

SoftICE
Command Reference

Windows NT™

Windows® 98
Windows® 95
Windows® 3.1
DOS

™

July 1998

Information in this document is subject to change without notice and does not represent a commitment on the part
of Compuware Corporation. The software described in this document may be used or copied only in accordance with
the terms of the license. The purchaser may make one copy of the software for a backup, but no part of this user
manual may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic or
mechanical, including photocopying and recording for any purpose other than the purchaser’s personal use, without
prior written permission from Compuware Corporation.

NOTICE: The accompanying software is confidential and proprietary to Compuware Corporation. No use or
disclosure is permitted other than as expressly set forth by written license with Compuware Corporation.

Copyright © 1996, 1998 Compuware Corporation.

All Rights Reserved.

Compuware, the Compuware logo, NuMega, the NuMega logo, BoundsChecker, SoftICE, and On-Demand
Debugging are trademarks or registered trademarks of Compuware Corporation.

Microsoft, Windows, Win32, Windows NT, Visual Basic, and ActiveX are either trademarks or registered trademarks
of Microsoft Corporation.

Borland and Delphi are either trademarks or registered trademarks of INPRISE Corporation.

Watcom is a trademark of Sybase, Incorporated or its subsidiaries.

Other brand and product names are either trademarks or registered trademarks of their respective holders.

Part number 0000-55-2750

This Software License Agreement is not applicable if You have a valid Compuware License Agreement and have licensed this Software under a Compuware Product Schedule.

Software License Agreement
Please Read This License Carefully

You are purchasing a license to use Compuware Corporation Software. The Software is the property of Compuware Corporation and/or its licensors, is protected by intellectual property laws, and
is provided to You only on the license terms set forth below. This Agreement does not transfer title to the intellectual property contained in the Software. Compuware reserves all rights not
expressly granted to you. Opening the package and/or using the Software indicates your acceptance of these terms. If you do not agree to all of the terms and conditions, or if after using the
Software you are dissatisfied, return the Software, manuals and any copies within thirty (30) days of purchase to the party from whom you received it for a refund, subject in certain cases to a
restocking fee.

Title and Proprietary Rights: You acknowledge and agree that the Software is proprietary to Compuware and/or its licensors, and is protected under the laws of the United States and other
countries. You further acknowledge and agree that all rights, title and interest in and to the Software, including intellectual property rights, are and shall remain with Compuware and/or its
licensors. Unauthorized reproduction or distribution is subject to civil and criminal penalties.

Use Of The Software: Compuware Corporation ("Compuware") grants a single individual (“You”) the limited right to use the Compuware software product(s) and user manuals included in the
package with this license ("Software"), subject to the terms and conditions of this Agreement. You agree that the Software will be used solely for your internal purposes, and that at any one time,
the Software will be installed on a single computer only. If the Software is installed on a network system or on a computer connected to a file server or other system that physically allows shared
access to the Software, You agree to provide technical or procedural methods to prevent use of the Software by more than one individual. Individuals other than You may not have access to the
Software even at different times.

One machine-readable copy of the Software may be made for BACK UP PURPOSES ONLY, and the copy shall display all proprietary notices, and be labeled externally to show that the back-up
copy is the property of Compuware, and that its use is subject to this License. Documentation may not be copied in whole or part.

You may not use, transfer, assign, export or in any way permit the Software to be used outside of the country of purchase, unless authorized in writing by Compuware.

Except as expressly provided in this License, You may not modify, reverse engineer, decompile, disassemble, distribute, sub-license, sell, rent, lease, give or in any way transfer, by any means or in
any medium, including telecommunications, the Software. You will use your best efforts and take all reasonable steps to protect the Software from unauthorized use, copying or dissemination, and
will maintain all proprietary notices intact.

Government Users: With respect to any acquisition of the Software by or for any unit or agency of the United States Government, the Software shall be classified as "commercial computer
software", as that term is defined in the applicable provisions of the Federal Acquisition Regulation (the "FAR") and supplements thereto, including the Department of Defense (DoD) FAR
Supplement (the "DFARS"). If the Software is supplied for use by DoD, the Software is delivered subject to the terms of this Agreement and either (i) in accordance with DFARS 227.7202-1(a)
and 227.7202-3(a), or (ii) with restricted rights in accordance with DFARS 252.227-7013(c)(1)(ii) (OCT 1988), as applicable. If the Software is supplied for use by a Federal agency other than
DoD, the Software is restricted computer software delivered subject to the terms of this Agreement and (i) FAR 12.212(a); (ii) FAR 52.227-19; or (iii) FAR 52.227-14(ALT III), as applicable.
Licensor: Compuware Corporation, 31440 Northwestern Highway, Farmington Hills, Michigan 48334.

Limited Warranty and Remedy: Compuware warrants the Software media to be free of defects in workmanship for a period of ninety (90) days from purchase. During this period, Compuware will
replace at no cost any such media returned to Compuware, postage prepaid. This service is Compuware's sole liability under this warranty. COMPUWARE DISCLAIMS ALL EXPRESS AND
IMPLIED WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. IN THAT EVENT, ANY IMPLIED WARRANTIES ARE
LIMITED IN DURATION TO THIRTY (30) DAYS FROM THE DELIVERY OF THE SOFTWARE. YOU MAY HAVE OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

Infringement of Intellectual Property Rights: In the event of an intellectual property right claim, Compuware agrees to indemnify and hold You harmless provided You give Compuware prompt
written notice of such claim, permit Compuware to defend or settle the claim and provide all reasonable assistance to Compuware in defending or settling the claim. In the defense or settlement of
such claim, Compuware may obtain for You the right to continue using the Software or replace or modify the Software so that it avoids such claim, or if such remedies are not reasonably available,
accept the return of the infringing Software and provide You with a pro-rata refund of the license fees paid for such Software based on a three (3) year use period.

Limitation of Liability: YOU ASSUME THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE. IN NO EVENT WILL COMPUWARE BE LIABLE
TO YOU OR TO ANY THIRD PARTY FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING BUT NOT LIMITED TO, LOSS OF
USE, DATA, REVENUES OR PROFITS, ARISING OUT OF OR IN CONNECTION WITH THIS AGREEMENT OR THE USE, OPERATION OR PERFORMANCE OF THE
SOFTWARE, WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY
OR OTHERWISE, AND WHETHER OR NOT COMPUWARE OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE. SOME
STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO YOU. IN NO EVENT SHALL COMPUWARE BE LIABLE TO YOU FOR AMOUNTS IN EXCESS OF PURCHASE PRICE PAID FOR THE
SOFTWARE.

Terms and Termination

This License Agreement shall be effective upon your acceptance of this Agreement and shall continue until terminated by mutual consent, or by election of either You or Compuware in case of the
other’s unremediated material breach. In case of any termination of the Agreement, you will immediately return to Compuware the Software that You have obtained under this Agreement and will
certify in writing that all copies of the Software have been returned or erased from the memory of your computer or made non-readable.

General: This License is the complete and exclusive statement of the parties' agreement. Should any provision of this License be held to be invalid by any court of competent jurisdiction, that
provision will be enforced to the maximum extent permissible and the remainder of the License shall nonetheless remain in full force and effect. This Agreement shall be governed by the laws of the
State of Michigan and the United States of America.

Contents
. 2

? 3

A 4

ACTION 6

ADDR 7

ADDR 10

ALTKEY 12

ALTSCR 13

ANSWER 14

BC 16

BD 17

BE 18

BH 19

BL 21

BMSG 22

BPE 24

BPINT 25

BPINT 27

BPIO 29

BPM 32

BPR 36

BPRW 39

BPT 41

BPX 42

BSTAT 45

C 47

CLASS 48

CLS 51

CODE 52

COLOR 53

CPU 55

CR 58

CSIP 59

D 61

DATA 63

DEVICE 64

DEX 66

DIAL 67

DRIVER 69

E 71

EC 73

EXIT 74

EXP 75

F 78

FAULTS 79

FIBER 80

FILE 81

FKEY 82

FOBJ 84

FLASH 86

FORMAT 87

G 88

GDT 89

GENINT 91

H 92

HBOOT 93

HEAP 94

HEAP32 97

HEAP32 100

HERE 105

HWND 106

HWND 109

I 113

I1HERE 114

I3HERE 115

IDT 116

IRP 118

LDT 121

LHEAP 123

LINES 125

LOCALS 126

M 127

MACRO 128

MAP32 132

MAPV86 135
SoftICE Command Reference i

Contents

MOD 137

MOD 139

NTCALL 142

O 144

OBJDIR 145

OBJTAB 147

P 149

PAGE 150

PAUSE 155

PCI 156

PEEK 157

PHYS 158

POKE 159

Print Screen Key 160

PRN 161

PROC 162

QUERY 168

R 173

RS 175

S 176

SERIAL 178

SET 181

SHOW 183

SRC 184

SS 185

STACK 186

SYM 189

SYMLOC 191

T 193

TABLE 194

TABS 196

TASK 197

THREAD 199

THREAD 201

TRACE 204

TSS 205

TYPES 207

U 208

VCALL 210

VER 212

VM 213

VXD 216

VXD 218

WATCH 220

WC 222

WD 223

WF 224

WHAT 226

WL 227

WMSG 228

WR 229

WW 230

X 231

XFRAME 232

XG 234

XP 235

XRSET 236

XT 237

ZAP 238
ii SoftICE Command Reference

You will find it a very good practice always
to verify your references, sir!

à Dr. Routh
SoftICE Commands

The SoftICE Command Reference is for use with the following operating systems:

The commands are listed in alphabetical order and contain the following information:

• Windows 3.1 • Windows 98

• Windows 95 • Windows NT

OBJDIR Windows 98, Windows NT System Information

Displays objects in a Windows NT Object Manager’s object directory.

Syntax OBJDIR [object-directory-name]

Use Use the OBJDIR command to display named objects within the Object
Manager’s object directory. Using OBJDIR with no parameters displays
the named objects within the root object directory.

Output The OBJDIR command displays the following information:

Object Address of the object body
ObjHdr Address of the object header
Name Name of the object
Type Windows NT-defined data type of the object

Example Abbreviated sample output of the OBJDIR command listing objects in
the Device object directory follows:

OBJDIR device
Directory of \Device at FD8E7F30

Object ObjHdr Name Type

FD8CC750 FD8CC728 Beep Device

FD89A030 FD89A008 NwlnkIpx Device

FD889150 FD889128 Netbios Device

Operating systems

See Also OBJTAB

Command name

Type of SoftICE command:

· Breakpoints and Watches
· Customization
· Display/Change Memory
· Flow Control
· I/O Port
· Manipulating Breakpoints
· Miscellaneous
· Mode Control
· Symbol/Source
· System Information
· Window Control

Syntax and parameters

Command use

Sample output

Example(s)

These sections
also include any
operating
system specific
information.

Lists related commands

Note: Some commands list
support for Windows 98. These
commands do not consistently work
the same way they do on Windows
95 or Windows NT. Do not assume
similarity.
SoftICE Command Reference 1

SoftICE Commands
. Windows 3.1, Windows 95, Windows 98, Windows NT Window Control

Locate the current instruction in the Code window.

Syntax .

Use When the Code window is visible, the . (Dot) command makes the instruction at the current
CS:EIP visible and highlights it.

For Windows 95 and Windows NT

The command switches contexts back to the original context that SoftICE popped up in.
2 SoftICE Command Reference

SoftICE Commands
? Windows 3.1, Windows 95, Windows 98, Windows NT Miscellaneous

Evaluate an expression.

Syntax For Windows 3.1

? [command | expression]

For Windows 95 and Windows NT

? expression

Use For Windows 3.1

Under Windows 3.1, the parameter you supply to the ? command determines whether help is
displayed or an expression is evaluated. If you specify a command, ? displays detailed
information about the command, including the command syntax and an example. If you
specify an expression, the expression is evaluated, and the result is displayed in hexadecimal,
decimal, signed decimal (only if < 0), and ASCII.

For Windows 95 and Windows NT

Under Windows 95 and Windows NT, the ? command only evaluates expressions. (Refer to
H on page 92 for information about getting help under Windows 95 and Windows NT.)

To evaluate an expression enter the ? command followed by the expression you want to
evaluate. SoftICE displays the result in hexadecimal, decimal, signed decimal (only if < 0),
and ASCII.

Example The following command displays the hexadecimal, decimal, and ASCII representations of the
value of the expression 10*4+3.

:? 10*4+3

00000043 0000000067 "C"

See Also H

SoftICE Command Reference 3

SoftICE Commands
A Windows 3.1, Windows 95, Windows 98, Windows NT Miscellaneous

Assemble code.

Syntax A [address]

Use Use the SoftICE assembler to assemble instructions directly into memory. The assembler
supports the standard Intel 80x86 instruction set.

If you do not specify the address, assembly occurs at the last address where instructions were
assembled. If you have not entered the A command before and did not specify the address, the
current CS:EIP address is used.

The A command enters the SoftICE interactive assembler. An address displays as a prompt for
each assembly line. After you type an assembly language instruction and press Enter, the
instructions assemble into memory at the specified address. Type instructions in the standard
Intel format. To exit assembler mode, press Enter at an address prompt.

If the address range in which you are assembling instructions is visible in the Code window,
the instructions change interactively as you assemble.

The SoftICE assembler supports the following instruction sets:

• For Windows 3.1: 386, Floating Point

• For Windows 95 and Windows NT: 386, 486, Pentium, Pentium Pro, all corresponding
numeric coprocessor instruction sets, and MMX instruction sets

SoftICE also supports the following special syntax:

• Enter USE16 or USE32 on a separate line to assemble subsequent instructions as 16-bit
or 32-bit, respectively. If you do not specify USE16 or USE32, the default is the same as
the mode of the current CS register.

• Mnemonic followed by a list of bytes and/or quoted strings separated by spaces or
commas.

• RETF mnemonic represents a far return.

• Use WORD PTR, BYTE PTR, DWORD PTR, and FWORD PTR to determine data
size, if there is no register argument.

Example: MOV BYTE PTR ES:[1234.],1

• Use FAR and NEAR to explicitly assemble far and near jumps and calls. If you do not
specify either, the default is NEAR.

• Place operands referring to memory locations in square brackets.

Example: MOV AX,[1234]
4 SoftICE Command Reference

SoftICE Commands
For Windows NT

Any changes you make to 32-bit code are “sticky.” This means they remain in place even if
you load or reload the module you change. To remove the changes, do one of the following:
restart Windows NT, flush the memory image from the cache, or modify the module.

Example When you use the following command:

A CS:1234

the assembler prompts you for assembly instructions. Enter all instructions and press Enter at
the address prompt. The assembler assembles the instructions beginning at offset 1234h
within the current code segment.
SoftICE Command Reference 5

SoftICE Commands
ACTION Windows 3.1 Mode Control

Set action after breakpoint is reached.

Syntax ACTION [nmi | int1 | int3 | here | interrupt-number | debugger-name]

interrupt-number Valid interrupt number between 0 and 5Fh.

debugger-name Module name of the Windows application debugger to gain control of
on a SoftICE breakpoint.

Use The ACTION command determines where to give control when breakpoint conditions are
met. In most cases, you can use ACTION to pass control to an application debugger you are
using in conjunction with SoftICE. Use the HERE parameter to return to SoftICE when
break conditions have been met. Use the NMI, INT1, and INT3 parameters as alternatives
for activating DOS debuggers when break conditions are met. Use debugger-name to activate
Windows debuggers. To find the module name of the debugger, use the MOD command.

If you specify debugger-name, an INT 0 triggers the Windows debugger. SoftICE ignores
breakpoints that the Windows debugger causes if the debugger accesses memory covered by a
memory location or range breakpoint. When SoftICE passes control to the Windows
debugger with an INT 0, the Windows debugger responds as if a divide overflow occurred
and displays a message. Ignore this message because the INT 0 was not caused by an actual
divide overflow.

Note: The ACTION command is obsolete under Windows 95 and Windows NT.

Example When using SoftICE with the following products, use the corresponding command:

See Also Refer to setting breakpoints in Using SoftICE.

Product SoftICE Command

CodeView for DOS ACTION nmi

Note: SoftICE generates a non-maskable interrupt when
break conditions are met. This gives control to
CodeView for DOS.

CodeView for Windows ACTION cvw

Borland's Turbo Debugger for Windows ACTION tdw

Multiscope's Debugger for Windows ACTION rtd
6 SoftICE Command Reference

SoftICE Commands
ADDR Windows 95, Windows 98 System Information

Display or switch to address context.

Syntax ADDR [context-handle | process-name]

context-handle Address context handle.

process-name Name of a process.

Use To be able to view the private address space for an application process, set the current address
context within SoftICE to that of the application by providing an address context-handle or
the process-name as the first parameter to the ADDR command. To view information on all
currently active contexts, use ADDR with no parameters. The first address context listed is the
current address context.

To use ADDR with
Windows NT, refer to
ADDR on page 10.

For each address context, SoftICE prints the following information:

• address context handle

• address of the private page table entry array (PGTPTR) of the context

• number of entries that are valid in the PGTPTR array

• starting and ending linear addresses represented by the context

• address of the mutex object used to control access to the context’s page tables

• name of the process that owns the context.

When you use the ADDR command with an address context parameter, SoftICE switches
address contexts the same way as Windows does.

When switching address contexts, Windows 95 copies all entries in the new context’s
PGTPTR array to the page directory (pointed at by the CR3 register). A context switch
affects the addressing of the lower 2GB of memory from linear address 0 to 7FFFFFFFh.
Each entry in a PGTPTR array is a page directory entry which points at a page table that
represents 4MB of memory. There can be a maximum of 512 entries in the PGTPTR array to
represent the full 2GB. If there are less than 512 entries in the array, the rest of the entries in
the page directory are set to invalid values.
SoftICE Command Reference 7

SoftICE Commands
When running more than one instance of an application, the same owner name appears in the
address context list more than once. If you specify an owner name as a parameter, SoftICE
always selects the first address context with a matching name in the list. To switch to the
address context of a second or third instance of an application, provide an address context-
handle to the ADDR command.

Note: If SoftICE pops up when the System VM (VM 1) is not the current VM, it is possible
for context owner information to be paged out and unavailable. In these cases no
owner information displays.

Output For each context or process, the following information displays.

Handle Address of the context control block. This is the handle that is passed
in VxD calls that require a context handle.

Pgtptr Address of an array of page table addresses. Each entry in the array
represents a page table pointer. When address contexts switch, the
appropriate location in the page directory receives a copy of this array.

Tables Number of entries in the PGTPTR array. Not all entries contain valid
page directory entries. This is only the number of entries reserved.

MinAddr Minimum linear address of the address context.

MaxAddr Maximum address of the address context.

Mutex Mutex handle used when VMM manipulates the page tables for the
context.

Owner Name of the first process that uses this address context.

Example The following command displays all currently active address contexts. The context on the top
line of the display is the context that SoftICE popped up in. To switch back to this at any
time, use the . (DOT) command. When displaying information on all contexts, one line is
highlighted, indicating the current context within SoftICE. When displaying data or
disassembling code, the highlighted context is the one you see.

