ActionOutLine, small code...usefull utility...and (believe or
not) well protected!

First | want to say at the author/s of thislittle and smple proggie... THANKS! ... for two reasons,
one because the main idea of ActionOutLineisso smple but so ussful (at leastfor me) and to be
honest today is very difficult to seereally useful programs. Second becausethislittiejewd is
defended very well againgt the novice and medium crackers attacks. . ..here change some bytes or
<kip some code or reset some flagsisnot enough. ..
...welcomein thereal world of reversing!

(pleaseforget ...my crappy english ©)

(Modified dightly by amante4)

Well, someone probably in this moment think...”Hei ..Mav...thisis not a software protection
system...It'sanormd program...” he! he! true! But don't worry we have enough here for ared good
fun...

I’ve met this proggie after that I’ ve read amessage posted on the Italian Cracking Forum (Ahh thanks
Xasx for the board!)...a guy was desperate because a crack just downloaded didn’t remove the limit of
7 records...but only the 30 days of evauation. After some posting the guys was very depressed. ..
why?? What had this proggie of so specia?? ...wdll | decided to download it to see why therewasn't a
full crack on the net....here what I’ ve found...

Target:
ActionQutLine 1.6 http://gpsoft.hypermart.net

Todls

- Sicedx

- Hex editor (choose what you want)

- Brain(...if you areaMicro$oft coder...well... search thistool with http:/Mmww.dtavisacom/ ©)

Thefirgt protection in the codeis the check on 30 days of evaluation....Thisisnot aproblem and It's
not interesting for us....the second protection isthe limit of 7 records (or nodes, or items cal it how
you want...in thistut I'll refer to it asnodes)...more interesting and more important. .. but the main
thing hereisthat these 2 different checks are not related with the state of the proggie. . .registered or
unregistered....for the simple reason that the program works only in trail mode and there€ sno
registration option! This meansthat the proggie has no code to work properly in full mode. We see now
inwhichway | ‘ve arrived at this concluson and in which way we can fix the problem. ...

OK runthetarget. .. .the first window that we can seeisthe nag for 30 days of evauation....not
interesting....go on...now in the main proggie....we can create anew tree of nodes....

Under the ‘root’ we create anode. ..then under thisnode ...we creste 7 nodes. .. .better explained with
the picture below:

Dle(E] 8| m[o] -] -

b » ay Root

At this point we try to insert another item the ‘eight’ ...the nag pops up ...to remind us that we have
reached thelimit...
OkK...the common and easy thing to do isfind the call &t this nagscreen....

:0046FBEA mov eax,ex
call 00454440
cmp eax,07
jl 0046FCO7
leaedx, [ebp-04]
mov eax, [00475D8C]
call 004049C8
mov e, [ebp-04]
cal 004682F ;Here we have the Nagscreen

Well...to be honest ...with only these few lines of code...aMicro$oft coder could understand that the
cmp eax,07 checks the number of nodes......very easy...and very wrong!!!!!

OK...why....??? We need to keep our ideas cleared. . .because we need some reversing skills...go
ahead with aright path...

The smple check seen beforeis correct. ... what the program doesis check if the number of nodes
inserted islessthan 7....wel if not...nagscreen!

The fast thing to do isreverse the jl to skip the nag'scall....at this point the program....he heshows
asecond different nagscreen.....or better thisis a classc messagebox. It remembersto usthat only 7
nodes are permitted.....uhmm... quite enough to understand that there’ sa second check...

We step the code &fter the reversed jump to find where the messagebox is shown.

:0046BB9A mov eax, esi
cal 0045444C
mov esl, eax
jmp 0046BBC6

We need to step in the call 0045444C to seethered call at the messagebox, here the code:

:004542F1 test eax, eax
jz 004542FC
mov edX, edx
cal 004543A0 ;show the messagebox
pop esi
pop ebx
rg

If weskipthecdl ...thejobisdone...no more nags or messages...and the program insart in the tree
our new node. Good ! we can cdl it ‘eight’ and the program seems cracked....but if we stand up we
receive abig kick in the ass....yeeh the proggie has joked with udl.....

