Reverse Engineering KW's EasyCrack
By Rossignol [April, 2006].

Technical Consultation by KW.
Text Revision: 1.05

ENGLISH VERSION

Disclaimer and Terms of Use

PLEASE READ THIS DISCLAIMER CAREFULLY! FAILURE TO COMPLY WITH THIS
DISCLAIMER REVOKES ANY RIGHT TO USE THE MATERIAL CONTAINED WITHIN
THIS TEXT!

The content in this text is provided for informational purposes only and on an “as
is” basis. Rossignhol [henceforth: “the author”] does not warrant the accuracy,
correctness, reliability, comprehensiveness, or currency of any content. The
author disclaims all warranties, express or implied, regarding any content, and
further disclaims liability for any consequences from the use or misuse of any
content.

Preface and Target Audience

This text was written with beginners in mind. In order for beginners to fully
benefit from the information provided within this work, a detailed explanation on
many topics is required - an explanation which might seem redundant to people
with slightly more advanced knowledge on the topic. The knowledge required to
work with the material in this text is the minimal understanding of the 80x86
Assembly Language instructions, and the minimal mastery of the C++
programming language. As this text was written for beginners, let me warn you,
advanced programmers, right from the start - you've nothing to look here for. |
would also like to stress my opposition to software piracy - please, never
practice your skills on real-world commercial software. People work with a great
effort in order to create quality software products, and they deserve your respect
to their work and copyrights - this is not a vain disclamation statement; | truly
mean what | write.

Prerequisites

In order to work on the material in this text, some software will be required:

o OllyDbg v1.10 (http://www.ollydbg.de/).

° IDA - Interactive Disassembler - Freeware v4.3
(http://gd.tuwien.ac.at/pc/simtelnet/winxp/progmisc/freeida43.exe).

o A C++ Language Compiler.

© 2006, Text Written by Rossignol.

Reverse Engineering the Key Checking Algorithm

"Computers are composed of
nothing more than logic gates
stretched out to the horizon in
a vast numerical irrigation
system." - Stan Augarten

In order to begin reverse-engineering this target, perform the following steps:

1)
2)

3)

4)

9)

Open OllyDbg.
Select the "File" menu, and select "Open". Open the EasyCrack.exe file.

Hit F9 in order to execute the debugged program. Input a nhame and a
serial number of your choice, and click "Done". Unless you're
unrealistically lucky in your guessing, you will get a window informing you
that you've entered an erroneous serial humber, in a very arrogant
manner, that is. Close EasyCrack and return to OllyDbg's window.

Press ALT+F1 in order to open the Command Line window. The Command
Line window allows you to toggle breakpoints on various elements,
amongst which are Win32 API function calls. In the Command Line
window, input "bpx GetDIgltemTextA", and press Enter. The
GetDIgltemTextA Win32 API function is responsible for fetching the string
data out of dialog boxes. That's exactly what we want due to the fact that
EasyCrack has to fetch the Name string in order to perform computations
on it. "bpx" means "BreakPoint on Execute", that is exactly what we want,
since our demand is breaking on the call to GetDigltemTextA.

The "Intermodular Calls" window should appear on your screen. This
screen shows the addresses where the GetDIgltemTextA Win32 API
function calls are made. You can close this sub window, as well as the
Command Line sub window. Hit F9 in order to run EasyCrack, input any
name and any serial nhumber, and finally click on "Done".

