

Port 10: Packet over SONET/SDH Processor File Capture Memory View Save Capture Size 8 M User Program Capture Size 8 M U

155 Mb/s, 622 Mb/s Packet over SONET/SDH Processor

The Agilent Technologies E1608A Packet over SONET/SDH Processor provides users of the Broadband Series Test System (BSTS) with a tool to evaluate the traffic management characteristics of POS/SDH switch-routers interfaces.

Such characteristics are central to the compliance and interoperability of network hardware.

155 Mb/s, 622 Mb/s Packet over SONET/SDH Processor

Agilent Broadband Series Test System

Agilent E1608A

Product Features

- Complete Layer-2 testing and Layer-2/3 analyzer statistics with total control of transmit payload down to bit level
- Support for HDLC, PPP, MAPOS, and SRP encapsulations with real-time x⁴³ + 1 scrambling and descrambling
- 0-100% transmit & receive bandwidth
- Capture filtering with 32 octet pattern matcher
- Automated connection to device under test using PPP link negotiation & IP address registration
- Native LAN support (encodes and decodes)
- Intensive SONET/SDH testing at OC-3c/STM-1c and OC-12c/STM-4c rate
- Full line rate transmit and receive of IP packets

Key Features

Generation and transmission of IP packets

Off-line configuration utilities allow you to create a POS data file with user-defined encapsulation parameters and variable interframe gaps. Full control down to the octet allows complete testing of Layer-2 POS implementations. This file can be transmitted either once or continually with hardware performing real-time scrambling and SONET/SDH framing.

Capture and analysis of IP packets

On the receive interface, you can perform optional payload descrambling, capturing of POS data using basic triggers or capture filters, and upload the file for off-line analysis. Some of the statistics provided by the off-line analyzer are:

- IP header checksum errors
- IP packet length errors
- · total frames
- frames/sec (packet throughput)

Real-time scrambling/descrambling of SONET/SDH payload

Unique to the BSTS solutions, support for programmable real-time scrambling/descrambling to $X^{43}+1$ of the entire SONET/SDH payload is available as per the latest addendum to RFC 2615 (obsoletes RFC 1619)/1662.

Native LAN Support

The Agilent POS solutions provide full support for the classic LAN protocols including: IP, TCP, UDP and ICMP. An extensive PDU editor is available for each of these protocols which gives access to all protocol fields and automatically highlights protocol errors. In addition, full decode support is provided for over 100 LAN protocols from the following protocol suites:

- TCP/IP
- Microsoft LAN Manager
- Appletalk
- Banyan/VINES
- DECnet
- IBM/SNA
- Xerox/XNS
- Novell/IPX
- ISO
- Sun
- X Windows

POS Functional Testing

Functional Testing of POS Hardware Designs

The following three test examples can be performed to verify correct behavior of the hardware design. The tests require the behavior of the equipment under test to be monitored while it receives packets with different traffic or payload patterns.

 Payload Pattern #1: Send maximum stuffing-ratio traffic

An IP/PPP packet that contains all 7D or 7E octet values will result in a doubling of the payload size after insertion into the HDLC frame. A sequence of such packets will cause maximum stress on the stuffing and de-stuffing circuits.

This payload pattern also tests the effectiveness of the flow control mechanism between the POS line card and the router's egress or ingress buffer.

 Payload Pattern #2: Vary the inter-frame gap by octet increments

This test effectively introduces a "phase shift" of the octetsynchronous HDLC frame as it is presented to wide-bus architectures and will pick up problems in the pack-and-rotate circuits.

For example, in a POS line card with a 32-bit architecture, there are four different octet phases to be verified.

 Payload Pattern #3: Send minimum-size packets at full rate

This determines the maximum rate of FCS calculations that can be performed. It is also a good overall test of the POS line card's HDLC frame-handling capacity.

Link Initialization

Both the LCP (Link Control Protocol) and IPCP (IP Control Protocol) initialization procedures must complete successfully before any user data will be forwarded across the link. Because PPP is handled by software, it can generally be by-passed or disabled at the hardware testing stage.

However, for system testing, this layer must be working correctly. This is particularly the case when conducting field trials on POS equipment from multiple vendors.

