ASPROTECT 1.22 - 1.32 beta 21

UnAsProtecting AsProtect

{Written by AndreaGeddon}
{andreageddon@hotmail.com}

[www.reteam.org]

INTRO

Target program: WebPics 1.8

Url: http://www.express-soft.com/

Crypter: AsProtect 1.22 / 1.32 beta 21

Someone reported this program in a mailing list, i was interested in it
because it is crypted with asprotect, we all know that this crypter is a bad
bone! Alexey Solodovnikov has done a great job, i think this is a good PE
crypter, however it is not unbreakable!

Let's go for it.

TOOLS

OllyDebug, Ida, PelD to recognize the crypter :) nothing else needed, I will do
almost all the work by hand. Wondering about Softice? Well olly is a
wonderful debugger, it is usermode but it is really powerful, i debug and
solve almost everything with it. You can use softice of course, or WinDbg, or,
if you are completely crazy, ntsd :)

DECRYPTING & DUMPING

As usual the purpose is to debug the crypter until it reaches the original
entry point of the program. At that point the sections will be completely
decrypted, so we will dump code and data, and eventually rebuild the PE.
First of all let's have a look at the PE. Actual entry point is at 00401000 (in
first section, just to trick automatic tracers), we see there a

00401000 PUSH webpics.0067C001
00401005 CALL webpics.0040100B
0040100A C3 RETN
0040100B C3 RETN

so it just is a jump to loader sections (last two). We check the Import Table
and we see that it is not valid, that is, we have all the modules listed but only
one api per module is imported, so we know that we will have to rebuild

imports. I knew aspr would have been funny! Time to trace now. The loader
is long, so i will write just the main lines with some comment.

0067C001 - Starting of the aspr loader
There is some polimorphic code, that is things like

0067COOE CALL webpics.0067C014
0067C013 JMP webpics.0067C072 <- interference byte
0067C015 MOV EBX,-13

check always the calls you execute, you should "step into" them to avoid
losing tracing control. When we see accesses to

0067C022 CMP DWORD PTR SS:[EBP+25],0
0067C026 MOV DWORD PTR SS:[EBP+25],EBX

where ebp is 0067C013, these are global data used by the aspr loader. Due
to its relocability, the loader can't use fixed addresses, so a loader usually
have to use address relative to itself, then calculate the delta offset to add to
relative addresses to obtain absolute addresses. Aspr also relocates the
dinamyc code it uses.

0067C0OD4 this loop decrypts 0x750 dwords at the address 0067C160
there are several layers of decryption in the loader
0067C14A

when the loop ends it will jump to decrypted area and continue execution.
The loader is full of crypted routines, this is good for the crypter.

0067C181 decrypt of 06C4 dwords at 0067C1EA

0067C1E4

there are other 2 decrypt layers, i am not pasting them, the code here simply
runs loops to decrypt his next code. We trace other loops and we arrive at

0067C6A8 MOV EAX,DWORD PTR SS:[ESP+24]
0067C6AC AND EAX,FFFF0000

0067C6B1 ADD EAX,10000

0067C6B6 SUB EAX,10000

0067C6BB CMP WORD PTR DS:[EAX],5A4D <- MZ
0067C6C0O JNZ SHORT webpics.0067C6B6

this code takes an address from the kernel32 and works on it to obtain its
imagebase (that is module handle). Where the address come from?
[Esp+24]? Yes, simply the kernel before arriving at entry point of the exe
runs this code:

77TESEB56 PUSH 4

77TESEB58 LEA EAX,DWORD PTR SS:[EBP+8]

77TESEBS5B PUSH EAX

77TESEB5C PUSH 9

77TESEBSE PUSH -2

77ESEB60 CALL DWORD PTR DS:[ZwSetInformationThread]

77TESEB66 CALL DWORD PTR SS:[EBP+8] <- call to exe entry point (main
thread)

77TESEB69 PUSH EAX

77TESEB6A CALL kernel32.ExitThread

the pe loader of win calls our exe main thread with a call (this is on nt, on 9x
you have a jmp [entry point] but the trick works the same because first
dword in the stack, when at entry point, is a return address to the kernel32)
so on the stack we will have a return address to the kernel, that is an
address inside the kernel32 module. Once it has the module handle we can
see in the following lines he gets the MZ_Header->e_lfanew (PE offset)
pointer and then it accesses the original first thunk array. We arrive here

0067C6E5 MOV ESI,DWORD PTR DS:[EBX] -> ptr to crypted api identifiers
0067C6E7 MOV DWORD PTR SS:[EBP+325],ESI

0067C6ED CALL webpics.0067C6FD -> enter here to see the calculus
0067C6F2 STOS DWORD PTR ES:[EDI]

0067C6F3 ADD EBX,4

0067C6F6 CMP DWORD PTR DS:[EBX],0

0067C6F9 SHORT webpics.0067C6E5

this code simply finds the entry point of some apis used by the loader
(GetProcAddress, VirtualAlloc and so on). How are the apis found? There are
some crypted identifiers for each api (ones in [ebx]), the aspr begins
scanning the original first thunks of imported apis to build from api names
their cripted identifiers (dwords), once they are built if they match the
crypted identifiers in [ebx] then aspr has found the api he wants to import.

0067C46E REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

here aspr restores the bytes at 00401000. As we have seen the entry point of
the application was 00401000, but that was a code of the aspr loader, that
address should be part of the code section of the real program. Infact aspr
overwrited it, now it has to restore original code, they are 12 bytes at

0067C476 address. They are crypted of course, we still have to see
decription routines. Next we arrive at 0067C48A and we find two calls at
VirtualAlloc. The whole code is used to load a dll by hand :). Infact we see
this call:

0067C4AF PUSH EAX <- address of first allocated area
0067C4B0 PUSH EBX <- 67CE1C
0067C4B1 CALL webpics.0067C56B <- decrypt dll

this decrypts the data at 67CE1C and maps it into the memory allocated by
the first VirtualAlloc. So now we have a map of a dll (a PE file) in memory.
What's gonna happen?

