

Agilent RouterTester

IS-IS Protocol Software

E7856A

Technical Datasheet

- Testing data and control plane technologies
- · Functional and stress testing
- · Wire speed traffic generation
- · Packet capture and measurement
- · Multi-protocol environments

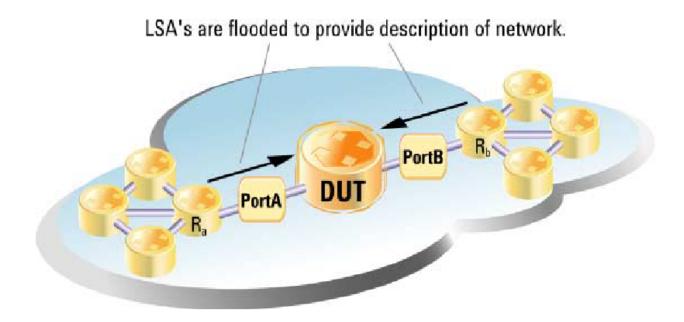
Key Features

- Simulate real-world environments
- IS-IS Traffic Engineering
- Reliable LSP flooding
- · Flexible, Powerful Scripting
- Realistic Internet-scale routing simulation

Product Overview

The IS-IS Protocol Software provides unprecedented realism to protocol testing by emulating and measuring the impact of dynamically flooded Link State changes on the forwarding performance of a gigabit or terabit router. The IS-IS Traffic engineering extensions are also supported for MPLS testing; this enables you to propagate traffic engineering information into your network.

By emulating IS-IS sessions, the IS-IS Protocol Software builds a realistic autonomous system around the router or network under test. Any number of Link States with a flexible range of attributes can be flooded into the router (or network) under test, building immense and complex forwarding tables within these devices.


Typical test scenario

A typical test scenario is shown below

- Network topologies are simulated behind ports A & B
- LSPs are sent from Router A into the device under test (DUT)
- Router B verifies that the device under test correctly floods the routes to Router B
- Router A can send information destined for a point behind Router B. It is then possible to test that the DUT has learned the new routing information.

With RouterTester you are able to verify forwarding capabilities:

 You can also follow this test up with sending traffic at wire speed and can measure the forwarding performance including throughput, latency and loss.

Product Features

Simulate real-world multi-protocol environments

By offering a comprehensive range of control protocols the QA Robot and Router Tester enables you to simulate real-world routing conditions. LSPs can be inserted and withdrawn to simulate dynamic topology changes. This presents rapidly changing routing criteria to the system under test, allowing you to examine the ability of the DUT to calculate routing and forwarding tables under high stress conditions. Also, using a combination of multiple interface cards, our BGP-4 and OSPF Software and various TCP, UDP and HTTP traffic generation can be configured to simulate complex real-world conditions.

IS-IS Traffic Engineering

The IS-IS Protocol Software is equipped with the IS-IS Extensions for Traffic Engineering to work within your MPLS domain. This enables you to run the tests to ensure that the traffic engineering attributes, generated by your simulated router, are being propagated throughout your network correctly and efficiently.

Reliable LSP flooding

A single LSA or a complete LSA database can be continuously flooded to simulate network instabilities, rigorously stressing the ability of a router to forward packets during link state changes.

Topologies can be updated and expectations set up to verify that appropriate routes are selected based on the applied stimulus. Failures or successes can be reported for a series of test scenarios. Proper interaction of Level-1 and Level-2 routers, generation of reachable address information and associated routing may be exercised and verified.

Flexible, Powerful Scripting

Automated scripts are quickly created using the TcI/Tk and QBOL scripting environments. With only a few lines of code, thousands of networks are easily advertised from simulated peers on any or all ports.

Realistic Internet-scale routing simulation

Thousands of ISIS nodes can be simulated behind every port at the same time as sending and receiving traffic, allowing you to automatically establish and maintain adjacencies for a large number of neighboring nodes on a broadcast sub-network.

Additional Capabilities of the RouterTester

The RouterTester expands the test capabilities of the QA Robot by providing the wire-speed traffic generation required when measuring the forwarding performance and functionality of IP routers.