OK...now we need only to save dl and close the program....then reopen it and load the file saved. ..to
seeif our cracked code worksfine....he hel

Big surprise! The proggie seems that discards the data over the 7 permitted...two can be the Situations
here...one, the proggie cracked saves dl data (over the seventh too) but when it loads thefile, it checks
for the presence of non-permitted field (over the seventh) and loads correctly only seven of it...
Second, the proggie cracked. ..when we insert an eight node, it shows the information only in the tree,
but it does't save data over the seventh insert ed.

Well for us....the more easy situation isthefirgt...and from thiswe start to seeif the problemisin the
loading data code. . ..

First we need to check the saved file to seeif the information are stored or not...

Open the our saved file with an hex editor... ketter Ultraedit ...and we see what we can see ©

00000000 5B47 505D 5B41 4F5D 5B31 2E30 5D5B 3031 [GP|[AO][1.0][01
00000010 5D08 0000 0000 0000 0004 0000 0052 6F6F J......... Roo
00000020 7400 0000 0007 0000 0003 0000 O0B6F 6E65 t..... one
00000030 0000 0000 0000 0000 0300 0000 7477 6FO0 ... two.
00000040 0000 0000 0000 0005 0000 0074 6872 6565 .. three
00000050 0000 0000 0000 0000 0400 0000 666F 7572
00000060 0000 0000 0000 0000 0400 0000 6669 7665
00000070 0000 0000 0000 0000 0300 0000 7369 7800
00000080 0000 0000 0000 0005 0000 0073 6576 656E
00000090 0000 0000 0000 00O

How we can see our good Star this night is not passed on our head! ...and the proggie doesn't save the
eight node...we are in the second situation described before. We need to study the code that performs
the saving operation...Ok...no fear! And go!

We open our saved file and we insat again the node ‘eight’ now we know in whichway ©

After we set abpx on DialogBoxIndirectParam gpi function.

This 16hit function is used (for compatibility with 16hit gpps) to create asavediaog. ..another classic
examplethat Win98 isthe same of Win95 t hat is the same of WfW3.11 advanced mode. ..same shit!
But thisis another story.

Anyway... Sice popsupwe need to renter in the proggie code. ..

OK...now in code we know that the proggie at this point has retrieve the name of the file chosen by us
to save dl. And now it create thefile and art to writeinit! Yeah...writeinit...we set abpx on
WriteFle gpi function....and...

Scebreskshere...
:00407077 push0 5 parameter
leaeax, [exp+04] offset Dword with num bytes written
push eax 4 parametre
push edi 3 parameter num bytesto write
pushesi 2 parameter offset buffer with bytesto write
push ebx 1 parameter file handle
cdl kerne32!writefile writel

How we can seeif we leave the proggie run...thisisthe only piece of code for writing the dat asin the
file...good for ud

We put abpx on the 2 parameter (push)...to see the content of the buffer that stores the bytesto write.
Everytime the code use writefile to save on disk we can see what byte it saves...and understanding the
format used......... I know, | know!...someone a this point can ask...’why to understand the data
format used to save our data 7?7 ...because we need a clear idea about where the proggie store dl our
datajust beforeto save on disk...| mean array, variables, pointers etc.

To make the thing easy for dl readers....I don't explain every lines of code...thisisquite easy todoin
Siceand it doesn't take alot time...but I'll explain directly how the program save our datain afile...

Ok...fireup Sice and see what is happened....

I’ve put al information collected at every break in atable to keep our mind and the tut quite reedable
and understandable ©.

The table shows, for each call a writefile, the number of bytesto write, the bytesto write and the
addresses where the proggie retrieve these 2 info. Well.. .we can give alook....