.: ADDR

Handle PGTPTR Tables Min Addr Max Addr Mutex Owner

C1068D00 C106CD0C 0200 00400000 7FFFF000 C0FEC770 WINWORD

C104E214 C1068068 0200 00400000 7FFFF000 C1063DBC Rundll32

C105AC9C C0FE5330 0002 00400000 7FFFF000 C0FE5900 QUICKRES

C1055EF8 C105CE8C 0200 00400000 7FFFF000 C105C5EC Ibserver

C1056D10 C10571D4 0200 00400000 7FFFF000 C1056D44 Mprexe

The current context
is highlighted.
8 SoftICE Command Reference

SoftICE Commands
See Also For Windows NT, refer to ADDR on page 10.

C10D900C C10D9024 0002 00400000 7FFFF000 C10D9050

C10493E8 C10555FC 0004 00400000 7FFFF000 C0FE6460 KERNEL32

C1055808 C105650C 0200 00400000 7FFFF000 C105583C MSGSRV32

C10593CC C1059B78 0200 00400000 7FFFF000 C105908C Explorer

C106AE70 C106DD10 0200 00400000 7FFFF000 C10586F0 Exchng32

C106ABC4 C106ED04 0200 00400000 7FFFF000 C106CA4C Mapisp32

Handle PGTPTR Tables Min Addr Max Addr Mutex Owner
SoftICE Command Reference 9

SoftICE Commands
ADDR Windows NT System Information

Display or switch to an address context.

Syntax ADDR [process-name | process-id | KPEB]

KPEB Kernel Process Environment Block.

Use Use the ADDR command to both display and change address contexts within SoftICE so that
process-specific data and code can be viewed. Using ADDR with no parameters displays a list
of all address contexts.

If you specify a parameter, SoftICE switches to the address context belonging to the process
with that name, identifier, or process control block address.

To use ADDR with
Windows 95, refer to
ADDR on page 7.

If you switch to an address context that contains an LDT, SoftICE sets up the LDT with the
correct base and limit.

All commands that use an LDT only work when the current SoftICE context contains an
LDT. LDTs are never global under Windows NT.

Under low memory conditions, Windows NT starts swapping data to disk, including inactive
processes, parts of the page directory, and page tables. When this occurs, SoftICE may not be
able obtain the information necessary to switch to contexts that rely on this information.
SoftICE indicates this by displaying the message swapped in the CR3 field of the process or
displaying an error message if an attempt is made to switch to the context of the process.

When displaying information about all contexts, one line is highlighted, indicating the
current context within SoftICE. When displaying data or disassembling code, the highlighted
context is the one you see.

An * (asterisk) precedes one line of the display, indicating the process that was active when
SoftICE popped up. Use the . (DOT) command to switch contexts back to this context at any
time.

Output For each context or process, the following information is shown:

CR3 Physical address of the page directory that is placed into the CR3
register on a process switch to the process.

LDT If the process has an LDT, this field has the linear base address of the
LDT and the limit field for the LDT selector. All Windows NT
processes that have an LDT use the same LDT selector. For process
switches, Windows NT sets the base and limit fields of this selector.
10 SoftICE Command Reference

SoftICE Commands
KPEB Linear address of the Kernel Process Environment Block for the
process.

PID Process ID. Each process has a unique ID.

NAME Name of the process.

Example The following example shows the ADDR command being used without parameters to display
all the existing contexts.

:ADDR

See Also For Windows 95, refer to ADDR on page 7.

PROC

CR3 LDT Base:Limit KPEB PID NAME

00030000 FD8EA920 0002 System

011FB000 FD8CD880 0013 smss

017A5000 FD8BFB60 0016 csrss

01B69000 FD8BADE0 001B winlogon

01CF3000 FD8B6B40 0027 services

01D37000 FD8B5760 0029 lsass

00FFA000 FD8A8AE0 0040 spoolss

009A5000 FD89F7E0 002B nddeagnt

00AA5000 FD89CB40 004A progman

006D2000 E115F000:FFEF FD899DE0 0054 ntvdm

00837000 FD896D80 0059 CLOCK

00C8C000 FD89C020 0046 scm

00387000 FD89E5E0 004E 4NT

*0121C000 E1172000:0187 FD88CCA0 0037 ntvdm

00030000 8013DD50 0000 Idle
SoftICE Command Reference 11

SoftICE Commands
ALTKEY Windows 3.1, Windows 95, Windows 98, Windows NT Customization

Set an alternate key sequence to invoke SoftICE.

Syntax ALTKEY [Alt letter | Ctrl letter]

letter Any letter (A through Z).

Use Use the ALTKEY command to change the key sequence (default key Ctrl-D) for popping up
SoftICE. Occasionally another program may conflict with the hot key sequence. You can
change the key sequence to either of the following sequences:

Ctrl + letter

or

Alt + letter

If you do not specify a parameter, the current hot key sequence displays.

To change the hot key sequence every time you run SoftICE, Configure SoftICE in the
SoftICE Loader to place the ALTKEY command in the SoftICE initialization string.

Example To specify that the key sequence Alt-Z pop up the SoftICE screen, use the following
command:

ALTKEY alt z
12 SoftICE Command Reference

SoftICE Commands
ALTSCR Windows 3.1, Windows 95, Windows 98, Windows NT Window Control

Display SoftICE on an alternate screen.

Syntax ALTSCR [on | off]

Use Use the ALTSCR command to redirect the SoftICE output from the default screen to an
alternate monochrome monitor.

ALTSCR requires the system to have two monitors attached. The alternate monitor should be
a monochrome monitor in a character mode (the default mode).

The default setting is ALTSCR mode OFF.

Hint: To change the SoftICE display screen every time you run SoftICE, place the ALTSCR
command in the Initialization string within your SoftICE configuration settings. Refer
to Chapter 8, “Customizing SoftICE” in the Using SoftICE guide.

In the SoftICE program group, use Video Setup to select the monochrome monitor. SoftICE
automatically starts out in monochrome mode making the ALTSCR command unnecessary.
Also use this setting if you are experiencing video problems even when ALTSCR ON is in the
initialization string.

For Windows 95

You can also start WINICE with the /M parameter to bypass the initial VGA programming
and force SoftICE to the alternate monochrome screen. This is useful if your video board
experiences conflicts with the initial programming.

Example To redirect screen output to the alternate monitor, use the following command:

ALTSCR on
SoftICE Command Reference 13

SoftICE Commands
ANSWER Windows 95, Windows 98, Windows NT Customization

Auto-answer and redirect console to modem.

Syntax ANSWER [on [com-port] [baud-rate] [i=init] | off]

com-port If no com-port is specified it uses COM1.

baud-rate Baud-rate to use for modem communications. The default is 38400.
The rates include 1200, 2400, 4800, 9600, 19200, 23040, 28800,
38400, 57000, 115000.

i=init Optional modem initialization string.

Use The ANSWER command allows SoftICE to answer an incoming call and redirect all output
to a connecting PC running the SERIAL.EXE program in dial mode. After the command is
executed, SoftICE listens for incoming calls on the specified com-port while the machine
continues normal operation. Incoming calls are generated by the SERIAL.EXE program on a
remote machine.

You can place a default ANSWER initialization string in the SoftICE configuration settings.
Refer to Chapter 8, “Customizing SoftICE” in the Using SoftICE guide.

When SoftICE detects a call being made after the ANSWER command has been entered, it
pops up and indicates that it is making a connection with a remote machine, then pops down.
The local machine appears to be hung while a remote connection is in effect.

The ANSWER command can be cancelled at any time with ANSWER OFF. This stops
SoftICE from listening for incoming calls.

Example The following is an example of the ANSWER command. SoftICE first initializes the modem
on com-port 2 with the string “atx0,” and then returns control to the command prompt.
From that point on it answers calls made on the modem and attempts to connect at a baud
rate of 38400bps.

ANSWER on 2 38400 i=atx0
14 SoftICE Command Reference

SoftICE Commands
The following is an example of a default ANSWER initialization string statement in your
SoftICE configuration settings. With this statement in place, SoftICE always initializes the
modem specified in ANSWER commands with “atx0,” unless the ANSWER command
explicitly specifies an initialization string.

ANSWER=atx0

See Also SERIAL
SoftICE Command Reference 15

SoftICE Commands
BC Windows 3.1, Windows 95, Windows 98, Windows NT Manipulating Breakpoints

Clear one or more breakpoints.

Syntax BC list | *

list Series of breakpoint indexes separated by commas or spaces.

* Clears all breakpoints.

Example To clear all breakpoints, use the command:

BC *

To clear breakpoints 1 and 5, use the command:

BC 1 5

If you use the BL command (list breakpoints), the breakpoint list will be empty until you
define more breakpoints.
16 SoftICE Command Reference

SoftICE Commands
BD Windows 3.1, Windows 95, Windows 98, Windows NT Manipulating Breakpoints

Disable one or more breakpoints.

Syntax BD list | *

list Series of breakpoint indexes separated by commas or spaces.

* Disables all breakpoints.

Use Use the BD command to temporarily deactivate breakpoints. Reactivate the breakpoints with
the BE command (enable breakpoints).

To tell which of the breakpoints are disabled, list the breakpoints with the BL command. A
breakpoint that is disabled has an * (asterisk) after the breakpoint index.

Example To disable breakpoints 1 and 3, use the command:

BD 1 3
SoftICE Command Reference 17

SoftICE Commands
BE Windows 3.1, Windows 95, Windows 98, Windows NT Manipulating Breakpoints

Enable one or more breakpoints.

Syntax BE list | *

list Series of breakpoint indexes separated by commas or spaces.

* Enables all breakpoints.

Use Use the BE command to reactivate breakpoints that you deactivated with the BD command
(disable breakpoints).

Note: You automatically enable a breakpoint when you first define it or edit it.

Example To enable breakpoint 3, use the command:

BE 3
18 SoftICE Command Reference

SoftICE Commands
BH Windows 3.1, Windows 95, Windows 98, Windows NT Manipulating Breakpoints

List and/or select previously set breakpoints from the breakpoint history.

Syntax BH

Use Use the BH command to recall breakpoints that you set in both the current and previous
SoftICE sessions. All saved breakpoints display in the Command window and can be selected
using the following keys:

UpArrow Positions the cursor one line up. If the cursor is on the top line of the
Command window, the list scrolls.

DownArrow Positions the cursor one line down. If the cursor is on the bottom line
of the Command window, the list scrolls.

Insert Selects the breakpoint at the current cursor line, or deselects it if
already selected.

Enter Sets all selected breakpoints.

Esc Exits breakpoint history without setting any breakpoints.

SoftICE saves the last 32 breakpoints.

For Windows 3.1 and Windows 95

Each time Windows exits normally, these breakpoints are written to the WINICE.BRK file in
the same directory as WINICE.EXE. Every time SoftICE is loaded, it reads the breakpoint
history from the WINICE.BRK file.

For Windows 95

IF you choose to configure Windows 95 to load SoftICE before WIN.COM by appending
\siw95\winice.exe to the end of your AUTOEXEC.BAT, Windows 95 does not return control
to SoftICE when it shuts down unless you set the BootGUI option in MSDOS.SYS to
BootGUI=0. If this option is set to BootGUI=1, SoftICE does not save the break-point
history file. Refer to Chapter 2, “Installing SoftICE,” in the Using SoftICE manual for more
information about configuring when SoftICE loads.

For Windows NT

Breakpoints are written to the WINICE.BRK file in the \SYSTEMROOT\SYSTEM32
\DRIVERS directory.
SoftICE Command Reference 19

SoftICE Commands
Example To select any of the last 32 breakpoints from current and previous SoftICE sessions, use the
command:

BH
20 SoftICE Command Reference

SoftICE Commands
BL Windows 3.1, Windows 95, Windows 98, Windows NT Manipulating Breakpoints

List all breakpoints.

Syntax BL

Use The BL command displays all breakpoints that are currently set. For each breakpoint, BL lists
the breakpoint index, breakpoint type, breakpoint state, and any conditionals or breakpoint
actions.

The state of a breakpoint is either enabled or disabled. If you disable the breakpoint, an *
(asterisk) appears after its breakpoint index. If SoftICE is activated due to a breakpoint, that
breakpoint is highlighted.

The BL command has no parameters.

Example To display all the breakpoints that have been defined, use the command.

BL

• For Windows 3.1

Note: Breakpoint 1 has an * (asterisk) following it, showing that it was disabled.

• For Windows 95 and Windows NT

0 BPMB #30:123400 W EQ 0010 DR3 C=03

1* BPR #30:80022800 #30:80022FFF W C=01

2 BPIO 0021 W NE 00FF C=01

3 BPINT 21 AH=3D C=01

00) BPX #8:80102A4B IF (EAX==1) DO “DD ESI”

01) * BPX _LockWindowInfo

02) BPMD #013F:0063F8A0 RW DR3

03) BPINT 2E IF (EAX==0x1E)
SoftICE Command Reference 21

SoftICE Commands
BMSG Windows 3.1, Windows 95, Windows 98, Windows NT Breakpoints

Set a breakpoint on one or more Windows messages.

Syntax For Windows 3.1

BMSG window-handle [L] [begin-msg [end-msg]] [c=count]

For Windows 95 and Windows NT

BMSG window-handle [L] [begin-msg [end-msg]] [IF expression]
[DO " command1;command2;... "]

window-handle HWND value returned from CreateWindow or CreateWindowEX.

begin-msg Single Windows message or lower message number in a range of
Windows messages. If you do not specify a range with an end-msg,
only the begin-msg will cause a break.

Note: For both begin-msg and end-msg, the message numbers can be
specified either in hexadecimal or by using the actual ASCII names of
the messages, for example, WM_QUIT.

end-msg Higher message number in a range of Windows messages.

L Logs messages to the SoftICE Command window.

c= Breakpoint trigger count.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftICE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.
22 SoftICE Command Reference

SoftICE Commands
Use The BMSG command is used to set breakpoints on a window’s message handler that will
trigger when they receive messages that either match a specified message type, or fall within an
indicated range of message types.

• If you do not specify a message range, the breakpoint applies to ALL Windows messages.

• If you specify the L parameter, SoftICE logs the messages into the Command window
instead of popping up when the message occurs.

When SoftICE does pop up on a BMSG breakpoint, the instruction pointer (CS:[E]IP) is on
the first instruction of the message handling procedure. Each time SoftICE breaks, the current
message displays in the following format:

hWnd=xxxx wParam= xxxx lParam= xxxxxxxx msg= xxxx message-name

Note: These are the parameters that are passed to the message procedure. All numbers are
hexadecimal. The message-name is the Windows defined name for the message.

To display valid Windows messages, enter the WMSG command with no parameters. To
obtain valid window handles, use the HWND command.

You may set multiple BMSG breakpoints on one window-handle, although the message
ranges for the breakpoints may not overlap.

Example This command sets a breakpoint on the message handler for the Window that has the handle
9BC. The breakpoint triggers and SoftICE pops up when the message handler receives
messages with a type within the range WM_MOUSEFIRST to WM_MOUSELAST,
inclusive (which includes all of the Windows mouse messages).

:BMSG 9BC wm_mousefirst wm_mouselast

The next command places a breakpoint on the message handler for the Window with the
handle F4C. The L parameter causes the breakpoint information to be logged to the SoftICE
Command window, instead of having SoftICE pop up when the breakpoint is triggered. The
message range that the breakpoint triggers on includes any message with a type value less than
or equal to WM_CREATE. Output from this breakpoint being triggered can be viewed by
popping into SoftICE and scrolling through the command buffer.

:BMSG f4c L 0 wm_create
SoftICE Command Reference 23

SoftICE Commands
BPE Windows 3.1, Windows 95, Windows 98, Windows NT Manipulating Breakpoints

Edit a breakpoint description.

Syntax BPE breakpoint-index

breakpoint-index Breakpoint index number.

Use The BPE command allows you to edit or replace an existing breakpoint. Use the editing keys
to edit the breakpoint description. Press Enter to save a new breakpoint description. This
command offers a quick way to modify the parameters of an existing breakpoint.

Warning: BPE first clears the breakpoint before loading it into the edit line. If you then press
the Escape key, the breakpoint is cleared. To retain the original breakpoint and
create another one, use the BPT command, which uses the original breakpoint as
an editing template without first deleting it.

Conditional expressions and breakpoint actions are expanded as parts of the breakpoint
expression.

Example This command allows the definition for breakpoint 1 to be edited.

:BPE 1

When the command is entered, SoftICE displays the existing breakpoint definition and
positions the input cursor just after the breakpoint address.

:BPE 1
:BPX 80104324 if (eax==1) do “dd esi”

To re-enter the breakpoint, press the Enter key. To clear the breakpoint, press the Escape key.
24 SoftICE Command Reference

SoftICE Commands
BPINT Windows 3.1 Breakpoints

Set a breakpoint on an interrupt.

Syntax BPINT int-number [al | ah| ax=value] [c=count]

int-number Interrupt number from 0 - 5Fh.

value Byte or word value.

c= Breakpoint trigger count.

Use Use the BPINT command to pop up SoftICE whenever a specified processor exception,
hardware interrupt, or software interrupt occurs. The AX register qualifying value
(AL=, AH=, or AX=) can be used to set breakpoints that trigger only when the AX register at
the time that the interrupt or exception occurs matches the specified value. This capability is
often used to selectively set breakpoints for DOS and BIOS calls. If an AX register value is not
entered, the breakpoint occurs anytime the interrupt or exception occurs, regardless of the
value of the AX register at the time.

For Windows 95 and
Windows NT, refer to
BPINT on page 27.

For breakpoints that trigger for hardware interrupts or processor exceptions, the instruction
pointer (CS:EIP) at the time SoftICE pops up will point at the first instruction of the
interrupt or exception handler routine pointed at by the IDT. If a software interrupt triggers
the breakpoint, the instruction pointer (CS:EIP) points at the INT instruction that caused
the breakpoint.

BPINT only works for interrupts that are handled through the IDT.

In addition, Windows maps hardware interrupts, which by default map to vectors 8-Fh and
70h-77h, to higher numbers to prevent conflicts with software interrupts. The primary
interrupt controller is mapped from vector 50h-57h. The secondary interrupt controller is
mapped from vector 58h-5Fh.

Example: IRQ0 is INT50h and IRQ8 is INT58h.

If a BPINT goes off due to a software interrupt instruction in a DOS VM, control will be
transferred to the Windows protected mode interrupt handler for protection faults, which
eventually call down to the appropriate DOS VM's interrupt handler (pointed at by the DOS
VM’s Interrupt Vector Table). To go directly to the DOS VM's interrupt handler after the
BPINT has occurred on a software interrupt instruction, use the following command:

G @$0:int-number *4
SoftICE Command Reference 25

SoftICE Commands
Example The following command defines a breakpoint for interrupt 21h. The breakpoint occurs when
DOS function call 4Ch (terminate program) is called. At the time SoftICE pops up, the
instruction pointer will point at the INT instruction in the DOS VM.

BPINT 21 ah=4c

The next command sets a breakpoint that triggers on each and every tick of the hardware
clock (in general this is not recommended for the obvious reason that it triggers very often!).
At the time SoftICE pops up, the instruction pointer will be at the first instruction of the
Windows interrupt handler for interrupt 50h.

BPINT 50

See Also For Windows 95 and Windows NT, refer to BPINT on page 27.
26 SoftICE Command Reference

SoftICE Commands
BPINT Windows 95, Windows 98, Windows NT Breakpoints

Set a breakpoint on an interrupt.