Generate wire speed traffic

The RouterTester with IS-IS emulation provides unprecedented realism to router testing by emulating and measuring the impact of dynamically flooded link-state packet changes on the forwarding performance of a gigabit or terabit router. Working in conjunction with the IP performance application, the data forwarding performance of a router can be measured while simultaneously flooding LSAs to it. The ability of a router to withstand LSA flooding as well as the time it takes for a router to converge on new routes can be precisely measured. How much user data is lost when a link is taken up and down? By benchmarking a network or router using more realistic tests, a router will function and perform reliably, when deployed in an operational network.

Protocol Conformance Suites

An optional IS-IS conformance test suite is also available. This test suite will test for compliance to the relevant IETF RFCs and internet-drafts.

Online Help

An extensive online help system provides complete descriptions and detailed usage instructions. Dialog-level context-sensitive help provides rapid access to the relevant sections of the online help. A technology reference section provides a complete library of background information pertaining to gigabit and terabit router performance testing.

Applicable Standards:

- IS-IS: ISO/IEC 10589: IS-IS intra domain routing protocol
- IP Extensions: IETF RFC-1195: Use of OSI IS-IS for Routing in TCP/IP and Dual Environments
- IS-IS Traffic Engineering Extensions: Draft ietf isis traffic 02.txt

Acronyms

API Application Programming

Interface

ASBR Autonomous System

Boundary Router

CIDR Classless Inter Domain

Routing

GUI Graphical User Interface

IETF Internet Engineering Task

Force

IP Internet Protocol

LSA Link State Advertisement

LS Link State

LSA Link State Authorization

LSP Link State Packet

NBMA Non-Broadcast Multi

Access

NLRI Network Layer Reachability

Information

OSPF Open Shortest Path First
POS Packet Over SONET/SDH

RFC Request for Comments

SDH Synchronous Digital

Hierarchy

SUT System Under Test

SONET Synchronous Optical

Network

TE Traffic Engineering

Tcl Tool Command Language
Tclsh Tool Command Language

shell

TCP Transmission Control

Protocol

Tk Toolkit

TLV Type-Length-Value objects

Technical Specifications

This section contains the features of the IS-IS Protocol Software that are accessible using the GUI and TcI/TK scripting environment. Simple point and click actions enable you to dynamically change the environment being tested. Also, for our power users we have included features accessible using the QBOL language.

		QA Robot	RouterTester
	Adjacency Capacity	Up to 23	30 adjacencies per port
	Router types supported	Level-1, L	evel 1/2 and Level 2 Only
	Messages Supported	IIH (LAN and	Point-to-Point), CSNP, PSNP, LSP, ISH
	Network Type Supported	Point-to-Po	oint, Broadcast and NBMA
User Defined header generation (IIH, CSNP, PSNP,		I, CSNP, PSNP, LSP, ISH)	
IS-IS Packet Headers are generated automatically for each simulated			tically for each simulated

IS-IS Packet Headers are generated automatically for each simulated router. The user for the automatically generated IIH, CSNP, PSNP, ISH and LSP packets may assign the following parameters.

	QA Robot	RouterTester
Area list		Hex String
System ID	6 bytes or IP Address	
MAC address		6 bytes
Pseudonode ID	Optional,	<0-255> default 1
Local circuit ID	Optional,	<0-255> default 255
Priority	Optional,	<0-127> default 0
Metrics	error <0-63>, d	netrics; delay, expense, and lefault value 1 for default for all other metrics
Max Area Addresses	Optional,	<0-255> default 0
Adjacency Hold Time	Optional, <0-2	255> default 20 seconds
Maximum LSP Age	Optional, <0-65,	535> default 1200 seconds
Protocols Supported	Optional, he	string, default absent
IP Address List	Optional, default absent	-
IP Reachability	Optional, IP Addre List, default absen	
Link Authentication	Optional, default absent	-
Area Authentication	Option	al, default absent
Domain Authentication	Option	al, default absent

^{*}Key fields are mandatory and have special significance for verification of variable length fields.

Adjacency Initiation

IS-IS adjacencies are established and maintained with the following control parameters. All fields are optional, with the indicated defaults. All fields are optional, with the indicated defaults.