Num of call Addresswith Num bytesto Addresswith Bytestowrite
WriteFile Num bytesto write Bytesto write
write

1 17 [GPI[AQ][1.0][01]
2 006FFADS 8 006FFB30 00000008
3 006FFA94 4 006FFADO 0004
4 006FFASC 4 00C34664 Root

5 006FFA94 4 006FFADO 0000

6 006FFAA4 4 006FFAEQ 0007

7 006FFAG0 2 006FFASC 0003
8 006FFAG8 3 00C21120 One

9 006FFAG0 4 006FFASC 0000
10 006FFA70 4 006FFAAC 0000
11 00GFFAGO 4 006FFASC 0003
12 00GFFAGS 3 00C34AFC Two
13 006FFAG0 4 006FFASC 0000
14 006FFA70 4 006FFAAC 0000
15 006FFAG0 4 006FFASC 0005
16 006FFAG8 5 00C22C48 Three
17 006FFAG0 4 006FFASC 0000
18 006FFA70 4 006FFAAC 0000
19 006FFAG0 2 006FFASC 0004
20 006FFAG8 4 00C34B7C Four

I’ve cut thetable...but we can see here alot of useful information. First we have aclear ideagbout in
which way the proggie organizesthe datain afile. Infact at thefirst writefile cal it writes 17 bytes. It
seamslike alittle header with name of the proggie and version and others unknown info.

After it writes 8 bytes, value 00000008 thisis the total number of nodes (included thefirst ‘ Root’).
Then it writes 4 bytes, value 0004, thisis the number of characters of the node' s name that follow.
After it writes the name of the node (Root). At call 5 the proggie write 4 bytes, 0000 , with the info that
we have hereis difficult say what these bytes means....but when | wrotethistable...l went morein
depth, just for my curiosity...to find the answer at this question mark ©. The answer is quite smple...
for each node that we insert in the tree we have the option to insert sometext in the right side of the
main windows....and yal These 4 bytes are the number of characters of the text inserted for the specific
node. In our case we haven't inserted text for any node....if we had inserted some text now after these 4
bytes...the proggie wrote the entire text. ..

Ok we can go on, the 6th call writes the number of subnodes for thefirst node (Root), value 7. Then
writes the number of characters of thename for the first subnode, 3.

After it writesthe name, ‘oné€ . At the 9th call restart the same cycle above. ..for the current node, 0000
(num of charsfor the text associated), 0000 (num of subnodes for this subnode).

At the call 11 redtart the cycle for the 2 subnode (two)... and so on....not difficult.

An important thing reported in our table is the address of each information written to...we seethat all
addresses comes from memory alocated at runtime, thisisimportant because means that the proggie
doesn't use arraysfixed in Size to store a predefined number of information. ..

OK...enough...

Now we make a step behind. .. at the code seen in the start of tut...more exactly here:

:0046FBEA mov eax,eox
cal 00454440 Retrieve the number of nodes created

cmp eax,07 Arethe number of nodes created lessof 7 ?7?
jl 0046FCO7 Yes jump, no nag

lea edx, [ebp-04]

mov eax, [00475D8C]

cal 004049C8

mov eex, [ebp-04]

cal 004682F ;Here we have the Nagscreen

We need to step in the call 00454440 to see where the proggie store the number of nodes crested. ..
Herethat wefind insdethiscal:

:00454440 mov eax, [eax+20] eax = num of nodes created
ret

eax = 00C349B4
eax+20 =[00C349D4] = 00000007

Ok...apart that thisis probably one of the faster cal of all program (2 lines!)© ... the addresswhere
is stored the number of nodesis dynamically alocated...and is obvioudy different from pc to pc and it
could be different at every run. What isredly interesting here is not this address but the way used to
refer at thisinfo.

[eax+20]

Thisisan array and at the index 20h the program store the current number of nodes. Thisarray sartsat
the address 00C349B4, better if we giveit alook:

:00C349B4

we find:

:00C6A384

78 4114510084 |A3|(C6|00)CC|6D| C2(00 04 |6E | C2]| 00
A4 |42 | C2|00(DC 42 [C2|00| 14 (43 | C2| 00 CO |56 | C2]| 00
07 |[0O(00|0O0O|D8 |18 |C7|00| 00O (OO |00 | OO 0O |0OO | OO | 0O
Humm...look nicel © A part thefirst dword (78414500) that seems amarker...the others dword are
smple pointer, and again in dlocated memory. Take thefirst pointer (00C6A 384) and go to see what
78 (4145|100 (00|00 |00 |OO|OOf[OO OO |OO (|00 |0OO (OO | OO
00 | 00|00 00|00 |0OO |00 |OO|0OO|OO 0O |OO |00 [OO | OO | OO
00O |00Of(0O0O) 00|20 (121 |C2 (00| 00|00 00|00 |B4 |49 | C3|00