Syntax BPINT int-number [IF expression] [DO " command1;command2;... "]

int-number Interrupt number from 0 - FFh.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger

DO command Breakpoint action: A series of SoftICE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

Use Use the BPINT command to pop up SoftICE whenever a specified processor exception,
hardware interrupt, or software interrupt occurs. The IF option allows arbitrary filtering of
interrupts that result in breakpoints. The DO option provides the ability to associate SoftICE
commands with interrupts such that they execute any time the interrupt breakpoint triggers.

For breakpoints that trigger for hardware interrupts or processor exceptions, the instruction
pointer (CS:EIP) at the time SoftICE pops up will point at the first instruction of the
interrupt or exception handler routine pointed at by the IDT. If a software interrupt triggers
the breakpoint, the instruction pointer (CS:EIP) will point at the INT instruction that caused
the breakpoint.

BPINT only works for interrupts that are handled through the IDT.

For Windows 3.1,
refer to BPINT on
page 25.

If a software interrupt occurs in a DOS VM, control is transferred to a Windows protected
mode interrupt handler, which eventually calls down to the DOS VM's interrupt handler
(pointed at by the DOS VM’s Interrupt Vector Table). To go directly to the DOS VM's
interrupt handler after the BPINT has occurred on a software interrupt instruction, use the
following command:

G @ &0:(int-number *4)
SoftICE Command Reference 27

SoftICE Commands
For Windows 95

Windows maps hardware interrupts, which by default map to vectors 8-Fh and 70h-77h, to
higher numbers to prevent conflicts with software interrupts. The primary interrupt
controller is mapped from vector 50h-57h. The secondary interrupt controller is mapped
from vector 58h-5Fh.

Example: IRQ0 is INT50h and IRQ8 is INT58h.

For Windows NT

Windows NT maps hardware interrupts, which by default map to vectors 8-Fh and 70h-77h,
to higher numbers to prevent conflicts with software interrupts. The primary interrupt
controller is mapped from vector 30h-37h. The secondary interrupt controller is mapped
from vector 38h-3Fh.

Example: IRQ0 is INT30h and IRQ8 is INT38h

Example The following example results in Windows NT system call (software interrupt 2Eh)
breakpoints only being triggered if the thread making the system call has a thread ID (TID)
equal to the current thread at the time the command is entered (_TID). Each time the
breakpoint hits, the contents of the address 82345829h are dumped as a result of the DO
option.

BPINT 2e if tid==_tid do "dd 82345829"

See Also For Windows 3.1, refer to BPINT on page 25.
28 SoftICE Command Reference

SoftICE Commands
BPIO Windows 3.1, Windows 95, Windows 98, Windows NT Breakpoints

Set a breakpoint on an I/O port access.

Syntax For Windows 3.1

BPIO port [verb] [qualifier value] [c=count]

For Windows 95

BPIO [-h] port [verb] [IF expression] [DO " command1;command2;... "]

For Windows NT

BPIO port [verb] [IF expression] [DO " command1;command2;... "]

port Byte or word value.

verb

qualifier

value Byte, word, or dword value.

c= Breakpoint trigger count.

Value Description

R Read (IN)

W Write (OUT)

RW Reads and Writes

Value Description

EQ Equal

NE Not Equal

GT Greater Than

LT Less Than

M Mask. A bit mask is
represented as a
combination of 1’s, 0’s
and X's. X's are don't-
care bits.

Qualifier, value, and
C= are not valid for
Windows 95 and
Windows NT.
SoftICE Command Reference 29

SoftICE Commands
-h Use hardware debug registers to set a breakpoint in Vxd. Available for
Pentium-class processors on Windows 95 only.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftICE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

Use Use the BPIO instruction to have SoftICE pop up whenever a specified I/O port is accessed in
the indicated manner. When a BPIO breakpoint triggers, the instruction pointer (CS:EIP)
points to the instruction following the IN or OUT instruction that caused the breakpoint.

If you do not specify a verb, RW is the default.

For Windows 3.1

If you specify verb and value parameters, the value specified is compared with, according to
the verb, the actual data value read or written by the IN or OUT instruction causing the
breakpoint. The value may be a byte, a word, or a dword. The possible verbs allow for
comparisons of equality, inequality, greater-than-or-equal, less-than-or-equal, and logical
AND comparison.

For Windows 3.1 and Windows 95

Due to the behavior of the x86 architecture, BPIO breakpoints are only active while the
processor is executing in the RING 3 privilege level. This means that I/O activity performed
by RING 0 code such as VxDs and the Windows VMM are not trapped by BPIO
breakpoints. For Windows 95 only, use the -H switch to force SoftICE to use the hardware
debug registers. This lets you trap I/O performed at Ring 0 in VxDs.

Windows virtualizes many of the system I/O ports, meaning that VxDs have registered
handlers that are called when RING 3 accesses are made to the ports. To get a list of
virtualized ports, use the TSS command. The command shows each hooked I/O port plus the
address of its associated handler and the name of the VxD that owns it. To see how a
particular port is virtualized, set a BPX on the address of the I/O handler.
30 SoftICE Command Reference

SoftICE Commands
For Windows NT

The BPIO command uses the debug register support provided on the Pentium, therefore,
I/O breakpoints are only available on Pentium-class machines.

When using debug registers for I/O breakpoints, all physical I/O instructions (non-emulated)
are trapped no matter what privilege level they are executed from. This is different from using
the I/O bit map to trap I/O, as is done for SoftICE running under Windows 3.1 and
Windows 95 (without the -H switch). The I/O bit map method can only trap I/O done from
user-level code, whereas a drawback of the debug register method for trapping port I/O is that
it does not trap emulated I/O such as I/O performed from a DOS box.

Due to limitations in the number of debug registers available on x86 processors, a maximum
of four BPIOs can be set at any given time.

Example The following commands define conditional breakpoints for accesses to port 21h (interrupt
control 1’s mask register). The breakpoints only trigger if the access is a write access, and the
value being written is not FFh.

• For Windows 3.1

Use this command: BPIO 21 w ne ff

• For Windows 95 and Windows NT

Use this command: BPIO 21 w if (al!=0xFF)

Note: In the Windows NT example, you should be careful about intrinsic assumptions
being made about the size of the I/O operations being trapped. The port I/O to be
trapped is OUTB. An OUTW with AL==FFh also triggers the breakpoint, even
though in that case the value in AL ends up being written to port 22h.

The following example defines a conditional byte breakpoint on reads of port 3FEh. The
breakpoint occurs the first time that I/O port 3FEh is read with a value that has the two high-
order bits set to 1. The other bits can be of any value.

• For Windows 3.1

Use this command: BPIO 3fe r eq m 11xx xxxx

• For Windows 95 and Windows NT

Use this command: BPIO 3fe r if ((al & 0xC0)==0xC0)
SoftICE Command Reference 31

SoftICE Commands
BPM Windows 3.1, Windows 95, Windows 98, Windows NT Breakpoints

Set a breakpoint on memory access or execution.

Syntax For Windows 3.1

BPM[size] address [verb] [qualifier value] [debug-reg] [c=count]

For Windows 95 and Windows NT

BPM[size] address [verb] [debug-reg] [IF expression]
[DO " command1;command2;... "]

size Size is actually a range covered by this breakpoint. For example, if you
use double word, and the third byte of the dword is modified, a
breakpoint occurs. The size is also important if you specify the
optional qualifier.

verb

Value Description

B Byte

W Word

D Double Word

Value Description

R Read

W Write

RW Reads and Writes

X Execute
32 SoftICE Command Reference

SoftICE Commands
qualifier These qualifiers are only applicable to read and write breakpoints, not
execution breakpoints.

value Byte, word, or double word value, depending on the size you specify.

debug-reg

c= Breakpoint trigger count.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftICE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

Use Use BPM breakpoints to have SoftICE pop up whenever certain types of accesses are made to
memory locations. The size and verb parameters allow for the accesses to be filtered according
to their type, and the DO parameter (Windows NT only) allows for arbitrary SoftICE
commands to be executed each time the breakpoint is hit.

If you do not specify a debug register, SoftICE uses the first available debug register starting
from DR3 and working backwards. You should not include a debug register unless you are
debugging an application that uses debug registers itself such as a debugging tool.

Value Description

EQ Equal

NE Not Equal

GT Greater Than

LT Less Than

M Mask. A bit mask is represented as a
combination of 1's, 0's and X's. The X's
are don't-care bits.

Value

DR0

DR1

DR2

DR3

Qualifier, value, and
C= are not valid for
Windows 95 and
Windows NT.
SoftICE Command Reference 33

SoftICE Commands
If you do not specify a verb, RW is the default.

If you do not specify a size, B is the default.

For all the verb types except X, SoftICE pops up after the instruction that causes the
breakpoint to trigger has executed. The CS:EIP points at the instruction in the code stream
following the trapped instruction. In the case of the X verb, SoftICE pops up before the
instruction causing the breakpoint to trigger has executed. The CS:EIP therefore points at the
instruction where the breakpoint was set.

If you specify the R verb, breakpoints occur on read accesses and on write operations that do
not change the value of the memory location.

If the verb is R, W or RW, executing an instruction at the specified address does not cause the
breakpoint to occur.

If you set a breakpoint using BPMW it is a word-sized memory breakpoint, then the specified
address must start on a word boundary. If you set a breakpoint using BPMD the memory
breakpoint is dword sized, then the specified address must start on a double word boundary.

For Windows 3.1

The count parameter can be used to have a breakpoint trigger only after it has been hit a
specified number of times. The default count value is 1, meaning that the breakpoint triggers
the first time the breakpoint condition is satisfied. The count is reset each time the breakpoint
triggers.

For Windows 95

BPM breakpoints set in the range 400000 - 7FFFFFFF (WIN32 applications) are address-
context sensitive. That is, they are triggered only when the address context in which the
breakpoint was set is active. If a BPM is set in a DLL that exists in multiple contexts, the
breakpoint is armed in all the contexts in which it exists. For example, if you set a BPM X
breakpoint in KERNEL32 it could break in any context that contains KERNEL32.DLL.

For Windows NT

Any breakpoint set on an address below 80000000h (2 GB) is address-context sensitive. This
includes WIN32 and DOS V86 applications. Take care to ensure you are in the correct
context before setting a breakpoint.
34 SoftICE Command Reference

SoftICE Commands
Example The following example defines a breakpoint on memory byte access to the address pointed at
by ES:DI+1Fh. The first time that 10h is written to that location, the breakpoint triggers.

• For Windows 3.1

Use the command: BPM es:di+1f w eq 10

• For Windows 95 and Windows NT

Use the command: BPM es:di+1f w if (*(es:di+1f)==0x10)

The next example defines an execution breakpoint on the instruction at address
CS:80204D20h. The first time that the instruction at the address is executed, the breakpoint
occurs.

• For Windows 3.1, Window 95, and Windows NT

Use the command: BPM CS:80204D20 x

The following example defines a word breakpoint on a memory write. The breakpoint occurs
the first time that location Foo has a value written to it that sets the high order bit to 0 and the
low order bit to 1. The other bits can be any value.

• For Windows 3.1

Use the command: BPMW foo e eq m 0xxx xxxx xxxx xxx1

This example sets a byte breakpoint on a memory write. The breakpoint triggers the first time
that the byte at location DS:80150000h has a value written to it that is greater than 5.

• For Windows 3.1

Use the command: BPM ds:80150000 w gt 5

• For Windows 95 and Windows NT

Use the command: BPM ds:80150000 if (byte(*ds:80150000)>5)
SoftICE Command Reference 35

SoftICE Commands
BPR Windows 3.1, Windows 95, Windows 98 Breakpoints

Set a breakpoint on a memory range.

Syntax For Windows 3.1

BPR start-address end-address [verb] [c=count]

For Windows 95

BPR start-address end-address [verb] [IF expression]
[DO " command1;command2;... "]

start-address Beginning of memory range.

end-address Ending of memory range.

verb

c= Breakpoint trigger count.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftICE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

Value Description

R Read

W Write

RW Reads and Writes

T Back Trace on Execution

TW Back Trace on Memory Writes
36 SoftICE Command Reference

SoftICE Commands
Use Use the BPR command to set breakpoints that trigger whenever certain types of accesses are
made to an entire address range.

There is no explicit range breakpoint for execution access, however, execution breakpoints on
ranges can be obtained with the R verb. An instruction fetch is considered a read for range
breakpoints.

If you do not specify a verb, W is the default.

The range breakpoint degrades system performance in certain circumstances. Any read or
write within the 4KB page that contains a breakpoint range is analyzed by SoftICE to
determine if it satisfies the breakpoint condition. This performance degradation is usually not
noticeable, however, degradation could be extreme in cases where there are frequent accesses
to the range.

The T and TW verbs enable back trace ranges on the specified range. They do not cause
breakpoints, but instead result in information about all instructions that would have caused
the breakpoint to trigger to be written to a log that can be displayed with the SHOW or
TRACE commands.

When a range breakpoint is triggered and SoftICE pops up, the current CS:EIP points at the
instruction that caused the breakpoint.

Range breakpoints are always set in the page tables that are active when the BPR command is
entered. Therefore, if range addresses are below 4MB, the range breakpoint will be tied to the
virtual machine that is current when BPR is entered. Because of this fact, there are some areas
in memory where range breakpoints are not supported. These include the page tables, GDT,
IDTs, LDT, and SoftICE. If you try to set a range breakpoint or back trace range over one of
these areas, SoftICE returns an error.

There are two other data areas in which you cannot place a range breakpoint, but if you do
SoftICE will not complain. These are Windows level 0 stacks and critical areas in the VMM.
Windows level 0 stacks are usually in separately allocated data segments. If you set a range
over a level 0 stack or a critical area in VMM, you could hang the system.

If the memory that covers the range breakpoint is swapped or moved, the range breakpoint
follows it.

For Windows 3.1

The count parameter can be used to have a breakpoint trigger only after it has been hit a
specified number of times. The default count value is 1, meaning that the breakpoint will
trigger the first time the breakpoint condition is satisfied. The count is reset each time the
breakpoint triggers.
SoftICE Command Reference 37

SoftICE Commands
For Windows 95

Due to a change in system architecture, BPRs are no longer supported in level 0 code. Thus,
you cannot use BPRs to trap VxD code.

Example The following example defines a breakpoint on a memory range. The breakpoint occurs if
there are any writes to the memory between addresses ES:0 and ES:1FFF:

BPR es:0 es:1fff w
38 SoftICE Command Reference

SoftICE Commands
BPRW Windows 3.1, Windows 95, Windows 98 Breakpoints

Set range breakpoints on Windows program or code segment.

Syntax For Windows 3.1

BPRW module-name | selector [verb]

For Windows 95

BPRW module-name | selector [verb] [IF expression]

[DO " command1;command2;... "]

module-name Any valid Windows Module name that contains executable code
segments.

selector Valid 16-bit selector in a Windows program.

verb

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftICE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

Value Description

R Read

W Write

RW Reads and Writes

T Back Trace on Execution

TW Back Trace on Memory Writes
SoftICE Command Reference 39

SoftICE Commands
Use The BPRW command is a short-hand way of setting range breakpoints on either all of the
code segments, or on a single segment of a Windows program.

The BPRW command actually sets BPR style breakpoints. Thus, if you enter the BL
command after entering a BPRW command, you can see where separate range breakpoints
were set to cover the segments specified in the BPRW command.

Valid selectors for a 16-bit Windows program can be obtained with the HEAP instruction.

Clearing the breakpoints created by BPRW commands requires that each of these range
breakpoints be separately cleared with the BC command.

Note: The BPRW command can become very slow when using the T verb to back trace or
when using the command in conjunction with a CSIP qualifying range.

For Windows 95

Due to a change in system architecture, BPRs are no longer supported in level 0 code. For
example, you cannot use BPRs to trap VxD code.

When a BPRW is set on a 32-bit application or DLL, a single range breakpoint is set starting
at the executable image base and ending at the image base plus image size.

Common Uses

The BPRW command is commonly used to do the following:

• To set a back trace history range over an entire Windows application or DLL, specify the
module-name and the T verb.

• To set a breakpoint that triggers whenever a program executes, use the R verb. This works
because the R verb breaks on execution as well as reads.

• To use BPRW as a convenient form of BPR. Instead of requiring you to look up a
segment’s base and limit through the LDT or GDT commands, you only need to know
the segment selector.

Example This example sets up a back trace range on all of the code segments in the Program Manager.
All instructions that the Program Manager executes are logged to the back trace history buffer
and can later be viewed with the TRACE and SHOW commands.

BPRW progman t
40 SoftICE Command Reference

SoftICE Commands
BPT Windows 3.1, Windows 95 , Windows 98 Manipulating Breakpoints

Use a breakpoint description as a template.

Syntax BPT breakpoint-index

breakpoint-index Breakpoint index number.

Use The BPT command uses an existing breakpoint description as a template for defining a new
breakpoint. The BPT command loads a template of the breakpoint description into the edit
line for modification. Use the editing keys to edit the breakpoint description and type Enter
to add the new breakpoint description. The breakpoint referenced by breakpoint index is not
altered. This command offers a quick way to modify the parameters of an existing breakpoint.

Conditional expressions are expanded as parts of the breakpoint expression as well as
breakpoint actions.

Example The following example moves a template of breakpoint 3 into the edit line (without removing
breakpoint 3). An example of the edit line follows:

BPT 3
:BPX 1b:401200 if (eax==1) do “dd esi”

Press Enter to add the new breakpoint.
SoftICE Command Reference 41

SoftICE Commands
BPX Windows 3.1, Windows 95, Windows 98, Windows NT Breakpoints

F9

Set or clear a breakpoint on execution.

Syntax For Windows 3.1

BPX [address] [c=count]

For Windows 95 and Windows NT

BPX [address] [IF expression] [DO " command1;command2;... "]

address Linear address to set execution breakpoint.

c= Breakpoint trigger count.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftICE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

Use Use the BPX command to define breakpoints that trigger whenever the instruction at the
specified address is executed.

The address parameter must point at the first byte of the instruction opcode of the instruction
where the breakpoint is being set. If no address is specified and the cursor is in the Code
window when you begin to type the command, a point-and-shoot breakpoint is set where the
implied address is that of the instruction at the cursor location in the Code window. If you
define a point-and-shoot breakpoint at an address where a breakpoint already exists, the
existing breakpoint is cleared.

Note: Use the EC command (default key F6) to move the cursor into the Code window.

If the cursor is not in the Code window when you enter the BPX command, you must specify
an address. If you specify only an offset, the current CS register value is used as the segment.
42 SoftICE Command Reference

SoftICE Commands
The BPX command normally places an INT 3 instruction at the breakpoint address. This
breakpoint method is used instead of assigning a debug register to make more execution
breakpoints available. If you need to use a breakpoint register, for example, to set a breakpoint
on code not yet loaded in a DOS VM, set an execution breakpoint with the BPM command
and specify X as the verb.

If you try to set a BPX at an address that is in ROM, a breakpoint register is automatically
used for the breakpoint instead of the normal placement of an INT 3 at the target address
(because ROM cannot be modified).

The BPX command accepts 16-bit Windows module names as an address parameter. When
you enter a 16-bit module name, SoftICE sets a BPX-style breakpoint on every exported entry
point in the module.

