
Reversing the Golden Axe
A Journey to the Past - Fixing a bug from 1990

Written By: Orr, September 2006

Introduction
Let me start by telling a somewhat personal story. (You can skip to the next part if you
find it boring). When I was in the 4th grade (circa 1994), my father bought me my first
computer. One of the first games I ever installed was the above-mentioned, Golden Axe
and it soon became my favorite game. The common file-browser was the “Norton
Commander”, and one of the options it had was viewing a file’s contents. As a curios kid
I once opened the main exe on a simple file view and what I saw was the gibberish ASCII
codes. Upon asking him, my father told me it was the language “only a computer
understands”. I told myself that perhaps one day I will be able to comprehend that
language, and change everything that I want in that game. Twelve years later I found
myself downloading Golden Axe from an Abandonware site, only to find a few days later
that there is a little...

Problem
Golden Axe (cracked by Fabulous Furlough of The Humble Guys) has 3 main options,
Arcade, Beginner and The Duel. You will find no problem playing and finishing the first
two, but if you attempt to play the duel mode against the computer, you will find that
after you've finished the horrible 13th level, you get a message saying: "Enter Disk 2
Press Enter". What is this? Was the cracker lazy and didn't disable all the checks?
Should I finish the work? Am I the Chosen One?

\

Archeology
The first thing I did was to open the file named GOLD.EXE in a Hex Editor, and to my
surprise I found no strings in the file. The fact that the file was only 7KB aroused my
suspicion. This was merely a loader to a bigger file - AXE.DAT which appears to be an
executable, but it doesn’t contain any strings in it as well. A short disassembly revealed
to me that the file was exe-encrypted. I thought it was the type of encryption that old
viruses used to embody (the LODSB/XOR/STOSB type of protection), but the more I
delved into it, it seemed a little bit more complex. The smoking gun was that this loader
was actually in the end of the file, so I looked back at the MZ header, and there I saw the
signature that evaded my eyes earlier: LZ91. LZ of course made me think of the famous
Lempel-Ziv compression engine, so after searching a bit, I found that there was a small
exe-packer named LZEXE that was used back in those days. If only I had searched some
more I would have found out that there is a generic unpacker called UNLZEXE that does
the job without even requiring me to manually unpack it.

Compatibility
If you want to play old DOS games on 2000/XP machines, you’d have to use some sort
of an emulator. The one I used in order to play the game was an amazing DOS emulator
called DOSBox. I tried to execute the TR debugger and later an old version of SoftICE
on DOSBox, but they all gave me some issues, mainly regarding TSR’s and Virtual
Memory. To my pleasant surprise I found that there is a version of DOSBox that comes
with an integrated debugger (and a very useful one, I might add), so now I can finally
begin to work properly. So, assuming we now have an unpacked file and a working
debugger – we can finally stop the babbling and get to work.

Discovery
The DOSBox debugger has a very nice feature that shows the names of the files that were
loaded by the game. You’ll notice that if you load the Duel mode, the game will load the
files LEVEL5.MAP and LEVEL5.CHR among other files. What I did was simply to
delete those files and load the duel mode again. That dreaded message showed up again
before I even started playing. This is certainly not a copy-protection.

The first place to attack is where the check is being made. The game asks for disk 2, and
then expects the user to press the Enter key. I set a breakpoint over INT 21h (bpint 21 *)
and pressed enter. This is where it got me (I already did the naming):

