
ActionOutLine, small code…usefull utility…and (believe or
not) well protected!

First I want to say at the author/s of this little and simple proggie…THANKS!… for two reasons,
one because the main idea of ActionOutLine is so simple but so useful (at least for me) and to be

honest today is very difficult to see really useful programs. Second because this little jewel is
defended very well against the novice and medium crackers attacks….here change some bytes or

skip some code or reset some flags is not enough…
…welcome in the real world of reversing!

(please forget …my crappy english ☺)

(Modified slightly by amante4)

Well, someone probably in this moment think…’Hei ..Mav…this is not a software protection
system…It’s a normal program…’ he! he! true! But don’t worry we have enough here for a real good
fun…
I’ve met this proggie after that I’ve read a message posted on the Italian Cracking Forum (Ahh thanks
Xasx for the board!)…a guy was desperate because a crack just downloaded didn’t remove the limit of
7 records…but only the 30 days of evaluation. After some posting the guys was very depressed…
why?? What had this proggie of so special?? …well I decided to download it to see why there wasn’t a
full crack on the net….here what I’ve found…

Target:
ActionOutLine 1.6 http://gpsoft.hypermart.net

Tools:
- Sice 4.x
- Hex editor (choose what you want)
- Brain (…if you are a Micro$oft coder…well… search this tool with http://www.altavista.com/ ☺)

The first protection in the code is the check on 30 days of evaluation….This is not a problem and It’s
not interesting for us….the second protection is the limit of 7 records (or nodes, or items call it how
you want…in this tut I’ll refer to it as nodes)…more interesting and more important…but the main
thing here is that these 2 different checks are not related with the state of the proggie…registered or
unregistered….for the simple reason that the program works only in trail mode and there’s no
registration option! This means that the proggie has no code to work properly in full mode. We see now
in which way I ‘ve arrived at this conclusion and in which way we can fix the problem….
OK run the target….the first window that we can see is the nag for 30 days of evaluation….not
interesting….go on…now in the main proggie…we can create a new tree of nodes….
Under the ‘root’ we create a node…then under this node …we create 7 nodes….better explained with
the picture below:

At this point we try to insert another item the ‘eight’ …the nag pops up …to remind us that we have
reached the limit…
Ok…the common and easy thing to do is find the call at this nagscreen….

:0046FBEA mov eax,ebx
 call 00454440
 cmp eax,07
 jl 0046FC07
 lea edx, [ebp-04]
 mov eax, [00475D8C]
 call 004049C8
 mov eax, [ebp-04]
 call 004682F ;Here we have the Nagscreen

Well…to be honest …with only these few lines of code…a Micro$oft coder could understand that the
cmp eax,07 checks the number of nodes……very easy…and very wrong!!!!!
OK…why….??? We need to keep our ideas cleared…because we need some reversing skills…go
ahead with a right path…
The simple check seen before is correct….what the program does is check if the number of nodes
inserted is less than 7….well if not…nagscreen!
The fast thing to do is reverse the jl to skip the nag’s call….at this point the program….he he ….shows
a second different nagscreen….or better this is a classic messagebox. It remembers to us that only 7
nodes are permitted….uhmm…quite enough to understand that there’s a second check…
We step the code after the reversed jump to find where the messagebox is shown.

:0046BB9A mov eax, esi
 call 0045444C
 mov esi, eax
 jmp 0046BBC6
 … …

We need to step in the call 0045444C to see the real call at the messagebox, here the code:

:004542F1 test eax, eax
 jz 004542FC
 mov edx, ebx
 call 004543A0 ;show the messagebox
 pop esi
 pop ebx
 ret

If we skip the call …the job is done…no more nags or messages…and the program insert in the tree
our new node. Good ! we can call it ‘eight’ and the program seems cracked…but if we stand up we
receive a big kick in the ass….yeah the proggie has joked with us!….