Example: BPX KERNEL sets a breakpoint on every function in the 16-bit Windows module
KRNL386.EXE. This can be very useful is you need to break the next time any
function in a DLL is called.

SoftICE supports a maximum of 256 breakpoints when using this command.

For Windows 3.1 and Windows 95

BPX breakpoints in DOS VMs are tied to the VM they were set in. This is normally what you
would like when debugging a DOS program in a DOS VM. However, there are situations
when you may want the breakpoint to go off at a certain address no matter what VM is
currently mapped in. This is usually true when debugging in DOS code or in a TSR that was
run before Windows was started. In these cases, use a BPM breakpoint with the X verb
instead of BPX.

For Windows 95

BPX breakpoints set in the range 400000 - 7FFFFFFF (WIN32 applications) are address-
context sensitive. That is, they are only triggered when the context in which they were set is
active. If a breakpoint is set in a DLL that exists in multiple contexts, however, the breakpoint
will exist in all contexts.

For Windows NT

Any breakpoint set on an address below 80000000h (2 GB) is address-context sensitive. This
includes WIN32, WIN16, and DOS V86 applications. Take care to ensure you are in the
correct context before setting a breakpoint.
SoftICE Command Reference 43

SoftICE Commands
Example This example sets an execution breakpoint at the instruction 10h bytes past the current
instruction pointer (CS:EIP).

BPX eip+10

This example sets an execution breakpoint at source line 1234 in the current source file (refer
to FILE on page 81).

BPX .1234

For Windows 95 and Windows NT

The following is an example of the use of a conditional expression to qualify a breakpoint. In
this case, the breakpoint triggers if the EAX register is within the specified range:

BPX eip if eax > 1ff && eax <= 300

In this example, a breakpoint action is used to have SoftICE automatically dump a parameter
for a call. Every time the breakpoint is hit, the contents of the string pointed to by the current
DS:DX will be displayed in the Data window.

BPX 80023455 do “db ds:dx”

See Also FILE
44 SoftICE Command Reference

SoftICE Commands
BSTAT Windows 95, Windows 98, Windows NT Breakpoints

Display statistics for one or more breakpoints.

Syntax BSTAT [breakpoint-index]

breakpoint-index Breakpoint index number.

Use Use BSTAT to display statistics on breakpoint hits, misses, and whether breakpoints popped
up or were logged. A breakpoint will be logged to the history buffer instead of popping up if it
has a conditional expression that uses the BPLOG expression macro.

Because conditional expressions are evaluated when the breakpoint is triggered, it is possible
to have evaluation run-time errors. Examples of this are when a virtual symbol is referenced,
and that symbol has not been loaded, or a reference to symbol cannot be resolved because the
memory is not present. In these cases, and possibly others, an error will be generated and
noted. The Status and Scode fields under the Misc. column contain error information which
indicates what problem, if any, has occurred.

Output For each breakpoint displayed the following information also appears:

BP # Breakpoint index, and if disabled, an * (asterisk).

Totals Category:
Hits Total number of times SoftICE has evaluated the breakpoint.

Breaks Total number of times the breakpoint has evaluated TRUE, and
SoftICE has either popped up, or logged the breakpoint.

Popups Total number of times the breakpoint caused SoftICE to pop up.

Logged Total number of times the breakpoint has been logged.

Misses Total number of times the breakpoint evaluated to FALSE, and no
breakpoint action was taken.

Errors Total number of times that the evaluation of a breakpoint resulted in a
error.

Current Category:
Hits Current number of times the breakpoint has evaluated TRUE, but did

not pop up because the count had not expired. (Refer to expression
macro BPCOUNT.)

Misses Current number of times the breakpoint has evaluated FALSE and/or
SoftICE Command Reference 45

SoftICE Commands
the breakpoint count has not expired.

Miscellaneous Category:
Status SoftICE internal status code for the last time the breakpoint was

evaluated, or zero if no error occurred.

Scode Last non-zero SoftICE internal status code, or zero if no error has
occurred.

Cond. Yes if the breakpoint has a conditional expression, otherwise No.

Action Yes if the breakpoint has a defined breakpoint action, otherwise No.

Example The following is an example using the BSTAT command for breakpoint #0:

:BSTAT 0

Breakpoint Statistics for #00
BP # *00

Totals
Hits 2
Breaks 2
Popups 2
Logged 0
Misses 0
Errors 0

Current
Hits 0
Misses 0

Misc
Status 0
SCode 0
Cond. No
Action Yes

See Also For more information on breakpoint evaluation, refer to Using SoftICE.
46 SoftICE Command Reference

SoftICE Commands
C Windows 3.1, Windows 95, Windows 98, Windows NT Miscellaneous

Compare two data blocks.

Syntax C start-address l length start-address-2

start-address Start of first memory range.

length Length in bytes.

start-address-2 Start of second memory range.

Use The memory block specified by start-address and length is compared to the memory block
specified by the second start address.

When a byte from the first data block does not match a byte from the second data block, both
bytes display, along with their addresses.

Example The following example compares 10h bytes starting at memory location DS:805FF000h to
the 10h bytes starting at memory location DS:806FF000h.

C ds:805ff000 l 10 ds:806ff000
SoftICE Command Reference 47

SoftICE Commands
CLASS Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display information on Window classes.

Syntax For Windows 3.1

CLASS [module-name]

For Windows 95

CLASS [-x][task-name]

For Windows NT

CLASS [-x][process-type | thread-type | module-type | class-name]

module-name Any currently loaded Windows module. Not all Windows modules
have classes registered.

-x Display complete Windows 95 or Windows NT internal CLASS data
structure, expanding appropriate fields into more meaningful forms.

task-name Any currently executing 16- or 32-bit task.

process-type Process name, process ID, or process handle.

thread-type Thread ID or thread address (KTEB).

module-type Module name or module handle.

class-name Name of a registered class window.

Use For Windows 95

The operating system maintains the standard window classes in the 16-bit user module (per
Windows 3.1). The operating system maintains all other window classes in separate lists on
behalf of each process. Each time a process or one of its DLLs registers a new window class,
registration places that class on one of two lists:

• The application global list contains classes registered with the CS_GLOBAL attribute.
They are accessible to the process or any of its DLLs.

• The application private list contains non-global classes. Only the registering module can
access them.
48 SoftICE Command Reference

SoftICE Commands
Finally, any process or DLL that attempts to superclass one of the standard window controls,
for example, LISTBOX, receives a copy of that class. The copy resides in a process-specific
system-superclass list. By making a copy of the standard class, a process or DLL can superclass
any standard windows control without affecting other processes in the system.

The process-specific class lists display in the following order:

• application private

• application global

• system superclassed

In the output, dashed lines separate each list.

For Windows NT

The architecture of class information under Windows NT is similar to that of Windows 95 in
that class information is process specific and the operating system creates different lists for
global and private classes. Beyond this, the two operating systems have significant differences
in how super-classing a registered window class is implemented.

Under Windows NT, registered window classes are considered templates that describe the base
characteristics and functionality of a window (similar to the C++ notion of an abstract class).
When a window of any class is created, the class template is instanced by making a physical
copy of the class structure. This instanced class is stored with the windows instance data. Any
changes to the instanced class data does not affect the original class template. This concept is
further extended when various members of the windows instanced class structure are
modified. When this occurs, the instanced class is instanced again, and the new instance
points to the original instance. Registered classes act as templates from which instances of a
particular class can be created; in effect this is object inheritance. This inheritance continues as
changes are made to the base functionality of the class.

If you do not specify the type parameter, the current context is assumed because the class
information is process specific. A process-name always overrides a module of the same name.
To search by module when there is a name conflict, use the module handle (base address or
module database selector). Also, module names are always context sensitive. If the module is
not loaded in the current context (or the CSRSS context), the CLASS command interprets
the module name as a class name instead.

Output For each class, the following information is shown:

Class Handle Offset of a data structure within USER. Refers to windows of this
class.

Class Name Name that was passed when the class was registered. If no name was
passed, the atom displays.

Owner Module that has registered this window class.
SoftICE Command Reference 49

SoftICE Commands
Window Procedure Address of the window procedure for this window class.

Styles Bitmask of flags specified when the class was registered.

Example For Windows 3.1

The following example uses the CLASS command to display all the classes registers by the
MSWORD module.

:CLASS msword

Note: There are symbols for all of the window procedures, because SoftICE includes all of the
exported symbols from USER.EXE. If a symbol is not available for the window
procedure, a hexadecimal address displays.

Handle Name Owner Window Procedure

0F24 #32772 USER TITLEWNDPROC

0EFC #32771 USER SWITCHWNDPROC

0ED4 #32769 USER DESKTOPWNDPROC

0E18 MDIClient USER MDICLNTWNDPROC

0DDC ComboBox USER COMBOBXWNDPROC

0DA0 ComboLBox USER LBBOXTLWNDPROC

0D64 ScrollBar USER SBWNDPROC

0D28 ListBox USER LBOXCTLWNDPROC

0CF0 Edit USER EDITWNDPROC
50 SoftICE Command Reference

SoftICE Commands
CLS Windows 3.1, Windows 95, Windows 98, Windows NT Window Control

Alt-F5

Clear the Command window.

Syntax CLS

Use The CLS command clears the SoftICE Command window, all display history, and moves the
prompt and the cursor to the upper lefthand corner of the Command window.
SoftICE Command Reference 51

SoftICE Commands
CODE Windows 3.1, Windows 95, Windows 98, Windows NT Customization

Display instruction bytes.

Syntax CODE [on | off]

Use The CODE command controls whether or not the actual hexadecimal bytes of an instruction
display when the instruction is unassembled.

• If CODE is ON, the instruction bytes display.

• If CODE is OFF, the instruction bytes do not display.

• CODE with no parameters displays the current state of CODE.

• The default is CODE mode OFF.

Example The following command causes the actual hexadecimal bytes of an instruction to display
when the instruction is unassembled.

CODE on

See Also SET
52 SoftICE Command Reference

SoftICE Commands
COLOR Windows 3.1, Windows 95, Windows 98, Windows NT Customization

Display or set the screen colors.

Syntax COLOR [normal bold reverse help line]

normal Foreground/background attribute that displays normal text.
Default = 07h grey on black.

bold Foreground/background attribute that displays bold text.
Default = 0Fh white on black.

reverse Foreground/background attribute that displays reverse video text.
Default = 71h blue on grey.

help Foreground/background attribute that displays the help line
underneath the Command window.
Default = 30h black on cyan.

line Foreground/background attribute that displays the horizontal lines
between the SoftICE windows.
Default = 02h green on black.

Use Use the COLOR command to customize the SoftICE screen colors on a color monitor. Each
of the five specified colors is a hexadecimal byte where the foreground color is in bits 0-3 and
the background color is in bits 4-6. This is identical to the standard CGA attribute format
where there are 16 foreground colors and 8 background colors.

The actual colors represented by the 16 possible codes are listed in the following table:

Code Color Code Color

0 black A light green

1 blue B light cyan

2 green C light red

3 cyan D light magenta

4 red E yellow

5 magenta F white
SoftICE Command Reference 53

SoftICE Commands
Example This command causes the following color assignments:

COLOR 7 f 71 30 2

6 brown

7 grey

8 dark grey

9 light blue

Code Color Code Color

normal text grey on black

bold text white on black

reverse video text blue on grey

help line black on cyan

horizontal line green on black
54 SoftICE Command Reference

SoftICE Commands
CPU Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display the registers.

Syntax CPU [-i]

-i Displays the I/O APIC.

Use The CPU command shows all the CPU registers (general, control, debug, and segment).

For Windows NT

If your PC contains a multi-processor mother board that uses an I/O APIC as an interrupt
controller, the CPU command displays the CPU local and I/O APICS.

Example The following example lists the sample output from the CPU command under Windows 95
or Windows NT on systems that do not use an I/O APIC:

Processor 00 Registers

CS:EIP=0008:8013D7AE SS:ESP=0010:8014AB7C
EAX=00000041 EBX=FFDFF000 ECX=00000041 EDX=80010031
ESI=80147940 EDI=80147740 EBP=FFDFF600 EFL=00000246
DS=0023 ES=0023 FS=0030 GS=0000

CR0=8000003F PE MP EM TS ET NE PG
CR2=C13401D6
CR3=00030000
CR4=00000011 VME PSE
DR0=00000000
DR1=00000000
DR2=00000000
DR3=00000000
DR6=FFFF0FF0
DR7=00000400
EFL=00000246 PF ZF IF IOPL=0
SoftICE Command Reference 55

SoftICE Commands
The following example lists the sample output from the CPU command under Windows NT
on a system that uses an I/O APIC:

Processor 00 Registers

CS:EIP=0008:8013D7AE SS:ESP=0010:8014AB7C
EAX=00000041 EBX=FFDFF000 ECX=00000041 EDX=80010031
ESI=80147940 EDI=80147740 EBP=FFDFF600 EFL=00000246
DS=0023 ES=0023 FS=0030 GS=0000

CR0=8000003F PE MP EM TS ET NE PG
CR2=C13401D6
CR3=00030000
CR4=00000011 VME PSE
DR0=00000000
DR1=00000000
DR2=00000000
DR3=00000000
DR6=FFFF0FF0
DR7=00000400
EFL=00000246 PF ZF IF IOPL=0

--------Local apic--------
 ID: 0
 Version: 30010
 Task Priority: 41
 Arbitration Priority: 41
 Processor Priority: 41
 Destination Format: FFFFFFFF
 Logical Destination: 1000000
 Spurious Vector: 11F
 Interrupt Command: 3000000:60041
 LVT (Timer): 300FD
 LVT (Lint0): 1001F
 LVT (Lint1): 84FF
 LVT (Error): E3
 Timer Count: 3F94DB0
 Timer Current: 23757E0
 Timer Divide: B
56 SoftICE Command Reference

SoftICE Commands
The following example lists the sample output from the CPU -i command under Windows
NT on a system that uses an I/O APIC:

Inti Vector Delivery Status Trigger Dest Mode Destination
01 91 Low. Pri Idle Edge Logical 01000000
03 61 Low. Pri Idle Edge Logical 01000000
04 71 Low. Pri Idle Edge Logical 01000000
08 D1 Fixed Idle Edge Logical 01000000
0C 81 Low. Pri Idle Edge Logical 01000000
0E B1 Low. Pri Idle Edge Logical 01000000
I/O unit id register: 0E000000
I/O unit version register: 000F0011

See Also PAGE
SoftICE Command Reference 57

SoftICE Commands
CR Windows 3.1 System Information

Display the control registers.

Syntax CR

Use The CR command displays the contents of the three control registers CR0, CR2, and CR3,
and the debug registers in the Command window. CR0 is the processor control register. CR2
is the register in which the processor stores the most recently accessed address that resulted in
a page fault. CR3 contains the physical address of the system’s page directory (refer to PAGE
on page 150).

Example The following example lists the sample output from a CR command:

CR0=8000003B PE MP TS ET NE PG

CR2=000CC985

CR3=002FE000

CR4=00000008 DE

DR1=00000000

DR2=00000000

DR3=00000000

DR6=FFFF0FF0

DR7=00000400

See Also PAGE
58 SoftICE Command Reference

SoftICE Commands
CSIP Windows 3.1 Breakpoints

Set CS:EIP (instruction pointer) memory range qualifier for all breakpoints (for 16-bit
programs only).

Syntax CSIP [off | [not] start-address end-address | Windows-module-name]

off Turns off CSIP checking.

not Breakpoint only occurs if the CS:EIP is outside the specified range.

start-address Beginning of memory range.

end-address End of memory range.

Windows-module-name If you specify a valid Windows-module-name instead of a memory
range, the range covers all code areas in the specified Windows
module.

Use For Windows 3.1

The CSIP command qualifies breakpoints so that the code that causes the breakpoint must
come from a specified memory range. This function is useful when a program is suspected of
accidentally modifying memory outside of its boundaries.

When breakpoint conditions are met, the instruction pointer (CS:EIP) is compared to the
specified memory range. If it is within the range, the breakpoint activates. To activate the
breakpoint only when the instruction pointer (CS:EIP) is outside the range, use the NOT
parameter.

Because 16-bit Windows programs are typically broken into several code segments scattered
throughout memory, you can input a Windows module name as the range. If you enter a
module name, the range covers all code segments in the specified Windows program or DLL.

When you specify a CSIP range, it applies to ALL breakpoints that are currently active.

If do not specify parameters, the current memory range displays.

For Windows 95 and Windows NT

For 32-bit code, this command is obsolete. Use conditional expressions to achieve this
functionality. CSIP still works for 16-bit code and modules.
SoftICE Command Reference 59

SoftICE Commands
Example The following command causes breakpoints to occur only if the CS:EIP is NOT in the ROM
BIOS when the breakpoint conditions are met.

CSIP not $f000:0 $ffff:0

The following command causes breakpoints to occur only if the Windows program CALC
causes them.

CSIP calc
60 SoftICE Command Reference

SoftICE Commands
D Windows 3.1, Windows 95, Windows 98, Windows NT Display/Change Memory

Display memory.

Syntax For Windows 3.1

D[size] [address]

For Windows 95 and Windows NT

D[size] [address [l length]]

size

Use The D command displays the memory contents at the specified address.

The contents display in the format of the size you specify. If you do not specify a size, the last
size used displays. The ASCII representation displays for the byte, word, and double word
hexadecimal formats.

For the dword format, data is displayed in two different ways.

• If the displayed segment is a 32-bit segment, the dwords display as 32-bit hexadecimals
(eight hexadecimal digits).

• If the displayed segment is a 16-bit segment (VM segment or LDT selector), the dwords
display as 16:16 pointers (four hexadecimal digits ':' four more hexadecimal digits).

If you do not specify an address, the command displays memory at the next sequential address
after the last byte displayed in the current Data window.

If the Data window is visible, the data displays there; otherwise, it displays in the Command
window. In the Command window, either eight lines display or one less than the length of the
window.

Value Description

B Byte

W Word

D Double Word

S Short Real

L Long Real

T 10-Byte Real
SoftICE Command Reference 61

SoftICE Commands
For floating point values, numbers can display in the following format:

[leading sign] decimal-digits . decimal-digits E sign exponent

The following ASCII strings can also display for real formats:

For Windows 95 and Windows NT

If an L parameter followed by a length is specified, SoftICE displays the requested number of
bytes to the Command window regardless of whether the Data window is visible. SoftICE
always displays whole rows. If the length is not a multiple of rows, SoftICE will round up.
This command is useful when dumping large amounts of data to the Command window for
the purpose of logging it to a file.

Example Displays the memory starting at address ES:1000h in word format and in ASCII format.

DW es:1000

For Windows 95 and Windows NT

The following command displays 4KB of memory starting at address SS:ESP in dword
format. The data is displayed in the Command window.

:DD ss:esp l 1000

String Exponent Mantissa Sign

Not A Number all 1’s NOT 0 +/-

Denormal all 0’s NOT 0 +/-

Invalid 10 byte only with mantissa=0

Infinity all 1's 0 +/-
62 SoftICE Command Reference

SoftICE Commands
DATA Windows 3.1, Windows 95, Windows 98, Windows NT Window Control

Windows 3.1 - F12

Change to display another Data window.

Syntax DATA [window-number]

window-number Number of the Data window you want to view.
This can be 0, 1, 2, or 3.