0067C4FB REP MOVS DWORD PTR ES:[EDI],DWORD PTR DS:[ESI]

there are six of this movement, each one for a section of the dll. ESI is the
pointer to the section in the dll raw data (first allocated area), EDI is the
pointer to the second allocated area, and will be the area where this dll will
work in. If we check the first of these movement we see that esi = B10400
and edi = B31000 (of course on my pc the two allocated areas are B10000
and B30000 respectively). What we notice is that at xx0400 starts the first
section of the dll in the raw file, xx1000 instead is the address in memory of
the section (FileAlignment = 400, SectionAlignment = 1000), so the PE
header (wich is under xx0400) is not mapped! If you were thinking about
dumping this dll, well, it will be an hard task :). However we can avoid
dumping this dll as a PE, we will see it later. After this works we can see

0067C557 CALL DWORD PTR SS:[EBP+39D] ; kernel32.VirtualFree
0067C55D PUSH 00B4B000
0067C562 RETN

the first allocated area is released, the aspr no longer needs it. Then we jump
to the second allocated area (the dll). Now the tracing moves to this allocated
area. Keep in mind that my allocated area address is B30000, so all
addresses i will paste are relative to this address. We continue and we see
that at B4B04D there are two calls at GetProcAddress to get entry for
VirtualAlloc and VirtualFree. Then VirtualAlloc is called to alloc a new area,
and we get here:

00B4B0OD6 PUSH EAX <- address of new allocated area

00B4BOD7 PUSH EBX <- address of some crypted data (00B4B101 for me)
00B4B0OD8 74050000 CALL 00B4B651

the call decrypts data and copies it in the new buffer, then we see

00B4BODF LEA EDI,DWORD PTR SS:[EBP+442A45] <- B4B101 (crypted
data)

00B4BOE5 MOV ESI,DWORD PTR SS:[EBP+442975] <- new allocated area
(decrypted)

00B4BOEB REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

so crypted data is overwritten with the decrypted data. The new allocated
area is no longer needed so at B4BOFB you see a VirtualFree. The decrypted
data is the code that follows this line. Again we continue tracing and we see
another VirtualAlloc followed by

00B4B358 PUSH EAX <- new allocated area
00B4B359 PUSH EBX <- 00B31000 for me (crypted data)
00B4B35A CALL 00B4B651

again a new buffer is allocated and filled with decrypted data. The
decryption function is always the same

int Decrypt(pCrypted, pDecrypted);

the size of decrypted data is returned. The decrypted data is executable code,
so the aspr is gonna relocate some calls, you see a cycle at B4B390 that
scans the new allocated code for E8 and E9 (call or jump opcode) and
relocate them. Once relocation is complete we arrive to

00B4B3C7 REP MOVS DWORD PTR ES:[EDI],DWORD PTR DS:[ESI]

where esi = new allocated area and edi = crypted data (B31000). So as
before the crypted is overwritten with decrypted and relocated data.
VirtualFree releases the area used to decrypt and relocate the code. Again,
we continue an see another VirtualAlloc followed by the Decrypt routine!
This time the crypted area is 200h dwords long and is located at 00B45000.
At line B4B3C7 there is the usual REP MOVS which fills B45000 with
decrypted data. There are still other two decrypts to do at address B47000,
B49000. The following code contains a loop:

00B4B43E
... handle relocation of the mapped dll
00B4B484 LOOPD B4B43E

this code will search in the .reloc section of this "ghost" dll and will handle
all the relocations (absoulte addresses are in the form of 0040xxxx for this
ghost PE dll). We continue tracing and get an interesting code:

00B4B496 MOV EAX,DWORD PTR DS:[ESI+C] Import_Descriptor.Name
00B4B499 TEST EAX,EAX

00B4B49B JE 00B4B5AB Walk through all imported descriptors
00B4B4A1 ADD EAX,EDX

00B4B4A3 MOV EBX,EAX

00B4B4A5 PUSH EAX

00B4B4A6 CALL DWORD PTR SS:[GetModuleHandle]

00B4B4AC TEST EAX,EAX

00B4B4AE JNZ SHORT 00B4B4B7

00B4B4B7 MOV DWORD PTR SS:[EBP+44294D],EAX
00B4B4BD MOV DWORD PTR SS:[EBP+4429511,0
00B4B4C7 MOV EDX,DWORD PTR SS:[EBP+4430DS8]
Import_Descriptor.OriginalFirstThunk

00B4B4CD MOV EAX,DWORD PTR DS:[ESI]

00B4B4CF TEST EAX,EAX

00B4B4D1 JNZ SHORT 00B4B4D6

00B4B4D3 MOV EAX,DWORD PTR DS:[ESI+10]
Import_Descriptor.FirstThunk

00B4B4D6 ADD EAX,EDX Gets current api

00B4B4F3 TEST EBX,80000000 Check for import by ordinal
00B4B4F9 JNZ SHORT 00B4B4FF

00B4B4FB ADD EBX,EDX

00B4B4FD INC EBX Avoid Import_By_Name.Hint
00B4B4FE INC EBX

00B4B4FF PUSH EBX

00B4B500 AND EBX,7FFFFFFF

00B4B506 PUSH EBX

00B4B507 PUSH DWORD PTR SS:[EBP+44294D]

00B4B50D CALL DWORD PTR SS:[GetProcAddress]

00B4B595 MOV DWORD PTR DS:[ESI],EAX Set Resolved
OriginalFirstThunk

00B4B597 MOV DWORD PTR DS:[ESI+C],EAX Name and
00B4B59A MOV DWORD PTR DS:[ESI+10],LEAX FirstThunk
00B4B59D ADD ESI, 14

00B4B5A0 MOV EDX,DWORD PTR SS:[EBP+4430DS§]
00B4B5A6 JMP 00B4B496

this code builds the import table for the mapped dll, the import api
names/modules are at B47258, the thunks are at B470C4. All this work just
to map an auxiliary dll, decrypt it, relocate it, build its import thunks. Now
the code starts executing the code of this dll. Going on we will see a call

00B44917 CALL 00B35018 <- initializations
00B4491C CALL 00B33310 <- we enter here

you can avoid stepping in the first call, it makes some initializations like
handling tls, working on registry and command line and so on. So we trace
the second call. We enter there and again see a lot of code of no interest. You
will see various calls to procedures that set seh handlers, then a set of calls
to api such GetVersion, GetCurrentProcess, GetCommandLine.