Configuration and Use With Other BSTS Modules and Applications

The minimum configuration required to test 155Mb/s and 622Mb/s POS interfaces is as follows:

- Agilent E1608A POS Processor
- Either
 - E1697A Optical Line Interface (for testing at 155 Mb/s), or
 - E1618A Optical Line Interface (for testing at 622 Mb/s)
- Agilent Broadband Series Test System chassis

The Agilent E1608A requires the following system configuration:

- 1 x V743 HP-UX controller running at 64 MHz or 100 MHz and:
 - a minimum of 32 Mb RAM (not recommended)
 - 64 Mb RAM (recommended), or
 - 128 Mb RAM
- minimum 2 GB SCSI hard drive

Since the Agilent BSTS is a flexible and modular ATM/B-ISDN test platform, you can maximize the return on your test equipment investment by selecting a chassis, line interfaces, dedicated hardware modules, and test software that suit your specific needs. Remember that you can always add extra software or modules at any time.

Warranty & Support Options

Hardware

All BSTS hardware components are warranted for a period of 3 years. Products must be returned to an authorized Agilent service center for service.

Software

Agilent Broadband Series Test System software and firmware products are supplied on transportable media such as disk, CD-ROM or integrated circuits. The warranty covers physical defects in the media, and defective media is replaced at no charge during the warranty period. When installed in an Agilent Broadband Series Test System, the software/firmware media has the same warranty period as the product.

Ordering Information

The BSTS Packet over SONET/SDH solutions are sold as bundles for either 155 Mb/s or 622 Mb/s. However, individual product numbers can also be ordered to supplement your existing BSTS solutions.

Product Numbers

Agilent E4200B/4210B Option 050

The 622 Mb/s (OC-12c/STM-4c) POS Test Solution

Consists of the following:

• **E1608A** 0-622 Mb/s POS

Processor

• **E1618A** 622 Mb/s Optical

Line Interface

Agilent E4200B/4210B Option 055

The 155 Mb/s (OC-3c/STM-1) POS Test Solution

Consists of the following

• **E1608A** 0-622 Mb/s POS

Processor

• **E1697A** 155 Mb/s Optical

Line Interface

Technical Specifications

Summary of Module Test Features

E1608A 155Mb/s, 622Mb/s Packet over SONET/SDH Processor module

- Packet Over SONET/SDH, SONET/SDH POH and SPE/VC testing
- Used in conjunction with the Agilent E1618A 622 Mb/s Optical Line Interface or E1697A 155Mb/s Optical Line Interface

General:

Supports RFC 2615 (obsoletes RFC-1619) & RFC-1662

Transmit:

- Real time scrambling to RFC-1662
- 0-100% bandwidth
- Full control over transmit payload
- POH Error and alarm simulation
- SONET/SDH POH builder
- POH octet editor (Including C2 protocol type field)
- Path trace message generation

Receive:

- Real time descrambling to RFC-1662
- 0-100% bandwidth acceptance
- Full analysis over captured payload to IP
- Capture SPE contents, frames only or pattern matched frames
- Pattern matching to 32 octets on SPE or octet destuffed frames
- C2 protocol type field display
- Path trace message display

Additional Modules

- E1618A 622Mb/s Optical Line Interface
- For detailed specifications on the SONET/ SDH Functionary available on the E1618A 622Mb/s Optical Line Interface, please refer to Agilent Publication number 5966-1444E
- E1697A 155Mb/s Optical Line Interface
- For detailed specifications on the SONET/ SDH functionary available on the E1697A 155Mb/s Optical Line Interface please refer to Agilent Publication number 5966-1444E

POS Features

Encapsulations & Scrambling

 PPP
HDLC
 MAPOS
User defined
Real time scrambling and descrambling of data as per RFC1662
 Transmit scrambling {on off}
 Receive descrambling {on off}
rotocol
Operations available through the PPP state machine