OK…now we need only to save all and close the program….then reopen it and load the file saved…to
see if our cracked code works fine….he he!
Big surprise! The proggie seems that discards the data over the 7 permitted…two can be the situations
here…one, the proggie cracked saves all data (over the seventh too) but when it loads the file, it checks
for the presence of non-permitted field (over the seventh) and loads correctly only seven of it…
Second, the proggie cracked…when we insert an eight node, it shows the information only in the tree,
but it doesn’t save data over the seventh insert ed.
Well for us….the more easy situation is the first…and from this we start to see if the problem is in the
loading data code….
First we need to check the saved file to see if the information are stored or not…
Open the our saved file with an hex editor…better Ultraedit …and we see what we can see ☺

00000000 5B47 505D 5B41 4F5D 5B31 2E30 5D5B 3031 [GP][AO][1.0][01
00000010 5D08 0000 0000 0000 0004 0000 0052 6F6F]............Roo
00000020 7400 0000 0007 0000 0003 0000 006F 6E65 t............one
00000030 0000 0000 0000 0000 0300 0000 7477 6F00 two.
00000040 0000 0000 0000 0005 0000 0074 6872 6565 three
00000050 0000 0000 0000 0000 0400 0000 666F 7572 four
00000060 0000 0000 0000 0000 0400 0000 6669 7665 five
00000070 0000 0000 0000 0000 0300 0000 7369 7800 six.
00000080 0000 0000 0000 0005 0000 0073 6576 656E seven
00000090 0000 0000 0000 0000

How we can see our good Star this night is not passed on our head! …and the proggie doesn’t save the
eight node…we are in the second situation described before. We need to study the code that performs
the saving operation…Ok…no fear! And go!
We open our saved file and we insert again the node ‘eight’ now we know in which way ☺
After we set a bpx on DialogBoxIndirectParam api function.
This 16bit function is used (for compatibility with 16bit apps) to create a savedialog…another classic
example that Win98 is the same of Win95 t hat is the same of WfW3.11 advanced mode…same shit!
But this is another story.
Anyway… Sice pops up ….we need to renter in the proggie code…
OK…now in code we know that the proggie at this point has retrieve the name of the file chosen by us
to save all. And now it create the file and start to write in it! Yeah…write in it…we set a bpx on
WriteFile api function….and…
Sice breaks here…

:00407077 push 0 5 parameter

 lea eax, [esp+04] offset Dword with num bytes written
 push eax 4 parametre
 push edi 3 parameter num bytes to write
 push esi 2 parameter offset buffer with bytes to write
 push ebx 1 parameter file handle
 call kernel32!writefile write!

How we can see if we leave the proggie run…this is the only piece of code for writing the dat as in the
file…good for us!
We put a bpx on the 2 parameter (push)…to see the content of the buffer that stores the bytes to write.
Everytime the code use writefile to save on disk we can see what byte it saves…and understanding the
format used………I know, I know!…someone at this point can ask…’why to understand the data
format used to save our data ???’ …because we need a clear idea about where the proggie store all our
data just before to save on disk…I mean array, variables, pointers etc.
To make the thing easy for all readers….I don’t explain every lines of code…this is quite easy to do in
Sice and it doesn’t take a lot time…but I’ll explain directly how the program save our data in a file…

Ok…fireup Sice and see what is happened….

I’ve put all information collected at every break in a table to keep our mind and the tut quite readable
and understandable ☺.
The table shows, for each call at writefile, the number of bytes to write, the bytes to write and the
addresses where the proggie retrieve these 2 info. Well…we can give a look….