6) OllyDbg should land on address 0x004010E1, as follows:

EEEEREEN | . FFiS 15204600 CALL OWORD PTR O5: L4GUSERSZ. GevDlaltenT|Cast0laltenTanth
BE4E18EY|] . 85CH TEST _ERX, ERX
HE4E1EES || .~ 75 B0 JHZ SHORT EasyCrac.@84016F2
BA4E16EE|] « 58 1ISH ERX
BE4E1EEC] . 68 A4234E80 FUSH EazyCrac, BR4E22IA4 HASCII "PFFT.'"
Ga4alarl| . &8 94234008 | PUSH EssyCrac, 80402354 ASCII "™You might want to enter a name?™"
BE4E16FE|] .vEB_1F JHMF SHORT EasyCrac BEada1117
EE4E1EFE | > 23F& HOR ESI,ES
Ba4@a1aFA|] . 56 PUSH ESi IsSigned =} FALSE
BE4E1EFE|] . 56 FUSH ESI pSuccess =k HULL
GE4E18FC | . &8 EFEI0080 PUSH 3E9 ControllD = 3E9 (1981.
AA4ELIIAL] . hlind

. FFIE 14z284@8@ CRLL DNDRD FTR DZ:[<&USER3Z2.GetDlgltenIibGetOlaltenInt
Ba4E118s|] . 3BCE CHMP ERE,ES
BE4E116A|] .~75 14 JNZ SHORT EasyCrac BEa461126
Ba4@a11ac|] « 56 PUSH ESI
GE4E11E0(] . 68 Ad4234E0E FUSH EazyCrac.,BR4E22A4 HASCII "FFFT."
Gedalliz|] . &8 48234000 PUSH EasyCrac BE482348 RASCII "Thats not a proper serial.. Use a normal number be
AA4E1117|] > 57 hi0wnexr

. FF1E 18284880 CﬂLL DNDRD PTR DOZ:[<%USER22.MessageBorA| LMeszageBonA
Ba4E111E|] .~EB R? SHDRT EasyCrac, 88401803
BE4E1126|] > 58
ga4@1lzl|] . 2045 CC LEH EHH DWORD PTR S%: [EEP-341]
BE4E1124|] . 5@ FlUSH EAX
EE4E1125)] . ES2 DEFEFFFF CALL EasyCrac.B@8481680
ea4@a112A(] . 85C8 TEST ERX.EHX
Ba4@a112C|] . 59
Ba4@a1120|1 « 59 PUP ECH
BE4E11ZE|] . 56
Ga4allzF|l .~ 74 Bc dE SHDRT EasyCrac 6946113D
EE4E1121|] . 658 38234088 FUSH EasyCrac.d ASCIT "RIGHT™
EE4E1126|] . 68 2C234EE8 PUSH EazyCrac. 88482328 ASCII "™Wou got itt™
Ba4@113E|] .~EB DA JHMP SHORT EasyCrac. 88468111
GE4E1120(] > Al E4234E808 HOL ERE, DWORD PTR_DOS: [482384]
gadalldz|l . 68 24234000 PUSH EasyCrac BE482324 Title = "WROMG™
BE4E1147] . &R BB
BE4E1143)] . 59 PUP ECH
Ba4a114A[|1 « 99 cog
Ba4@114E(] . F7F9 IDIL ECH
GE4E1140|] « FF3495 252040 PUSH DNDRD PTR DSz [EDR#4+482625] Test
AA4E11E4]] . 57 hwner

. FFIE i@za4aaa CRLL DNDRD FTR OS: E<&USER32 MessageBonA|bMeszageBonA
dE4E115E|| . FFAS B4234@888| INC DWORD PTR DS: L4823
GE4E1151 | . 8220 B4234086 | CHP OWORD PTR DS: E482384] [=]5]
Ga4E1163| .~ BF35 SBFFFFFF dNZ EaSHCrac BE4E1E09
Ba4E116E|] . 56
ga4a1lcF|l . &7 PUSH EDI
ga4E117@] .~ES 4EFFFFFF JHP EzsyCrac, BE4016
BE4E117E|] > SB4E @2 HMOL EA, DWORD PTR SS CEEFP+2] Case 118 (WM_IMITOIALOG) of switch GB48182C
AE4E117E)] « A3 AC234E88 MOY DWORD PTR DS: [4A23AC].EAX

lllustration #1: OllyDbg's display right after the break.