PPP Link Negotiation Protocol	
Link control	Operations available through the PPP state machine • Active link setup
	Passive link setup
	Link teardown
	 FCS for LCP and IPCP negotiation {FCS-16 FCS-32}
LCP options supported	Settable options for the Link Control Protocol
	 (MRU) Maximum Receive Unit size settable: 0 to 65 535
	 Magic Number {on off}
	 (PFC) Protocol Field Compression {on off}
	 (ACFC) Address & Control Field Compression {on off}
	 FCS alternatives {FCS-16 FCS-32}
IPCP Options supported	Settable options for the IP Control Protocol
	Set own IP Address: any value except 0.0.0.0
	Accept peer IP Address: any value except 0.0.0.0

Traffic Generation

Traffic is loaded into a transmit buffer from a file containing space-delimited ASCII Hex data. This buffer is replayed to generate the transmit data stream.

Data Generator Features

Transmit buffer size	Loaded from POS data file1,048,552 octets
Available transmit bandwidth	Data bandwidth: 0% to 100%Ctrl-Esc ratio: 0% to 100%
Transmit buffer operations	Controls for the transmission of transmit buffer contents
	 Off (Sends all 0x7E data)
	 Continuous
	 Once

POS Data File Compiler Features and Controls

POS compiler controls

Command line options

- FCS: 16 or 32
- HDLC Compression: on or off
- Protocol field size: 8 or 16 bits
- PPP Compression: on or off
- Repeat definition throughout output file: on or off

Per-frame PPP encapsulation parameters

- PPP protocol field (8 bit): 0 to 0xFF
- PPP protocol field (16 bit): 0 to 0xFE FF
- Pad byte value: 0 to 255
- Pad size: 0 to 1 000 000
- Address field: 0 to 0xFF
- Control field: 0 to 0xFF
- Inter-frame gap: 1 to 1 048 549
- Ctrl-Esc Percentage: 0% to 100%

Off line POS data file IP compiler controls

• Number of frame descriptors: 0 to 350 000

Transmit buffer operations

Per-frame IP Descriptor control parameters

- IP Version: 0 to 15
- Precedence bits: 0 to 7
- . TOS delay bit: 0 or 1
- TOS throughput bit: 0 or 1
- TOS reliability bit: 0 or 1
- TOS future use bits: 0 to 3
- Identification: 0 to 65 535
- Reserved bit: 0 or 1
- Don't fragment bit: 0 or 1
- More fragments bit: 0 or 1
- Fragmentation offset: 0 to 8 191
- TTL Time To Live: 0 to 255
- IP Protocol: 0 to 255
- Source Address: 0 to 255 for all octets
- Destination Address: 0 to 255 for all octets
- Payload fill value: 0 to 0xFF
- Payload size: 0 to 65 515

Integrated Protocol Builder and Encodes

Specification of Traffic Stream Payload

PDU builders for the following protocols:

- IPv4
- TCP
- UDP
- ICMP
- Sequence Builder
- Concatenates PDUs into sequences

Traffic Analysis

Data is captured and then saved to a file for off-line analysis using the in-built POS data file analyzer.

Capture Buffer Features

Capture buffer size	Selectable:
	• 128K, 1M, 4M or 8M
Capture system bandwidth	 Acceptable used bandwidth on input: 0 to 100% Acceptable Ctrl-Esc bandwidth on input: 0 to 100%
Capture buffer trigger points	Start of buffer
Capture filter	Capture line data (every octet) Reduce extra framing octets (reduce inter frame gaps) Capture pattern-matched frames only
Pattern Matcher	 Pattern matches all frames 32-octet based pattern matcher {0 1 x}-selectable for each bit Pattern match save/restore Pattern match on line data or octet-destuffed data
DOOD . EU A .	