One thing you should know to debug the code is the seh handler trick. That
is tracing the second call you encounter a code like this

xor [eax], eax

where eax = 0. Nothing to worry about, this is a call to the seh, to see where
this instruction will bring you just watch in the TIB. Now since ollydbg does
not allow you to enter a segment identifier for the memory dump (or at least
[don't know how to enter it ;-P) you can look at the TEB (TDB if you are on
win9x) by watching segment register FS: you will see both segment base
(linear) address and size, so you should look at that address. The first dword
is the ExceptionList* for the thread you are tracing. Then you can see
ExceptionList->Handler (that is [ExceptionList+4]) to find the address of the
topmost seh. So, once you step the previous xor you will be transferred to the
seh, that uses to do something like:

add [context.eip], 2
XO0T eax, eax
ret

this tells the system seh manager to restore the context and continue
execution, so you will continue at address context.eip+2. Sometimes you will
also see something like this in the exception handler

00B42E50 XOR ECX,ECX

00B42E52 MOV DWORD PTR DS:[EAX+4],LECX ;context.DRO

00B42E55 MOV DWORD PTR DS:[EAX+8],ECX ;context.DR1

00B42E58 MOV DWORD PTR DS:[EAX+C],ECX ;context.DR2

00B42E5B MOV DWORD PTR DS:[EAX+10],ECX ;context.DR3
00B42E5E MOV DWORD PTR DS:[EAX+18],155 ;context.DR7

where eax is a pointer to the thread context passed by the system to the
exception handler by [esp+0C], do you remember the exception prototype?

int Seh(EXCEPTION_RECORD *Exc, void* Frame, CONTEXT *Context, void*
DispatcherContext)

Return value = 0 means "restore context and resume execution", return
value = 1 means "continue to the next seh handler in chain". So this code

fills with zeros the debug registers O to 3, that is if you had some BPM set
this trick will delete them. Infact these DRx are responsible to hold addresses
of hardware bpm you set. On DR7 is put the value 0x0155, that is all local
breakpoint flags are set and other flags are cleared (but sometimes aspr will
put 0 in DR7, this is terrible for debugging!). This interfers with the
debugger, so you should avoid to execute these lines if you dont want
troubles when tracing this code.

So going on we will find the section decrypt:

00B421AA CALL 00B3250C ;alloc a buffer

00B421AF MOV ESILEAX

00B421B1 MOV EAX,DWORD PTR DS:[EBX] ;rva of section virtual offset
00B421B3 ADD EAX,DWORD PTR SS:[EBP-14] ;rva of section virtual offset
00B421B6 MOV DWORD PTR SS:[EBP-4],EAX

00B421B9 MOV ECX,DWORD PTR DS:[EBX+4] ;virtual size of section

00B421BC MOV EDX,ESI ;edx = ptr to buffer
00B421BE MOV EAX,DWORD PTR SS:[EBP-4]
00B421C1 CALL 00B41C8C ;copy decrypted section to buffer

00B421C6 MOV EDI,EAX

00B421C8 CMP EDI,DWORD PTR DS:[EBX+4]

00B421CB JE SHORT 00B421D7

00B421CD PUSH 0B42298

00B421D2 CALL 00B41A3C

00B421D7 CMP BYTE PTR SS:[EBP-5],0

00B421DB JNZ SHORT 00B421FB

00B421DD MOV BYTE PTR SS:[EBP-5],1

00B421E1 PUSH ESI

00B421E2 MOV ESI,DWORD PTR SS:[EBP-4]

00B421E5 ADD ESI, 14

00B421E8 PUSH DWORD PTR DS:[ESI]

00B421EA MOV BYTE PTR DS:[ESI],0C3 ;trick to fool automatic tracers
00B421ED CALL ESI ;ESI = 00401014
00B421EF POP DWORD PTR DS:[ESI]

00B421F1 POP ESI

00B421F2 MOV EDX,EDI

00B421F4 MOV EAX,ESI

00B421F6 CALL 00B41CB4

00B421FB MOV ECX,EDI

00B421FD MOV EDX,ESI

00B421FF MOV EAX,DWORD PTR SS:[EBP-4]

00B42202 CALL 00B351DO0 ;copy decrypted section from buffer to exe image
00B42207 MOV EDX,DWORD PTR DS:[EBX+4]

00B4220A MOV EAX,ESI

00B4220C CALL 00B32524 ;free buffer
00B42211 ADD EBX,0C

00B42214 MOV EAX,DWORD PTR DS:[EBX+4]
00B42217 TEST EAX,EAX
00B42219 JA SHORT 00B421AA ;g0 to next section

you see there is a trick for automatic debuggers, infact if you trace until the
eip goes in first section to find original entry point, you will break at
00B421ED CALL ESI but this is not oep, its just a CALL to a RET. However
the interesting thing here is the section decrypt. As you can see its quite
easy, if you are interested in the decrypt algorithm just dig into here:
00B421C1 CALL 00B41C8C. So once the sections are decrypted we have the
image of the program. Now we have to step a little to arrive at the following
point:

00B42892 LODS DWORD PTR DS:[ESI] ;get address (RVA) of current
module iat

00B42893 OR EAX,EAX

00B42895 JE SHORT 00B428E1 ;if zero then iat construction is
complete

00B42897 MOV EDILLEAX

00B42899 ADD EDI,DWORD PTR DS:[B46978] ;add image base to obatin VA
00B4289F MOV DWORD PTR SS:[EBP-8],EDI

00B428A2 MOV EBX,ESI ;ebx = ptr to module name (string)
00B428A4 XOR ECX,ECX

00B428A6 DEC ECX

00B428A7 XCHG ESLEDI

00B428A9 XOR AL,AL

00B428AB REPNE SCAS BYTE PTR ES:[EDI] ;go to end of string

00B428AD XCHG ESILEDI

00B428AF LODS BYTE PTR DS:[ESI] ;load first byte of crypted api (a flag)
00B428B0 CMP AL,0

00B428B3 JE SHORT 00B42892 ;if flag is zero then goto next module
00B428B5 CMP AL,6
00B428B8 JNZ SHORT 00B428C0 ;if flag is 6 then

00B428BA ADD DWORD PTR SS:[EBP-8],4 ;api will not be resolved here,
see emulation

00B428BE JMP SHORT 00B428AF ;50 goto for next api

;here we process the api

;with the stolen byte method (redirection)

00B428C0 PUSH EBX ;module name

00B428C1 PUSH ESI ;erypted api

00B428C2 PUSH EBX ;module name

00B428C3 LEA EBX,DWORD PTR SS:[EBP-8]

00B428C6 PUSH EBX ;iat va for api to be resolved

00B428C7 CMP AL,2
00B428CA JE SHORT 00B428D2

00B428CC MOVZX ECX,BYTE PTR DS:[ESI] ;get 2nd byte of crypted api (api
name length)

00B428CF INC ECX

00B428D0 JMP SHORT 00B428D7

00B428D2 MOV ECX,4

00B428D7 ADD ESLECX

00B428D9 CALL 00B425F0 ;work is done here

00B428DE POP EBX

00B428DF JMP SHORT O00B428AF

this is a cycle where the import table is built. We now have the address of

the original IAT of the program (first time you arrive at this cicle the va of

the api iat va will be 005EC1EO, that is the base address of the iat) and the
crypted data relative to imported api names. How is this data stored? You

have this form:

1 byte - NULL \

n bytes - Module name |-> module descriptor
1 byte - NULL /

1 byte - Api flag \

1 byte - Api length |-> api descriptor

n bytes - Crypted api name /
... array of api descriptors

there is the module descriptor and all its api descriptor. As you can imagine
the two api (flag and length) bytes were the original HINT field, and the
following were the original api name bytes. To see how real api address is
gained we have to dig into the call. I will paste only the main lines of the
routine:

00B42609 LEA EAX,DWORD PTR SS:[EBP-101] ;pointer to buffer area

(stack)

00B4260F XOR ECX,ECX

00B42611 MOV EDX,100 ;size of area

00B42616 CALL 00B32794 ;clear buffer area
00B4263B MOV BL,BYTE PTR SS:[EBP-1]

00B4263E MOV ECX,EBX ;api string size

00B42640 LEA EAX,DWORD PTR SS:[EBP-101] ;pointer to buffer area
00B42646 MOV EDX,ESI ;edx = api crypted bytes
00B42648 CALL 00B351D0 ;fill buffer area with crypted bytes
00B4264F MOV ECX,0B46D5A ;ptr to some parameter
00B42654 MOV EDX,EBX ;api string size

00B42656 LEA EAX,DWORD PTR SS:[EBP-101] ;ptr to buffer area

00B4265C CALL 00B40E54 ;decrypt api name

00B42661 LEA ESL.DWORD PTR SS:[EBP-101]

00B42667 PUSH ESI ;ptr decrypted api
00B42668 MOV EAX,DWORD PTR SS:[EBP+Cl]

00B4266B PUSH EAX ;ptr to module name
00B4266C CALL 00B422C4 ;get the api entry point
00B42671 CALL 00B42500 ;get stolen bytes

00B42676 MOV EDX,DWORD PTR DS:[EDI]
00B42678 MOV DWORD PTR DS:[EDX],EAX ;store redirection address in iat

a buffer is created and zeroed, then crypted api bytes are copied in it and
decrypted. Once the name of the api is decrypted the aspr gets its address,
then the stolen byte method is applied. How does it work? Well in the final
executable the situation will be this:

executable redirection bridge dll

call [api] ---> api instruction1 api instructionl (stolen!)
api instruction2 api instruction?2
api instruction3 api instruction3
jmp api + n ---> api instruction n

the aspr scans first n instruction at api entry point (n is variable), copies it in
the redirection bridge (a buffer in the process space, 0x00C30000 in my pc),
then adds a jump to the real api to continue execution. So the import address
in the iat will not be the one of the api but the one of the redirection bridge.
This is a nice trick, it also prevents api breakpoints: infact you usually set a
bpx on the entry point of the api, but such entry point is not executed so the
debugger will not break. To avoid this just put the bpx some line after the api
ep. Note that not all the api are redirected with stolen bytes, when api flag is
01 the real api address is put in the iat.

When all this cycle will be executed, the iat will be almost complete: some
apis are not resolved, do you remember this line?

00B428BA ADD DWORD PTR SS:[EBP-81,4 ;api will not be resolved here,
see emulation

now let's see how they are built: we arrive at this loop

00C38658 LODS BYTE PTR DS:[ESI] ;get api flag

00C38659 OR AL,AL

00C3865B JE SHORT 00C38679 ;if flag==0 then iat is finished
00C3865D DEC AL

;the flag is an index in an emulation array, so it is decremented

;(array O based) and the pointer is calculated

00C3865F SHL EAX,2 ;multiply index * 4

00C38662 ADD EAX,DWORD PTR SS:[ESP+8]

00C38666 MOV EBX,DWORD PTR DS:[EAX] ;get routine[index*4]
00C38668 LODS DWORD PTR DS:[ESI]

00C38669 ADD EAX,DWORD PTR SS:[ESP+4] ;get va of iat address to be
filled

00C3866D MOV DWORD PTR DS:[EAX],EBX ;store the thunk to emulated
api

00C3866F XOR EAX,EAX

00C38671 MOV DWORD PTR DS:[ESI-4],EAX

00C38674 MOV BYTE PTR DS:[ESI-5],AL

00C38677 JMP SHORT 00C38658

00C38679 RETN 8

the routines that emulate apis are stored in the 00B4xx bridge, so if you the
[ESP+8] parameter you see all the addresses of all possible emulations. You
can also list all corresponding index, this helps you if you want to make an
unpacker :). Viewing all the redirection routines you can easly figure out
what api do they emulate. We will see that you not always can just put the
address of the emulated api to rebuild iat, you have to re add these
emulation strips in the code.

We continue tracing and we arrive at this code:

00B439F3 50 PUSH EAX

00B439F4 A1 0C56B400 MOV EAX,DWORD PTR DS:[B4560C]
00B439F9 8B40 04 MOV EAX,DWORD PTR DS:[EAX+4]
00B439FC FFDO CALL EAX ; 005CE524 <- routine inside the
program!

Are we at oep??? No. If you trace this call you will see that a routine of the
decrypted program is executed, then the execution flow will return to the
instruction following the call. So the aspr loader calls some routines in the
code before it arrives to the original entry point. How many calls are there?
Well we can see in 00B4560C there is a pointer, that is 00b46988, which
points to:

00B46988 00 00 00 00 24 E5 5C 00 00 00 00 00 00 00 00 00
00B46998 08 E5 5C 00 00 00 00 00 00 00 00 00 48 E5 5C 00
00B469A8 98 E5 5C 00 38 E5 5C 00 00 00 00 00 00 00 00 00

there are 5 pointers to program routines: 005CE524, 005CE508, 005CE548,
005CE598 and 005CE538. If you continue tracing you will see that all these
routines are called in that order, except 005CE548. It seems that these
routines can be avoided in the final unpacked exe. We will see it later. Going
on you can find problems in the seh trick, the debugger will not run correctly
and will end debugged process. To avoid this just locate the seh the debugger
is not able to handle and avoid its call. For example:

00B42D49 XOR EAX,EAX

00B42D4B PUSH DWORD PTR FS:[EAX]

00B42D4E MOV DWORD PTR FS:[EAX],ESP

00B42D51 XOR DWORD PTR DS:[EAX],EAX <- seh call
00B42D53 POP DWORD PTR FS:[0] ; 0012FFEO
00B42D5A POP EAX

00B42D5B CMP DWORD PTR DS:[B46D84],0

00B42D62 JE SHORT 00B42D78

you can nop the xor (seh call) instruction. Infact the seh trick simply makes a
turn-around execution and then continues at the line after the xor. However,
now all the work is done, sections are decrypted, iat is built, we are about to
go to oep. We arrive at a code like this

