
Semi-Automatic Semi-Automatic
Unpacking on IA-32 Using Unpacking on IA-32 Using

OllyBonEOllyBonE

Joe Stewart

IntroductionIntroduction

Packers – so many to reverse-engineer,
so little time!
We've got a lot of malware to analyze,
we need to spend our time looking at
the malicious code, not the packer
Let's take a look at how it's being done
now...

The Hard WayThe Hard Way

Painstakingly reverse-engineer the
packer code
Write an unpacking engine to handle
the specific algorithms/tricks of the code
Who has time for this? Even AV
companies have a hard time keeping up
with every version of every packer
Even if they could, the scanner engine
gets increasingly bloated

The Expensive WayThe Expensive Way

Buy (or write) an emulation engine
which can pretend to execute the code
and unpack it along the way
Then you only have to deal with minor
variations/tricks in the code
A lot of time to write, and even more
time to maintain (therefore usually not
free)

CheatingCheating

Just run the code on a goat system and
dump it from memory after it's unpacked
Doesn't give us a clean starting image –
variables in memory which have
changed since the start of execution are
now dumped at their current value
Where is the OEP?

Simplifying it allSimplifying it all

Most (not all) unpacking code works the
same way from a high-level view
Code is packed/encrypted, and a stub
section is added to the end
The EntryPoint in the PE header now
points to the stub
Unpacking code runs, unpacks the
other sections, then jumps to the code
section

Most common packing methodMost common packing method

PE Header

Code section

...

Unpacked

Entry Point
PE Header

Packed

Entry Point

Decryptor Stub

OEP

Your wishlistYour wishlist

How many times have you wished for a
way to set a breakpoint in OllyDbg on
an entire section of code?
Well, of course you can already do this
– but this is break-on-access

The stub code has to write to the section
you're going to execute
So you'd be breaking thousands of times
before it executed
Might as well trace it if you're going to do
that

TracingTracing

What's wrong with tracing?
Oldest trick in the book
Trivially detected
Can be sloooowwwww...

So, you say, “I wish I had a simple way
to just break on execution of a memory
section, without all that tracing...”

OllyBonEOllyBonE

OllyBonE = Break on Execute for Olly!
How is this possible? X86 architecture
at least doesn't allow for NX without a
special CPU
But wait, this problem was already
solved for stack/heap overflows, by the
PaX project
So, we adapt the idea of protecting
stack/heap to protecting arbitrary pages
of memory

PaX ReviewPaX Review

We all know how PaX works, right?
VA translation lookaside buffers
x86 architecture uses separate TLBs

DTLB for read/write
ITLB for execution
We can cache one and not the other – let
the OS read the stack, but kill process if it
tries to execute it
Marks pages by overloading the meaning
of the user/supervisor PTE bit

Making it work as an unpackerMaking it work as an unpacker

Instead of protecting the stack/heap
from execution, we protect all pages of
a target PE section in memory
Instead of killing the process on
execution attempt, we jump from the
page fault handler to the INT1 handler
This raises a single-step exception
inside OllyDbg – returning control to us

OllyBonE ArchitectureOllyBonE Architecture

OllyBonE.dll - OllyDbg plugin
ollybone.sys – kernel driver, implements
arbitrary PaX-like page protection
OllyBonE interfaces with ollybone.sys
via IOCTL, tells it what page of virtual
memory to protect or un-protect

InternalsInternals

Data access
Unpacking program attempts to write to
target section
VA translation is not already cached; page
table walk generates page fault
Our page fault handler checks to see if
page fault is our fault
If so, check to see if this is a data access
(faulting address != EIP)
If so, toggle the PTE bit, then read from the
 page in order to cache the DTLB entry
Toggle the PTE entry back to original state

Internals 2Internals 2

Instruction (execute) access
Unpacking program attempts to execute
code in target section
VA translation is not already cached; page
table walk generates page fault
Our page fault handler checks to see if
page fault is our fault
If so, check to see if execute access
(faulting address == EIP)
If so, pop extra argument off the stack and
jump to INT1 handler

Virtual MachinesVirtual Machines

Virtual machines don't always correctly
implement the IA-32 TLBs
VMs that can run OllyBone:
Known to work:

VMWare
Doesn't work:

Bochs
Qemu

Unknown:
Microsoft Virtual PC

Using OllyBonEUsing OllyBonE

Usage is straightforward
Load target EXE in OllyDbg
Locate potential final code segment
Toggle break-on-execute flag
Run
Program encounters INT1 (single-step
break) when trying to execute protected
page
Control is passed back to OllyDbg
We are at the OEP, unpacked (hopefully)

DemonstrationDemonstration

Video demo
Brought to you by xvidcap & Cinelerra-CV

Cinelerra-CV needs more developers!
Help out at http://cvs.cinelerra.org/

Special thanks go to Piotr Bania for providing a
copy of his packed sample library to
demonstrate on

http://www.piotrbania.com/

http://cvs.cinelerra.org/
http://www.piotrbania.com/

PitfallsPitfalls

Problems with running code under
debugger are not solved
So packers with anti-debugging code
will have to be thwarted in other ways
Packers which dynamically unpack
code as the program is run will not fall
prey to this type of attack
But there aren't many of those

EvasionEvasion

Once the packer author knows what we
are doing, they can change the code to
work differently
For example, appending the stub code
as part of the code section, instead of a
whole new section

But, we could still get finer-grained with our
page protection

Evasion 2Evasion 2

Packer could detect ollybone.sys in the
loaded drivers list or even send its own
IOCTL to un-protect the code section
Use the source, Luke!

Change the naming convention and IOCTL
numbers and recompile

Affecting memory permissions via
VirtualProtect?

May need to maintain marker bit during
execution, or hook VirtualProtect

CodeCode

You can download OllyBonE right now:
http://www.joestewart.org/ollybone/

Code is released under the GNU GPL
TODO:

Implement break-on-execute for
heap/stack locations
Implement break-on-execute for shared
DLL memory sections

Force Copy-on-Write, then set BoE?

Q & AQ & A

Joe Stewart
<jstewart@lurhq.com>

Senior Security Researcher
LURHQ