Let us inspect what's going on in lllustration #1. First, OllyDbg broke on
the call to the Win32 API function, as per our demand. When the
GetDIgltemTextA function executes, it stores the length of the string in
the dialog into the EAX register. In order for EasyCrack to verify the length
of the name, that is, whether we've entered a name at all, it TESTs EAX
with itself. The TEST operation logically ANDs its operands, and updates
the flags register according to the result of the AND operation, without
saving the result into the first operand:

Invariant: EAX = 0 (hame string length is zero).
TEST EAX, EAX —> AND 0, 0 —» ZF (Zero Flag) =

Invariant: EAX > 0 (hame string length is greater than zero).
TEST EAX, EAX —> AND LEN, (LEN|LEN >0) — ZF=0

As evident above, the Zero Flag will be set to 1 only if the length of the
name string is zero; hence, no name was entered. After the Zero Flag was
updated, a Conditional Jump of the JNZ (Jump If Not Zero) type is
performed. The JNZ instruction checks the value located in the Zero Flag;
that is, if ZF # O, the jump is performed, otherwise the jump is ignored
and the execution flow continues to the next line of code.

7) Press F8 (Step Over) until you reach address 0x00401102. Here we hit
another function call. This time, the GetDIgltemint Win32 API function is
used to fetch the string entered in the serial number field as an integer.
Following the function call, there's another verification check, intended to
check whether humber we've entered falls within the valid range. The
check is performed by using the CMP (compare instruction). The CMP
instruction is in fact analogous to the subtraction (SUB) instruction with
only one difference; it does not update the left operand with the result of
the operation, it merely updates the flags register according to the result
of the operation:

Invariants: EAX =0 (zero or no humber at all entered).
ESI = 0 (hard coded value).
CMP EAX,ESI — SUBO,0 — ZF=1

Invariants: EAX > 0 (a value greater than zero entered?).
ESI = 0 (hard coded value).
CMP EAX, ESI —> SUB (VAL|VAL>0),0 — ZF=0

Using this technique, EasyCrack checks whether the entered serial
number falls within the valid number range. The valid nhumber range is
the group of natural numbers starting from 1 to 232-1 (0x00000001 -
OXFFFFFFFF, which would fit exactly in a 32bits wide register)2. If you will
attempt to enter a number larger than 232-1 (Like 232, hence
4294967296, the serial number will be recognized as an erroneous one
due to an overflow; a 32bits wide register can not hold values larger than
OXFFFFFFFF, and 232 would be equal to 0x100000000 in the
hexadecimal radix).

8) Press F8 a few times until you reach address 0x00401125. At this
address you will see a function call. Let us step into this function by
pressing F7. Now, press F8 further until you reach address 0x0040100F.
Here we can see a function call to the IstrlenA Win32 API function. The
IstrlenA function returns (stores in the EAX register) the length of the
string passed to it, this way, EasyCrack checks how long the entered
name was in order to set the number of iterations to be performed on it in
the next phase. Press F8 once more and you'll see that the value in the
EAX register is being MOVed to the EDI register. The MOV instruction
takes two operands and copies the value from the second operand into
the first operand. Naturally, the length value of the name string is how
also contained in the EDI register.

1 Entering a negative numerical value is impossible in this case, since EasyCrack does not allow
entering any non-decimal humber characters into the serial number textbox.

2 One of the error message boxes in EasyCrack erroneously states that the valid range is the
natural numbers between 1 and 232, This information is false. The correct valid range is the
natural numbers between 1 and 232-1, inclusive.