00B42D81 CMP DWORD PTR DS:[EAX],0

00B42D84 JE SHORT 00B42D8&8

00B42D86 PUSH DWORD PTR DS:[EAX]

00B42D88 PUSH DWORD PTR SS:[EBP-10]

00B42D8B PUSH DWORD PTR SS:[EBP-14] ;00C3B460
00B42DS8E RETN

and the execution moves to the 00C3xxxx memory area. So now we are
outside the 00B4xxxx (which is the self-mapped dll). So we can think we are
near the oep. The base of this area is 0x00C30000 and its length is 0xC000,
so you can translate the addresses i will paste to your address for this
memory bridge. Stepping in this bridge we will see some decrypt cycles:

00C35617
1st decrypt loop
00C35987

00C34B99
2nd decrypt loop

00C34BFO

00C34C52
3rd
00C34CC3

00C34D3D
4th
00C34DB7

00C34E11
5th
00C34EDB

00C34F41
6th
00C34FDC

00C35029
7th
00C350D3

00C35153
9th
00c¢35247

00C352E0
10th
00C3535D

ten decypt loops, each one decrypts the code immediatly following. After all
this decryption you arrive at

00C35395 JMP SHORT 00C35397

00C35397 55 PUSH EBP <- stolen eip bytes (in blue)!
00C35398 8BEC MOV EBP,ESP

00C3539A 83C4 FO ADD ESP,-10

00C3539D 53 PUSH EBX

00C3539E B8 80E65C00 MOV EAX,5CE680

00C353A3 PUSH 5CED24

00C353A8 RETN

ok, we arrived at the entry point! The last push indicates the oep. It is built at
runtime and is contained at memory location 00C353A4. Look at the stolen
bytes (the blue ones): they were in the original exe image, so you have to

remember them when you will rebuild the exe. Now you can use any pe
dumper and dump all pe image. Well, we have to dump redirection memory
bridges too! That is, the one at 00B3xxxx (length 0x01D000) and the one at
00C3xxxx (length 0xC000), infact dumping these bridges will allow us to
rebuild IT correctly.

NOTE! I assume after the dump you have FileAlignment = 0x1000, if you
dumped and fixed it to 0x400 or if you have FileAlignment !=
SectionAlignment then all the addresses you will see from now on are
different and you will have to recalculate them.

REBUILDING & FIXING

Ok the file is dumped. We have seen that the import table is crypted, part of
the imported api are redirected and emulated. There are also the stolen
bytes at the entry point. So we have a bit of work to do. First of all we fix the
entry point. In the dumped exe we see this:

005CED18 0000 ADD BYTE PTR DS:[EAX],AL
005CED1A 0000 ADD BYTE PTR DS:[EAX],AL
005CED1C 0000 ADD BYTE PTR DS:[EAX],AL
005CED1E 0000 ADD BYTE PTR DS:[EAX],AL
005CEDZ20 0000 ADD BYTE PTR DS:[EAX],AL
005CEDZ22 0000 ADD BYTE PTR DS:[EAX],AL
005CED24 E8 D77AE3FF CALL webpics.00406800

do you remember the oep stolen bytes we've seen just before the jump to the
oep? Time to put them to their place! So the fixed code will be

005CED18 55 push ebp

005CED19 8B EC mov ebp, esp
005CED1B 83 C4 FO add esp, OFFFFFFFOh
005CED1E 53 push ebx

005CED1F B8 80 E6 5C 00 mov eax, offset dword_5CE680

005CED24 E8 D7 7A E3 FF call sub_406800

the bytes are ok, now just use a peditor and change the EIP from 0x1000 to
0x001CED18. Ok now we run the program and... aren't you expecting it to
run! We have to put back import table. This will be really funny. First of all,
we dumped the two api redirection/emulation memory bridges. Now the one
at 0x00C3xxxx is for api redirection and stolen bytes, the one at 0x00B4xxxx
is for api emulation. Let's look at the import address table in the dumped
exe. It starts at 0xO05EC1EQ. We see the dumped addresses in there, if you
check at runtime you can resolve all the modules:

005EC1EO
) kernel32 (rebuild)
005EC280

005EC288
... user32
005EC294
005EC29C

advapi3?2
005EC2A4
005EC2AC
... oleaut32
005EC2B4
005EC2BC

kernel32 (rebuild)
005EC2C8
005EC2D0
... advapi32
005EC304
005EC30C
) kernel32 (rebuild)
005EC4CC

005EC4D4 mpr

005EC4DC
... version
005EC4E4
005EC4EC
.. gdi32
005EC640
005EC648
... user32
005EC940

005EC950
... oleaut32
005EC96C

005EC974
ole32
005EC9C4
005EC9CC
... oleaut32
005EC9EO0
005EC9ES
) comctl32 (rebuild)
005ECA48
005ECA50
... winspool
005ECASLC
005ECA64
... shell32
005ECA7C
005ECA84
... wininet
005ECA90
005ECA98
... urlmon
005ECAAO
005ECAAS8
shell32
005ECABC
005ECAC4
... avifil32
005ECADO

005ECAD8 winmm

the "rebuild" label indicates modules that have emulated or redirected apis.
We start from the redirected/stolen byte apis, that is the bridge at 0xC30000.
In the modules we have addresses like

dword_5EC1EO dd 0C3948Ch

so to write an automatic rebuilder we have to:

- open the dumped bridge

- go to the offset at which the api is thunking

- read how many stolen bytes are there before the "jump api”

- once we get the real api address subtract the number of stolen bytes so we
have the api entry.