Num of call
WriteFile

Address with
Num bytes to

write

Num bytes to
write

Address with
Bytes to write

Bytes to write

1 17 [GP][AO][1.0][01]
2 006FFAD8 8 006FFB30 00000008
3 006FFA94 4 006FFAD0 0004
4 006FFA9C 4 00C34664 Root
5 006FFA94 4 006FFAD0 0000
6 006FFAA4 4 006FFAE0 0007
7 006FFA60 4 006FFA9C 0003
8 006FFA68 3 00C21120 One
9 006FFA60 4 006FFA9C 0000
10 006FFA70 4 006FFAAC 0000
11 006FFA60 4 006FFA9C 0003
12 006FFA68 3 00C34AFC Two
13 006FFA60 4 006FFA9C 0000
14 006FFA70 4 006FFAAC 0000
15 006FFA60 4 006FFA9C 0005
16 006FFA68 5 00C22C48 Three
17 006FFA60 4 006FFA9C 0000
18 006FFA70 4 006FFAAC 0000
19 006FFA60 4 006FFA9C 0004
20 006FFA68 4 00C34B7C Four
… … … … …

I’ve cut the table…but we can see here a lot of useful information. First we have a clear idea about in
which way the proggie organizes the data in a file. In fact at the first writefile call it writes 17 bytes. It
seems like a little header with name of the proggie and version and others unknown info.
After it writes 8 bytes, value 00000008 this is the total number of nodes (included the first ‘Root’).
Then it writes 4 bytes, value 0004, this is the number of characters of the node’s name that follow.
After it writes the name of the node (Root). At call 5 the proggie write 4 bytes, 0000 , with the info that
we have here is difficult say what these bytes means….but when I wrote this table…I went more in
depth, just for my curiosity…to find the answer at this question mark ☺. The answer is quite simple…
for each node that we insert in the tree we have the option to insert some text in the right side of the
main windows….and ya! These 4 bytes are the number of characters of the text inserted for the specific
node. In our case we haven’t inserted text for any node…if we had inserted some text now after these 4
bytes…the proggie wrote the entire text…
Ok we can go on, the 6th call writes the number of subnodes for the first node (Root), value 7. Then
writes the number of characters of the name for the first subnode, 3.
After it writes the name, ‘one’. At the 9th call restart the same cycle above…for the current node, 0000
(num of chars for the text associated), 0000 (num of subnodes for this subnode).
At the call 11 restart the cycle for the 2nd subnode (two)… and so on….not difficult.

An important thing reported in our table is the address of each information written to…we see that all
addresses comes from memory allocated at runtime, this is important because means that the proggie
doesn’t use arrays fixed in size to store a predefined number of information…
OK…enough…
Now we make a step behind…at the code seen in the start of tut…more exactly here:

:0046FBEA mov eax,ebx
 call 00454440 Retrieve the number of nodes created
 cmp eax,07 Are the number of nodes created less of 7 ??
 jl 0046FC07 yes jump, no nag
 lea edx, [ebp-04]
 mov eax, [00475D8C]
 call 004049C8
 mov eax, [ebp-04]
 call 004682F ;Here we have the Nagscreen

We need to step in the call 00454440 to see where the proggie store the number of nodes created…
Here that we find inside this call:

:00454440 mov eax, [eax+20] eax = num of nodes created
 ret

eax = 00C349B4
eax+20 =[00C349D4] = 00000007

Ok…a part that this is probably one of the faster call of all program (2 lines!!!)☺ … the address where
is stored the number of nodes is dynamically allocated…and is obviously different from pc to pc and it
could be different at every run. What is really interesting here is not this address but the way used to
refer at this info.

[eax+20]

This is an array and at the index 20h the program store the current number of nodes. This array starts at
the address 00C349B4, better if we give it a look:

:00C349B4

Humm…look nice! ☺ A part the first dword (78414500) that seems a marker…the others dword are
simple pointer, and again in allocated memory. Take the first pointer (00C6A384) and go to see what
we find:

:00C6A384

Humm….look more nice too! OK…first dword we assume that it’s a marker…after we have a lot of
zero bytes…then a pointer again in allocated memory (00C21120)…but wait…we have already seen
this address…meanwhile you think where we have seen it….I take the classic moment for the
toilet…sorry but I drink a lot when I reverse code ☺ ….