9) So far, we have used OllyDbg to find out where in the executable should
we be on the lookout for the serial humber verification routine. At this
stage, | suggest that you open IDA, and load EasyCrack’s executable file
into it by clicking on the “File” menu, selecting “Open”, selecting
EasyCrack.exe. In the preceding window, select “Portable executable for
IBM PC (PE) (pe.ldw)” option, and click “OK”. After the file opens, click on
the “Jump” menu and select “Jump to address” (or simply press on the
“G” button on your keyboard from anywhere in IDA). In the Jump to
address dialog box, input 00401017. The IDA View window should then
look like the following:

*_text:0048100A nou esi, [ebp+1pString]

' .text:p04010880 push edi

* .text:0048100E push esi ; 1pString

* .text:0048100F call ds:1strlenf

* .text:00481815 nouv edi, eax

* .text:00481017 xor edx, edx

* .text:00481812 test edi, edi

' .text:0048181B jle short loc_u81047
-text:0048101D L —.
-text:0040181D loc_40101D: ; CODE XREF: sub_u81800+3FLj Y

* .text:0048101D nousx ecx, byte ptr [edx+esi]

* .text:ppu01021 add [ebp+var_14], ecx

* .text:00481024 nou [ebptuar_8], ecx

¢ .text:00401027 rol [ebp+var_4], 1

* .text:0048182A nouv eax, ecx

' .text:0048102C imul eax, [ebp+var_u] .

* .text:00461830 nov [ebp+uar_4], eax .}

* .text:00401033 nov eax, [ebpsvar_8]

* .text:004610836 add [ebp+uar_4], eax

* .text:00401039 xor [ebp+var_14], ecx

° .text:8046103C inc edx

* .text:0048103D cnp edx, edi

* .text:00406183F j1 short loc_u8181D

* .text:ppu01041 | cmp [ebp+var_1], B |

* .text:004081845 _ Jnz short loc_481063 J
-text:00401047 - ~
.text:00401047 loc_401047 @ 5 CODE XREF: sub_LB10080+1BTj

¢ .text:00401047 push] ; uType

* .text:00461842 push offset Caption ; lpCaption

* .text:004B104E push offset Text ; 1pText

* .text:00461853 push ds:hbind ; hund

* .text: 00481059 call ds:HessageBoxf

° .text:8046105F xor eax, eax

* .text:08481061 jmp short loc_48187F
.text:00401063
-text:00481063 Vs .
.text:00401063 loc_401663: / 5 CODE XREF: sub_B10080+45Tj

¢ .text:00401063 xor [ebp+arg_%4], 1337CBDER

* .text:0040106A sub [ebp+arg_4], GBADCODESH

¢ .text:08401871 nov eax, [ebp+uvar_i] .

* .text:00401874 not [ebp+arg_u4] -

¢ .text:00401877 xor eax, [ebp+arg_ 4]

* .text:0046187A neg eax

* .text:pEHB107C | sbb eax, eax |

° .text:8046107E L inc eax /
-text:0840187F - ol
.text:0048107F loc_40167F: 5 CODE XREF: sub_4B10080+61Tj

lllustration #2: IDA’s View window, | have marked strategic areas in red.

As apparent in lllustration #2, we are now at the same spot that we left
OllyDbg at. It's noteworthy that we use IDA just for the convenience of
analysis. The next instruction of concern is located at address
0x00401017:

text:00401017 xor edx, edx

Here, EasyCrack resets the EDX register to zero, in order to use it as an
iteration counter. XORing a value by itself always results in zero. The
assembly XOR operation XORs the first operand with the second, and
stores the resulting value into the first operand.

Let us inspect the subsequent two lines:

.text:00401019 test edi, edi
text:0040101B jle short loc_401047

Once again we encounter the TEST instruction. This time we test whether
EDI > 0O, and if the condition yields true, we jump. The JLE instruction means
“Jump If Lower or Equal”. In our case, it will jump to address 0x00401047 if
the Zero Flag (ZF) is equal to 1 or if the Sign Flag (SF) is not equal to the
Overflow Flag (OF). In summation, this is yet another check in order to see
whether the serial number conforms to the required format. Next, the real
crux of the algorithm begins.

