
UNDERSTANDING WINDOWS 2K SOURCES (part 1)
Written By: AndreaGeddon

[www.andreageddon.com] [www.reteam.org] [www.quequero.org]
{andreageddon@gmail.com}

 :: INTRO ::

This is the first of a series of articles in which I will deal a
little bit in detail with the windows 2000 kernel. In particular I
will refer to the stolen sources that have been published. For
obvious causes I shall not write the code directly in this
article, but I will make precise references to the files I will
describe, so if you have the sources you will find easy it easy to
understand this text.

 :: REQUIREMENTS ::

Well, first of all it would be good if you have the sources, if
you don’t have them you can read the article the same as it will
have a quite generic stamp. Second, you have to know hardware x86
architecture basics, infact I will not deal with things like IDT
etc, so get your Intel manuals and study them! Last, I will assume
you have some basic knowledge about an operating system, that is
you know what is a file system, what is a scheduler and so on. Now
we can begin.

 :: BIBLIOGRAPHY ::

Here are some books on the argument that I advise you to read:

• The Windows 2000 Device Driver Book - Art Baker, Jerry Lozano
• Inside Windows 2000 - Russinovich, Solomon (sysinternals)
• Windows driver model - Oney
• Windows NT Native Api - Gary Nebbett
• Undocumented Windows NT - Dabak, Phadke, Borate
• Windows NT File SYstem Internals - Nagar
• Windows NT Device Driver Development - Viscarola

 :: THE BEGINNING ::

The source leak is dated on the first ten days of february, with
the direct responsibility for it, being Mainsoft; an old partner
of Microsoft. However, the leak contest is still not very clear.

Let’s start from the beginning, that is:
Where can I find these sources? Well you should resolve this by
yourself! You can search on filesharing networks, or private ftps.
I do not advise you to use public networks, better if you use some
crypto p2p network, or if you can find a friend that cand send you
it.
How many versions are there? Well there are lots of fakes, however
the versions are two: one is for windows nt4 sources and the other
is for windows 2000 sp1 sources. Here we will mainly refer to
win2k ones, but it would be good for you to have the nt4 as well.
They are quite different and both have some unique things to them.
In fact, the first part of the boot process will be described
using nt4 sources. Clearly the base is the same, so the things we
will say here are good also on win xp and 2k3.
Are they complete sources? Not in a strict sense. There is the
kernel, the userspace dlls (see later), there is even the source
for the solitaire game! The real bad lack is the ntfs source, it’s
managed by the relative driver, and its source is not present in
either of the the sources. However there is still something
useful, which we will see later. The whole GDI is missing too.
However, In general we can say that the interesting part (the
kernel) is complete.
So can I recompile it? Well the sources are missing some
definitions and other files, the kernel could be recompiled with
the help of the ifs kit, but all the usermode code is not
recompilable. At the time of writing this article, I have no
knowledge of recompiled windows kernels or similiar things. If you
know of something like this, or you did it yourself please let me
know.
What are these sources useful for? Well not all that much I would
say. They are useful mainly as a documentation for driver
developers or windows emulators. In effect, this source package
makes part of the Microsoft WISE program (Windows Interface Source
Environment), that is a program that aimes to help developers to
integrate Windows Based solutions on Unix and Macintosh systems.
Is it true that the source leak can be a threat for security?
Absolutely false, although advisors have been quite paranoid on
this topic. At the moment I write there is no notice of bad bugs
derived from kernel source analysis. The only bug reported is on
IE 5, that is the overflow in the bitmaps handling.
How is the code written, and how is it compiled? The kernel is
written all in C (not C++) and some parts in asm, the parts
strictly related to hardware. The applicative usermode code
instead is mainly written in C++. Obviously the kernel design was
made with an object oriented mentality. The code is compiled with
Visual Studio, clearly not the commercial version but a proper
version that is only for internal use.
Will the diffusion of these sources change something at hacking
level, programmers, final users etc? No, nothing will change.
Driver developers already have excellent knolwedge of the windows
kernel (for example: System Internals, OSR, NTDEV etc etc).
Certainly the sources will enrich the already existing kernel