Humm....look more nicetoo! OK...first dword we assumethat it's amarker.. .after we have alot of
zero bytes.. .then apointer again in alocated memory (00C21120)...but wait...we have dready seen
this address. ..meanwhile you think where we have seenit....| take the classc moment for the
toilet...sorry but | drink alot when | reversecode © ...

...10 min later (itwasalot©)

...OK...we have seen this pointer in the firgt table when we have studied the saving code....exactly at
the writefile call number 8...if we check what we have a this address we find the string ‘on€’ (the
name of our first node) like we ve dready seen in the firgt table...do you remember ?7?

Good!...but now we go astep forward. ..

smplethe 2 arraysareidentica !!!! ...I know someonecan say...” hel Mav areyou drunk ?? ...the
only bytesthat are the samein both arrays are the marker at the start (78414500)....... '

He! hel... well... thisistrue...fucked true! ...and it's been exactly the marker that has turned on the
light in my brain ©.

Botharrays are different only in the content (obvioudy), but are the same in the format...thefirgt array
is been created for the first node (Root), the second array is been crested for the second node (one). ..
The reason for al that zero bytesin the second array...are smple, our second node (one) has no
subnode!!! And for this reason there’ s no pointer in the array at other arrays!! But zero bytes!!
OK...make some order in our brain:

Everytime we create a new node in the tree, the program create an array like the above array...same
Szeand sameformat...here:

78 {4145 [o0f 84 |A3|ce|o0| cc|ep| c2|oo o4 |6E|C2|00
| A4 |42 caloolpc a2 [calool1a 1431 c2l oo colselcolon
07 oo L oo 100 D8I1_gIc7IQO OoIr_\r_\Ir_\QIr_\QIOO 001 00 00
00 [onl oo | ooll I I [1 I I I

—_— 1 dword, seemsto beamarker.

7 dword , pointers at each subnodes for this node (max 7 subnodes for each node!)
I 1 dword, thisisthe number of subnodesfor this node (thelimitis7)

1 dword, pointer at the name of this node (ascii string)

1 dword, pointer at the text inserted for the node

1 dword, pointer at the parent array. If thisarray isfor asubnode, this pointer isthe
address of parent array (node).

—_— 1 dword, this dword is the flag that we can set for each node, there are different
colour (read the manud) ex. If we set ared flag for the node, this dword will be set at
02000000

Well...now we have some information in more...how we can see the Size of these arraysis 48 bytes,
and the space to store pointer at the subnodesisfixed a 28 bytes (7 subnode * 4 bytes).

We see that if we create an eighth node and we force the code to write the addressin the array, it
overwrites the dword that store the current number of the nodes (red rectangle). This situation
obvioudy generates an exception in the code.

Thefirgt thing to do...is...find the part of the code that aloc the mem for each array, and seeif we can
increase the Sze of these arrays without cresting problems. After that we need to take care of the
information stored in the array after the dword of the current number of nodes. ..but wait onething at a
time...

To study the code that alocs mem for the array, better if we creste anew node under for ex., the node
‘on€ ...inthisway we don't need to bypass the checks for the limit of 7 nodes.

The proggie doesn’t use Virtua Alloc to alocate memory, forget bpx on apis now...time
wadted....believe me!

The point to start is where the proggie checks the number of nodes already crested....it compares the
number with 7 ...do you remember the code at the start of the tut 7??