Now, we’re going to inspect the loop which is responsible for computing
what | call a “reference value”, which EasyCrack will use in order to verify the
correctness of the entered serial nhumber. Consider the following code
(located at offset 0x00401041D):

.text:0040101D mMovsx ecx, byte ptr [edx+esi]
text:00401021 add [ebp+var_4], ecx
text:00401024 mov [ebp+var_8], ecx
text:00401027 rol [ebp+var_4], 1
text:0040102A mov eax, ecx
.text:0040102C imul eax, [ebp+var_4]
text:00401030 mov [ebp+var_4], eax
.text:00401033 mov eax, [ebp+var_8]
.text:00401036 add [ebp+var_4], eax
.text:00401039 xor [ebp+var_4], ecx
.text:0040103C inc edx
.text:0040103D cmp edx, edi
text:0040103F jl short loc_40101D

This code could be easily replicated with a simple C++ do-while loop; let’'s
look at how such loop would look like:

int EDX = O; //xor edx, edx
do
//1Implementation ...
++EDX; //inc edx
} while (EDX < EDI); //cmp edx, edi
/7)1 short loc_40101D

First we set our iteration counter to zero, as done in offset 0x00401017, we
then go through one function iteration and increment the counter as per the
INC (increment) instruction at address 0x0040103C. We then verify whether
the condition check yields true and decide whether to proceed looping
accordingly.

Now that we know the structure of our loop, we can make it an even neater
for loop:

for (int EDX = 0; EDI < EDX; ++EDX) { //Implementation ... }

Now it’s the time to fill that loop with implementation. | will now explain line
by line how to do it:

Put the ASCII value of the EDXth character in the name string into ECX
(Character array start address: EBX):

movsx ecx, byte ptr [edx+esi]
Pseudo-code: ECX = str[EDX]

Add the ASCII value of the ongoing character to the value in VAR4:

add [ebp+var_4], ecx
Pseudo-code: VAR4 = VAR4 + ECX

Put the ASCII value of the ongoing character into VARS:

mov [ebp+var_8], ecx
Pseudo-code: VARS8 = ECX

Rotate the value inside VAR4 by one bit to the left:

rol [ebp+var_4], 1
Pseudo-code: rol(VAR4, 1)

Put the ASCII value of the ongoing character into the EAX register:

mov eax, ecx
Pseudo-code: EAX = ECX

Multiply the sum value in VAR4 with the ASCII value of the ongoing
character, store the result in EAX:

imul eax, [ebptvar_4]
Pseudo-code: EAX = EAX « VAR4

Put the result of the multiplication into VAR4:

mov [ebp+var_4], eax
Pseudo-code: VAR4 = EAX

Put the ASCII value of the ongoing character into VARS:

mov eax, [ebp+var_8]
Pseudo-code: EAX = VARS8

Add the ASCII value of the ongoing character to the result of the above
multiplication, store the result into VAR4:

add [ebptvar_4], eax
Pseudo-code: VAR4 = VAR4 + EAX

XOR the value in VAR4 with the ASCII value of the ongoing character:
xor [ebp+var_4], ecx
Pseudo-code: VAR4 = VAR4 ™ ECX

This whole scroll can be written neater this way:

VAR4 = (((str[EDX] ¢ rol(VAR4 + str[EDX])) + str[EDX]) * str[EDX])

Developing a C++ Key Generation Function

So far, our function would look like this:

unsigned long GenNumForName (std::string X)

{
unsigned long j = 0; // Accumulator
for (size_t i = 0; 1 < x.size(); ++i)
J = ([* rol + x[iD)) + x[i]) ~ x[iD);
//return TO _BE_FILLED_ IN_LATER;
}

The C++ language does not contain a built-in bitwise-rotate-left function, so we’ll
have to implement one. There are two general approaches to achieve this; the
first (and easiest) approach is using Inline Assembly:

unsigned long rol (unsigned long INum, int n = 1)