documentation, but whoever works in this branch is used to reverse
engineering, so probably whatever they needed they already learned
it from kernel reversing ☺. Not many people know in fact that
Microsft offers the debug symbols of every windows module, so in
the disassebly of a piece of code like this:

mov [0x11223344], eax
push 0x22334455
call 0x77889900

with debug symbols would be resolved in something like:

mov [_TickCount], eax
push _dwSeconds
call _GetTime

so once you solve the names, then the translation from asm to C is
really easy. There is not much difference in reading the code
above or the relative C code:

TickCount = ...blahblah...;
GetTime(dwSeconds);

What to say? Windows IS opensource, you just have to know how to
read assembler. Matt Pietrek for example rewrote a lot of the
windows 9x kernel in pseudo code. The only real progress we will
see will be in windows emulators, for the rest the windows source
leak echo is already dead.
Now that we have a general overview of the argument we can run
into code details!

 :: SOURCE ORGANIZATION ::

If you don’t want to get lost in the sea of code lines you will
have to make a map of the principal components. First of all we
see three main directories:

\bsc
\private
\public

the first contains the glimpse data for the search engine, the
last contains sdk and oak, both of scarce interest for us here.
What we want is the \private, base of all the code. In nt4 sources
only \private is present. Now this directory as you can see is
really big! So we are not going to comment it all. Let’s see a map
of the components:

module: ntoskrnl.exe
location: \private\ntos
description: windows kernel, the equivalente of bzImage in Linux

module: ntdll.dll
location: \private\ntos\dll
description: gateway for um->km transitions (syscalls)

module: kernel32.dll
location: \private\windows\base\client
description: usermode part of windows kernel

module: user32.dll
location: \private\ntos\w32\ntuser\client
description: various utilities, such as windows creation and text
manipulation etc

module: advapi32.dll
location: \private\windows\screg\winreg
description: registry apis

These are the main components, but we will concentrate 90% on the
kernel portion. In \private\windows\shell\ you can find the
sources for regedit, taskmanager, games and other applications.
There are also other component sources, such as comdlg32 etc. The
real lack, as previously mentioned, are

ntfs.sys – driver for ntfs
gdi32.dll – base graphic functions library

In the win2k sources the bootloader is not present, but it is
present in the sources for nt4, precisely in the directory

 \private\ntos\boot

There you can find the bootsector, ntloader, ntdetect and setup
loader, each in its own directory. There is the bootsector
relative to each fs, in particular for ntfs, so here you can find
good data about an ntfs partition (same data you can find on Nagar
book). If you are interested in ntfs there are the logfile
management functions too, which we will see later. Back to the
win2k code, we find part of the code relative to the net in

 \private\inet

that is part of the IE (mshtml), urlmon, wininet.
Ok, now we have a general idea of the source structure, if you are
searching for things I did not mention use a good grep tool.

 :: WE START FROM BOOT ::

Time to begin touching the code! Uhm where are we starting from?
We start from boot? Ok! As seen above we have to dig into the
\private\ntos\boot directory. The bootsector itself is located in
the \bootcode subdirectory, in which every file system has its own
subdirectory. We can see that the starting point is the \mbr
subdirectory, that is the physical code that will reside in the
master boot record. Its the very first piece of operating system
that is executed at the boot immediately after the bios code (the
file is x86mboot.asm). As you can see from the comments, it is the
STANDARD code for every pc. This code reads the partition table
at the end of the master boot record, finds the partition marked
as bootable, copies its bootsector in memory and executes it. The
master boot record infact has this structure:

 +------------+ -- MBR --
 | BootCode | Executable Code
 | Partition1 | PartitionTable
 | Partition2 |
 | Partition3 |
 | Partition4 |
 +------------+ -- END MBR --
 | Partition1 | Partitions
 | |
 . .
 . .