	QA Robot	RouterTester
Capability	L1, L2,	L2-only, default L2
IIH Interval	0-255	, default 5 seconds
Designated router IIH Interval	0-255	i, default 1 second
Minimum LSP generation interval	Def	ault 30 seconds
Maximum LSP generation interval	Def	ault 900 seconds
LSP transmit interval	D	efault 5000 ms
CSNP interval	De	fault 10,000 ms
PSNP interval	De	fault 2 seconds
Zero age duration	Def	ault 60 seconds

LSP Insertion/Verification

Header Fields

Programmatically specified LSPs may be inserted into the tester database and flooded to the SUT at any time. The following PDU header fields may be specified for any inserted LSP. The database may be verified at any time for the presence of LSPs using the same format used for insertion.

	QA Robot	RouterTester
Туре	*Key Field, Level 1, Level 2	
Remaining Lifetime	emaining Lifetime Optional, <0-65,535> d	
Sequence Number	Optional, <0-4, 294,967,296> default 1	
Protocol Discriminator	Optional, <0-255> default 0x83	
Header Length	Optional, <0-255> Default 27	
Version/Protocol Extension	Option	al, <0-255> default 1
ID Length	Option	al, <0-255> default 6
Version	Option	al, <0-255> default 1
Reserved Header Field	Option	al, <0-255> default 0
Maximum Area Addresses	Optional, <0-2	255> default 0 (3 addresses)
PDU Length	Optional, <0	-65,535> default calculated
Source ID	*Key Fiel	d, 6 bytes or IP Address
Pseudonode ID	*K	ey Field, <0-255>
LSP Number	*K	ey Field, <0-255>
Checksum	Optional, <0	-65,535> default calculated
P_ATT_DBOL_ISTYPE	Option	al, default set by type

LSP Insertion/Verification Variable Length Fields

Verification of variable length fields can take advantage of LSP aggregation according to the Key Fields (defined in the table above) in the LSP Header. In this manner, the aggregate LSP database of a system under test can be examined, rather than looking exclusively at single LSPs.

	QA Robot	RouterTester	
Area List	Optional, hex string, default absent		
L2 designated IS	Optional, 6 bytes or IP Address, default absent		
IS neighbour list	Optional, list	of 6 byte ID's or IP Address, default absent	
ES neighbour list	Optional, list	of 6 byte ID's of IP Address, default absent	
Prefix neighbour list		Optional	
Protocols supported	Optional, I	nex string, default absent	
IP address list	Optional, code,	type, password, default absent	
Authentication information	Optional, code,	type, password, default absent	
Internal Reachability Information	Optional, IP	Address List, default absent	
External Reachability Information	Optional, IP	Address List, default absent	
Inter-domain routing information	Optional, I	nex string, default absent	
TLV Field	Optional, repea	ted expression, default absent	
Router ID TLV		Type 134	
Extended IP Reachability		Type 135	
Extended IS Reachability		Type 22	

Dynamic Capabilities

The following parameters can be changed at run time to dynamically alter the characteristics of an established adjacency or to keep a given entry in the LSP database alive.

QA Robot RouterTester

IIH Interval

Circuit type

Area address assignment

MAC address assignment

Priority

Auto LSP generation enable

State Verification

The following adjacency states may be verified for both the IS-IS Protocol Module State Machine or for a given neighbour

Auto update inserted LSP
Set database overload bit

QA Robot RouterTester

Up Normal
Up Designated Router
Wait Normal
Wait Designated Router
Initializing
Down

Statistics

Statistics can be displayed and saved for running sessions independently for Level 1 and Level 2 connections. Update intervals can be specified in seconds, with a minimum of one second. Numerical, graphical and snapshot save to file representations are available.

Inbound/Outbound Statistics QA Robot RouterTester Circuit Type **Broadcast or Point-to-Point** Status Current Link State (down, init, 2-way, exstart, exchange, loading and full) Hello PDU Count Number of Hellos Dbd In/Out Count Number of Dbd LSP In/Out Count Number of Router LSA transactions CSNP In/Out Count Number of Network LSA transactions PSNP In/Out Count Number of Summary-3 LSA transaction **Global Statistics** QA Robot RouterTester LSP Database Size Number of currently stored LSPs Statistic Definition

Statistics

Statistics can be displayed and saved for all types of LSAs of a running session. Update intervals can be specified in seconds, with a minimum of one second. Numerical, graphical, and snapshot save to file representations are available.