Use SoftICE supports up to four Data windows. Each Data window can display a different address
and/or format. Only one Data window is visible at any time. Specifying DATA without a
parameter just switches to the next Data window. The windows are numbered from 0 to 3.
This number displays on the righthand side of the line above the Data window. If you specify
a window-number after the DATA command, SoftICE switches to display that window. The
DATA command is most useful when assigned to a function key. See Chapter 8,
“Customizing SoftICE,” in the Using SoftICE manual.

Example Changes the Data window to Data window number 3.

DATA 3
SoftICE Command Reference 63

SoftICE Commands
DEVICE Windows 98, Windows NT System Information

Display information on Windows NT devices.

Syntax DEVICE [device-name | pdevice-object]

Use The DEVICE command displays information on Windows NT device objects. If the
DEVICE command is entered without parameters, summary information displays for all
device objects found in the \Device directory. However, if a specific device object is indicated,
either by its object directory name (device-name) or object address (pdevice-object), more
detailed information displays.

If a directory is not specified with a device-name, the DEVICE command attempts to locate
the named device object in the \Device object directory. To display information about a device
object that is not located in the \Device directory, specify the complete object path name of
the device object. When displaying information about a specified device, the DEVICE
command displays fields of the DEVICE_OBJECT data structure as defined in NTDDK.H.

Output The following fields are shown as summary information:

RefCnt Device object’s reference count.

DrvObj Pointer to the driver object that owns the device object.

NextDev Pointer to the next device object on the linked list of device objects
that were created by the same driver.

AttDev Pointer to a device object that has been attached to the displayed
object via an IoAttachDeviceObject call. Attached device objects are
essentially IRP filters for the devices to which they are attached.

CurIrp Pointer to the IRP currently being serviced for the device object by the
device object’s driver.

DevExten Pointer to device driver-defined device object extension data structure.

Name Name of the device, if it has one.

The following are some fields shown when detailed information is printed:

Flags Definition of the device object’s attributes such as whether I/O
performed on the device is buffered or not.

Vpb Pointer to the device’s associated volume parameter block.

Device Type User-defined or pre-defined value that SoftICE translates to a name.
64 SoftICE Command Reference

SoftICE Commands
Example The following example shows the DEVICE command output with no parameters. It results in
SoftICE printing summary information on all device objects in the \Device object directory.

DEVICE

This example uses the DEVICE command with the BEEP device object’s name.

DEVICE beep

RefCnt DrvObj NextDev AttDev CurIrp DevExten Name
00000000 FD8CD910 00000000 00000000 00000000 FD8CD868 Beep
Timer* : 00000000
Flags : 00000044 DO_BUFFERED_IO | DO_DEVICE_HAS_NAME
Characteristics : 00000000
Vpb* : 00000000
Device Type : 1 FILE_DEVICE_BEEP
StackSize : 1
&Queue : FD8CD7E4
AlignmentRequirement: 00000000 FILE_BYTE_ALIGNMENT
&DeviceQueue : FD8CD810
&Dpc : FD8CD824
ActiveThreadCount : 00000000
SecurityDescriptor* : E10E2528
&DeviceLock : FD8CD84C
SectorSize : 0000
Spare1 : 0000
DeviceObjectExtn* : FD8CD8B8
Reserved* : 00000000

RefCnt DrvObj NextDev AttDev CurIrp DevExten Name

00000000 FD8CD910 00000000 00000000 00000000 FD8CD868 Beep

00000015 FD89E730 00000000 00000000 00000000 FD89C968 NwlnkIpx

00000001 FD892170 00000000 00000000 00000000 FD8980E8 Netbios

00000000 FD89D730 00000000 00000000 00000000 FD897D68 Ip

00000001 FD8CBB70 00000000 00000000 FD8DAA08 FD8CAF88 KeyboardClass0

00000001 FD8C9F30 00000000 00000000 00000000 FD8C60F0 Video0

00000001 FD8C9C90 00000000 00000000 00000000 FD8C50F8 Video1

00000001 FD8CC530 00000000 00000000 FD8DAC08 FD8CBF88 PointerClass0

00000001 FD8DB550 FD8D3030 00000000 00000000 FD8D3FC8 RawTape

00000007 FD89D730 FD897CB0 00000000 00000000 FD897C48 Tcp

00000001 FD88A990 00000000 00000000 00000000 FD88A8A8 ParallelPort0

00000003 FD8B3730 00000000 00000000 00000000 FD8A40E8 NE20001
SoftICE Command Reference 65

SoftICE Commands
DEX Windows 3.1, Windows 95, Windows 98, Windows NT Customization

Display or assign a Data window expression.

Syntax DEX [data-window-number [expression]]

data-window-number Number from 0 to 3 indicating which Data window to use. This
number displays on the righthand side of the line above the Data
window.

Use The DEX command assigns a data expression to any of the four SoftICE Data windows.
Every time SoftICE pops up, the expressions are re-evaluated and the memory at that location
displays in the appropriate Data window. This is useful for displaying changing memory
locations where there is always a pointer to the memory in either a register or a variable. The
data displays in the current format of the Data window: either byte, word, dword, short real,
long real, or 10-byte real. This command is the same as entering the command D expression
every time SoftICE pops up.

If you type DEX without parameters, it displays all the expressions currently assigned to the
Data windows.

To unassign an expression from a Data window, type DEX followed by the data-window-
number, then press Enter.

To cycle through the four Data windows, use the DATA command. Refer to DATA on page
63.

Example Every time SoftICE pops up, Data window 0 contains the contents of the stack.

DEX 0 ss:esp

Every time SoftICE pops up, Data window 1 contains the contents of the memory pointed at
by the public variable PointerVariable.

DEX 1 @pointervariable

See Also DATA
66 SoftICE Command Reference

SoftICE Commands
DIAL Windows 95, Windows 98, Windows NT Customization

Redirect console to modem.

Syntax DIAL [on [com-port] [baud-rate] [i= init-string] [p=number] | off]

com-port If no com-port is specified it uses COM1.

baud-rate Baud-rate to use for modem communications. The default is 38400.
The rates are 1200, 2400, 4800, 9600, 19200, 23040, 28800, 38400,
57000, 115000.

i=init-string Optional modem initialization string.

p=number Telephone number.

Use The DIAL command initiates a call to a remote machine via a modem. The remote machine
must be running SERIAL.EXE and be waiting for a call. Once a connection is established,
SoftICE input is received from the remote machine and SoftICE output is sent to the remote
machine. No input is accepted from the local machine except for the pop-up hot key
sequence.

You can specify the modem initialization string and phone number within the SoftICE
configuration settings, so that the strings they specify become the defaults for the i and p
command-line parameters. Refer to Chapter 8, “Customizing SoftICE” in the Using SoftICE
manual.

On the remote machine, only the com-port, baud-rate, and init parameters should be
specified to SERIAL.EXE.

Example The following is an example of the DIAL command:

DIAL on 2 19200 i=atx0 p=9,555-5555,,,1000

The command tells SoftICE to first initialize the modem on com-port 2 with the string,
“atx0,” and then to make a call through the modem to the telephone number 9-555-5555
extension 1000. Commas can be used in the phone number, just as with traditional modem
software, to insert delays into the dialing sequence.
SoftICE Command Reference 67

SoftICE Commands
The following example shows the syntax expected by SERIAL.EXE when running it on a
remote machine so that it answers a DIAL command from the local machine:

SERIAL on [com-port] [baud-rate] i" init-string "

The following SERIAL.EXE command-line uses a modem initialization string of “atx0” to
answer a call (at 19200 bps) through a modem on the remote machine’s COM1 serial port.
The command line is entered on the remote machine.

SERIAL on 1 19200 i"atx0"

When the remote debugging session is complete, enter the DIAL OFF command from the
remote machine to terminate the debugging session and hang up the modem.

The following are examples of the Dial initialization and Phone number strings in the Remote
Debugging SoftICE configuration settings:

Dial initialization string: atx0
Telephone number string: 9,555-5555,,,1000

With the Dial initialization string in place, SoftICE always initializes the modem specified in
DIAL commands with “ATX0”, unless the DIAL command explicitly specifies an
initialization string.

With the Phone initialization string in place, SoftICE always dials the specified number when
executing DIAL commands, unless the DIAL command explicitly specifies a phone number.

See Also ANSWER, SERIAL, and Chapter 7, “Debugging Remotely,” in the Using SoftICE manual.
68 SoftICE Command Reference

SoftICE Commands
DRIVER Windows 98, Windows NT System Information

Display information on Windows NT drivers.

Syntax DRIVER [driver-name | pdriver-object]

Use The DRIVER command displays information on Windows NT drivers. If the DRIVER
command is entered without parameters, summary information is shown for all drivers found
in the \Driver directory. However, if a specific driver is indicated, either by its object directory
name (driver-name), or by its object address (pdriver-object), more detailed information is
displayed.

If a directory is not specified with the driver-name, the DRIVER command attempts to locate
the named driver in the \Driver object directory. To display information about a driver that is
not located in the \Driver directory, you must specify the complete object path name of the
driver.

When displaying detailed information about a specified driver, the DRIVER command
displays the fields of the DRIVER_OBJECT data structure as defined in NTDDK.H.

Output The following fields are shown as summary information:

Start Base address of the driver.

Size Driver’s image size.

DrvSect Pointer to driver module structure.

Count Number of times the registered reinitialization routine has been
invoked for the driver.

DrvInit Address of the driver's DriverEntry routine.

DrvStaIo Address of the driver's StartIo routine.

DrvUnld Address of the driver's Unload routine.

Name Name of the driver.

The following is shown when detailed information is printed:

DeviceObject Pointer to the first device object on the driver’s linked list of device
objects that it owns.

Flags Field is a bit-mask of driver flag. The only flag currently documented
is DRVO_UNLOAD_INVOKED.
SoftICE Command Reference 69

SoftICE Commands
FastIoDispatch Pointer to the driver’s fast I/O dispatch data structure, if it has one.
File System Drivers typically have a fast I/O routines defined for them.
Information on the structure can be found in NTDDK.H.

Handler Addresses Upon initialization, driver’s can register handlers that are called when
the driver receives specific IRP request types. Each handler address is
listed along with the IRP major function it processes for the driver.

Example The following example shows the output of the DRIVER command with no parameters. This
results in SoftICE printing summary information on all the drivers in the \Driver object
directory.

DRIVER

The following is an example of the DRIVER command with the BEEP.SYS driver object’s
name as a parameter. From the listing it can be seen that the driver’s first device object is at
FD8CD7B0h, and that it has 4 IRP handler routines registered.

DRIVER beep

Start Size DrvSect Count DrvInit DrvStaIo DrvUnld Name
FB030000 00000E20 FD8CDA88 00000000 FB0302EE FB0305E8 FB0306E2 Beep
DeviceObject* : FD8CD7B0
Flags : 00000000
HardwareDatabase : \REGISTRY\MACHINE\HARDWARE\DESCRIPTION\SYSTEM
FastIoDispatch* : 00000000
IRP_MJ_CREATE at 8:FB03053C
IRP_MJ_CLOSE at 8:FB03058A
IRP_MJ_DEVICE_CONTROL at 8:FB0304C6
IRP_MJ_CLEANUP at 8:FB030416

Start Size DrvSect Count DrvInit DrvStaIo DrvUnld Name

FB030000 00000E20 FD8CDA88 00000000 FB0302EE FB0305E8 FB0306E2 Beep

FB130000 0000D3A0 FD89E8C8 00000000 FB13B7BF 00000000 FB136789 NwlnkIpx

FB050000 00002320 FD8CD1A8 00000000 FB050AF2 FB0508BE 00000000 Mouclass

FB060000 00002320 FD8CBC48 00000000 FB060AF2 FB0608C0 00000000 Kbdclass

FB070000 00003860 FD8CAE48 00000000 FB070B0C 00000000 00000000 VgaSave
70 SoftICE Command Reference

SoftICE Commands
E Windows 3.1, Windows 95, Windows 98, Windows NT Display/Change Memory

Edit memory.

Syntax E[size] [address [data-list]]

size

data-list List of data objects of the specified size (bytes, words, double words,
short reals, long reals, or 10-byte reals) or quoted strings separated by
commas or spaces. The quoted string can be enclosed with single
quotes or double quotes.

Use If you do not specify data-list, the cursor moves into the Data window where you can edit the
memory in place. If you specify a data-list, the memory is immediately changed to its new
values.

If the Data window is not currently visible, it is automatically made visible. Both ASCII and
hexadecimal edit modes are supported. To toggle between the ASCII and hexadecimal display
areas, press the Tab key.

If you do not specify a size, the last size used is assumed.

Enter valid floating point numbers in the following format:

[leading sign] decimal-digits . decimal-digits E sign exponent

Example: A valid floating point number is -1.123456 E-19

Example The following command moves the cursor into the Data window for editing. The starting
address in the Data window is at DS:1000h, and the data displays in hexadecimal byte format
as well as in ASCII. The initial edit mode is hexadecimal.

EB ds:1000

Value Description

B Byte

W Word

D Double Word

S Short Real

L Long Real

T 10-Byte Real
SoftICE Command Reference 71

SoftICE Commands
The next command moves the null terminated ASCII string 'Test String' into memory at
location DS:1000h.

EB ds:1000 'Test String',0

This command moves the short real number 3.1415 into the memory location DS:1000h.

ES ds:1000 3.1415
72 SoftICE Command Reference

SoftICE Commands
EC Windows 3.1, Windows 95, Windows 98, Windows NT Window Control

F6

Enter or exit the Code window.

Syntax EC

Use The EC command toggles the cursor between the Code window and the Command window:

• If the cursor is in the Command window, it moves to the Code window.

• If the cursor is in the Code window, it moves to the Command window.

• If the Code window is not visible when the command is entered, it is made visible.

When the cursor is in the Code window, several options become available that make
debugging much easier. These options are as follows:

• Set point-and-shoot breakpoints
Set these with the BPX command. If you do not specify parameters with the BPX
command (default key F9), an execution breakpoint is set at the location of the cursor
position in the Code window.

• Go to cursor line
Set a temporary breakpoint at the cursor line and begin executing with the HERE
command (default key F7).

• Scroll the Code window
The scrolling keys (UpArrow, DownArrow, PageUp and PageDn) are redefined while the
cursor is in the Code window:

à UpArrow: Scroll Code window up one line.
à DownArrow: Scroll Code window down one line.
à PageUp: Scroll Code window up one window.
à PageDn: Scroll Code window down one window.

Source Mode Only

Scroll the Code window from the Command window using the CTRL key with one of the
previously mentioned cursor keys. The following keys also have special meaning:

• CTRL-Home: Moves to line 1 of current source file.

• CTRL-End: Moves to the last line of the current source file.

Note: The previous keys only work for source display, not for disassembled instructions.

• CTRL-RightArrow: Horizontal scroll of source code right.

• CTRL-LeftArrow: Horizontal scroll of source code left.
SoftICE Command Reference 73

SoftICE Commands
EXIT Windows 3.1 Flow Control

Force an exit of the current DOS or Windows program.

Syntax EXIT

Use The EXIT command attempts to abort the current DOS or Windows program by forcing a
DOS exit function (INT 21h, function 4Ch). This command only works if DOS is in a state
where it is able to accept the exit function call. If this call is made from certain interrupt
routines, or other times when DOS is not ready, the system may behave unpredictably. Only
use this call when SoftICE pops up in VM mode or 16- or 32-bit protected mode running at
ring 3. In 32-bit, ring 0 protected mode code, an error displays.

Caution Use the EXIT command with care. Because SoftICE can be popped up at any time, a
situation can occur where DOS is not in a state to accept an exit function call. Also, the EXIT
command does not have any program-specific resetting.

Example: The EXIT command does not reset the video mode or interrupt vectors. For
Windows programs, the EXIT command does not free resources.

If running under WIN32s, the EXIT command sometimes causes WIN32s to pop up with an
unhandled exception occurred dialog box. Press OK to terminate the application.

For Windows 95 and Windows NT

EXIT is no longer supported.

Example Causes the current DOS or Windows program to exit.

EXIT
74 SoftICE Command Reference

SoftICE Commands
EXP Windows 3.1, Windows 95, Windows 98, Windows NT Symbol/Source

Display export symbols from DLLs.

Syntax EXP [[module!][partial-name]] | [!]

module! Display exports from the specified module only.

partial-name Export symbol or the first few characters of the name of an export
symbol name. The ? character can be used as a wildcard character in
place of any character in the export name.

! Display list of modules for which SoftICE has exports loaded.

Use Use the EXP command to show exports from Windows DLLs, Windows NT drivers, and 16-
bit drivers (.DRV extension) for which SoftICE has exports loaded. To tell SoftICE which
DLLs and drivers to load, set the SoftICE initialization settings for Exports in Symbol Loader.

The module and name parameters can be used to selectively display exports only from the
specified module, and/or exports that match the characters and wildcards in the name
parameter. When exports are displayed, the module name is printed first on a line by itself,
and the export names are printed below it, along with their addresses.

Note: Since DLLs and drivers run in protected mode, the addresses are protected mode
addresses.

This command is valid for both 16-bit and 32-bit DLLs with 16-bit exports being listed first.

For Windows 3.1

SoftICE automatically loads exports for KERNEL, USER, and GDI.

For Windows 95

SoftICE automatically loads exports for KERNEL, USER, and GDI. The SoftICE Loader can
dynamically load 32-bit exported symbols.

For Windows NT

SoftICE automatically loads exports for KERNEL32, USER32, and GDI32. The SoftICE
loader can dynamically load 32-bit exported symbols.
SoftICE Command Reference 75

SoftICE Commands
Example The following example of the EXP command being used to display all exports that begin with
the string DELETE: The output shows that KERNEL.DLL has 3 exports matching the
string: DELETEATOM, DELETEFILE, and DELETEPATHNAME. These routines are
located at 127:E3, 11F:7D4 and 127:345A, respectively. Following the exports from
KERNEL are the exports from USER and GDI, and following these begin the 32-bit exports.

:EXP delete

KERNEL
0127:00E3 DELETEATOM 011F:07D4 DELETEFILE
0127:345A DELETEPATHNAME

USER
176F:0C88 DELETEMENU

GDI
0527:0000 DELETEMETAFILE 04B7:211C DELETESPOOLPAGE
047F:55FD DELETEDC 054F:0192 DELETEPQ
047F:564B DELETEOBJECT 04B7:226E DELETEJOB
0587:A22E DELETEENHMETAFILE

KERNEL32
0137:BFF97E9B DeleteAtom 0137:BFF88636 DeleteCriticalSection
0137:BFF9DC5A DeleteFileA 0137:BFFA4C49 DeleteFileW

USER32
0137:BFF62228 DeleteMenu
GDI32
0137:BFF3248F DeleteColorSpace 0137:BFF32497 DeleteDC
0137:BFF3248B DeleteEnhMetaFile 0137:BFF31111 DeleteMetaFile
0137:BFF3249F DeleteObject

In the following example, the ! character is used to narrow EXP’s output to only those
modules which are listed to the left of the !. In the case where no DLL or driver is specified
before the !, SoftICE simply dumps the names of all the modules for which it has exports
loaded.

:EXP !

KERNEL
USER
GDI
KERNEL32
USER32
GDI32
76 SoftICE Command Reference

SoftICE Commands
The next example is of the EXP command being used to list all exports within USER32.DLL
that start with “IS.” The ! character is used here to differentiate the module name from the
name qualifier.