Well this is not the best method, using the symbols api you can get, given an
address, the api name + offset. For example if we look at some instruction
after MessageBoxA we would have something like

user32.MessageBoxA + 0x10

yeah, the same way symbols are resolved in softice and olly :). However the
method i've written works. We have to check the 0x00C3xxxx bridge, and we
see that api redirection is just in two forms:

1- jmp version

00C39548 55 push ebp

00C39549 8B EC mov ebp, esp

00C3954B FF 75 10 push dword ptr [ebp+10h]
00C3954E FF 75 0C push dword ptr [ebp+0Ch]
00C39551 FF 75 08 push dword ptr [ebp+8]
00C39554 6A FF push OFFFFFFFFh
00C39556 E9 F7 5A 22 77 jmp near ptr 77E5F052h
2- push/ret version

00C394B8 55 push ebp

00C394B9 8B EC mov ebp, esp

00C394BB FF 75 10 push dword ptr [ebp+10h]
00C394BE FF 75 0C push dword ptr [ebp+0Ch]
00C394C1 FF 75 08 push dword ptr [ebp+8]

00C394C4 6A FF push OFFFFFFFFh
00C394C6 68 42 9E E5 77 push 77E59E42h
00C394CB C3 retn

so we know we have to count bytes and check for E9 or C3 opcode. Of course
there could be some interference (for example a push 0xC3), however we will
see there is only one byte interference in all api we are going to resolve, so
no need to write a more complex analisys routine. Here is the code

#include <windows.h>

//params

#define T_IAT_START startaddress
#define T_IAT_END endaddress

#define LOAD_NAME "name of foreign dlIl"

#define BRIDGE_BASE 0xC30000 //for me its C30000
#define PROGNAME "name of dumped exe"

#define BRIDGENAME "name of dumped bridge"

int WINAPI WinMain(HINSTANCE hInst, HINSTANCE hPrelnst, LPSTR
CmdLine, int CmdShow)

{

HANDLE hTarget, hBridge;

void *tBuffer, *bBuffer;

DWORD temp, tSize, bSize;

DWORD *Base, TempAddr, TempApi, Deltalat;
BYTE OpCode;

int i;

//open program file
hTarget = CreateFile(PROGNAME, GENERIC_READ + GENERIC_WRITE,

NULL, NULL,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
tSize = GetFileSize(hTarget, &temp);

tBuffer = malloc(tSize);

ReadFile(hTarget, tBuffer, tSize, &temp, NULL);

//open redirect bridge dump
hBridge = CreateFile(BRIDGENAME, GENERIC_READ + GENERIC_WRITE,

NULL, NULL,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
bSize = GetFileSize(hBridge, &temp);

bBuffer = malloc(bSize);

ReadFile(hBridge, bBuffer, bSize, &temp, NULL);
CloseHandle(hBridge); //bridge handle no longer needed

LoadLibrary(LOAD_NAME); //modules that are not loaded from this src

Deltalat = 0;
while(T_IAT_START + Deltalat <= T_IAT_END)
{
Base = (DWORD*)tBuffer + ((T_IAT_START + Deltalat) / 4));
TempAddr = *Base;
if(TempAddr > BRIDGE_BASE)
{ //process only first redirection method
//second redirect method has 0x00B30000 base
//so the check should be adjusted according to that base (dynamic)
TempAddr -= BRIDGE_BASE;
i=0;
while(true)

{
OpCode = ((BYTE*)bBuffer)[TempAddr + il;

if(OpCode == 0xC3) //is it a return?
{
if((BYTE*)bBuffer)[TempAddr + i - 5]) == 0x68)
{ //was previous instruction a push?
temp = TempAddr + i - 4;
__asm mov eax, bBuffer
__asm add eax, temp
__asm mov eax, [eax]
__asm mov [TempApi], eax
i-=6;
break; //then we have found the push/ret to va
}
}
if(OpCode == OxE9) //is it a jump?
{
temp = TempAddr + i + 1; //next dword is va
__asm mov eax, bBuffer
__asm add eax, temp
__asm mov eax, [eax]
__asm mov [TempApil, eax
//E9 is relative jump so we must add the calling va
TempApi += TempAddr + BRIDGE_BASE +1i + 5;
i--;
break; //then next bytes are the va
}
i++;
}
//mow find the ep of api
while(i>=0)
{
TempApi--;
if((BYTE*)bBuffer)[TempAddr + i] != (BYTE*)(TempApi))[0])
{
//if some opcode is different then there is code ignjction
MessageBox(NULL, "Different opcodes”, "Error", NULL);
CloseHandle(hTarget);
return O;
}
i--;
} //at the end TempApi = EP of api
//write ep of api
SetFilePointer(hTarget, T_IAT_START + Deltalat, NULL, FILE_BEGIN);
WriteFile(hTarget, &TempApi, 4, &temp, NULL);
}
Deltalat += 4;

}
CloseHandle(hTarget);
return 0;

doh! looks like a monkey wrote this code! However you just have to set the
parameters in the defines. In particular:

T_IAT_START
T_IAT_END

these define the first and the last C3xx thunked apis you want to resolve.
Note that all thunks that are in the middle of this interval must have a C3xx
address, not a B4xx or other. So for example for first module you should set
start=005EC1EO and end=005EC204, because at 005EC208 there is a B4xx
address. So you resolve the first group. To continue you start from
005EC20C and end at 005EC238, again after this address there are two B4xx
addresses, and so on. The foreign dll is a dll that is not mapped in memory
(in our case kernel32 is present, comctl32 no), so you should map it when
resolving its relative apis.

For this program i have only a byte interference, that is at 005ECA38, infact
we see it calls this code in the bridge

00C3A00C 55 push ebp
00C3A00D 8B EC mov ebp, esp
00C3AO00F 51 push ecx

00C3A010 68 C7 E9 96 71 push 7196E9C7h

00C3A015 C3 retn

that E9 is an interference. You can fix it just watching the asprotected
program and tracing manually this thunk (or coding a better routine!). Ok,
now all the 0x00C3xx work is done. Now in the iat array we have all api
addresses (working FirstThunks). Note! Pay attention to relocation! Infact
you could have a module relocated in the asprotected program process, but
when trying to rebuild IT, we could have the same module not relocated. So
the FirstThunks could not work. To avoid this you can dump the relocated
dll, or you can look at the Executable Modules window in ollydebug, then you
see the path of relocated dlls

Path=DAWINDOWS\WinSxS\x86_Microsoft. Windows.Common-
Controls_6595b64144ccf1df_6.0.0.0_x-ww_1382d70a\comctl32.dll

and you can copy that dll and use it in your own directory (or if you still have
problems you can dump such relocated dll). You only need this to correctly
resolve api names, you will not need relocated dll for the final unpacked exe.
Once 0x00C3xx is done we need to resolve the 0x00B4xx (emulated) trick.

Luckily there are few (11) apis using this trick. Some are duplicates, so let's
see every single emulated api.

1 (005EC208 dword_5EC208 dd 0B41388h)

00B41388 push 0

00B4138A call sub_B35158

00B4138F push dword ptr ds:0B46CE8h
00B41395 pop eax

00B41396 retn

this is a wrapper at GetVersion function. As you can see there is a call to
GetModuleHandle, but it's not useful because the last value returned in eax is
in 0B46CES, that is a previously stored return value of GetVersion, this is a
trick to fool automatic tracers that would try to determine imported api by
tracing the intermodule call. We could substitute this api just with the
address of the api, but it is not always possible. Ok no problem, we just have
to add some emulated apis in some cave and then fix the iat at runtime. We
will see it later.