:0046FBEA

:0046FCO7

:0046BB8C

N

:00454258

"

:00402FD8

N

:00402CF8

mov esx,ebx

call 00454440

cmp eax,07

jl 0046FCO7

lea edx, [ebp-04]

mov eax, [00475D8C]
call 004049C8

mov eex, [ebp-04]

cdl 004682F

mov eax, ebx
pop ebx
pop ecx
pop ebp

testd, d

jz 0046BC16

cmp dword ptr [ebp-04],-01
jnz 0046BBA5

mov eax, es

Call 0045444C

push ebp

mov ebp,exp

push ecx

push ebx

mov ebx, eax

mov d, 1

mov eax, [00454138]
cal 00454258

push ebx
pushesi
testdl,d

jz 00454266
add esp, -10
call 00402FD8

push edx
push ecx
push ebx
cal [eax-0C]

push eax
mov esx, [eax-1C]

Retrieve the number of nodes created
Arethe number of nodes created less of 7 7?

yesjump, no nag

;Here we have the Nagscreen

es = pointer at the array for the node in which
we're creeting the new node.

eax = 00454178 marker 7? ©

eax = 34h =52 bytes= sze of thearray

B

:00402690

"

:004020D0

:004020D0

cdl 00402690

test eax, eax
jz 0040269E
call [0047501C]

...©...0...0...0K...break one moment! We have stepped in every cal that we have
encountered. ...and we are now redlly in deep in the code. ..thus fireup the torches

and pickup ahelmet...brrr...it' svery dark herel©

All code seenisvery easy to understand, two things | want remark...the fucked
marker isnothing elsethat an address...well...it was easy guessit, it pointsinsde the
data section of the exe...could be interesting try to understand why it’s put in every
array...but better if | keep my curiogity in chain...

The second important thing isthe number of bytesto allocate.finally we know
where the code store this number....good for us....but give aquick look ahead...

push ebp

mov ebp, e

push edx

pushesi

push edi

mov ebx, eax

cmp byte ptr [00477410]
jnz 004020F7

cdl 00401A14

testd, d

jnz 004020F7

XOr eax, eax

mov [ebp-04], eax
jmp 0040224B

XOr ecX, ecxX

push ebp

push 00402244

push dword ptr fs;[ecx]
mov fs[ecx], ep

cmp byte ptr [00477045], 00
jz 00402118

cdl kend 32 EnterCriticalSection |

add ebx, 7

and ebx,-04
cmp ebx, 0OC
joe 00402128

Ebx = Num of byteto dlocate.
Herethe code dignthesze

mov ebx, 0000000C
cmp eax, 00001000

Keep the code safe from non
mov eax, ebx reentrant problem. No more than
cdl 00401FDC one thread can execute this piece
mov [ebp-4],eax of codel Sure...Windowsgoesin
XOr esX, eax crash enough for itsdf ©

pop edx
pop ecx

pop ecx

mov fs[eax], edx Alloc the number of bytes. It
push 00402248 returns a pointer.
cmp byte ptr [00477045]
jz 00402243
push004741B
|call kernel32L eaveCriticalSection |
ret

part of the treeview object and it’s not been written by the coder of this proggie. Here we don’t touch a
byte for the simple reason that through this routine pass others requests of memory not only the
memory request for each node sarray.

But thisis not a problem because we know exactly where the number of byteto dlocateis stored...it's
to update it©.

WEell...onething again for the code above. ... after the cal 00401FDC (green rectangle) in eax we have
the address of our thearray...and proggie return from every cal happy. Just after someret fromthis
routine, the code setsup the array:

:00402D68 push ebx
pushesi
push edi
mov ebx, eax
mov edi, edx
stosd storethe 1 dword (78 41 45 00) in the array
mov ecx, [ebx-1C] €CcX = array sizein bytes
XOr eax, eaxX
push ecx
ghr ecx, 2
dec ecx ecx = array Szein dwords— 1 dword
repz stosd clean (0) the entire array

Enough to try thefirst experiment!...we know that the number of byte of each array is stored at
0045415C , we change the value in thisway:
we want 250 nodesfor each node

250*4 = 1000 bytes + 24 bytes for others pointers = 1024 bytes = 400h new number of bytes

OK...we can set abpm on the location where the program store the original vaue, then we restart the
proggie...when sice bresks, we replace the origina value with 400h....disable the bpm...and we see
what happen...