:EXP user32!is

USER32
0137:BFF64290 IsCharAlphaA
0137:BFF64256 IsCharAlphaNumericA
0137:BFF61014 IsCharAlphaNumericW
0137:BFF61014 IsCharAlphaW
0137:BFF641E8 IsCharLowerA
0137:BFF61014 IsCharLowerW
0137:BFF64222 IsCharUpperA
0137:BFF61014 IsCharUpperW
0137:BFF61F6A IsChild
0137:BFF6480F IsClipboardFormatAvailable
0137:BFF64D7C IsDialogMessage
0137:BFF64D7C IsDialogMessageA
0137:BFF6101D IsDialogMessageW
0137:BFF618A4 IsDlgButtonChecked
0137:BFF62F12 IsHungThread
0137:BFF64697 IsIconic
0137:BFF623A5 IsMenu
0137:BFF649B9 IsRectEmpty
0137:BFF644BF IsWindow
0137:BFF646E1 IsWindowEnabled
0137:BFF638C4 IsWindowUnicode
0137:BFF64706 IsWindowVisible
0137:BFF646BC IsZoomed

See Also SYMBOL, TABLE
SoftICE Command Reference 77

SoftICE Commands
F Windows 3.1, Windows 95, Windows 98, Windows NT Miscellaneous

Fill memory with data.

Syntax F address l length data-list

length Length in bytes.

data-list List of bytes or quoted strings separated by commas or spaces. A
quoted string can be enclosed with single quotes or double quotes.

Use Memory is filled with the series of bytes or characters specified in the data-list. Memory is
filled starting at the specified address and continues for the specified length. If the data-list
length is less than the specified length, the data-list is repeated as many times as necessary.

Example Fills memory starting at location DS:8000h for a length of 100h bytes with the string 'Test'.
The string 'Test' is repeated until the fill length is exhausted.

F ds:8000 l 100 'test'
78 SoftICE Command Reference

SoftICE Commands
FAULTS Windows 3.1, Windows 95, Windows 98, Windows NT Mode Control

Turn fault trapping on or off.

Syntax FAULTS [on | off]

Use Use the FAULTS command to turn SoftICE processor fault trapping on or off.

Example Turns off fault trapping in SoftICE.

FAULTS off

See Also SET
SoftICE Command Reference 79

SoftICE Commands
FIBER Windows NT System Information

Dump a fiber data structure.

Syntax FIBER [address]

Use Use the FIBER command to dump a fiber data structure returned by CreateFiber(). If you do
not specify an address, FIBER dumps the fiber data associated with the current thread.
SoftICE provides a stack trace after the dump.

Example The following example dumps the fiber data associated with the current thread:

:FIBER

Fiber state for the current thread:
 User data:004565D0 SEH Ptr:01C2FFA8
 Stack top:01C30000 Stack bottom:01C2F000 Stack limit:01B30000
 EBX=00000001 ESI=005862B8 EDI=004565D0 EBP=01C2FF88 ESP=01C2FC4C
 EIP=63011BAF a.k.a. WININET!.text+00010BAF

=> at 001B:00579720
80 SoftICE Command Reference

SoftICE Commands
FILE Windows 3.1, Windows 95, Windows 98, Windows NT Symbol/Source

Change or display the current source file.

Syntax FILE [[*] file-name]

Use The FILE command is often useful when setting a breakpoint on a line that has no associated
symbol. Use FILE to bring the desired file into the Code window, use the SS command to
locate the specific line, move the cursor to the specific line, then enter BPX or press F9 to set
the breakpoint.

• If you specify file-name, that file becomes the current file and the start of the file displays
in the Code window.

• If you do not specify file-name, the name of the current source file, if any, displays.

• If you specify the * (asterisk), all files in the current symbol table display.

Only source files that are loaded into memory with Symbol Loader or are pre-loaded at
initialization are available with the FILE command.

For Windows 95 and Windows NT

Specifying the FILE file-name command switches address contexts within SoftICE, if the
current symbol table has an associated address context.

Example If main.c is loaded with the SoftICE Loader, this command displays it in the Code window
starting with line 1.

FILE main.c
SoftICE Command Reference 81

SoftICE Commands
FKEY Windows 3.1, Windows 95, Windows 98, Windows NT Customization

Show and edit the function key assignments.

Syntax FKEY [function-key string]

function-key

string Consists of any valid SoftICE commands and the special characters
caret (^) and semicolon (;). Place a caret (^) at the beginning of a
command to make the command invisible. Place a semicolon (;) in the
string in place of Enter.

Use Use the FKEY command to assign a string of one or more commands to a function-key. If you
do not specify parameters, the current function-key assignments display.

Hint: You can also edit function key assignments by modifying the SoftICE initialization
settings for Keyboard Mappings in Symbol Loader. Refer to the Using SoftICE manual
for more information about customizing SoftICE.

To unassign a specified function-key, use the FKEY command with the parameters
function_key_name followed by null_string.

Use carriage return symbols in a function-key assignment string to assign a function-key a
series of commands. A carriage return is represented by a semi-colon (;).

If you put a caret “^” or press Shift-6 in front of a command name, the subsequent command
becomes invisible. The command functions as normal, but all information that normally
displays in the Command window (excluding error messages) is suppressed. The invisible
mode is useful when a command changes information in a window (Code, Register, or Data),
but you do not want to clutter the Command window.

Key Description

F1 - F12 Unshifted function key

SF1 - SF12 Shifted function key

CF1 - CF12 Control key plus function key

AF1 - AF12 Alternate key plus function key
82 SoftICE Command Reference

SoftICE Commands
SoftICE implements the function-keys by inserting the entire string into its keyboard buffer.
The function-keys can therefore be used anyplace where a valid command can be typed. If
you want a function key assignment to be in effect every time you use SoftICE, pre-initialize
the keyboard mappings within your SOFTICE configuration settings. Refer to Chapter 8,
“Customizing SoftICE” in the Using SoftICE guide.

Example This example assigns the toggle Register window command to the F2 function-key. The caret
“^” makes the function invisible, and the semicolon “;” ends the function with a carriage
return. After you enter this command, press the F2 key to toggle the Register window on or
off.

FKEY f2 ̂ wr;

The next example shows that multiple commands can be assigned to a single function and
that partial commands can be assigned for the user to complete. After you enter this
command, pressing the Ctrl F1 key sequence causes the program to execute until location
CS:8028F000h is reached, displays the stack contents, and starts the U command for the user
to complete.

FKEY cf1 g cs:8028f000;d ss:esp;u cs:eip+

After you enter this example, pressing the F1 key makes the Data window three lines long and
dumps data starting at 100h in the segment currently displayed in the Data window.

FKEY f1 wd 3;d 100;

The following example toggles the Register window, and creates a Locals window of length 8
and a Code window of length 10.

FKEY f1 wr;wl 8;wc 10;
SoftICE Command Reference 83

SoftICE Commands
FOBJ Windows NT System Information

Display information about a file object.

Syntax FOBJ [fobj-address]

fobj-address Address of the start of the file object structure to be displayed.

Use The FOBJ command displays the contents of kernel file objects. The command checks for the
validity of the specified file object by insuring that the device object referenced by it is a
legitimate device object.

The fields shown by SoftICE are not documented in their entirety here, as adequate
information about them can be found in NTDDK.H in the Windows NT DDK. A few fields
deserve special mention, however, because device driver writers find them particularly useful:

DeviceObject This field is a pointer to the device object associated with the file
object.

Vpb This is a pointer to the volume parameter block associated with the
file object (if any).

FSContext1 and
FSContext2 These are file system driver (FSD) private fields that can serve as keys

to aid the driver in determining what internal FSD data is associated
with the object.

Other fields of interest, whose purpose should be fairly obvious, include the access protection
booleans, the Flags, the FileName and the CurrentByteOffset.

Example The following example shows the FOBJ command’s output:

:FOBJ fd877230

DeviceObject * : FD881570
Vpb * : 00000000
FsContext * : FD877188
FsContext2 * : FD877C48
SecObjPointer * : FD8771B4
PrivateCacheMap * : 00000001
FinalStatus : 00000000
RelatedFileObj * : 00000000
LockOperation : False
DeletePending : False
ReadAccess : True
84 SoftICE Command Reference

SoftICE Commands
WriteAccess : True
DeleteAccess : False
SharedRead : True
SharedWrite : True
SharedDelete : False
Flags : 00040002 FO_SYNCHRONOUS_IO | FO_HANDLE_CREATED
FileName : \G:\SS\data\status.dat
CurrentByteOffset : 00
Waiters : 00000000
Busy : 00000000
LastLock* : 00000000
&Lock : FD877294
&Event : FD8772A4
ComplContext* : 00000000
SoftICE Command Reference 85

SoftICE Commands
FLASH Windows 3.1, Windows 95, Windows 98, Windows NT Window Control

Restore the Windows screen during P and T commands.

Syntax FLASH [on | off]

Use Use the FLASH command to specify whether the Windows screen restores during any T
(trace) and P (step over) commands. If you specify that the Windows screen is to be restored,
it is restored for the brief time period that the P or T command is executing. This feature is
needed to debug sections of code that access video memory directly.

If the routine being called writes to the Windows screen and if the P command executes across
a call, the screen restores. When debugging protected mode applications such as VxDs or
Windows applications with FLASH off, this is generally not the case. SoftICE restores the
screen only if the display driver is called before the call is completed.

If you do not specify a parameter, the current state of FLASH displays.

The default is FLASH OFF.

Example This command turns on FLASH mode. The Windows screen restores during any subsequent
P or T commands.

FLASH on

See Also SET
86 SoftICE Command Reference

SoftICE Commands
FORMAT Windows 3.1, Windows 95, Windows 98, Windows NT Window Control

Shift-F3

Change the format of the Data window.

Syntax FORMAT

Use Use the FORMAT command to change the display format in the currently displayed Data
window. Change the formats in the order byte, word, dword, short real, long real, 10-byte
real, and then starting back at byte. This command is most useful when assigned to a function
key. The default function key assignment is Shift-F3. The Shift-F3 is also supported when
editing in the Data window.

Example Changes the Data window to the next data format.

FORMAT
SoftICE Command Reference 87

SoftICE Commands
G Windows 3.1, Windows 95, Windows 98, Windows NT Flow Control

Go to an address.

Syntax G [=start-address] [break-address]

=start-address Any expression that resolves to a valid address is acceptable.

break-address Any expression that resolves to a valid address is acceptable.

Use The G command exits from SoftICE. If you specify break-address, a single one-time
execution breakpoint is set on that address. In addition, all sticky breakpoints are armed.

Execution begins at the current CS:EIP unless you supply the start-address parameter. If you
supply the start-address parameter, execution begins at start-address. Execution continues
until the break-address is encountered, the SoftICE pop-up key sequence is used, or a sticky
breakpoint is triggered. When SoftICE pops up, for any reason, the one-time execution
breakpoint is cleared.

The break-address must be the first byte of an instruction opcode.

The G command without parameters behaves the same as the X command.

If the Register window is visible when SoftICE pops up, all registers that have been altered
since the G command was issued are displayed with the bold video attribute.

For Windows 3.1

The non-sticky execution breakpoint uses an INT 3 style breakpoint.

For Windows 95 and Windows NT

The non-sticky execution breakpoint uses debug registers unless none are available. If none
are available, it uses INT 3.

Example This command sets a one-time breakpoint at address CS:80123456h.

G 80123456
88 SoftICE Command Reference

SoftICE Commands
GDT Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display the Global Descriptor Table.

Syntax GDT [selector]

selector Starting GDT selector to display

Use The GDT command displays the contents of the Global Descriptor Table. If you specify an
optional selector, only information on that selector is listed. If the specified selector is an LDT
selector (bit 2 is a 1), SoftICE automatically displays information from the LDT, rather than
the GDT.

Output The base linear address and limit of the GDT is shown at the top of the GDT command’s
output. Each subsequent line of the output contains the following information:

selector value Lower two bits of this value reflects the descriptor privilege level.

selector type One of the following:

Type Description

Code16 16-bit code selector

Data16 16-bit data selector

Code32 32-bit code selector

Data32 32-bit data selector

LDT Local Descriptor Table selector

TSS32 32-bit Task State Segment selector

TSS16 16-bit Task State Segment selector

CallG32 32-bit Call Gate selector

CallG16 16-bit Call Gate selector

TaskG32 32-bit Task Gate selector

TaskG16 16-bit Task Gate selector

TrapG32 32-bit Trap Gate selector
SoftICE Command Reference 89

SoftICE Commands
selector base Linear base address of the selector.

selector limit Size of selector’s segment.

selector DPL Selector's descriptor privilege level (DPL), which is either 0, 1, 2 or 3.

present bit P or NP, indicating whether the selector is present or not present.

segment attributes One of the following:

Example The following command shows abbreviated output from the GDT command.

:GDT

Sel. Type Base Limit DPL Attributes
GDTbase=C1398000 Limit=0FFF
0008 Code16 00017370 0000FFFF 0 P RE
0010 Data16 00017370 0000FFFF 0 P RW
0018 TSS32 C000AEBC 00002069 0 P B
0020 Data16 C1398000 00000FFF 0 P RW
0028 Code32 00000000 FFFFFFFF 0 P RE
0030 Data32 00000000 FFFFFFFF 0 P RW
003B Code16 C33E9800 000007FF 3 P RE
0043 Data16 00000400 000002FF 3 P RW
0048 Code16 00013B10 0000FFFF 0 P RE
0050 Data16 00013B10 0000FFFF 0 P RW
0058 Reserved 00000000 0000FFFF 0 NP
0060 Reserved 00000000 0000FFFF 0 NP
0068 TSS32 C0015DE8 00000068 0 P

TrapG16 16-bit Trap Gate selector

IntG32 32-bit Interrupt Gate selector

IntG16 16-bit Interrupt Gate selector

Reserved Reserved selector

Value Description

RW Data selector is readable and writable.

RO Data selector is read only.

RE Code selector is readable and executable.

EO Code selector is execute only.

B TSS's busy bit is set.

ED Expand down data selector.

Type Description
90 SoftICE Command Reference

SoftICE Commands
GENINT Windows 3.1, Windows 95, Windows 98, Windows NT Flow Control

Force an interrupt to occur.

Syntax GENINT [nmi | int1 | int3 | interrupt-number]

interrupt-number For Windows 3.1 and Windows 95: Valid interrupt number between
0 and 5Fh.
For Windows NT: Valid interrupt number between 0 and FFh.

Use The GENINT command forces an interrupt to occur. Use this function to hand off control to
another debugger you are using with SoftICE. Also use it to test interrupt routines.

The GENINT command simulates the processing sequence of a hardware interrupt or an
INT instruction. It vectors control through the current IDT entry for the specified interrupt
number.

Warning: Ensure that there is a valid interrupt handler before using this command. SoftICE
does not know if there is a handler installed. Your machine will most likely crash if
there is not one.

GENINT cannot be used to simulate a processor fault that pushes an exception code. For
example, GENINT cannot simulate a general protection fault.

Example The following command forces a non-maskable interrupt. It gives control back to CodeView
for DOS, if you use SoftICE as an assistant to CodeView for DOS.

GENINT nmi

If using CodeView for Windows, use the command:

GENINT 0

For other debuggers, experiment with interrupt-numbers 0, 1, 2 and 3.

When the command I3HERE==ON, and you are using a level -3 debugger, such as
BoundsChecker, SoftICE traps on any INT 3 breakpoints installed by the level-3 debugger.
When this happens, set I3HERE==OFF, and use the GENINT command to reactivate the
breakpoint. This returns control to the level -3 debugger, and SoftICE does not trap
subsequent INT 3s.

I3HERE off
GENINT 3
SoftICE Command Reference 91

SoftICE Commands
H Windows 3.1, Windows 95, Windows 98, Windows NT Miscellaneous

F1

Display help information.

Syntax For Windows 3.1

H [command | expression]

For Windows 95 and Windows NT

H [command]

Use For Windows 3.1

Under Windows 3.1, the parameter you supply determines whether help is displayed or an
expression is evaluated. If you specify a command, help displays detailed information about
the command, including the command syntax and an example. If you specify an expression,
the expression is evaluated, and the result is displayed in hexadecimal, decimal, signed decimal
(only if < 0), and ASCII.

For Windows 95 and Windows NT

Under Windows 95 and Windows NT, the H command displays help on SoftICE
commands. (Refer to ? on page 3 for information about evaluating expressions under
Windows 95 and Windows NT.) To display general help on all the SoftICE commands, enter
the H command with no parameters. To see detailed information about a specific command,
use the H command followed by the name of the command on which you want help. Help
displays a description of the command, the command syntax, and an example.

Example The following example displays information about the ALTKEY command:

:H altkey

Set key sequence to invoke window
ALTKEY [ALT letter | CTRL letter]
ex: ALTKEY ALT D

See Also ?
92 SoftICE Command Reference

SoftICE Commands
HBOOT Windows 3.1, Windows 95, Windows 98, Windows NT Flow Control

Do a hard system boot (total reset).

Syntax HBOOT

Use The HBOOT command resets the computer system. SoftICE is not retained in the reset
process. HBOOT is sufficient unless an adapter card requires a power-on reset. In those rare
cases, the machine power must be recycled.

HBOOT performs the same level of system reset as pressing Ctrl-Alt-Delete when not in
SoftICE.

Example To make the system reboot, use this command:

HBOOT
SoftICE Command Reference 93

SoftICE Commands
HEAP Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display the Windows global heap.

Syntax HEAP -L [free | module-name | selector]

-L Display only global heap entries that contain a local heap.

module-name Name of the module.

selector LDT selector.

Use For Windows 95

For 16-bit modules, the HEAP command works the same as it does under Windows 3.1.

For Windows NT

For 16-bit modules, the HEAP command works the same as it does under Windows 3.1, but
is process-specific. You must be in a NTVDM process that contains a WOW (Windows on
Windows) box.

For Windows 95,
refer to HEAP32 on
page 97.

For Windows NT,
refer to HEAP32 on
page 100.

For Windows 3.1

The HEAP command displays the Windows global heap in the Command window.

• If you do not specify parameters, the entire global heap displays.

• If you specify FREE, only heap entries marked as FREE display.

• If you specify the module name, only heap entries belonging to the module display.

• If you specify an LDT selector, only a single heap entry corresponding to the selector
displays.

At the end of the listing, the total amount of memory used by the heap entries that displayed
is shown. If the current CS:EIP belongs to one of the heap entries, that entry displays with the
bold video attribute.

If there is no current LDT, the HEAP command is unable to display heap information.
94 SoftICE Command Reference

SoftICE Commands
Output For each heap entry the following information displays:

selector or handle In Windows 3.1, this is almost the same thing. Heap selectors all have
a dpl of 3 while the corresponding handle is the same selector with a
dpl of 2. For example, if the handle was 106h the selector would be
107h. Use either of these in an expression.

address 32-bit flat virtual address.

size Size of the heap entry in bytes.

module name Module name of the owner of the heap entry.

type Type of entry. One of the following:

Additional Type Information

If the heap entry is a code or a data segment, the segment number
from the .EXE file displays. If the heap entry is a resource, one of the
following resource types may display:

Type Description

Code Non-discardable code segment

Code D Discardable code segment

Data Data segment

ModuleDB Module data base segment

TaskDB Task data base segment

BurgerM Burger Master (The heap itself)

Alloc Allocated memory

Resource Windows Resource

UserDef Icon String Accel IconGrp

Cursor Menu FontGrp ErrTable NameTabl

Bitmap Dialog Font CursGrp
SoftICE Command Reference 95

SoftICE Commands
Example To display all heap entries belonging to the KERNEL module, use the following command:

HEAP kernel

See Also For Windows 95, refer to HEAP32 on page 97.
For Windows NT, refer to HEAP32 on page 100.