2 (005EC23C dword_5EC23C dd 0B40EFOh)

00B40EFO push ebp

00B40EF1 mov ebp, esp
00B40EF3 mov edx, [ebp+0Ch]
00B40EF6 mov eax, [ebp+8]
00B40EF9 mov ecx, ds:0B4543Ch
00B40EFF mov ecx, [ecx]
00B40F01 cmp ecx, eax
00B40F03 jnz short loc_B40FOE
00B40F05 mov eax, ds:0B45350h[edx*4]
00B40FO0C jmp short loc_B40F15
00B40FOE push edx

00B40FOF push eax

00B40F10 call sub_B35160
00B40F15 pop ebp

00B40F16 retn 8

this wrapper calls GetProcAddress in case of a standard call. Insted of the
api name the parameter can be a number, so the aspr does not call
GetProcAddress but an internal function corresponding to the array in
0B45350. I've run the program but it seems this second case never happens
(in this program).

3 (005EC240 dword_5EC240 dd 0B41360h)

00B41360 push ebp

00B41361 mov ebp, esp

00B41363 mov eax, [ebp+8]

00B41366 test eax, eax

00B41368 jnz short loc_B4137D

00B4136A cmp dword ptr ds:0B46978h, 400000h

00B41374 jnz short loc_B4137D

00B41376 mov eax, ds:0B46978h

00B4137B jmp short loc_B41383

00B4137D push eax

00B4137E call sub_B35158

00B41383 pop ebp

00B41384 retn 4

a wrap to GetModuleHandle. If the parameter (ebp+8) is NULL, then the
program avoids calling the function and returns 0x00400000 (standard
hinstance of a standard exe), else calls the function to find the real module
imagebase and returns it.

4 (005EC254 dword_5EC254 dd 0B413DOh)

00B413DO0 push 0

00B413D2 call sub_B35158

00B413D7 push dword ptr ds:0B46CE8h

00B413DD pop eax

00B413DE mov eax, ds:0B46CF8h

00B413E4 retn

The call is to GetModuleHandleA function, but as you can see at the end the
B46CF8 address is returned, that is the pointer to the command line for the
program, so this is the emulator for GetCommandLineA.

5 (005EC390 dword_5EC390 dd 0B413E8h)

00B413ES8 push ebp

00B413E9 mov ebp, esp
00B413EB mov eax, ds:0B46CF8h
00B413F1 mov eax, [ebp+8]
00B413F4 pop ebp

00B413F5 retn 4

this just returns the only parameter this function takes ([ebp+8]) Can't be
fixed with an api, it must be replicated!

6 (005EC454 dword_5EC454 dd 0B413COh)

00B413CO push ebp

00B413C1 mov ebp, esp

00B413C3 call sub_B35170

00B413C8 mov eax, ds:0B46CF4h

00B413CD pop ebp

00B413CE retn

The call is at GetVersion, but the return value is always the one at 0B46CF4,
that is a value that chagnes at runtime, we will see it later.

7 (005EC464 dword_5EC464 dd 0B413F8)

00B413F8 push ebp

00B413F9 mov ebp, esp

00B413FB pop ebp

00B413FC retn 4

this is a null call, but it has a parameter so pay attention to the stack, you
can't nop it.

Ok there are not other calls. The problem now is: we can't just put the
address of emulated api in the IAT for some of them. When buiding the IT
the OriginalFirstThunks and FirstThunks of these api must be valid (or we
have to split the modules in more descriptors), so the easiest thing is to:

- make a working IT so the api address will be written in the IAT for these
apis

- add the needed emulation routines somewhere

- change the entry point so we fix at runtime the FirstThunk of the emulated
apis (so every FirstThunk points to emulated code)

So for now we can replace all 0x00B4xx calls with some valid api address,
we can choose the address of the api they refer to, so the fixed thunks will
be:

005EC208 dd 0B41388 -> 77E5C486 (GetVersion)

005EC23C dd OB40EFO -> 77E5A5FD (GetProcAddress)
005EC240 dd 0B41360 -> 77E59F93 (GetModuleHandleA)
005EC254 dd 0B413D0 -> 77E5C938 (GetCommandLineA)
005EC2C8 dd 0B41360 -> 77E59F93 (GetModuleHandleA)
005EC390 dd OB413E8 -> 77E5751A (return parameter? let's make a
GetTickCount)

005EC3DC dd 0B41388 -> 77E5C486 (GetVersion)

005EC414 dd OB40EFO -> 77E5A5FD (GetProcAddress)
005EC41C dd 0B41360 -> 77E59F93 (GetModuleHandleA)
005EC454 dd 0B413CO -> 77E5C486 (changing value? lets make
GetTickCount)

005EC464 dd 0B413F8 -> 77E5751A (null, so lets make another
GetTickCount)

now all our IAT is filled with valid addresses of api (remember that we will
change them later, so for now we just need some valid api to be in the IT).
Why we did this? Because now we can build a new import table with the 23
imported modules. Once all the descriptor are ok, we have each descriptor in
this form:

IMAGE_IMPORT_DESCRIPTOR.OriginalFirstThunk: we have to build it
IMAGE_IMPORT_DESCRIPTOR.TimeDateStamp: 0
IMAGE_IMPORT _DESCRIPTOR.ForwarderChain: -1

IMAGE_IMPORT_DESCRIPTOR.Name: ptr to dll name
IMAGE_IMPORT_DESCRIPTOR.FirstThunk: ptr to IAT data (we've just
built it!)

so it is easy to rebuild the IT, just look into imported module, find the api
that has export address == first thunk, then copy the name of such api. We
can put the new IT at offset 0xO028EEQO, it is the zero padding near the end
of file. The it will be 24*5 = 120 bytes long (0x78, 23 modules + 1 null
descriptor). Here is an example of the it:

... other dll names

75736572 33 32 2E 64 6C 6C 00 00 00 00 00 00 wuser32.dll
6B 65 72 6E 65 6C 33 32 2E 64 6C 6C 00 00 00 00 kernel32.dll
0C 13 29 00 00 00 00 00 FF FF FF FF FO ED 28 00