__asm {
mov eax, INum
mov ecx, n
rol eax, cl
mov iNum, eax

First, we create an __asm { } block in order to tell the C++ compiler that Inline
Assembly will be used. Then we MOV the value in the iNum actual parameter
into EAX, we move the value in the n actual parameter to ECX (moving
particularly to ECX is essential for ROLing, otherwise the compiler will issue an
Improper Operand Type error). We then ROL the value located in EAX with the
value located in the L.O. (Low Order) byte of the L.O. word of ECX (Hence: CL).
Then, we MOV the result back into iNum (Notice that in this particular case,
there’s no need in passing the iNum parameter by reference).

The above solution is not optimal due to the fact that it virtually kills portability,
since it will only work on Intel 80386+ based platforms. We could achieve the
same functionality using the C++ syntax, as follows:

unsigned long rol (unsigned long iNum, int n = 1)

{
}

This function simulates the behavior of a bitwise ROL. It first computes the
resulting value for SHL (iNum, n), which will shift the whole DWORD n positions
to the left (Casting away the former MSBs, and inserting zero as the new LSBs).
It will then OR the whole expression with the new LSBs, which will cause it to be
appended onto the new value, which is the exact modus operandi of the ROL
instruction?.

return (iNum << n) | (iNum >> (8 * sizeof(iNum) - n));

Having said this, so far we have the following code in our possession:

unsigned long rol (unsigned long INum, int n = 1)

{
return (iNum << n) | (iNum >> (8 * sizeof(iNum) - n));
}
unsigned long GenNumForName (std::string Xx)
{
unsigned long j = 0; // Accumulator
for (size_t i = 0; i1 < x.size(); ++i)
J = (L[] * rolg + x[i1])) + x[i]) ~ x[i1);
//return TO_BE_FILLED IN_LATER;
}

However, there’s still some more work to be done. Have a look at the code at
address 0x00401041.:

text:00401041 cmp [ebp+var_4], 0
.text:00401045 jnz short loc_401063

This turns to be just another verification check in order to verify the compliance
of the entered serial number with the expected formatting. Hence, if after the
loop the cumulative value in VAR4 will be equal to zero, an error message will be
displayed.

1 Although the equation of [rol(x, 1) = 2x] is generally accepted, it is not applicable in this case
due to overflowing.

10

Now, let’s have a look at address 0x00401063:

.text:00401063
.text:0040106A
.text:00401071
text:00401074
text:00401077
text:0040107A
.text:0040107C
text:0040107E

xor
sub
mov
not
xor
neg
sbb
inc

[ebp+arg_4], 1337CODEh
[ebp+arg_4], OBADCODESh
eax, [ebp+var_4]
[ebp+arg_4]

xor eax, [ebp+arg_4]

eax

eax, eax

eax

What we have to do here, is simply to fill in the return value as follows:

return (((~j) + OxBADCODE5) ~ 0x1337CODE);

Here we just reverse the order of the relevant events in the above procedure in
order to generate the serial number. Let us now put this whole puzzle together:

#itndef GENALGO_H_GUARD
#define GENALGO_H_GUARD

unsigned long rol (unsigned long, int = 1);

unsigned long GenNumForName (std::string);

#endi

#include <iostream>

intn=1)

((x[1]1 * rolg + x[1])) + x[i1) * x[i1);

unsigned long rol (unsigned long iNum,
{

return (iNum << n) | (iNum >> (8 * sizeof(iNum) - n));
}
unsigned long GenNumForName (std::string Xx)
{

unsigned long j = 0O;

for (size_t i = 0; i1 < x.size(); ++i)

{ _

J =

}

return (((~j) + OxBADCODE5) ~ 0x1337CODE);
}
/)~

All you have to do now is write a stub for the GenNumForName function,
#include “genalgo.h”, and test the key generator (You can use the stub I've
prepared in advance. The stub and all the other source code files relevant to this
text are located in the Source directory inside this work’s archive).