Inbound/Outbound Statistics			
	QA Robot	RouterTester	
Circuit Type	Broad	dcast or Point-to-Point	
Status		tate (down, init, 2-way, exstart, ange, loading and full)	
IP Address	F	Router IP Address	
Hello Count	1	Number of Hellos	
Dbd In/Out Count		Number of Dbd	
Router LSA In/Out Count	Number o	of Router LSA transactions	
Network LSA In/Out Count	Number of	Network LSA transactions	
Summary-3 LSA In/Out Count	Number of S	Summary-3 LSA transactions	
Summary-4 LSA In/Out Count	Number of S	Summary-4 LSA transactions	
External LSA In/Out Count	Number of	f External LSA transactions	
Global Statistics			

Global Statistics OA Robot RouterTester LSA Database Size Number of currently stored LSAs Invalid Frames Count of HDLC frames received with an address field or control field not equal to the preset values, or length too short (i.e. less than or equal to 8 octets)

Agilent's RouterTester system

Agilent's RouterTester system offers a powerful and versatile test platform to address the evolving test needs of metro/edge platforms, core routers and optical switches. RouterTester provides Network Equipment Manufacturers and Service Providers with the industry's leading tools for wire speed, multiport traffic generation and performance analysis of today's networking devices

Warranty and Support

Hardware Warranty

Agilent warrants all RouterTester and QA Robot hardware against defects in materials and workmanship for a period of 3 years from the date of delivery. Agilent further warrants that the RouterTester and QA Robot hardware will conform to specifications. During the warranty period, Agilent will, at its option, repair or replace the defective hardware. Services provided under this warranty will normally require return of the hardware to Agilent.

Software Warranty

Agilent warrants all RouterTester and QA Robot software for a period of 90 days. Agilent warrants that the software will not fail to execute its programming instructions due to defects in materials and workmanship when properly installed and used on the hardware designated by Agilent. This warranty only covers physical defects in the media, whereby the media is replaced at no charge during the warranty period.

Software Updates

With the purchase of any new RouterTester system Agilent will provide 1 year of complimentary software updates. At the end of the first year you can enroll into the Software Enhancement Service (SES) for continuing software product enhancements.

Support

Technical support is available throughout the support life of the product. Support is available to verify that the equipment works properly, to help with product operation, and to provide basic measurement assistance for the use of the specified capabilities, at no extra cost, upon request.

Ordering Information

To order and configure the test system consult your local Agilent field engineer.

United States:

Agilent Technologies
Test and Measurement Call Center
P.O. Box 4026
Englewood, CO 80155-4026
1-800-452-4844

Canada:

Agilent Technologies Canada Inc. 2660 Matheson Blvd. E Mississauga, Ontario L4W 5M2 1-877-894-4414

Europe:

Agilent Technologies European Marketing Organisation P.O. Box 999 1180 AZ Amstelveen The Netherlands (31 20) 547-2323 United Kingdom 07004 666666

Japan:

Agilent Technologies Japan Ltd. Measurement Assistance Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192-8510, Japan Tel: (81) 426-56-7832 Fax: (81) 426-56-7840

Latin America:

Agilent Technologies Latin American Region Headquarters 5200 Blue Lagoon Drive, Suite #950 Miami, Florida 33126 U.S.A. Tel: (305) 269-7500

Tel: (305) 269-7500 Fax: (305) 267-4286

Asia Pacific:

Agilent Technologies 19/F, Cityplaza One, 1111 King's Road, Taikoo Shing, Hong Kong, SAR Tel: (852) 3197-7777 Fax: (852) 2506-9233

Australia/New Zealand:

Agilent Technologies Australia Pty Ltd 347 Burwood Highway Forest Hill, Victoria 3131 Tel: 1-800-629-485 (Australia) Fax: (61-3) 9272-0749 Tel: 0-800-738-378 (New Zealand)

Fax: (64-4) 802-6881

www.agilent.com/comms/RouterTester