What we have doneisonly increasethe size of these arrays, but the limit is still there...no more
than 7 pointer can be stored in these arraysor the code gener ates an exception...
Good...theproggie darts ...and worksfine...we can insert new nodes...and al isregular. ..

Now that we are sure that the code is happy to dlocate these bytesin more...we can fix the problem to
reorganize the data stored in these arrays. . .why ??? smple!...do you remember the format used to
Store the datawithin the array ?22....from the 2™to 8" dword the code store the pointers at the 7
subarrays...and at 9" dword store the number of these subarraysi!! If we force the codeto insert anew
pointer (8th) this overwrites the number of arrays ...and so on...

We have two way to choose from. ..one patch the code to store the pointers over the 7" ... dfterthe
dwords at the end of the origina array....

78[41]45]00 | 84 | A3| c6| 00 cC|6D | C2|00] 04| 6E| C2| 00]
Ad |42 c2loo| Dc| 42| c2| oo 14| 43| c2|oo|col 56 c2| o0
o7 oo | oo|oo| oo |D8| 18| c7 00| 00| 00|00[00| 00| 0O| OO
00 [00 | 00 | 00

or movethelast 5 dwords at the end of our new arrays of 400h bytes...likethis:

784145 00 84| A3] c6| 00 cclep|ca|oo| o4 6E] c2]00]
A4 42| c2|oo|pc| 42| c2] 00 14] 43| c2loo|co[s6] c2|oo]
07 (00| o0ofoo| oo |[D8| 18] c7 00| 0o oofoo|oofoof oofoo
00 [00 | 00|00

250 pointers (nodes) * 4 dword

The second solution seems the more fast, because how we can see the program use an index to
writeread in the array. The form is[reg+xx] where xx isthe index. By changing theindex for the 5
dwords we can force the code to write/read vaues et different position in the array.

But if look better we see that the number of bytes of thiskind of instruction is 3 byte:

8B4820 mov ecx, [eax+20]

1byte
Theindex 20h isabyte, because the array is not bigger than FFh, if we move at the end these 5 values
in our new array of 400h byteswe need a2 bytesindex....thus no more 3 bytes but 4 ®.
Thefirst solution isthe best (in my personal opinion...and because I’'m writing the tut ...we choose this
©). This solution seems more complex, but it isn't so! What we need to do isfind where the code
write/read the pointersin the array and insert ajmp at our new simple routine that check if number of
the current nodesis 7 or great , if so it write/read at the correct position...
Ok lets go to find where the proggie read/write pointers...
We can set asimple bpm on an empty pointer in the array and after insert anew node for thisarray ...
Sce bresks here

:004543A0 mov ecx, [eax+20] ecx = num of nodes created
cmp ecx, 7
jl 004543AE if num <7 jump, there's pacein array
cdl 00454300 nagscreen ‘...only 7 nodes...’
ret

:004543AE mov [ecx* 4+eax+04], edx edx = pointer a the new array to store
inc dword ptr [eax+20] inc the number of nodesin the array
ret

Here the code uses the current number of nodes to calculate the position where to store the new pointer
in the array, then it increments the number of nodes.
Here we can smple replace the call 00454300 and ret instruction with :

addecx, 5

Why ?7?....0h shit! We are a page 10...and someone ask ..."why??? ... Are there Micro$oft coders
here 72?© Anyway...go on...Sice bresks a second time here:

:0045437E

:0045439A

mov esX, eax
pushesi

mov es, [eax+20]

deces

testes, es

jl 0045439A

inc es

XOr €cX, ecX

cmp edx, [ecx* 4+eax+04]

jnz 00454396
MoV €8x, cX
pop esi

ret

inc ecx
dec es

jnz 0045438C
oresx, -1
pop esi

ret

© 72N ?7???70

es = number of nodes

* %

* %

* %

**

ex=0

compare edx (pointer at the new node' sarray just
created) with each pointers stored in the array
whenit findsit...