Han/Sel Address Length Owner Type Seg/Rsr

00F5 000311C0 000004C0 KERNEL ModuleDB

00FD 00031680 00007600 KERNEL Code 01

0575 00054220 00003640 KERNEL Alloc

0106 00083E40 00002660 KERNEL Code D 02

010E 805089A0 00001300 KERNEL Code D 03

0096 80520440 00000C20 KERNEL Alloc

Total Memory:62K
96 SoftICE Command Reference

SoftICE Commands
HEAP32 Windows 95, Windows 98 System Information

Display the Windows global heap.

Syntax HEAP32 [hheap32 | task-name]]

hheap32 Heap handle returned from HeapCreate.

task-name Name of any 32-bit task.

Use For Windows 95

The HEAP32 command displays heaps for a process.

Note: For 16-bit modules, use the HEAP32 on page 100.

The HEAP32 command displays the following:

• KERNEL32 default system heap.

• Private heaps of processes created through the HeapCreate() function.

• Two Ring-0 heaps created by VMM. The first one displayed is the pagelocked heap, and
the second is the pagetable heap.

• One Ring-0 heap for every existing virtual machine.

For Windows 3.1,
Windows 95, and
Windows NT, refer to
HEAP on page 94.

For Windows NT,
refer to HEAP32 on
page 100.

If you provide a process name, SoftICE displays the entire default process heap for that
process, and the address context automatically changes to that of the process. To view a
nondefault heap for a process, specify the heap base address instead of the process name.

The debug versions of Windows 95 provide extra debugging information for each heap
element within a heap. To see this information, you must be running the appropriate debug
version, as follows:

• For KERNEL32 Ring-3 heaps, have the SDK debug version installed.

• For VMM Ring-0 heaps, have the DDK debug version of VMM installed.

Output For each heap entry, the following information displays:

HeapBase Address where the heap begins.

MaxSize Current maximum size the heap can grow without creating a new
segment.

Committed Number of kilobytes of committed memory that are currently present
in physical memory.
SoftICE Command Reference 97

SoftICE Commands
Segments Number of segments in the heap. Each time the heap grows past the
current maximum size, a new heap segment is created.

Type

Owner Name of the process that owns the heap.

When displaying an individual 32-bit heap, the following information displays:

With the appropriate debug versions of the SDK and DDK, the following extra information
appears for each heap element:

Heap Type Description

Private Ring 3 heap created by an application process.

System Ring 3 default heap for KERNEL32.

Ring0 Ring 0 heap created by VMM.

VM## Heap created by VMM for a specific Virtual
Machine to hold data structures specific to that VM.

Heap Type Description

Address Address of the heap element

Size Size in bytes of the heap element

Free If the heap element is a free block, the word FREE
appears; otherwise, the field is blank.

Heap Element Description

EIP EIP address of the code that allocated the heap
element.

TID VMM thread-id of the allocating thread

Owner Nearest symbol to the EIP address
98 SoftICE Command Reference

SoftICE Commands
Example To display all 32-bit heaps, use the command:

HEAP32

To display all heap entries for Exchng32, use the command:

HEAP32 exchng32

See Also For Windows 3.1, Windows 95, and Windows NT, refer to HEAP on page 94.
For Windows NT, refer to HEAP32 on page 100.

HeapBase Max Size Commit-
ted

Seg-
ments

Type Owner

00EA0000 1024K 8K 1 Private Mapisp32

00DA0000 1024K 8K 1 Private Mapisp32

00CA0000 1024K 8K 1 Private Mapisp32

00960000 1024K 8K 1 Private Mapisp32

00860000 1024K 8K 1 Private Mapisp32

Heap: 00400000 Max Size: 1028K Committed: 12K Segments: 1

Address Size

00400078 000004E4

00400560 00000098

004005FC 00000054

00400654 000000A4

004006FC 00000010

00400710 00000014 Free
SoftICE Command Reference 99

SoftICE Commands
HEAP32 Windows NT System Information

Display the Windows heap.

Syntax HEAP32 [[-w -x -s -v -b -trace] [heap | heap-entry | process-type]]

-w Walk the heap, showing information about each heap entry.

-x Show an extended summary of a 32-bit heap.

-s Provide a segment summary for a heap.

-v Validate a heap or heap-entry.

-b Show base address and sizes of heap entry headers.

-trace Display a heap trace buffer.

heap 32-bit heap handle.

heap-entry Heap allocated block returned by HeapAlloc or HeapRealloc.

process-type Process name, process-id, or process handle (KPEB).

Use All HEAP32 options and parameters are optional. If you do not specify options or
parameters, a basic heap summary displays for every heap in every process. If a parameter is
specified without options, a summary will be performed for the heap-entry, heap, or in the
case of a process-type, a summary for each heap within the process.

Note: All 16-bit HEAP functionality still works. Refer to HEAP on page 94 for Windows
3.1. This information only applies to HEAP32.

For Windows 3.1,
Windows 95, and
Windows NT, refer to
HEAP on page 94.

For Windows 95,
refer to HEAP32 on
page 97.

The -Walk option walks a heap, showing the state of each heap-entry on a heap. The Walk
option is the default option if you specify a heap handle without other options.

The -eXtended option displays a detailed description of all useful information about a heap,
including a segment summary and a list of any Virtually Allocated Blocks (VABs) or extra
UnCommitted Range (UCR) tables that may have been created for the heap.

The -Segment option displays a simple summary for the heap, and each of its heap-segments.
Segments are created to map the linear address space for a region of a heap. A heap can be
composed of up to sixteen segments.
100 SoftICE Command Reference

SoftICE Commands
The -Validate option is an extremely powerful option, as it completely validates a single heap-
entry, or a heap and all of its components, including segments, heap-entries, and VABs. In
most cases, the heap validation is equivalent to or stricter than the Win32 API Heap
functions. The -Validate option is the only option that takes a heap-entry parameter as input.
All other options work with heap handles or process-types. If the heap is valid, an appropriate
message displays. If the validation fails, one of the following error messages appears:

• For a block whose header is corrupt:

Generic Error: 00140BD0 is not a heap entry, or it is corrupt

Specific Error: 00140BD0: Backward link for Block is invalid

• For a block whose guard-bytes have been overwritten:

Allocated block: 00140BD0: Block BUSY TAIL is corrupt

Note: If you run your application under a debugger, for example, BoundsChecker or
Visual C++, each allocated block has guard-bytes, and each free block is marked
with a pattern so that random overwrites can be detected.

• For a free block that has been written to, subsequent to being freed:

Free block: 00140E50: Free block failed FREE CHECK at 141E70

Use the -Base option to change the mode in which addresses and heap entry sizes display.
Under normal operation, all output shows the address of the heap-entry data, and the size of
the user data for that block. When you specify the -Base option, all output shows the address
of the heap-entry header, which precedes each heap-entry, and the size of the full heap-entry,
including the heap-entry header and any extra data allocated for guard-bytes, or to satisfy
alignment requirements. Under most circumstances you will not want to specify base
addressing unless you are trying to walk a heap or its entries manually.

When you use the -Base option, the base address for each heap-entry is 8 bytes less than when
-Base is not specified. This happens because the heap-entry header precedes the actual heap-
entry by 8 bytes. Secondly, the size for the allocated blocks is larger because of the additional 8
bytes for the heap-entry header, guard-bytes, and, if necessary, any extra bytes needed for
proper alignment. The output from the -Base option is useful for manually navigating
between adjacent heap entries, or checking for memory overruns between the end of the heap-
entry data and any unused space prior to the guard-bytes, which are always allocated as the
last two DWORDs of the heap entry.

Note: The -Base option has no effect on input parameters. Heap-entry addresses are always
assumed to be the address of the heap-entry data.

Use the -TRACE option to display the contexts of a heap trace buffer which record actions
that occur within a heap. Heap trace buffers are optional and are generally not created. To
enable tracing in the Win32 API, specify the HEAP_CREATE_ENABLE_TRACING flag as
one of the flags to ntdll!RtlCreateHeap. You cannot use this option with
SoftICE Command Reference 101

SoftICE Commands
Kernel32!HeapCreate() because it strips out all debug-flags before calling
ntdll!RtlCreateHeap. You must also be running the application under a level-3 debugger, for
example, BoundsChecker or the Visual C++ debugger, so that the Win32 heap debugging
options will be enabled.

Any time a process-type is passed as a parameter, any and all options are performed for each
heap within the process.

The HEAP32 command and all of its options work on either a single specified heap handle or
ALL the heaps for an entire process.

Example: This command performs a heap validation for all the heaps in the Test32 process:
HEAP 32 -v test32

When using bare addresses, for example, 0x140000, the current context is assumed. Use the
ADDR command to change to the appropriate context.

For Not Present Memory, due to the nature of operating systems that use paging to
implement virtual memory, in some cases, the actual physical memory that backs a particular
linear address will not be present in memory. To be useful within this restriction, the HEAP32
command detects, avoids, and, where possible, continues to operate without the need for not
present pages. In all cases where not present memory prevents the HEAP32 command from
performing its work, you are notified of that condition. When possible the HEAP32
command skips not present pages and continues processing at a point where physical memory
is present. Because not present memory prevents the HEAP32 command from performing a
full validation of a heap, the validation routines indicate success, but let you know that only a
partial validation could be performed.

Output Base Base address of the heap, that is, the heap handle.

Id Heap ID.

Cmmt/Psnt/Rsvd Amount of committed, present, and reserved memory used for heap
entries.

Segments Number of heap segments within the heap.

Flags Heap flags, for example, HEAP_GROWABLE (0x02).

Process Process that owns the heap.

If you specify the -W switch, the following information displays:

Base This is the address of the heap entry.
102 SoftICE Command Reference

SoftICE Commands
Type Type of the heap entry.

Size Size of the heap-entry. Typically, this is the number of bytes available
to the application for data storage.

Seg# Heap segment in which the heap-entry is allocated.

Flags Heap entry flags.

If you specify the -S switch, the following additional information displays:

Seg# Segment number of the heap segment.

Segment Range Linear address range that this segment maps to.

Cmmt/Psnt/Rsvd Amount of committed, present, and reserved memory for this heap
segment.

Max UCR Maximum uncommitted range of linear memory. This value specifies
the largest block that can be created within this heap segment.

Heap Entry Description

HEAP Represents the heap header.

SEGMENT Represents a heap segment.

ALLOC Active heap entry

FREE Inactive heap entry

VABLOCK Virtually allocated block (VAB)
SoftICE Command Reference 103

SoftICE Commands
Example HEAP32

See Also For Windows 3.1, Windows 95, and Windows NT, refer to HEAP on page 94.
For Windows 95, refer to HEAP32 on page 97.

Base Id Cmmt/Psnt/Rsvd Segments Flags Process

00230000 01 0013/0013/00ED 1 00000002 csrss

7F6F0000 02 0008/0008/00F8 1 00007008 csrss

00400000 03 001C/001A/0024 1 00004003 csrss

7F5D0000 04 0005/0005/001B 1 00006009 csrss

00460000 05 00F6/00F1/001A 2 00003002 csrss

005F0000 06 000B/000B/0005 1 00005002 csrss

7F2D0000 07 002D/002D/02D3 1 00006009 csrss

02080000 08 0003/0003/0001 1 00001062 csrss

023C0000 09 0016/0014/00EA 1 00001001 csrss
104 SoftICE Command Reference

SoftICE Commands
HERE Windows 3.1, Windows 95, Windows 98, Windows NT Flow Control

F7

Go to the current cursor line.

Syntax HERE

Use The HERE command executes until the program reaches the current cursor line. HERE is
only available when the cursor is in the Code window. If the Code window is not visible or
the cursor is not in the Code window, use the G command instead. Use the EC command
(default key F6), if you want to move the cursor into the Code window.

To use the HERE command, place the cursor on the source statement or assembly instruction
that you want to execute to. Enter HERE or press the function key that HERE is
programmed to (default key F7).

The HERE command exits from SoftICE with a single, one-time execution breakpoint set. In
addition, all sticky breakpoints are armed.

Execution begins at the current CS:EIP and continues until the address of the current cursor
position in the Code window is encountered, the window pop-up key sequence is used, or a
sticky breakpoint occurs. When SoftICE pops up, for any reason, the one-time execution
breakpoint is cleared.

If the Register window is visible when SoftICE pops up, all registers that have been altered
since the HERE command was issued display with the bold video attribute.

For Windows 3.1

The non-sticky execution breakpoint uses an INT 3 style breakpoint.

For Windows 95 and Windows NT

The non-sticky execution breakpoint uses debug registers unless none are available, in which
case, it uses INT 3.

Example Sets an execution breakpoint at the current cursor position, then exits from SoftICE and
begins execution at the current CS:EIP.

HERE
SoftICE Command Reference 105

SoftICE Commands
HWND Windows 3.1, Windows 95, Windows 98 System Information

Display information on Window handles.

Syntax For Windows 3.1

HWND [level] [task-name]

For Windows 95

HWND [-x][hwnd | [[level][process-name]]

level Windows hierarchy number. 0 is the top level, 1 is the next level and
so on. The window levels represent a parent child relationship. For
example, a level 1 window has a level 0 parent.

For Windows NT,
refer to the HWND
on page 109.

task-name Any currently loaded Windows task. These names are available with
the TASK command.

-x Display extended information about a window.

hwnd Windows handle.

process-name Name of any currently loaded process.

Use Specifying a window handle as a parameter displays only the information for that window
handle. If you specify a window handle, you do not need to specify the optional parameters
for level and process-name.

Output For each window handle, the following information is displayed:

Class Name Class name or atom of class that this window belongs to.

Window Procedure Address of the window procedure for this window.
106 SoftICE Command Reference

SoftICE Commands
Example Sample output follows for the HWND command:

HWND msword

Abbreviated output follows for the HWND command:

HWND -x winword

Handle hQueue QOwner Class Procedure

0F4C(0) 087D MSWORD #32769 DESKTOP

0FD4(1) 080D MSWORD #32768 MENUWND

22C4(1) 087D MSWORD OpusApp 0925:0378

53E0(2) 087D MSWORD OpusPmt 0945:1514

2764(2) 087D MSWORD a_sdm_Msft 0F85:0010

 2800(3) 087D MSWORD OpusFedt 0F85:0020

 2844(3) 087D MSWORD OpusFedt 0F85:0020

2428(2) 087D MSWORD OpusIconBar 0945:14FE

2888(2) 087D MSWORD OpusFedt 0945:14D2

Window Handle : (0288) Level (1)

 Parent : 16A7:000204CC

 Child : NULL

 Next : 16A7:00020584

 Owner : NULL

 Window RECT : (9,113) - (210,259)

 Client RECT : (10,114) - (189,258)

 hQueue : 1C97

 Size : 16

 QOwner : WINWORD

 hrgnUpdate : NULL

 wndClass : 16A7:281C

 Class : ListBox

 hInstance : (349E) (16 bit hInstance)

 lpfnWndProc : 2417:000057F8
SoftICE Command Reference 107

SoftICE Commands
See Also For Windows NT, refer to HWND on page 109.

 dwFlags1 : 40002

 dwStyle : 44A08053

 dwExStyle : 88

 dwFlags2 : 0

 ctrlID/hMenu : 03E8

 WndText : NULL

 unknown1 : 4734

 propertyList : NULL

 lastActive : NULL

 hSystemMenu : NULL

 unknown2 : 0

 unknown3 : 0000

 classAtom : C036

 unknown4 : 4CAC

 unknown5 : A0000064

Window Handle : (0288) Level (1)
108 SoftICE Command Reference

SoftICE Commands
HWND Windows NT System Information

Display information on Window handles.

Syntax HWND [-x][-c] [hwnd-type | desktop-type | process-type |
thread-type | module-type | class-name]

-eXtended Display extended information about each window handle.

-Children Force the display of window hierarchy when searching by thread-type,
module-type, or class-name.

hwnd-type Window handle or pointer to a window structure.

desktop-type Desktop handle or desktop pointer to a window structure (3.51 only).

process-type, thread-
type or module-type Window owner-type. A value that SoftICE can interpret as being of a

specific type such as process name, thread ID, or module image base.

class name Name of a registered window class.

Use The HWND command enumerates and displays information about window handles.

The HWND command allows you to isolate windows that are owned by a particular process,
thread or module, when you specify a parameter of the appropriate type.

For Windows 3.1 and
Windows 95, refer to
HWND on page
106.

The -eXtended option shows extended information about each window.

When you specify the -eXtended option, or an owner-type as a parameter, the HWND
command will not automatically enumerate child windows. Specifying the -Children option
forces all child windows to be enumerated (regardless of whether they meet any specified
search criteria).

Output For each HWND that is enumerated, the following information is displayed:

Handle HWND handle (refer to OBJTAB on page 147 for more
information). Each window handle is indented to show its child and
sibling relationships to other windows.

Class Registered class name for the window, if available (refer to CLASS on
page 48 for more information).

WinProc Address of the message callback procedure. Depending on the callback
type, this value is displayed as a 32-bit flat address or 16-bit
selector:offset.
SoftICE Command Reference 109

SoftICE Commands
TID Owning thread ID.

Module Owning module name (if available). If the module name is unknown,
the module handle will be displayed as a 32-bit flat address or 16-bit
selector:offset, depending on the module type.

Example The following example uses the HWND command without parameters or options:

HWND

Handle Class WinProc TID Module

01001E #32769 (Desktop) 5FBFE425 24 winsrv
 050060 #32770 (Dialog) 60A29304 18 winlogon
 010044 SAS window class 022A49C4 18 winlogon
 010020 #32768 (PopupMenu) 5FBEDBD5 24 winsrv

010022 #32769 (Desktop) 5FBFE425 24 winsrv
 010024 #32768 (PopupMenu) 5FBEDBD5 24 winsrv
 030074 Shell_TrayWnd 0101775E 67 Explorer
 030072 Button 01012A4E 67 Explorer
 0800AA TrayNotifyWnd 010216C4 67 Explorer
 03003E TrayClockWClass 01028C85 67 Explorer
 030078 MSTaskSwWClass 01022F69 67 Explorer
 030076 SysTabControl32 712188A8 67 Explorer
 05007A tooltips_class32 7120B43A 67 Explorer
 03003C tooltips_class32 7120B43A 67 Explorer
 2E00F0 NDDEAgnt 016E18F1 4B nddeagnt

1C0148 CLIPBOARDWNDCLASS 034F:2918 2C OLE2
 9B0152 DdeCommonWindowClass 77C2D88B 2C ole32
 3200F2 OleObjectRpcWindow 77C2D73B 2C ole32
 0800A2 DdeCommonWindowClass 77C2D88B 67 ole32
 030086 OleMainThreadWndClass 77C2DCF2 67 ole32
 030088 OleObjectRpcWindow 77C2D73B 67 ole32
 03008A ProxyTarget 71E6869A 67 shell32
 03008C ProxyTarget 71E6869A 67 shell32
 030070 ProxyTarget 71E6869A 67 shell32
 04007C ProxyTarget 71E6869A 67 shell32
 0400CC OTClass 0100D7F3 67 Explorer
 0300CA DDEMLEvent 5FC216AB 67 winsrv
 0300C6 DDEMLMom 60A2779D 67 00000000
 0300C0 #42 0BB7:0776 78 MMSYSTEM
 0300D2 WOWFaxClass 01F9F7A8 78 WOWEXEC
 060062 ConsoleWindowClass 5FCD23C7 2B winsrv
 0300B4 WOWExecClass 03CF:0B3E 78 WOWEXEC
110 SoftICE Command Reference

SoftICE Commands
 030068 Progman 0101B1D3 67 Explorer
 0E00BC SHELLDLL_DefView 71E300E8 67 shell32
 040082 SysListView32 7121A0EC 67 shell32
 030080 SysHeader32 7120B06F 67 shell32

Notes: You may have noticed that the output from the previous example enumerated two
desktop windows (handles 1001E and 10022), each with its own separate window
hierarchy. This is because the system can create more than one object of type Desktop,
and each Desktop object has its own Desktop Window which defines the window
hierarchy. If you use the HWND command in a context that does not have an
assigned Desktop, the HWND command enumerates all objects of type Desktop.