So the bootcode will just relocate to the address 0000:0600, jump
to relocated code, read the bootable entry from the partition
table, copy its bootsector in memory at standard boot address
(0000:7C00), and finally execute it. So it is as if the bios
itself had booted the partition directly. Uhm, note that in
x86mboot.asm at line 48, that after that, the code auto relocates
at address 0000:0600, to jump to it there is used a far jmp which
is hand encoded as you can see here:

 db OEAh
 db ...blabla...

Those are the bytes relative for the opcode of the JMP 0000:0600
instruction, whose address is resolved at compile time. You will
find again this hand coded opcode later, when the bootable
partition is found. The code will jump again to 0000:7C00 to boot
the new bootsector. At this point the code changes, as we have a
different piece of code for every supported file system:

 \etfs Electronic Tariff Filing System
 \fat fat32
 \hpfs Pinball File System (high performance file syste, os2)
 \ntfs nt native file system

 \ofs surprise! Void directory!

Well just fat32 and ntfs are really supported, and it is really
not good that you install windows nt on a fat32 partition. Now we
can concentrate on the ntfs bootsector, as other bootsectors work
the same way. The role of this piece of code (ntfsboot.asm) is
simply to read the ntldr file, map it to the address 2000:0000 and
execute it. Note that we are still in real mode, so all the code
is still 16 bit. As we can see this code is a bit too large and
cannot stay in the 512 bytes of the first sector: in fact the bios
maps the first physical sector of the bootdisk (track 0, head 0,
sector 1) in memory at physical address 7C00. Well the bios now
did not really map in memory the first sector of the bootable
partition, rather the mbr code did it. Why does this code not map
all necessary code for ntfsboot which is bigger than 512 bytes?
Obviously for compatibility with other systems. So the just mapped
ntfsboot now has the immediate task of mapping all it’s other
code. In fact, the code begins reading from the first sector,
through all of the bootsector and relocates it to address
0D00:0000, so we have in memory at that address the bootsector and
following sectors that contain needed code. Once the code is
mapped, it jumps to 0D00:0200, that is to the second sector that
has been read from the disk (the first one was already executed so
it is no longer useful). This code is at physical address D200h,
and is far below the address 20000h where the ntldr will be
mapped, so there is no interference problems. Again we see that
the jump to the newly relocated code is made (at line 165) with
this code:

 push seg
 push offset
 ret

Hehe, it seems they had some problem in writing far jmps! Ok
nothing important, just a curiosity. So now the execution moves to
the second sector at the mainboot procedure. Before this procedure
in the code we can see some data and the “55AA” signature that is
at the end of the first sector. The mainboot procedure reads the
ntldr file (you can see several functions to read ntfs to find
that file), and at the end it returns the execution to the ntldr
memory image, that as we said above is located at 2000:0000. The
bootsectors relative to other file systems act the same way, only
the code that reads ntldr data from the disk changes from system
to system. Now we have to move to the ntldr code. Note that until
now there has been no initialization, like paging abilitation,
switching to protected mode, etc. We are still in real mode, so
ntldr starts its executions at 16bit, and then will make the
passage to protected mode and so to 32bit. Ok now the file we are
examinating is

 \ntos\boot\startup\i386\su.asm

Do remember that we still are in nt4 sources. We see that the
first line is a jmp RealStart. Among this jmp and the routine
itself we can see some code concerning FAT. If the system was
booted from FAT32, the code would still have to handle the ntldr
reading and mapping before executing it. In this case we are
considering ntfs, so we dont care of other FAT32 problems. The
RealStart routine just prepares stack and segments to pass the
execution to the procedure SuMain that is located in the file

 \ntos\boot\startup\i386\main.c

Finally we come to some C code! However, keep the file su.asm in
mind, because it exports the protected mode enabling function that
we will see in a while. This procedure initializes the video
subsystem (InitializeVideoSubSystem in display.c), turns off
floppy motor in case the system was booted from floppy
(TurnMotorOff in su.asm), makes other initialization works, such
as calculating the size of necessary memory for os loader, then
after this stuff we get to the main point: the switching to 32bit.

