Multi-Channel Antenna Calibration Reference Solution

Nov 2014

Multi-Antenna Array Calibration Reference Solution Agenda

• Phased Array Applications Overview

- Antenna architectures and enabling technology
- Benefits of modern phased array antennas
- Test challenges of phased arrays

Configuring a Test System

- Application Block Diagram
- System performance
- Reference solution components
- Finishing the solution

Multi-Channel (Phased-array) Antenna

AESA Installed on First US Air Force F15C - http://www.aviationnews.eu/

A multi-channel or phased-array antenna consists of multiple antennas or radiating elements that form a beam of specific shape or direction by manipulating the relative phase of each transmitted signal. Combining the elements of an array antenna with beamforming techniques enhances spatial selectivity and interference avoidance

Radar Antenna Architectures

Key Issues Faced by Antenna Array Test Engineers

- Calibrating large phase arrays requires phase synchronous sampling across all input channels, providing relative magnitude and phase measurements
- Array element counts are increasing, therefore calibration times are increasing
- Measurements require, high resolution sampling of IF signals and fast frequency-switching
- The need to test and calibrate multiple types of antenna require a flexible measurement system

Multi-Channel Antenna Calibration Reference Solution Benefits

Accelerate the calibration of large antenna arrays with precise cross-element phase and magnitude measurements while getting ready for the future with increased measurement bandwidth and system flexibility

- Typical 8-10x improvement in measurement speed compared to a network analyzer solution (40 ch)
- Phase coherent sampling (<1 degree) across all input channels
- System is scalable to adopt different antennas or increase capability as needs change

Current Receiver Calibration Block Diagram

Proposed Receiver Calibration Block Diagram

Measurement Speed Example Traditional PNA approach (1MHz BW)

- The PNA acquires 2.5us/pt to acquire a point on 4 channels (2.5us = PNA4CHtime)
- If the DUT switching time is > PNA frequency switching time, it may make sense to move state switching to the outside loop

Measurement Speed Example

Parallel approach (M9703A) with fast frequency switching (UXG)

• The M9703A acquires all channels (16 samples each) in 10 us with DDC and 1 MHz BW

Page

Measurement Speed Comparison

Example:

- 1000 states (ST [=] phase/polarization), 2.5 μs DUT state switching time (SST)
- 30 frequencies (F)
- 1 MHz BW

Multi-Channel Antenna CalibrationReference Solution:

39 channels, **1000 states**, **30 frequencies** = **0.31 s** $((Dwell + F_{sw} Time) * F Pts + Rearm|SST) * STs)$ $((10us+120ns)^*30+2.5us)^*1000$

PNA:

40 channels, 1000 states, 30 frequencies = **3.53 s** ((*PNA4CHtime* * $\langle n \rangle$ 4chgroups + $\langle n - 1 \rangle$ mux states + SST) * STs + F_{sw} Time) * F Pts ((2.5us*10+90us+2.5us)*1000+100us)*30

Receiver Calibration Block Diagram

High-Performance, Scalable System

<1 degree phase coherence across all input channels

104 Channels

40 Channels

Typical System Performance

Typical Performance				
Number of Digitizer Channels	8 to 104 depending on configuration			
Measurement Throughput	1M narrowband measurements per second (40 channels)			
Phase Coherence	<1 degree across all channels			
Non-decimated Bandwidth	625 MHz			
Decimated Frequency Span (DDC)	300 MHz and 160/2 ⁿ MHz (n=0,1,2, 18)			
Measurement Frequency Range	DC – 40 GHz depending on down converters used (extended to 50GHz with additional calibration considerations)			
Spurious Free Dynamic Range	60 dBc (typical) (non-decimated) 80 dBc (typical) (30MHz decimated)			
Effective Number of Bits	8.8 (typical)			
Acquisition Memory	Up to 1 GSa/ch			

Reference Solution Components

Reference Solution HW Components

M9536A AXIe Embedded Controller

12 bit resolution

Optional DDC

8 ch @ 1.6 GSa/s

Intel Xeon EP L5518 processor

M9703A AXIe High-Speed Digitizer

Up to 600 MHz Analysis BW

- Up to 24 GB RAM
- 160 GD SSD
- USB (3), 10/100/1000 LAN (2), VGA (up to 1600x1200), RS-232