seg000:7808
seg000:7808 OpenFile proc near ; �CODE XREF: FileManipulation+45 p
seg000:7808 ; �sub_1FB0+2B p ...
seg000:7808 call sub_7751
seg000:780B push ax ;
seg000:780C push dx ; Save regs
seg000:780D push ds ;
seg000:780E
seg000:780E TryToOpenAgain: ; �CODE XREF: OpenFile+20 j
seg000:780E mov ax, seg seg002
seg000:7811 mov ds, ax ; ds = address of seg00
seg000:7813 assume ds:seg002
seg000:7813 mov cs:byte_7439, 0
seg000:7819 mov ah, 3Dh ; '=' ; Interrupt Service 3Dh
seg000:781B mov al, 0 ; access mode = 0 (read)
seg000:781D mov dx, FileName ; dx = pointer to file name
seg000:7821 int 21h ; DOS - 2+ - OPEN DISK FILE WITH HANDLE
seg000:7821 ; DS:DX -> ASCIZ filename
seg000:7821 ; AL = access mode
seg000:7821 ; 0 - read
seg000:7823 jnb short FileOpened ; If OK, then proceed
seg000:7825 call ErrorMessage ; Output error
seg000:7828 jmp short TryToOpenAgain ; Try again
seg000:782A ; ___
seg000:782A
seg000:782A FileOpened: ; �CODE XREF: OpenFile+1B j
seg000:782A mov FileHandle, ax ; Save the file handle
seg000:782D pop ds ;
seg000:782E assume ds:nothing ;
seg000:782E pop dx ; Restore regs
seg000:782F pop ax ;
seg000:7830 retn ; Return to caller
seg000:7830 OpenFile endp

We see that the game uses interrupt service 3Dh and then calls INT 21h (meaning it
would attempt to open a file) while DX holds the pointer to the filename. If the file is
opened successfully the handle is stored in a variable (FileHandle), and if not, a function
outputting the error message will be called. The function ultimately fails because it
cannot find a specific file. But what file?

Anytime you will try to press enter you will receive the following message in the
debugger:

 FILES:Makename encountered an illegal char ^D hex: 4 !

So, the game asks for a gibberish filename (^D), and upon failure prompts the error
message. Since the filename it is looking for is an illegal file name, I was now confident
that no file was really missing, and that this is a bug that needs to be fixed. But what and
where to look?

Backtrace
First, I wanted to know who the caller of this OpenFile function, but since I couldn’t get
out of the “Insert Disk 2” loop, I messed with the code-flow a little:

 SR EIP 7830

By doing that, I set the EIP (next instruction to run) to the address of the ret instruction
(See above). This brought me to this interesting place:

seg000:0736 loc_736: �; CODE XREF: sub_721+9 j
seg000:0736 push ax
seg000:0737 mov bx, [bx+25E3h]
seg000:073B mov dx, [bx]
seg000:073D mov byte ptr unk_10523, 61h ; 'a'
seg000:0742 call ProcessFileNames ; Interesting call
seg000:0745 pop ax
seg000:0746 mov cs:word_71D, ax
seg000:074A push word_F784
seg000:074E pop cs:word_71F
seg000:0753 mov bx, ax ;
seg000:0755 shl bx, 1 ; Get relative offset
seg000:0757 mov ax, [bx+25A1h] ;
seg000:075B mov word_10CC5, ax ; All of these are
seg000:075E mov ax, [bx+264Bh] ; operations used to find
seg000:0762 mov word_10CC7, ax ; the filenames in memory
seg000:0765 mov ax, [bx+268Dh] ; as they are stored in some
seg000:0769 mov word_10CC9, ax ; sort of a table
seg000:076C mov ax, word_10CC5 ;
seg000:076F mov FileName, ax ; Finally open the file
seg000:0772 call OpenFile ;
seg000:0775 cmp FileHandle, 0
seg000:077A jnz short loc_789
seg000:077C mov byte ptr unk_10522, 47h ; 'G'
seg000:0781 mov byte ptr unk_10523, 32h ; '2'
seg000:0786 jmp PrintErrorMsg

This is the beginning of a large function that later on goes on to read the file and later
closes it, and also involves error-checking. From this chunk we can understand that the
function opens the character files and reads from them, but it is of little use to us, since it
has the addresses already passed on to it. Again, we have to back-trace a little in order to
return to the caller of this function. If you' study the code in IDA you see that it returns in
this address:

seg000:08E2 mov ax, ds:1464h
seg000:08E5 sub ax, cs:word_71F
seg000:08EA mov [bx+26CFh], ax
seg000:08EE pop bx
seg000:08EF pop ax
seg000:08F0 retn
seg000:08F0 FileManipulation endp