POS Data File Analyzer Features and Controls

Command line options	• FCS: 16 or 32
•	 HDLC Compression: on or off
	 Protocol field size: 16 or 32
	PPP Compression: on or off
Layer-2 capture	Number of data bytes (excluding Ctrl-Esc octets)
statistics	 Number of Framing Octets (0x7E)
	Number of valid Ctrl-Esc octets
	Number of valid frames
	Number of invalid frames
	 Numbers of FCS errors
	 Number of Address field mismatches
	 Number of Control field mismatches
	 Number of Protocol field mismatches
Layer-3 capture	Number of Invalid PDUs (IP datagram too small)
statistics	 Number of Errored PDUs
	Version field mismatch
	Header length field error
	Total length field error
	Flags field error
	TTL field error
	Header checksum error

SRP Data File Analyzer Features and Controls

• SRP: Enable SRP statistics **Command Line Options** • LSB FCS: FCS in the SRP packet is transmitted with the least significant byte first • Ignore source Address: The value of the source address is ignored for Control packets Framing Statistics Number of Data bytes Number of frame fill bytes Number of valid Control-Escape bytes Number of invalid Control-Escape bytes Number of valid frames Number of invalid frames Number of FCS field errors

SRP Statistics

- Number of parity errors
- Number of frames with Time To Live field errors
- Number of short frames
- Number of long frames
- Number of data frames
- Number of keep alive frames
- Number of control frames
- Number of frames with unknown mode
- Number of multicast frames
- Number of SRP frames with SRP control packets
- Number of SRP frames with IP packets
- Number of SRP frames with ARP packets
- Number of SRP frames with unknown packets
- Number of SRP control frames with topology discovery frames
- Number of SRP control frames with APS packets
- Number of SRP control frames with unknown packets
- · Valid frame rate (frames/sec)
- Invalid frame rate (frames/sec)

Protocol Analysis

Integrated Protocol Decode Engine and Viewer

integrated i rotocor becc	ac Engine and viewer
DARPA/IETF	BGP - RFC1105; Border Gateway Protocol; June 1989
	BGP-4 - RFC1771; A Border Gateway Protocol 4; March 1995
	BOOTP · RFC951; Bootstrap Protocol; September 1985
	DHCP - RFC2131; Dynamic Host Configuration Protocol; March 1997
	DLSW - RFC1795; Data Link Switching Protocol v1.0; April 1995
	EGP - RFC904; Exterior Gateway Protocol; April 1984
	HTTP - RFC1945; Hypertext Transfer Protocol; May 1996
	ICMP - RFC792; Internet Control Message Protocol; September 1981
	IGMP - RFC1112; Internet Group Management Protocol; August 1989
	IGRP - Charles L. Hedrick Rutgers University NJ; August 1991
	IGP - RFC823; Internet Gateway Protocol; DARPA; September 1982
	IP - RFC791; Internet Protocol; September 1981
	IPV6 - RFC1883; Internet Protocol Version 6; December 1995
	NTP - RFC1119; Network Time Protocol (version 2); September 1989
	OSPF - RFC1247; OSPF Version 2; July 1991
	RIP - RFC 1058; Routing Information Protocol; Xerox; June 1988
	RTP - RFC1889; A Transport Protocol for Real-Time Applications; January 1996
	RTCP - RFC1889; Real-Time Control Protocol; January 1996
	UDP - RFC768; User Datagram Protocol; August 1980
	SMTP - RFC821; Simple Mail Transfer Protocol; August 1982
	TCP - RFC793; Transmission Control Protocol; September 1981
	TFTP - RFC783; Trivial File Transfer Protocol (revision 2); June 1981
	TIMED - Time Daemon Protocol; Sun
	X11 - X Open; X-Window Protocol, X11 R4
AppleTalk	DDP - Datagram Delivery Protocol; AppleTalk Phase 1; June 1989
Banyan Vines	VINES - Banyan Vines Protocol; Banyan
Berkeley Services	RLOGIN - RFC1282 Remote Login Protocol; December 1991
	RSHELL - Remote Shell Protocol; University of California, Berkeley
	REXEC - Remote Execution Protocol; University of California, Berkeley
Cisco	EIGRP - Enhanced IGRP; Cisco