...inecx = number of the pointer (0-6)

* %

Thisroutine return the position (0-6 for 7 pointers) where is stored the new pointersjust inserted at the
new node. This same routine is used when we delete a node too. . .this is the reason of the 5 lines thet
I‘ve signed (**)....these lines check if there' re subnodes for this node before deleting it...if there aren’t
the routine smple return with -1 in eax...meanwhileif there' re subnodesit return with the position of
thefirst zero pointer. About thefirst line of thisroutine...well...doesn’t matter... we have 2Gb of
virtua addresses...dl crapiswelcome! ©.
Ok...how patch this...humm...ample we insert ajump at new code a the end of the section...where
we rewrite this piece of code patched:

X00KXX

IXXXXXXXX L

0000004

IXXXXXXXX2

20000004

mov esx, eax

pushesi

mov &g, [eax+20]

deces

test esi, es

j1oo0o00od

inces

XOr €cX, ecx

cmp edx, [ecx* 4+eax+04]

JNZ 0000004

cmp ecx, 0C
J1O000KKK L
sub ecx, 5

MOV eax, ecX
pop esi

ret

inc exx

cmp ecx, 7
jNe XXXXXXXX2
add ecx, 5

dec es

Nz %000000063
oreax, -1
pop esi

O Yehll©

es = number of nodes

* %

* %

* %

* %

ex=0

compare edx (pointer at the new node’ sarray just
created) with each pointers stored in the array
whenit findsit...

...inecx = number of the pointer (0 to current-1)

**

ret
nop

...we have inserted new code (blue) in two different position of this routine, but see why ...

E— When ecx isequd to 7 meansthat we have an g" pointer in our array, and to permit
a the code to compare the correct pointer of this g" (and eventually others after the
8‘“) we need to fix the index to skip the 5 dwords (do you remember 7?).

e The reason of this 3 lines of code that I’ ve inserted is Smple, how we can seeecx is
used to build an index within the array to find the pointer to compare, but not
only...each pointer in the array has a specific position from 0 to 6 (for thefirst 7
pointer)...thismeansthat if weinsert a8™ node the 8" pointer needs to be associated
at the position 7...for ag" node the 9" pointer needs to be associated a the position
8...and so on. But with our fixup at theindex in ecx, we have dtered the norma
position associated at the pointers above the 7™ ... these 3linesfix this problem and
at the exit of this routine ecx store the correct number.

Ok...l don't explain how to inject new codein asection...| assume that who reads this tut knows how
to makethis....hum...Micro$oft coders can click on start button on the taskbar and then click on ‘help’
©

The code above is executed everytime we create a new nodes...now we need to see where the program
reed/write pointers when it deletes a node. Always with the bpm set above we delete anode. ..
Sice breaksfirgt in the same routine aready seen above. ..and after it bresks a second time here:

edx = position of the pointer to delete (see above)

:004543F1 leaeax, [eax+00]

push ebx

mov ebx, eax

XOr esx, eaxX ex=0

mov [edx* 4+ebx+04], eax replace the pointer in the array with O
mov eax, [ebx+20] eaX = number of pointers

MOV ecx, eax €CX = eax

dec exx number of pointers -1

cmp edx, ecxx

jge 0045441C

b eax, edx

dec ex

MOV ecx, eax

sl ecx, 02

leaeax, [edx* 4+ebx+8]
lea edx, [edx* 4+ebx+4]
cal 00402784

(1] dec dword ptr [ebx+20]
pop ebx

ret

Thisroutine deletes a pointersin an array for the selected node...but not only...to explain better what
happen here I’ ve broken this piece of codein four part (colours)...

First the routine uses the position associated at the pointers (node) to replaceit in the
array with 0000 (deleted).

E— Here the routine compares the position of the deleted pointer (edx) with the position
of thelast pointer inthe array (ecx). If edx isgrester (?) or equa a ecx meansthat
the pointer deleted wasthe last in the array, and the codejump to @, where
decrement the number of the pointer in thisarray.

If the compare instruction above says that the position of the deleted pointer islower
than the position of the last pointer in the array, this meansthat the deleted pointer is
not thelast in the array.

If we check inthe array theré’ sa‘'hole’ of 0000 where the pointer is been deleted.
What the code here doesiis calculates how pointers there are from this‘hol€’ at the
lagt pointer included...why?? Simple...tofill this*hol€ moving dl these pointers
one position (dword) back...