So, again, we’ll set the breakpoint to the ret instruction (you can also scroll to that
instruction and press F9):

 BP [SEG00]:08f0 ;SEG00 is variable

Press F5 and return to the game, continue to play a little until you reach the breakpoint.
After that simply trace over it and you will be taken to a fantastic little function:

seg000:6E4C LoadLevels proc near �; CODE XREF: GameLoop?:loc_67D2 p
seg000:6E4C mov ax, ds:145Ah
seg000:6E4F call FatalErrorM3
seg000:6E52 mov bx, ds:2259h ; bx = Level Number
seg000:6E56 shl bx, 1 ;
seg000:6E58 cmp byte ptr ds:0B92h, 3 ; \
seg000:6E5D jnz short Arcade ; |
seg000:6E5F cmp byte ptr ds:410h, 0FFh ; | Is it arcade?
seg000:6E64 jnz short Arcade ; /
seg000:6E66 mov bx, ds:558h
seg000:6E6A shl bx, 1
seg000:6E6C mov si, [bx+1195h] ;
seg000:6E70 mov dx, [bx+11D1h] ; A TABLE!
seg000:6E74 mov di, [bx+11B3h] ;
seg000:6E78 jmp short Finished?

Resolution
Now, as you see, the game loads several items into registers, from a table that looks like
that:

seg002:1170 00 09 2A 09 2C 0A 0A 0B 10 32 32 06 27 03 03 09
seg002:1180 0B 11 2C 33 33 08 25 08 24 06 08 27 27 07 03 27
seg002:1190 03 07 03 21 03 71 11 71 11 71 11 71 11 73 11 75
seg002:11A0 11 77 11 7B 11 7D 11 7F 11 85 11 87 11 89 11 8D
seg002:11B0 11 91 11 71 11 71 11 71 11 72 11 74 11 76 11 79
seg002:11C0 11 7C 11 7E 11 82 11 86 11 88 11 8B 11 8F 11 93
seg002:11D0 11 00 00 00 00 00 00 01 00 01 00 01 00 02 00 01
seg002:11E0 00 01 00 03 00 01 00 01 00 02 00 20 00 24 00 00

Or on a more simplified view:

Level SI DI DX *SI *DI
1 1171 1171 00 09 09
2 1171 1171 00 09 09
3 1171 1171 00 09 09
4 1171 1172 01 09 2a
5 1173 1174 01 09 2c
6 1175 1176 01 0A 0a
7 1177 1179 02 0B,10 32,32
8 117B 117C 01 06 27
9 117D 117E 01 03 03
10 117F 1182 03 9,0B,11 2c,33,33
11 1185 1186 01 08 25
12 1187 1188 01 08 24
13 1189 118B 02 06,08 27,27
14 118d 118F 20 07,03 27,03
15 1191 1193 24 07,03 21,03

What does all of that mean?!
SI is filled with the pointer to the type of enemy you will face.
DI is filled with the pointer to the color of the enemies.
DX is filled with the number of enemies to load (thus functioning as a counter).

Highlighted are the two members of this table, which form an inconsistency. Surprise –
the ‘bad’ value is exactly in the 14th level, the one I was unable to reach!

If you follow the pattern of the table, you will see that *SI and *DI are filled (in a loop)
according to the value loaded in DX. In level 14 there will be a loop of 20h times looking
for the correct address, and will result in a crash. In order to resolve this situation, all you
have to do is change those values to ‘02’, and the 14th and 15th levels will be loaded
successfully. All I have to do now is actually pass those levels now ☺

Epilogue
After fixing this bug I was filled with joy, due to the fact that this project completes and
closes a circle that had begun many years ago. This was not ‘cracking’, this was truly
Reverse Engineering in my eyes. I am still quite curios, however, on WHY this bug
occurred in the first place. Unfortunately, this question still remains a mystery to me.

Thanks for reading this; I hope you didn’t get too bored.
Any feedback is always welcomed.

Orr,
September 2006