M9502A and M9505A AXIe Chassis

- 2 or 5 slots
- Embedded System Control Module
- 200W/slot

M9362A-D01 PXIe Microwave Quad **Downconverter**

- 10 MHz to 26.5 GHz
- 4 coherent channel downconversion
- 1.5 GHz Analog BW

M9352A PXI Amplifier/Attenuator

- Four channels
- 10 MHz to 1 GHz Range
- 1Ghz Analog BW
- 31.5 dB IF attenuator (0.5 dB steps) •

M9037A PXIe Embedded Controller

- Intel i7-4700EQ 2.4 GHz processor
- Up to 16 GB RAM and 240 GB SSD
- Front panel x8 PCIe interface can control an AXIe chassis

N5183B MXG Analog Signal Generator

- 13 40 GHz
- +20 dBm output power @ 20 GHz
- 600 us Frequency switching time (typ)

M9018A PXIe Chassis

- 18 Slots
- 867 Watts DC power ۲
 - Up to 42 w/slot cooling

N5193A Agile Signal Generator

- 20 40 GHz
- +10 dBm output with optional • attenuator
- Option 1 us and 2 ns switching time •

Reference Solution Software (C#, .NET Class Lib) Setup and analysis

JP Analysis Status			
Channels Input Full Scale 1V • Offset	DDC // IQ Sample Rate 2.13 MSa ·	Option String: DriverSetup= Trace=false, CAL=0, m Select Modules and Channels: 	
U .	300e6 • Hz	- ✓ Channel1 () - ✓ Channel2	Initialize
Acquisition Trigger Sample Rate Source	Trigger Source	V Charnels V Charnel4 V Charnel5 V Charnel6	Configure
1.6 G =	External1 -		Acquire
1000 +	Edge •	Channel8	Upload
Nbr of Segments	Level		
100 👻	50e-3 🔹 V		Export
Min Duration 3.20E-002 s	Slope Rising •		

Test setup and control

Setup Analysis Status			
Configuration Details:	Digitizer Status Dutput:		
Slot5 PX118:0:0:0:INSTR Channels: 1: 3 4 5 6 7 8 Serial Number. US00075103 AgMD1 Driver ver. 5, 6, 7, 15478 CPLD Firmware ver. 768 Board temp: 39 C Self test not run	Protogrammeter Vertretories accelerations and the Charmeler Print per record, 1000 Actual record; 100 Prints:-0::INSTR Reading In322 Waveforms from charmet: Charmel5 Prints per record; 1000 Prints:-0::INSTR Reading In322 Waveforms from charmet: Charmel6 Prints per record; 1000 Prints:-0::INSTR Reading In32 Waveforms from charmet: Charmel6 Prints per record; 1000 Prints:-0::INSTR Reading In32 Waveforms from charmet: Charmel8 Prints per record; 1000 Prints:-0::INSTR Reading In32 Waveforms from charmet: Charmel8 Prints per record; 1000 Prints:		
	Clear Copy to Clipboard		

Test status window

Cross-channel (relative) phase after isolating measurement Intervals

Reference Solution Software Utility and file functions

	A	B	C	D	E	F
	Reference module: PXI18::0::0::INSTR Cha	nnel1				
	Norm vector: 9.348E-001 - j3.551E-001	Sec. and				
	Seg Time	Abs Mag	Abs Phase	Rel Mag	Rel Phase	
	-5.1909	5E-007 0.0528263	47.6769	1.03616	2.24485	
	5	0.050418	-42.0245	1.03599	2.2504	
		0.0503985	47.5852	1.03582	2.24861	
		0.0504084	-42.0243	1.03579	2.25268	
	3	0.0504206	47.6036	1.03634	2.2506	
		0.0504163	-42.0475	1.03609	2.25725	
Data Export		0.0511135	39.2728	1.03581	2.31503	
		0.051592	-33.8411	1.03536	2.09638	
		0.0516181	39.2545	1.03604	2.31602	
Madda		0.0516051	-33.8607	1.03594	2.09379	
Module: PXI18::0::0::INSTR		0.0512365	43.3699	1.03508	2.31262	
		0.0510157	-37.8169	1.03495	2.19123	
		0.0509767	43.3785	1.03442	2.31643	
Channel: Channel1 👻		0.0510242	-37.8104	1.03515	2.18401	
		0.0510004	43.3958	1.03533	2.30676	
		0.0532578	-2.91498	1.03628	2.23483	
Segment: KALL> -	CALLS -	0.0542131	8.46126	1.03572	2.1856	
		0.0541622	-2.94604	1.0358	2.24209	
		0.0527811	43.723	1.03449	2.32475	
		0.0509473	-38.1797	1.03459	2.17613	
	Save to file	0.0509381	43.6987	1.03504	2.31893	

Exporting cross-channel measurements

þegrees

Utilizing a calibration table

Completing the Test System...

