is modular to grow with your testing needs. Because we build all BSTS products without shortcuts according to full specifications, you'll catch problems other test equipment may not detect.

www.Agilent.com/comms/BSTS

United States:

Agilent Technologies Test and Measurement Call Center P.O. Box 4026 Englewood, CO 80155-4026 1-800-452-4844

Canada:

Agilent Technologies Canada Inc. 5150 Spectrum Way Mississauga, Ontario L4W 5G1 1-877-894-4414

5966-1824E 03/00 Rev H

Europe:

Agilent Technologies European Marketing Organisation P.O. Box 999 1180 AZ Amstelveen The Netherlands (31 20) 547-9999

Japan:

Agilent Technologies Japan Ltd. Measurement Assistance Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192-8510, Japan Tel: (81) 426-56-7832 Fax: (81) 426-56-7840

Latin America:

Agilent Technologies Latin American Region Headquarters 5200 Blue Lagoon Drive, Suite #950 Miami, Florida 33126 U.S.A. Tel: (305) 267-4245

Asia Pacific:

Fax: (305) 267-4286

Agilent Technologies 19/F, Cityplaza One, 1111 King's Road, Taikoo Shing, Hong Kong, SAR Tel: (852) 2599-7889 Fax: (852) 2506-9233

Australia/New Zealand:

Agilent Technologies Australia Pty Ltd 347 Burwood Highway Forest Hill, Victoria 3131 Tel: 1-800-629-485 (Australia) Fax: (61-3) 9272-0749 Tel: 0-800-738-378 (New Zealand)

Fax: (64-4) 802-6881

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited. Copyright © 2000 Agilent Technologies Specifications subject to change.