Infact we see that the code enables the A20 line (EnableA20 in
a20.asm) and relocates the IDT and GDT structures that will be
used in protected mode. So now it’s time to switch to protected
mode (EnableProtectPaging in su.asm). Note that the first time the
code is executed, the paging will not be enabled, in fact the
startup loader still has not determined a valid descriptor for PDE
and PTE. The paging enabling will be done at the beginning of the
os loader code that we will see soon. In particular we see that
the code sets the selector for the PCR in the segment FS, that is
the Process Control Region, a fundamental structure for the
kernel, so we expect that soon the code will pass execution to the
ntoskrnl.exe module. Besides, the memory areas for IDT and GDT
have been set, while the LDT is zeroed. Windows NT infact, does
not use LDT, opposed to consumer windows. So the code for the
protected mode is:

 mov eax, c30
 ... (first time the paging enabling is avoided)
 or eax,PROT_MODE
 mov cr0,eax

But it still does not have all the switching to full 32bit
finished, as now the code is setting segments, structures and the
TSS descriptor. The execution comes back to the SuMain after the
protected mode switching. The SuMain calls the
RelocateLoaderSections functions to calculate the correct address
where the entry point of the os loader is. This is infact a valid
coff PE, and it is embedded inside the ntldr, so we can consider
it the first real process that windows executes. Once its entry
point is found the execution passes to it with the function
TransferToLoader using as an entry point the just computed
address. So now we move to the directory:

 \ntos\boot\lib\i386

where there are the files we are going to execute. In particular,
the file:

 entry.c

This is the entry point of the just mentioned PE, and it is
identified by the function NtProcessStartup. Let’s analize it, and
we will see that the first called function is
DoGlobalInitialization. Also here we can see that there is a
function call: InitializeMemorySubsystem. Sounds interesting!
Parenthesis: many functions use as a parameter the
BootContextRecord, a structure whose declaration is made in
bootx86.h (_BOOT_CONTEXT structure). Let’s go back to the
InitializeMemorySubsystem in the file memory.c. In this file we
also find a memory map (components images and related stacks /
heaps) that can be useful. This function has immediatly a while
that cycles for all MemoryDescriptor that are located in the
BootContextRecord. Each memory descriptor, infact, is a structure
with two fields: BlockBase & BlockSize. They describe the starting
address of a memory area and its size. So

BootContext->MemoryDescriptorList

is an array of memory descriptors that are used to describe all
the memory blocks that are needed. Remember that now we are in
protected mode but with no paging, so at this moment every address
we use corresponds to a physical address. So this “while” prepares
memory addresses (respecting the page boundary) for all known
memory blocks. The loader does not use memory that is above 16mb
(to avoid interference with isa bus data transfers), so all the
memory above 16mb is marked as MemoryFirmwareTemporary. Once the
code exits the while, all physical memory has been described (with
MempAllocDescriptor & MempSetDescriptorRegion functions), the
descriptor array is maintained in the variable MDArray[] defined
in arcemul.c. These are the “macro” descriptors that makes an
approssimative description of physical memory, so after the while
there is portion of code that handles the description of the first
megabyte of memory. In fact, here there are all the memory
components useful to the loader, such as the interrupt vector
area, system heaps etc. Note that the first virtual memory
megabyte will coincide with the first physical memory megabyte, to
permit the os loader to continue the execution below first mega
and map the kernel dedicated memory. Again with
MempAllocDescriptor we can see that from the initial MDArray, some
subdescriptors are obtained for the memory areas below a mega.
When all the creation of this descriptor is finished we finally
reach the MempTurnOnPaging. This function just makes a walk of the
MDArray so it can call MempSetupPaging function, with which the
PDE\PTE entries are created for all the necessary memory that was

just calculated. The global variables are PDE for the PDE, and
HalPT for the PTE. Once the memory descriptor walk is made, the
PDE\PTE is correctly set, so the MempTurnOnPaging is called:

 mov eax,PDE
 mov cr3,eax

 mov eax,cr0
 or eax,CR0_PG
 mov cr0,eax

and the paging is enabled. This is the first time paging is
enabled since the system was booted. As you can see, the ptr to
the PDE array is placed in the page directory base register (CR3),
son in CR0 is enabled the flag relative to the paging. After the
paging is enabled we come back to the InitializeMemorySubsystem
function, that calls MempCopyGdt to move GDT and IDT in a new
memory area. Ok now the function is finished and we can go back to
DoGlobalInitialization. We see that there is other stuff and
finally the call to InitializeMemoryDescriptors function, that as
we can see from the comments is the second step of the
InitializeMemorySubsystem. First the PDE\PTE were created to turn
on paging, now this function comes back to the MDArray and
allocates the memory for all descriptors that marked the memory as
“reserved”. Now we’ve finished the DoGlobalInitialization. We head
back to the NtProcessStartup. We have some other initialization
functions, that find the partition from where we booted,
initialize the system memory and I/O system, then we arrive at the
call to BlStartup. Immediatly after there is this code:

 // we should never get here!
 do {
 GET_KEY();
 } while (1);

So this means that ntldr work ends inside the BlStartup function,
that is located in the file initx86.c in the directory

 \ntos\boot\bldr\i386

What does this function do? It takes care of opening the drive and
reading the boot.ini file, where all bootable entries are defined.
Such entries are shown with the classic choose menu, so once the
boot entry is chosen the os determines disk/partition/path to
boot, and then arrives at the function BlOsLoader which is located
in the file

 \ntos\boot\bldr\osloader.c

We can see just before this function the definition of the names
"ntoskrnl.exe" and "hal.dll", these will be the components that

will be loaded. As you can see the code is well commented, so it’s
easy to understand what happens: it opens the boot and system
partitions, it opens the input/output console, it initializes the
memory with BlMemoryInitialize, present in the directory

\ntos\boot\lib

in the file blmemory.c, where we find intialized, the stack, the
heap and the memory allocation list. In this case the unique
memory descriptor that has been allocated is the one relative to
the os loader, in fact no other programs have been loaded. So the
function will search the first memory descriptor below the os
loader, and will allocate the heap at the highest possible
address, allocate the space for the loader parameter block, then
the loader stack, and finally the loader heap. After the memory
init we see other initializations (i/o and resource section). So
we see that there is the handling of the boot parameters that were
specified in the boot.ini, in fact the parameters /KERNEL= /HAL=
are handled, that permit to load a kernel/hal different from the
default ones. So now the paths of the kernel and hal components
and of the system hive are generated. The first one to be loaded
is ntoskernel.exe with the function BlLoadImage that maps its
image in memory. So the loader determines the type of fs used and
keeps eventual arguments to pass to the kernel. Now it is the turn
of hal.dll, which is loaded with BlLoadImage as well. Remeber that
these two modules are PE coffs, in fact the loader function is in

 \ntos\boot\lib\peldr.c

It is not the complete pe loader, in fact immediately after in the
code is used the function BlScanImportDescriptorTable: with this
the imported dll are loaded and the import/export are bound. So
now the kernel, hal and all relative modules are loaded. It’s now
time to load the drivers. To load the drivers the osloader must
consult the system hive. What is this hive? Hives are the file
that contains the information stored in the registry. In
particular now the

 \windows\config\system

hive is used. It contains all hardware settings and realtive
drivers. Once the drivers are loaded, the BlSetupForNt is called:
It makes some hardware initialization, such as abios relocation,
tss relocation, etc. Finally the loader has finished its role, and
we arrive at the line:

 (SystemEntry)(BlLoaderBlock);

This line calls the entry point of the ntoskrnl module. From now
on we can pass to the win2k sources (we still were in the nt4
ones!).

The kernel entry point is located in the file:

 \win2k\private\ntos\ke\i386\newsysbg.asm

and the function is KiSystemStartup. It takes as a argument the
loader block mentioned some lines above.

This first part ends here. We have seen the initial portion now,
the boot process. We arrived at the kernel, so in the next part we
will describe kernel initialization and other more interesting
stuff.

See ya in next chapter!

AndreaGeddon