…10 min later (it was a lot ☺)

78 41 45 00 84 A3 C6 00 CC 6D C2 00 04 6E C2 00

A4 42 C2 00 DC 42 C2 00 14 43 C2 00 C0 56 C2 00
07 00 00 00 D8 18 C7 00 00 00 00 00 00 00 00 00

78 41 45 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 20 11 C2 00 00 00 00 00 B4 49 C3 00

…OK…we have seen this pointer in the first table when we have studied the saving code…exactly at
the writefile call number 8…if we check what we have at this address we find the string ‘one’ (the
name of our first node) like we’ve already seen in the first table…do you remember ??
Good!…but now we go a step forward…
If we look at the 2 arrays above…we see something of really interesting and important…what??…
simple the 2 arrays are identical !!!! …I know someone can say…’ hei Mav are you drunk ?? …the
only bytes that are the same in both arrays are the marker at the start (78414500)……’
He! he!… well… this is true…fucked true! …and it’s been exactly the marker that has turned on the
light in my brain ☺.
Both arrays are different only in the content (obviously), but are the same in the format…the first array
is been created for the first node (Root), the second array is been created for the second node (one)…
The reason for all that zero bytes in the second array…are simple, our second node (one) has no
subnode!!! And for this reason there’s no pointer in the array at other arrays!! But zero bytes!!
OK…make some order in our brain:
Everytime we create a new node in the tree, the program create an array like the above array…same
size and same format…here:

 1 dword, seems to be a marker.

 7 dword , pointers at each subnodes for this node (max 7 subnodes for each node!)

 1 dword, this is the number of subnodes for this node (the limit is 7)

 1 dword, pointer at the name of this node (ascii string)

 1 dword, pointer at the text inserted for the node

1 dword, pointer at the parent array. If this array is for a subnode, this pointer is the
address of parent array (node).

1 dword, this dword is the flag that we can set for each node, there are different
colour (read the manual) ex. If we set a red flag for the node, this dword will be set at
02 00 00 00

Well…now we have some information in more…how we can see the size of these arrays is 48 bytes,
and the space to store pointer at the subnodes is fixed at 28 bytes (7 subnode * 4 bytes).
We see that if we create an eighth node and we force the code to write the address in the array, it
overwrites the dword that store the current number of the nodes (red rectangle). This situation
obviously generates an exception in the code.
The first thing to do…is…find the part of the code that alloc the mem for each array, and see if we can
increase the size of these arrays without creating problems. After that we need to take care of the
information stored in the array after the dword of the current number of nodes…but wait one thing at a
time…

To study the code that allocs mem for the array, better if we create a new node under ,for ex., the node
‘one’…in this way we don’t need to bypass the checks for the limit of 7 nodes.
The proggie doesn’t use VirtualAlloc to allocate memory, forget bpx on apis now…time
wasted…believe me!
The point to start is where the proggie checks the number of nodes already created….it compares the
number with 7 …do you remember the code at the start of the tut ???

78 41 45 00 84 A3 C6 00 CC 6D C2 00 04 6E C2 00

A4 42 C2 00 DC 42 C2 00 14 43 C2 00 C0 56 C2 00
07 00 00 00 D8 18 C7 00 00 00 00 00 00 00 00 00

 00 00 00 00

:0046FBEA mov eax,ebx
 call 00454440 Retrieve the number of nodes created
 cmp eax,07 Are the number of nodes created less of 7 ??
 jl 0046FC07 yes jump, no nag
 lea edx, [ebp-04]
 mov eax, [00475D8C]
 call 004049C8
 mov eax, [ebp-04]
 call 004682F ;Here we have the Nagscreen

:0046FC07 mov eax, ebx
 pop ebx
 pop ecx
 pop ebp
 ret

:0046BB8C test al, al
 jz 0046BC16
 cmp dword ptr [ebp -04], -01
 jnz 0046BBA5
 mov eax, esi esi = pointer at the array for the node in which

 we’re creating the new node.
 Call 0045444C

:0045444C push ebp
 mov ebp,esp
 push ecx
 push ebx
 mov ebx, eax
 mov dl, 1
 mov eax, [00454138] eax = 00454178 marker ?? ☺
 call 00454258

:00454258 push ebx
 push esi
 test dl, dl
 jz 00454266
 add esp, -10
 call 00402FD8