DECnet	CTERM - Network Command Terminal; DECnet Phase IV; Digital
	DAP - Data Access Protocol; DECnet Phase IV - Version 4; Digital
	DNAR - DNA Routing Protocol; Phase IV; Digital
	NICE - Network Information and Command Exchange Protocol; DECnet Phase IV; Digital
	NSP - DNA Network Service Protocol; Phase IV; Digital
	SCP - DNA Session Control Protocol; Phase IV - Version 1.0; Digital
IBM/SNA	SMB -Server Message Block, MS, Intel; November 1990
ISO	DAP - ISO 9594; X.500; CCITT; December 1990
	CLNP- ISO 8473: Connectionless Network Service: December 1988
Microsoft LAN Manager/X	LMX_DG - RFC1001; Microsoft LAN Manager Datagram Service; March 1987
-	LMX_NS - RFC1001; Microsoft LAN Manager Name Service; March 1987
	LMX_SS - RFC1001; Microsoft LAN Manager Session Service; March 1987
Novell Netware	IPXDIAG - Diagnostics Protocol; Novell
	NCP - NetWare Version 3.x and 4.x; Novell
	NLSP - Netware Link Services Protocol; Novell
Sun	NFS - RFC 1094; Network File System Protocol; Sun; March 1989
	RPC - RFC1057; Remote Procedure Call Protocol; Sun; June 1988
Xerox /XNS	ECHO Echo Protocol; Xerox
	ERROR - Error Protocol; Xerox
	IDP - Internetwork Datagram Protocol; Xerox
	IPX Internet Packet Exchange Protocol; Novell
	RIP - RFC 1058; Routing Information Protocol; Xerox; June 1988
	SPX - Sequence Packet Exchange Protocol; Novell

Electrical & Mechanical Specification

VXI Module

Size	• 1 slot C-size VXI card
Weight	• 2.0 kg nominal
Power Dissipation	• 79 Watts (max)
Backplane Connectors	• P1, P2
Addressing	Logical and servant addressing

Front Panel LED Indicators

Tx	 On: module is transmitting data continuously
	 Off: module tranmitter is off
Rx	Not used in release 1.0 and 2.0
Rx Err	Not used in release 1.0 and 2.0
Tx	 Not used in release 1.0 and 2.0

Environmental Operating Conditions

Operating Temperature	• 0°C to 45°C
	 Jitter transfer specification maintained over the range 10°C to 55°C
Storage Temperature	• -40°C to 70°C
Humidity	• 0% to 95% relative humidity from 25°C to 40°C

Agilent Technologies Broadband Series Test System

The Agilent Technologies BSTS is the industry-standard ATM/BISDN test system for R&D engineering, product development, field trials and QA testing. The latest leading edge, innovative solutions help you lead the fast-packet revolution and reshape tomorrow's networks. It offers a wide range of applications:

- ATM traffic management and signalling
- Packet over SONET/SDH (POS)
- switch/router interworking and performance
- third generation wireless tesing
- complete, automated conformance testing

Latin America:

Agilent Technologies

Miami, Florida 33126

Tel: (305) 267-4245

Fax: (305) 267-4286

The BSTS is modular to grow with your testing needs. Because we build all BSTS products without shortcuts according to full specifications, you'll catch problems other test equipment may not detect.

www.Agilent.com/comms/BSTS

United States:

Agilent Technologies Test and Measurement Call Center P.O. Box 4026 Englewood, CO 80155-4026 1-800-452-4844

Canada:

Agilent Technologies Canada Inc. 5150 Spectrum Way Mississauga, Ontario L4W 5G1 1-877-894-4414

Europe:

Agilent Technologies European Marketing Organisation P.O. Box 999 1180 AZ Amstelveen The Netherlands (31 20) 547-9999

Japan:

Agilent Technologies Japan Ltd. Measurement Assistance Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192-8510, Japan Tel: (81) 426-56-7832 Fax: (81) 426-56-7840

Asia Pacific:

U.S.A.

Agilent Technologies 19/F, Cityplaza One, 1111 King's Road, Taikoo Shing, Hong Kong, SAR Tel: (852) 2599-7889 Fax: (852) 2506-9233

Latin American Region Headquarters

5200 Blue Lagoon Drive, Suite #950

Australia/New Zealand:

Agilent Technologies Australia Pty Ltd 347 Burwood Highway Forest Hill, Victoria 3131 Tel: 1-800-629-485 (Australia) Fax: (61-3) 9272-0749 Tel: 0-800-738-378 (New Zealand)

Fax: (64-4) 802-6881

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright © 2000 Agilent Technologies

Specifications subject to change. 5968-2046E 04/00 Rev F