Agilent Solution Benefits

Accelerate the calibration of large antenna arrays with precise crosselement phase and magnitude measurements while getting ready for the future with increased measurement bandwidth and system flexibility

- **Speed:** Parallel Simultaneous Testing significantly reduces overall test time (up 10x improvement in measurement speed) and cost
- Ultra stable and tracking coherent channels: up to 104, high-resolution (12-bit) measurement channels which ensure stability across power, temperature, and frequency (less than 1 degree of phase difference across channels)
- **SW analysis tools:** Sample code for channel-to-channel amplitude/phase tracking in C# and LabVIEW to build upon
- **DDC option:** Ability to isolate the signal of interest and reduce the amount of integrated noise resulting in improved sensitivity for amplitude and phase measurements.
- Flexible, up to 600 MHz bandwidth: flexible bandwidth to make tradeoff between sensitivity and bandwidth.
- Agilent solution partners: allow you to get running quicker and easier.

Backup Slides

Resources

- <u>Multi-Channel Antenna Calibration Reference Solution Brochure (5991-4537EN)</u>
- <u>Multi-Channel Antenna Calibration Reference Solution Configuration</u> <u>Guide (5991-4583EN)</u>
- <u>Achieve High Speed, Multichannel Data Acquisition with the M9703A</u> <u>AXIe DigitizerApplication Note (5991-1941EN)</u>
- Increase Multi-Antenna Array Test Throughput with the M9703A AXIe DigitizerApplication Brief (5991-1351EN)
- Updated 2014 A/D Symposium Paper [Requires Login]
- <u>Multi-Channel Antenna Calibration Reference Solution SW Demo</u>
 [Requires Login]

MAC Reference Solution Value Proposition

Agilent Provides	Substantiation points		
A Test Solution for Multi-Channel Antenna Calibration (RADAR)	 AXIe-based multi-channel IF digitizer with DDC Down-conversion with choice of freq range and LO. Choice of sources: fast-switching ARB + PSG for up-conversion or MXG Evaluation software with GUI and built-in ch-ch phase-magnitude measurements 		
Covering frequency ranges through Ka band and selectable analysis BW	 PXI down-convertor options for 26 and 40 GHz for receive 44 GHz PSG or 40 GHz MXG for transmit 300 MHz (with DDC) - 600 MHz (without DDC) analysis BW 		
while providing reduced antenna calibration time	 All analysis channels measured in parallel Typical 8-10x improvement in measurement speed (40 ch) DDC optimizes the sample rate and amount of data 		
and improved beam-forming accuracy.	 Phase coherent sampling across all input channels DDC reduces noise and spurs resulting in Improved amplitude/phase sensitivity 		
Easily gain confidence through simple evaluation,	 Includes test software application with GUI for quick demo/evaluation Automated instrument control is included for fast phase and magnitude measurements 		
quickly integrate it in your test environment,	 Export file format for phase and magnitude measurements for post-processing in your test environment Ability to add channel-channel magnitude/phase correction factors (at a fixed IF) to account for fixed offsets in cabling and fixturing Test sw provided as a class library (for use in Microsoft Visual studio or built upon using LabVIEW) Includes triggering capability for interfacing to the antenna scanner controller 		
and be ready for tomorrow with test system flexibility	 Start with narrow-band analysis today and take advantage of wideband capability in the future System is scalable to adopt different antennas or increase capability as needs change 		
	Page		

A/D Modular Reference Solutions

Multi-Channel Antenna Calibration

Reference Solution Deliverables:

- 1. Documentation: Individual module part numbers
- 2. Documentation: 8 channel block diagram
- 3. Documentation on how to setup the system
- 4. Typical performance results for the system
- 5. Sample channel to channel phase tracking test source code
- 6. Sample Self-Test Source code
- 7. Procedural calibration instructions
- 8. .Net DLL Driver to abstract hardware and make measurements
- 9. 2 days of AEO support provided with each delivery
- 10. Solution Hardware Configurator

Modern Active Electronically Scanned Phased Array (AESA)

Key Benefits

- Fixed position antenna
- Ability to form multiple agile beams
- Fast scan rates with hard to predict, irregular scan patterns
- Independent transmit/receive modules per element
- Reduced power loss from integration of RF source on each T/R
- Graceful degradation single source failure will not cripple system

AESA Installed on First US Air Force F15C - http://www.aviationnews.eu/