:00402FD8 push edx
 push ecx
 push ebx
 call [eax-0C]

:00402CF8 push eax
 mov eax, [eax-1C] eax = 34h = 52 bytes = size of the array

 call 00402690

:00402690 test eax, eax
 jz 0040269E
 call [0047501C]

:004020D0 …☺…☺…☺…OK…break one moment! We have stepped in every call that we have

encountered….and we are now really in deep in the code…thus fireup the torches
and pickup a helmet…brrr…it’s very dark here!☺

 All code seen is very easy to understand, two things I want remark…the fucked
marker is nothing else that an address…well…it was easy guess it, it points inside the
data section of the exe…could be interesting try to understand why it’s put in every
array…but better if I keep my curiosity in chain…

 The second important thing is the number of bytes to allocate….finally we know
where the code store this number…good for us….but give a quick look ahead…

:004020D0 push ebp
 mov ebp, esp
 push edx
 push esi
 push edi
 mov ebx, eax
 cmp byte ptr [00477410]
 jnz 004020F7
 call 00401A14
 test al, al
 jnz 004020F7
 xor eax, eax
 mov [ebp-04], eax
 jmp 0040224B
 xor ecx, ecx
 push ebp
 push 00402244
 push dword ptr fs:[ecx]
 mov fs:[ecx], esp
 cmp byte ptr [00477045], 00
 jz 00402118
 call kernel32!EnterCriticalSection
 add ebx, 7
 and ebx, -04
 cmp ebx, 0C
 jge 00402128
 mov ebx, 0000000C
 cmp eax, 00001000
 … … …

 mov eax, ebx
 call 00401FDC
 mov [ebp-4],eax
 xor eax, eax
 pop edx
 pop ecx

Keep the code safe from non-
reentrant problem. No more than
one thread can execute this piece
of code! Sure…Windows goes in
crash enough for itself ☺

Ebx = Num of byte to allocate.
Here the code align the size

 pop ecx
 mov fs:[eax], edx
 push 0040224B
 cmp byte ptr [00477045]
 jz 00402243
 push 004741B
 call kernel32!LeaveCriticalSection
 ret

Ok…what is this hell ?!?…this routine allocates a block of memory for the treeview object, this code is
part of the treeview object and it’s not been written by the coder of this proggie. Here we don’t touch a
byte for the simple reason that through this routine pass others requests of memory not only the
memory request for each node’s array.
But this is not a problem because we know exactly where the number of byte to allocate is stored…it’s
to update it ☺.
Well…one thing again for the code above…after the call 00401FDC (green rectangle) in eax we have
the address of our the array…and proggie return from every call happy. Just after some ret from this
routine, the code sets up the array:

:00402D68 push ebx
 push esi
 push edi
 mov ebx, eax
 mov edi, edx
 stosd store the 1 dword (78 41 45 00) in the array
 mov ecx, [ebx-1C] ecx = array size in bytes
 xor eax, eax
 push ecx
 shr ecx, 2
 dec ecx ecx = array size in dwords – 1 dword
 repz stosd clean (0) the entire array

Enough to try the first experiment!…we know that the number of byte of each array is stored at
0045415C , we change the value in this way:
we want 250 nodes for each node

 250*4 = 1000 bytes + 24 bytes for others pointers = 1024 bytes = 400h new number of bytes

OK…we can set a bpm on the location where the program store the original value, then we restart the
proggie…when sice breaks, we replace the original value with 400h…disable the bpm…and we see
what happen…
What we have done is only increase the size of these arrays, but the limit is still there…no more
than 7 pointer can be stored in these arrays or the code generates an exception…
Good…the proggie starts …and works fine…we can insert new nodes…and all is regular…
Now that we are sure that the code is happy to allocate these bytes in more…we can fix the problem to
reorganize the data stored in these arrays…why ??? simple!…do you remember the format used to
store the data within the array ???…from the 2nd to 8th dword the code store the pointers at the 7
subarrays…and at 9th dword store the number of these subarrays!!! If we force the code to insert a new
pointer (8th) this overwrites the number of arrays …and so on…
We have two way to choose from…one patch the code to store the pointers over the 7 th ….after the 5
dwords at the end of the original array….