11

Calculating a Serial Number Manually

I have realised that you might want to see how the calculation is performed on
paper. Here is the whole path one has to go through in order to compute the
serial number for the name “Rossignol”:

1) First, we infer the ASCII characters for the name “Rossignol” as follows:

| x(01 | x(11 | x(2] | 3] | x4] | x(5] | xi6] | X(7] | x8]

Name R o] [[i g n o] |

ASCII

. 82 (111 | 115 | 115 | 105 | 103 | 110 | 111 | 108
(Decimal)

2) Given the fact that our reference processing loop iterates x.size() times, in
this case, it’'ll loop 9 times. Let’s put the name, step by step, manually,
through the loop:

Accumulator: j = 0 (Initial value)

Formula: i= ((K[i] * rol(j + x[i], 1)) + x[i]) * x[i])
Step #1 (x[0]): j = (82 * 164) + 82) ~ 82 = 13,448
Step #2 (x[1]): j = (111 » 27,118) + 111) ~ 111 = 3,010,254
Step #3 (x[2]): j = (115 * 6,020,738) + 115) ~ 115 = 692,384,938

Step #4 (x[3]): j=((115 » 1,384,770,106) + 115) * 115 = 334,772,466
Step #5 (x[4]): j = ((105 « 669,545,142) + 105) 105 =1,582,763,366
Step #6 (x[5]): j =((103 * 3,165,526,938) + 103) * 103 = 3,926,727,482
Step #7 (x[6]): j=((110 » 3,558,487,889) + 110) * 110 =591,643,986
Step #8 (x[7]): j=((111 » 1,183,288,194) + 111) ~ 111 = 2,495,970,722
Step #9 (x[8]): j=((108 * 696,974,365) + 108) ~ 108 = 2,258,787,524
IMPORTANT: Some steps are subjected to an overflow and thus, the

resulting values are truncated. | marked the equal-sign of the
steps in which an overflow occurs in blue.

12

3) Now we shall compute the return value:

Accumulator: j=2,258,787,524
Formula: result = (((~j) + OxBADCODES5) * 0x1337CODE)

The decimal value for OXBADCODES5 is 3,134,983,653.
The decimal value for 0x1337CODE is 322,420,958.

Setp #1. ~2,258,787,524 = 1,632,484,623
Step #2: 1,632,484,623 + 3,134,983,653 =

Overflow (value truncated) = 876,196,128
Step #3: 876,196,128 " 322,420,958 = 655,258,110

The serial number for the name “Rossignol” is 655258110.

13

Concluding Comments

In this text, you’'ve had an opportunity to learn how to reverse-engineer a simple
serial number verification algorithm. If you are completely new to reverse-
engineering and feel a bit lost - let me cast away your fears at once. The more
you practice - the more experience you gain. If you feel inconfident with any
topics discussed within this work, please feel free to drop by at
#crackingdnewbies on EFNet, IRC, and ask your questions.

Thanks and Acknowledgements

This text would’'ve not been possible without the invaluable help from the
following individuals (by pseudonyms, ordered alphabetically):

BoRO, _death, dila, fornix, Junior, KW, Ousir, _teh, upb

Last but not least, I'd like to thank (and dedicate this work to) a beloved woman,
S. - without you, it’d all make no sense.

Rossignol

© 2006, Text Written by Rossignol.
Technical Consultation by KW.
Reviewing by BoRO, KW.

THE USE OF THIS DOCUMENT IS BOUND TO THE TERMS AND CONDITIONS IN THE

INCLUDED DISCLAIMER. FAILURE TO COMPLY WITH THE DISCLAIMER REVOKES
ANY RIGHT TO USE THE MATERIAL CONTAINED WITHIN THIS TEXT.

Revision 1.05; Updated On April 11th, 2006.

14