EO C1 1E 00 B4 13 29 00 00 00 00 00 FF FF FF FF

EO ED 28 00 88 C2 1E 00

... other import descriptors

i've written the name of each imported module, then all the 5-dwords
dscriptors. As you can see OriginalFirstThunk = FirstThunk = IAT array of
api addresses. The dll names are ok. So if you now open the program with a
pe editor you will see in the import table all 23 dll modules loaded, but no
api names. However, having the import api addresses will resolve this
problem, we can just use an import rebuilder: infact this step is mechanical,
we have to search all import address in the imported modules and write
their corresponding names. I used Wark (www.pmode.cjb.net), a tool of
some friends of mine, you can use any rebuilder you want, it just must have
this rebuilding feature (that is, translation of FirstThunk to
OriginalFirstThunk). Still pay attention to relocations, here comctl32.dll is
relocated, so if a rebuilder simply uses LoadLibrary to load the SYSTEM dll,
the rebuild will fail (infact I had to write all the 25 OriginalFirstThunks for
comctl32 by hand!). You can avoid this writing your own IAT-IT translator, i
think i will write mine one day :). Back to us, now the import table is done.
We have all the 23 import modules, each one with all imported api names
resolved correctly. Perfect. Is this the end? No. We have to re-add the
emulated apis! If you remember the emulated apis were:

iat import address

1 005EC208 00B41388 GetVersion

2 005EC23C O00B40EFO GetProcAddress

3 005EC240 00B41360 GetModuleHandle
4 005EC254 00B413D0 GetCommandLine
5 005EC2C8 00B41360 GetModuleHandle
6 005EC390 00B413E8 return parameter
7 005EC3DC 00B41388 GetVersion

8 005EC414 O00OB40EFO GetProcAddress

9 005EC41C 00B41360 GetModuleHandle
A 005EC454 00B413CO some changing value
B 005EC464 00B413F8 null + stack

i have already listed the code of emulation routines. The 1 and 7 can be fixed
just by putting in the iat the address of the GetVersion api. Infact the return
value is the one provided by GetVersion. You should always check the caller
to be sure that the params are ok (otherwise stack will be corrupted). If you
follow an xref to 5EC3DC you see

0048593C jnb short loc_48599C

0048593E call sub_406D00

00485943 and eax, OFFh

00485948 cmp ax, 4

the call is perfect, so no problems of stack, we can fix it with GetVersion api
address. Time to fix 2 and 8. We have seen this emulation is for
GetProcAddress. So as before let's find some xref to check out the caller
code:

0040E72D push offset aGetdiskfreespa ; "GetDiskFreeSpaceExA"

0040E732 push ebx

0040E733 call sub_406C90

0040E738 mov ds:dword_5CF13C, eax

this too is a valid code. The problem with this emulation could be the fact
that instead of an api name the program could pass a number, however i
monitored the emulation routine and it seems that a number is never passed.
So again as before, we can put in the iat the address of GetProcAddress api.
Next we have 3, 5 and 9. Again you can go and see some xref to check the
caller code. You will find it's all ok, so we can fix it with the
GetModuleHandle api. Let's continue with emulation number 4, we can fix it
with GetCommandLine api. We are now at 6th emulated api. We cant fix it
with a real api, however the emulation code is simple because it just returns
the parameter passed to the function. So we have to fix it with a similiar
code, we must make the fix at runtime (i explained before that because the

IT have to be correct the win pe loader will overwrite the fix we would make
to the iat). Now we have the A emulated api. We see it always return a value,
we just have to understand what this value is! It changes at runime, so
probably it is a handle? To find what it is we can put a breakpoint on
memory access on 0xX00B46CF4 and run the asprotected exe. We will find
this code in the aspr loader:

00OB411EE push 4111FCh
00B411F3 mov eax, ds:B3512Ah
00B411F9 jmp dword ptr [eax]
00B411FC push 411204h
00B41201 jmp short loc_B41222
00B41222 pop edx

00B41223 pop ebx

00B41224 push 41122Bh
00B41229 retn

00B4122B mov [ebx-0Ah], eax <- bpm lands here

00B4122E jmp edx

if you see B3512A at runtime you will find it is the address of
GetCurrentProcessld. So this emulation snippet calls GetCurrentProcessld,
we can fix it easily. The last emulation routine is the B, it is a null call, it just
use a stack parameter and removes it (stdcall), so don't just nop the call, you
have to adjust stack.

Ok, all emulated apis can be resolved just putting their OriginalFirstThunk in
the IT, only the 7 and B emulation routines must be replicated. So we can
write the following code:

B8 DO1F6900 MOV EAX,dump7_ia.00691FDO

A3 64C45E00 MOV DWORD PTR DS:[005EC464],EAX
E01F6900 MOV EAX,dump7_ia.00691FEO
90C35E00 MOV DWORD PTR DS:[005EC390],EAX
E9 7FCDF3FF JMP 005CED18

where 00691FDO and 00691FEO are the two emulation routines:

00691FDO 55 PUSH EBP
00691FD1 8BEC MOV EBP,ESP
00691FD3 5D POP EBP
00691FD4 C2 0400 RETN 4

00691FEO 55 PUSH EBP
00691FE1 8BEC MOV EBP,ESP
00691FE3 8B45 08 MOV EAX,DWORD PTR SS:[EBP+8]

00691FE6 5D POP EBP

00691FE7 C2 0400 RETN 4

Of course you can put this code where you want. We fix the two IAT
emulated APIs and put there our emulation code, then we jump at original
entry point. Remember to change AddressOfEntryPoint in the PE. Okay, APIs
are fixed, now you run the program and... It works! We have the working
exe and we have completely removed the ASPR layer. Wasn't it funny?

FINAL CONSIDERATIONS

Really good crypter. It has a lot of nice tricks, the API emulation is really a
good idea. Note that the code that solves the emulated APIs is deleted from
the memory after execution, so you will not have it in the dumped
0x00B4xxxx memory area. Making an unpacker for this ASPR would be a
good challenge, I think it could be done by using debug APIs and
synthesizing the approach I used for this essay (so you don't have to study
description algorithms). That is, I think that making an "offline" unpacker
would be really difficult (but not impossible)! Hope you will like this essay :)

GREETS AND THANKS

Thanks to all RET bros! Thanks to Kathras who is helping me really a lot
with the VB decompiler, hope we will release a good version soon!

Thanks to Devine9 who always reads and corrects grammar of my writings!
Greets to all UIC members and to all #crack-it people.

A particular greet to Giulia, the craziest binary coder in the world!
GoodBye!

[AndreaGeddon]
andreageddon@hotmail.com my mail
www.andreageddon.com my lame italian site
[RET] www.reteam.org RET's great site

[UIC] WWW.qUequero.org italian university of cracking