Alloc the number of bytes. It
returns a pointer.

78 41 45 00 84 A3 C6 00 CC 6D C2 00 04 6E C2 00
A4 42 C2 00 DC 42 C2 00 14 43 C2 00 C0 56 C2 00
07 00 00 00 00 D8 18 C7 00 00 00 00 00 00 00 00

00 00 00 00 … … … … … … … … … … ... …
… … … … … … … … … … … … … … … …
… … … … … … … … … … … … … … … …

or move the last 5 dwords at the end of our new arrays of 400h bytes…like this:

78 41 45 00 84 A3 C6 00 CC 6D C2 00 04 6E C2 00
A4 42 C2 00 DC 42 C2 00 14 43 C2 00 C0 56 C2 00
… … … … … … … … … … … … … … … …
… … … … … … … … … … … … … … ... …
07 00 00 00 00 D8 18 C7 00 00 00 00 00 00 00 00
00 00 00 00

 250 pointers (nodes) * 4 dword

The second solution seems the more fast, because how we can see the program use an index to
write/read in the array. The form is [reg+xx] where xx is the index. By changing the index for the 5
dwords we can force the code to write/read values at different position in the array.
But if look better we see that the number of bytes of this kind of instruction is 3 byte:

 8B 48 20 mov ecx, [eax+20]

 1 byte
The index 20h is a byte, because the array is not bigger than FFh, if we move at the end these 5 values
in our new array of 400h bytes we need a 2 bytes index….thus no more 3 bytes but 4 L.
The first solution is the best (in my personal opinion…and because I’m writing the tut …we choose this
☺). This solution seems more complex, but it isn’t so! What we need to do is find where the code
write/read the pointers in the array and insert a jmp at our new simple routine that check if number of
the current nodes is 7 or great , if so it write/read at the correct position…
Ok lets go to find where the proggie read/write pointers…
We can set a simple bpm on an empty pointer in the array and after insert a new node for this array…
Sice breaks here:

:004543A0 mov ecx, [eax+20] ecx = num of nodes created
 cmp ecx, 7
 jl 004543AE if num < 7 jump, there’s space in array
 call 00454300 nagscreen ‘…only 7 nodes…’
 ret
:004543AE mov [ecx*4+eax+04], edx edx = pointer at the new array to store
 inc dword ptr [eax+20] inc the number of nodes in the array
 ret

Here the code uses the current number of nodes to calculate the position where to store the new pointer
in the array, then it increments the number of nodes.
Here we can simple replace the call 00454300 and ret instruction with :

 add ecx, 5

Why ???….Oh shit! We are at page 10…and someone ask …’why???’….Are there Micro$oft coders
here ??? ☺ Anyway…go on…Sice breaks a second time here:

:0045437E mov eax, eax ☺ ?????!!!!!?????☺
 push esi
 mov esi, [eax+20] esi = number of nodes
 dec esi **
 test esi, esi **
 jl 0045439A **
 inc esi **
 xor ecx, ecx ecx = 0
:0045438C cmp edx, [ecx*4+eax+04] compare edx (pointer at the new node’s array just

created) with each pointers stored in the array
 jnz 00454396 when it finds it…
 mov eax, ecx …in ecx = number of the pointer (0-6)
 pop esi
 ret
 :00454396 inc ecx
 dec esi
 jnz 0045438C
:0045439A or eax, -1 **
 pop esi
 ret

This routine return the position (0-6 for 7 pointers) where is stored the new pointers just inserted at the
new node. This same routine is used when we delete a node too…this is the reason of the 5 lines that
I‘ve signed (**)….these lines check if there’re subnodes for this node before deleting it…if there aren’t
the routine simple return with –1 in eax…meanwhile if there’re subnodes it return with the position of
the first zero pointer. About the first line of this routine…well…doesn’t matter… we have 2Gb of
virtual addresses…all crap is welcome! ☺.
Ok…how patch this…humm…simple we insert a jump at new code at the end of the section…where
we rewrite this piece of code patched:

:xxxxxxxx mov eax, eax ☺ Yeah!!!☺
 push esi
 mov esi, [eax+20] esi = number of nodes
 dec esi **
 test esi, esi **
 jl xxxxxxxx4 **
 inc esi **
 xor ecx, ecx ecx = 0
:xxxxxxxx3 cmp edx, [ecx*4+eax+04] compare edx (pointer at the new node’s array just

created) with each pointers stored in the array
 jnz xxxxxxx4 when it finds it…
 cmp ecx, 0C
 jl xxxxxxxx1
 sub ecx, 5
:xxxxxxxx1 mov eax, ecx …in ecx = number of the pointer (0 to current -1)
 pop esi
 ret
 :xxxxxxxx4 inc ecx
 cmp ecx, 7
 jne xxxxxxxx2
 add ecx, 5
:xxxxxxxx2 dec esi

jnz xxxxxxxx3
:xxxxxxxx4 or eax, -1 **
 pop esi

 ret
 nop

…we have inserted new code (blue) in two different position of this routine, but see why…

When ecx is equal to 7 means that we have an 8th pointer in our array, and to permit
at the code to compare the correct pointer of this 8th (and eventually others after the
8th) we need to fix the index to skip the 5 dwords (do you remember ??).

The reason of this 3 lines of code that I’ve inserted is simple, how we can see ecx is
used to build an index within the array to find the pointer to compare, but not
only…each pointer in the array has a specific position from 0 to 6 (for the first 7
pointer)…this means that if we insert a 8th node the 8th pointer needs to be associated
at the position 7…for a 9th node the 9th pointer needs to be associated at the position
8…and so on. But with our fixup at the index in ecx, we have altered the normal
position associated at the pointers above the 7 th ….these 3 lines fix this problem and
at the exit of this routine ecx store the correct number.

Ok…I don’t explain how to inject new code in a section…I assume that who reads this tut knows how
to make this….hum...Micro$oft coders can click on start button on the taskbar and then click on ‘help’
☺

The code above is executed everytime we create a new nodes…now we need to see where the program
read/write pointers when it deletes a node. Always with the bpm set above we delete a node…
Sice breaks first in the same routine already seen above…and after it breaks a second time here:

edx = position of the pointer to delete (see above)

:004543F1 lea eax, [eax+00]
 push ebx
 mov ebx, eax
 xor eax, eax eax = 0
 mov [edx*4+ebx+04], eax replace the pointer in the array with 0
 mov eax, [ebx+20] eax = number of pointers
 mov ecx, eax ecx = eax
 dec ecx number of pointers -1
 cmp edx, ecx
 jge 0045441C
 sub eax, edx
 dec eax
 mov ecx, eax
 shl ecx, 02
 lea eax, [edx*4+ebx+8]
 lea edx, [edx*4+ebx+4]
 call 00402784
 u dec dword ptr [ebx+20]
 pop ebx
 ret

This routine deletes a pointers in an array for the selected node…but not only…to explain better what
happen here I’ve broken this piece of code in four part (colours)…

First the routine uses the position associated at the pointers (node) to replace it in the
array with 0000 (deleted).

Here the routine compares the position of the deleted pointer (edx) with the position
of the last pointer in the array (ecx). If edx is greater (?) or equal at ecx means that
the pointer deleted was the last in the array, and the code jump to u, where
decrement the number of the pointer in this array.

If the compare instruction above says that the position of the deleted pointer is lower
than the position of the last pointer in the array, this means that the deleted pointer is
not the last in the array.
If we check in the array there’s a ‘hole’ of 0000 where the pointer is been deleted.
What the code here does is calculates how pointers there are from this ‘hole’ at the
last pointer included…why?? Simple…to fill this ‘hole’ moving all these pointers
one position (dword) back…
This job is done by the call 0042784…when the code calls this routine…ecx = num
of byte to move back of 1 dword in the array, edx = offset in array where to move
back the pointers, eax = offset in the array of the first pointer to move back. When the
job is done the code jump to u

 Dec the number of the pointers stored in the array.