Thisjob isdone by the call 0042784...when the code callsthisroutine...ecx = num
of byteto move back of 1 dword inthe array, edx = offset in array where to move
back the pointers, eax = offset in the array of the first pointer to move back. When the
jobisdone the codejump to @

Dec the number of the pointers stored in the array.

Before to show how we can patch thisroutine. . .isimportant to remember that. ..the position of a
pointer isthe number of that pointer —1, the position is zero base...for ex. If the code refersto the
pointer with position 3, this pointer in the array isthe 4" ...and so on.... the routine above usesthe
position of apointer to deleteit!!

We need to remember too, that in our new arrays, thefirst 7 pointers are stored in the correct origina
position, but the pointers from g"to up are stored 5 dwords after the 7" pointer (see 3 pages above).
Ok...withthisinmind...

000000 leaeax, [eax+00]

push ebx

mov ebx, eax

XOr esx, eaxX ex=0

push edx saveoriginal position for the pointer to delete

cmp edx, 6

jlexxxxxxxx1

add edx, 5 fix the position if the pointer to deleteisover 7
XXX L mov [edx* 4+ebx+04], eax replace the pointer in the array with O

pop edx ariginal position for the pointer to delete

mov eax, [ebx+20] eaxX = number of pointers

MOV ecx, eax €CX = eax

dec exx number of pointers -1

cmp edx, ecx

JOBXXXXXXXX2

sub eax, edx

dec eax

MOV €cx, eax

sl ecx, 02

cmp edx, 6

jle xxoxxaxx3 Jmptonew routineif deleted pointer is‘le’ 6

add edx, 5 fix the position if the pointer to deleteisover 7

leaeax, [edx* 4+ebx+8]
leaedx, [edx* 4+eox+4]
cdl 00402784
IXXXXXXXX2 dec dword ptr [ebx+20]
pop ebx
ret
DOXXXXXX3 lea eax, [edx* 4+ebx+8]
mov ecx, 6
sub ecx, edx
lea edx, [edx* 4+ebx+4]
mov es, eax
mov edi, edx

rep movsd move the pointers below the 8", 1 dword back

inc ecx

lea esi, [ebx+34]

rep movsd move the pointers above the 8", below the 5
dwords (pointersat othersinfo). The num of
pointersto move below is(6-position of the

deleted pointer)
mov ecx, [ebx+20]
dec ecx
sub ecx, 7
add edi, 14
rep movsd movethe pointersabovethegh , 1 dword back

JMP XXXXXXXX2

...l know...I've lost someone here...©...but the new code (blue) is not difficult to understand...| don't
want waste your time. ..but it’ simportant that we understand how it works ...thus better if you examine
every lines of code.

Great!!...now we have to see only what happen when the proggie save our marvelloustree ...

ok...like above with our bpm on the 7" pointer in the array...we save dl ...and Sice bresks here:

100454444 mov eaX, [edx*4+eax+4]

Few thingsto say here, after thisline of code eax contains the pointer at the position stored in edx...
We need again to insert acall a our new code...

O00KXXX cmp edx, 6
jlexxxxxxxx1
add edx, 5

XXX L mov eax, [edx* 4+eax+4]
ret

...that'sdll...we have changed al critica pieces of code...and the proggieis happy...and alittle fatter
than before®©....

Well...we are a the end...| know someone has hoped for this moment from the second page ...but
who isarived until here...now he'shappy...I"'VE SAID HAPPY!!!!I ...MUST BE HAPPY ...because
I’velogt 3 nights of wild sex with my girlfriend to write this!!!! © © ©
Jokes apart | hope that someone have learnt something in more about this fantastic reversing world. ..
Thanksat all ...seeyainnexttut ...
CIAO

MaV3RiCk

maverickluke@hotmail.com

Please...don’'t send me emalls...

...with cracking requests...

...with arequest for this crack...dl info here are enough....but | think that 29% isagood price
for thislittle program...the coder that sell it doesn’t steal your money if you buy it!!!

