HOW TO REGISTER WinZip 7.0

Tutorial by UmE

Introduction: in this tutorial I’ll try to explain you how to register WinZip 7.0 finding the registration number inside the code. Follow me….

Necessary tools: SoftIce 3.24 or better.

Program description: WinZip 7.0, WinZip32.exe, 983.040 bytes.

PARENTAL ADVISORY: this tutorial is cracking oriented!!!

Step 1: when you run the program a nag screen will appear with the following written :

“This is a fully functional unregistered version for evaluation use only….”

You can start to work with the program pressing the “I Agree” button or you can enter a registration code pushing the “Enter Registration Code…” button. Let’s see what can we do in this case.

Step 2: you have in front of you the dialog box where you can enter your name and the registration number. Enter a name (I’ve entered UmE) and a reg. number that naturally will be wrong, but don’t push the Ok button. Push Ctrl+D to enter in SoftIce and place a breakpoint on the win32 API getdlgitemtexta (type bpx getdlgitemtexta). Push Ctrl+D again to return to the operating system and now push the Ok button…BINGO!!! You’re in SoftIce!!! As you know the getdlgitemtexta reads one entry every time it is called, so with the first call the function reads the name you’ve entered, and the next time the function will read the S/N you’ve entered. Ok, press Ctrl+D to return to the operating system and immediatly you’ll be in SoftIce again. Press F11 to return to the piece of code that has called the function and start to trace the code with F10. You’ll see:

:0040803C 56 	push esi

:0040803D E800160200 call 00429642

:00408042 59 	pop ecx

:00408043 56 	push esi

:00408044 E822160200 	call 0042966B

:00408049 803D18D9470000 	cmp byte ptr [0047D918], 00

:00408050 59 	pop ecx

:00408051 745F 	je 004080B2

:00408053 803D48D9470000 	cmp byte ptr [0047D948], 00

:0040805A 7456 	je 004080B2

:0040805C E8EAFAFFFF 	call 00407B4B	<- compute the serial number

:00408061 85C0 	test eax, eax		<-test if you’ve entered the right S/N

:00408063 744D 	je 004080B2		<- jump if the S/N is Ok!

:00408065 53 	push ebx

It’s a classical scheme in serial number comparing. What we have to do now is traceing the call starting at the address 00407B4B: when you’re traceing the piece of code above and the line highlighted is on the instruction “call 00407B4B” push F8 and you’ll be inside the fatidical call. You’ll see:

:00407B4B 55 	push ebp

:00407B4C 8BEC 	mov ebp, esp

:00407B4E 81EC08020000 	sub esp, 00000208

:00407B54 53 	push ebx

:00407B55 56 	push esi

:00407B56 33F6 	xor esi, esi

:00407B58 803D18D9470000 cmp byte ptr [0047D918], 00

Let’s start to trace the call and pay attention at the register values!!! If you observe the function you can notice that the name that you’ve entered is pushed and popped a lot of times: this means that the the right S/N is calculated in the first part of the function. Continue to trace and continue to monitorize the addresses. At a certain point you’ll have:

:00407C1C BE48D94700 mov esi, 0047D948

:00407C21 59 	 pop ecx			<- What is popped up?

:00407C22 8D85C0FEFFFF lea eax, dword ptr [ebp+FFFFFEC0]

:00407C28 56 	 push esi

:00407C29 50 	 push eax

:00407C2A E871FC0400 call 004578A0

Try to type d ecx and yo’ll see: D08C00F7, It seems to be a valid serial number. Continue to trace until the end of the function and some rows later you’ll find:

:00407C45 E820010000 call 00407D6A

:00407C4A 59 	pop ecx			<-What is this?

:00407C4B 8D85C0FEFFFF lea eax, dword ptr [ebp+FFFFFEC0]

:00407C51 59 	pop ecx

:00407C52 56 	push esi

:00407C53 50 	push eax

:00407C54 E847FC0400 call 004578A0

It is most likely the piece of code above….mmmm suspicious!!! Type d ecx again and you’ll have: 29424031. Another valid serial number? Yes!!!! If you go to the WinZip help you’ll find that there are two kinds of licenses: single user and server user, so the program control if the S/N you’ve entered is one of the two above!!!

As you have seen in this crack is a little difficult to understand what the program do inside the function described above, but is important to know where is the call that generates the right S/N. One you’ve found it in some manner the S/N will be discovered. And remember: keep the highest number of information about the program you’re going to crack!! It’s one of the most important things that a good cracker must do for his job!!

That’s all for now!!! I hope that this tutorial could be useful for someone.

Greetings to Volatility and all the Immortal Descendants.

Contact me at: ume15@hotmail.com