Before to show how we can patch this routine…is important to remember that…the position of a
pointer is the number of that pointer –1, the position is zero base…for ex. If the code refers to the
pointer with position 3, this pointer in the array is the 4th …and so on… the routine above uses the
position of a pointer to delete it!!
We need to remember too, that in our new arrays, the first 7 pointers are stored in the correct original
position, but the pointers from 8th to up are stored 5 dwords after the 7th pointer (see 3 pages above).
Ok…with this in mind…

:xxxxxxxx lea eax, [eax+00]
 push ebx
 mov ebx, eax
 xor eax, eax eax = 0
 push edx save original position for the pointer to delete
 cmp edx, 6
 jle xxxxxxxx1
 add edx, 5 fix the position if the pointer to delete is over 7
:xxxxxxxx1 mov [edx*4+ebx+04], eax replace the pointer in the array with 0
 pop edx original position for the pointer to delete

mov eax, [ebx+20] eax = number of pointers
 mov ecx, eax ecx = eax
 dec ecx number of pointers -1

cmp edx, ecx
 jge xxxxxxxx2
 sub eax, edx
 dec eax
 mov ecx, eax
 shl ecx, 02

cmp edx, 6
 jle xxxxxxxx3 Jmptonew routine if deleted pointer is ‘le’ 6
 add edx, 5 fix the position if the pointer to delete is over 7

lea eax, [edx*4+ebx+8]
 lea edx, [edx*4+ebx+4]
 call 00402784
:xxxxxxxx2 dec dword ptr [ebx+20]
 pop ebx
 ret
:xxxxxxxx3 lea eax, [edx*4+ebx+8]
 mov ecx, 6
 sub ecx, edx

lea edx, [edx*4+ebx+4]
 mov esi, eax
 mov edi, edx

 rep movsd move the pointers below the 8th, 1 dword back
 inc ecx
 lea esi, [ebx+34]
 rep movsd move the pointers above the 8th , below the 5

dwords (pointers at others info). The num of
pointers to move below is (6-position of the
deleted pointer)

 mov ecx, [ebx+20]
 dec ecx
 sub ecx, 7
 add edi, 14
 rep movsd move the pointers above the 8th , 1 dword back
 jmp xxxxxxxx2

…I know…I’ve lost someone here…☺…but the new code (blue) is not difficult to understand…I don’t
want waste your time…but it’s important that we understand how it works …thus better if you examine
every lines of code.
Great!!…now we have to see only what happen when the proggie save our marvellous tree …
ok…like above with our bpm on the 7th pointer in the array…we save all…and Sice breaks here:

:00454444 mov eax, [edx*4+eax+4]

Few things to say here, after this line of code eax contains the pointer at the position stored in edx…
We need again to insert a call at our new code…

:xxxxxxxx cmp edx, 6
 jle xxxxxxxx1
 add edx, 5
:xxxxxxxx1 mov eax, [edx*4+eax+4]
 ret

…that’s all…we have changed all critical pieces of code…and the proggie is happy…and a little fatter
than before ☺….

Well…we are at the end…I know someone has hoped for this moment from the second page …but
who is arrived until here…now he’s happy…I’VE SAID HAPPY!!!! …MUST BE HAPPY…because
I’ve lost 3 nights of wild sex with my girlfriend to write this!!!!! ☺ ☺ ☺
Jokes a part I hope that someone have learnt something in more about this fantastic reversing world…

Thanks at all …see ya in next tut …

CIAO

 MaV3RiCk

 maverickluke@hotmail.com

• Please…don’t send me emails…
• …with cracking requests…
• …with a request for this crack…all info here are enough…but I think that 29$ is a good price

for this little program…the coder that sell it doesn’t steal your money if you buy it!!!