Because the system may have create more than one object of type Desktop, the
HWND command accepts a Desktop-type handle as a parameter. This allows the
window hierarchy for a specific Desktop to be enumerated. You can use the command
OBJTAB DESK to enumerate all existing desktops in the system.

The following is an example of using the HWND command for a specific window handle:

HWND 400a0

Handle Class WinProc TID Module
0400A0 Progman 0101B1D3 74 Explorer

The following is an example of enumerating only those windows owned by thread 74:

HWND 74

Handle Class WinProc TID Module
 2F00F0 Shell_TrayWnd 0101775E 74 Explorer
 0500CE Button 01012A4E 74 Explorer
 0500C4 TrayNotifyWnd 010216C4 74 Explorer
 040074 TrayClockWClass 01028C85 74 Explorer
 0500C6 MSTaskSwWClass 01022F69 74 Explorer
 0400C8 SysTabControl32 712188A8 74 Explorer
 3700F2 tooltips_class32 7120B43A 74 Explorer
 040066 tooltips_class32 7120B43A 74 Explorer
 0F00BC DdeCommonWindowClass 77C2D88B 74 ole32
 040068 OleMainThreadWndClass 77C2DCF2 74 ole32
 0500CC OleObjectRpcWindow 77C2D73B 74 ole32
 2600BA ProxyTarget 71E6869A 74 shell32
 0400D0 ProxyTarget 71E6869A 74 shell32
 0400CA ProxyTarget 71E6869A 74 shell32
 070094 ProxyTarget 71E6869A 74 shell32
 04009E OTClass 0100D7F3 74 Explorer
 480092 DDEMLEvent 5FC216AB 74 winsrv
 09004A DDEMLMom 60A2779D 74 00000000
SoftICE Command Reference 111

SoftICE Commands
 0400A0 Progman 0101B1D3 74 Explorer
 0500C0 SHELLDLL_DefView 71E300E8 74 shell32
 070090 SysListView32 7121A0EC 74 shell32
 050096 SysHeader32 7120B06F 74 shell32

Note: A process-name always overrides a module of the same name. To search by module,
when there is a name conflict, use the module handle (base address or module-database
selector) instead. Also, module names are always context sensitive. If the module is not
loaded in the current context (or the CSRSS context), the HWND command
interprets the module name as a class name instead.

The following example shows the output when the -eXtended option is used:

HWND -x 400a0

Hwnd : 0400A0 (7F2D7148)
Class Name : Progman
Module : Explorer
Window Proc : 0101B1D3
Win Version : 4.00
Title : Program Manager
Desktop : 02001F (00402D58)
Parent : 010022 (7F2D0C28)
1st Child : 0500C0 (7F2D7600)
Style : CLIPCHILDREN | CLIPSIBLINGS | VISIBLE | POPUP
Ex. Style : TOOLWINDOW | A0000000
Window Rect : 0, 0, 1024, 768 (1024 x 768)
Client Rect : 0, 0, 1024, 768 (1024 x 768)

See Also For Windows 3.1 and Windows 95, refer to HWND on page 106.
112 SoftICE Command Reference

SoftICE Commands
I Windows 3.1, Windows 95, Windows 98, Windows NT I/O Port

Input a value from an I/O port.

Syntax I [size] port

size

port Port address.

Use The I command in most cases does an actual I/O instruction so it is showing the actual state
of the hardware port. In the case of virtualized ports, the actual data may not be the same as
the virtualized data that an application would see.

The only ports that SoftICE does not do I/O on are the interrupt mask registers (Port 21 and
A1). For those ports, SoftICE shows the value that existed when SoftICE popped up.

Use the input from port commands to read and display a value from a hardware port. Input
can be done from byte, word, or dword ports. If you do not specify size, the default is B.

Example Performs an input from port 21, which is the mask register for interrupt controller one.

I 21

Value Description

B Byte

W Word

D DWORD
SoftICE Command Reference 113

SoftICE Commands
I1HERE Windows 3.1, Windows 95, Windows 98, Windows NT Mode Control

Pop up on embedded INT 1 instructions.

Syntax I1HERE [on | off]

Use Use the I1HERE command to specify that any embedded interrupt 1 bring up the SoftICE
screen. This feature is useful for stopping your program in a specific location. Before popping
up, SoftICE checks to see that there is really an INT 1 in the code. If there is not, SoftICE will
not pop up.

To use this feature, place an INT 1 into the code immediately before the location where you
want to stop. When the INT 1 occurs, it brings up the SoftICE screen. At this point, the
current EIP is the instruction after the INT 1 instruction.

If you do not specify a parameter, the current state of I1HERE displays.

The default is I1HERE off.

This command is useful when you are using an application debugging tool such as
BoundsChecker. Since these tools rely on INT 3’s for breakpoint notifications, you should use
INT 1s in your code so that the tools do not become confused when your hardwired
interrupts occur.

For Windows 3.1 and Windows 95

VMM, the Windows memory management VxD, executes INT 1 instructions prior to
certain fatal exits. If you have I1HERE ON, you can trap these. The INT 1s generated by
VMM are most often caused by a page fault with the registers set up as follows:

• EAX=faulting address

• ESI points to an ASCII message

• EBP points to a CRS (Client Register Structure as defined in the DDK include file
VMM.INC).

Example Turns on I1HERE mode. Any INT 1s generated after this point bring up the SoftICE screen.

I1HERE on
114 SoftICE Command Reference

SoftICE Commands
I3HERE Windows 3.1, Windows 95, Windows 98, Windows NT Mode Control

Pop up on INT 3 instructions.

Syntax I3HERE [on | off]

Use Use the I3HERE command to specify that any interrupt 3 pop up SoftICE. This feature is
useful for stopping your program in a specific location.

To use this feature, place an INT 3 into your code immediately before the location where you
want to stop. When the INT 3 occurs, it brings up the SoftICE screen. At this point, the
current EIP is the instruction after the INT 3 instruction.

If you are developing a Windows program, the DebugBreak() Windows API routine
performs an INT 3.

If you do not specify a parameter, the current state of I3HERE displays.

Note: If you are using an application debugging tool such as the Visual C debugger or
NuMega’s BoundsChecker, you should place INT 1s in your code instead of INT 3s.
Refer to I1HERE on page 114.

Example Turns on I3HERE mode. Any INT 3s generated after this point cause SoftICE to pop up.

I3HERE on

When the command I3HERE==ON, and you are using a level -3 debugger, such as
BoundsChecker, SoftICE traps on any INT 3 breakpoints installed by the level-3 debugger.
When this happens, set I3HERE==OFF, and use the GENINT command to reactivate the
breakpoint. This returns control to the level -3 debugger, and SoftICE does not trap further
INT 3s.

I3HERE off
GENINT 3

See Also GENINT, I3HERE, SET
SoftICE Command Reference 115

SoftICE Commands
IDT Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display the Interrupt Descriptor Table.

Syntax IDT [interrupt-number]

interrupt-number Interrupt-number to display information

Use The IDT command displays the contents of the Interrupt Descriptor Table after reading the
IDT register to obtain its address.

The IDT command without parameters displays the IDT’s base address and limit, as well as
the contents of all entries in the table. If you specify an optional interrupt-number, only
information about that entry is displayed.

For Windows NT

Almost all interrupt handlers reside in NTOSKRNL, so it is very useful to have exports
loaded for it so that the handler names are displayed.

Note: NTOSKRNL must be the current symbol table (refer to TABLE on page 194) to view
symbol names.

Output Each line of the display contains the following information:

interrupt number 0 - 0FFh (5Fh for Windows 3.1, Windows 95).

interrupt type One of the following:

address Selector:offset of the interrupt handler.

Type Description

CallG32 32-bit Call Gate

CallG16 16-bit Call Gate

TaskG Task Gate

TrapG16 16-bit Trap Gate

TrapG32 32-bit Trap Gate

IntG32 32-bit Interrupt Gate

IntG16 16-bit Interrupt Gate
116 SoftICE Command Reference

SoftICE Commands
selector's DPL Selector's descriptor privilege level (DPL), which is either 0, 1, 2 or 3.

present bit P or NP, indicating whether the entry is present or not present.

Owner+Offset For Windows 95 and Windows NT only: Symbol or owner name plus
the offset from that symbol or owner.

Example The following command shows partial output of the IDT command with no parameters:

:IDT

Int Type Sel:Offset Attributes Symbol/Owner
IDTbase=C000ABBC Limit=02FF
0000 IntG32 0028:C0001200 DPL=0 P VMM(01)+0200
0001 IntG32 0028:C0001210 DPL=3 P VMM(01)+0210
0002 IntG32 0028:C00EEDFC DPL=0 P VTBS(01)+1D04
0003 IntG32 0028:C0001220 DPL=3 P VMM(01)+0220
0004 IntG32 0028:C0001230 DPL=3 P VMM(01)+0230
0005 IntG32 0028:C0001240 DPL=3 P VMM(01)+0240
0006 IntG32 0028:C0001250 DPL=0 P VMM(01)+0250
0007 IntG32 0028:C0001260 DPL=0 P VMM(01)+0260
0008 TaskG 0068:00000000 DPL=0 P
0009 IntG32 0028:C000126C DPL=0 P VMM(01)+026C
000A IntG32 0028:C000128C DPL=0 P VMM(01)+028C

The next command shows the contents of one entry in the IDT:

:IDT d

Int Type Sel:Offset Attributes Symbol/Owner
000D IntG32 0028:C00012B0 DPL=0 P VMM(01)+02B0
SoftICE Command Reference 117

SoftICE Commands
IRP Windows NT System Information

Display information about an I/O Request Packet (IRP).

Syntax IRP [irp-address]

irp-address Address of the start of the IRP structure to be displayed.

Use The IRP command displays the contents of the I/O Request Packet and the contents of
associated current I/O stack located at the specified address. The command does not check for
the validity of the IRP structure being shown, so any address will be accepted by SoftICE as
an irp-address.

The IRP fields shown by SoftICE are not documented in their entirety here, as adequate
information about them can be found in NTDDK.H in the Windows NT DDK. A few fields
deserve special mention, however, since device driver writers find them particularly useful:

Flags Flags used to define IRP attributes.

StackCount The number of stack locations that have been allocated for the IRP. A
common device driver bug is to access non-existent stack locations, so
this value may be useful in determining when this has occurred.

CurrentLocation This number indicates which stack location is the current one for the
IRP. Again, this value, combined with the previous StackCount, can
be used to track down IRP stack-related bugs.

Cancel This boolean is set to TRUE if the IRP has been cancelled as a result
of an IRP cancellation call. This happens when the IRP’s result is no
longer needed so the IRP will not complete.

Tail.Overlay.
CurrentStackLoc Address of current stack location. The contents of this stack location

are displayed after the IRP, as illustrated in the example for this
command.

Cancel This boolean is set to TRUE if the IRP has been cancelled as a result
of an IRP cancellation call. This happens when the IRP’s result is no
longer needed so the IRP will not complete.
118 SoftICE Command Reference

SoftICE Commands
These fields in the current stack location may be useful:

Major Function and
Minor Function These fields indicate what type of request the IRP is being used for.

The major function is used in determining which request handler will
be called when an IRP is received by a device driver.

Device Object Pointer to the device object that the IRP is currently stationed at. In
other words, the IRP has been sent to, and is in the process of being
received by, the device driver owning the device object.

File Object Pointer to the file object associated with the IRP. It can contain
additional information that serves as IRP parameters. For example, file
system drivers use the file object path name field to determine the
target file of a request.

Completion Rout This field is set when a driver sets a completion routine for an IRP
through the IoSetCompletionRoutine call. Its value is the address of
the routine that will be called when a lower-level driver (associated
with a stack location one greater than the current one) completes
servicing of the IRP and signals that it has done so with
IoCompleteRequest.

Example The following example shows the output for the IRP command:

:IRP eax

MdlAddress * : 00000000
Flags : 00000404 IRP_SYNCHRONOUS_API|IRP_CLOSE_OPERATION
AssociatedIrp : 00000000
&ThreadListEntry : FD8D9B18
IoStatus : 00000000
RequestorMode : 00
PendingReturned : False
StackCount : 03
CurrentLocation : 03
Cancel : False
CancelIrql : 00
ApcEnvironment : 00
Zoned : True
UserIosb * : FD8D9B20
UserEvent * : FB11FB40
Overlay : 00000000 00000000
CancelRoutine * : 00000000
UserBuffer * : 00000000
Tail.Overlay

&DeviceQueueEntry : FD8D9B48
Thread * : FD80A020
AuxiliaryBuffer * : 00000000
SoftICE Command Reference 119

SoftICE Commands
&ListEntry : FD8D9B60
CurrentStackLoc * : FD8D9BC0
OrigFileObject * : FD819E08

Tail.Apc * : FD8D9B48
Tail.ComplKey : 00000000
CurrentStackLocation:
MajorFunction : 12 IRP_MJ_CLEANUP
MinorFunction : 00
Control : 00
Flags : 00
Others : 00000000 00000000 00000000 00000000
DeviceObject * : FD851E40
FileObject * : FD819E08
CompletionRout * : 00000000
Context * : 00000000
120 SoftICE Command Reference

SoftICE Commands
LDT Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display the Local Descriptor Table.

Syntax LDT [selector]

selector Starting LDT selector to display.

Use The LDT command displays the contents of the Local Descriptor Table after reading its
location from the LDT register. If there is no LDT, an error message will be printed. If you
specify an optional selector, only information on that selector is displayed. If the starting
selector is a GDT selector (bit 2 is 0), the GDT displays rather than the LDT. The first line of
output contains the base address and limit of the LDT.

For Windows 95 and Windows NT

Even when there is no LDT, the LDT command can display an LDT you supply as a
command parameter. This optional parameter can be a GDT selector that represents an LDT.
You can locate selectors of type LDT with the GDT command.

For Windows NT

The LDT command is process specific and only works in processes that have an LDT. Use the
ADDR command to determine which processes contain LDTs. Use ADDR to switch to those
processes, then use the LDT command to examine their LDTs.

Output Each line of the display contains the following information:

selector value Lower two bits of this value reflect the descriptor privilege level.

selector type
Type Description

Code16 16-bit code selector

Data16 16-bit data selector

Code32 32-bit code selector

Data32 32-bit data selector

CallG32 32-bit Call Gate selector

CallG16 16-bit Call Gate selector
SoftICE Command Reference 121

SoftICE Commands
selector base Linear base address of the selector.

selector limit Size of the selector.

selector DPL Selector's descriptor privilege level (DPL), either 0, 1, 2 or 3.

present bit P or NP, indicating whether the selector is present or not present.

segment attributes One of the following:

Example The following example shows sample output for the LDT command.

:LDT

Sel. Type Base Limit DPL Attributes
LDTbase=8008B000 Limit=4FFF
0004 Reserved 00000000 00000000 0 NP
000C Reserved 00000000 00000000 0 NP
0087 Data16 80001000 00000FFF 3 P RW
008F Data16 00847000 0000FFFF 3 P RW
0097 Data16 0002DA80 0000021F 3 P RW
009F Data16 00099940 000029FF 3 P RW
00A7 Data16 0001BAC0 000000FF 3 P RW
00AF Data16 C11D9040 0000057F 3 P RW

TaskG32 32-bit Task Gate selector

TaskG16 16-bit Task Gate selector

TrapG32 32-bit Trap Gate selector

TrapG16 16-bit Trap Gate selector

IntG32 32-bit Interrupt Gate selector

IntG16 16-bit Interrupt Gate selector

Reserved Reserved selector

Type Description

RW Data selector is readable and writable.

RO Data selector is read only.

RE Code selector is readable and executable.

EO Code selector is execute only.

B TSS's busy bit is set.

Type Description
122 SoftICE Command Reference

SoftICE Commands
LHEAP Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display the Windows local heap.

Syntax LHEAP [selector | module-name]

selector LDT data selector.

module-name Name of any 16-bit module.

Use The LHEAP command displays the data objects that a Windows program has allocated on
the local heap. If you do not specify a selector, the value of the current DS register is used. The
specified selector is usually the Windows program's data selector. To find this, use the HEAP
command on the Windows program you are interested in and look for an entry of type data.
Each selector that contains a local heap is marked with the tag LH.

If a module-name is entered, SoftICE uses the modules default data segment for the heap
walk.

For Windows 95 and Windows NT

To find all segments that contain a local heap, use the HEAP command with the -L option.

For Windows NT

The LHEAP command only works if the current process contains a WOW box.

Output For each local heap entry the following information displays:

offset 16-bit offset relative to the specified selector base address.

size Size of the heap entry in bytes.

type Type of entry. One of the following:

Type Description

FIX Fixed (not moveable)

MOV Moveable

FREE Available memory
SoftICE Command Reference 123

SoftICE Commands
handle Handle associated with each element. For fixed elements, the handle is
equal to the address that is returned from LocalAlloc(). For moveable
elements, the handle is the address that will be passed to LocalLock().

At the end of the list, the total amount of memory in the local heap displays.

Example To display all local heap entries belonging to the GDI default local heap, use the following
command:

LHEAP gdi

Offset Size Type Handle

93D2 0046 Mov 0DFA

941E 0046 Mov 0C52

946A 0046 Mov 40DA

94B6 004E Mov 0C66

950A 4A52 Mov 0E52

Used: 19.3K
124 SoftICE Command Reference

SoftICE Commands
LINES Windows 3.1, Windows 95, Windows 98, Windows NT Customization

Change the number of lines for the SoftICE display.

Syntax For Windows 3.1

LINES [25 | 43 | 50]

For Windows 95 and Windows NT

With Universal Video Driver:

LINES numlines

numlines Number of screen lines. Set this to any value greater than 25.

With VGA Text Video Driver:

LINES [25 | 43 | 50 | 60]

Use The LINES command changes SoftICE's character display mode. For VGA Text Driver
displays, it allows different display modes: 25-line, 43-line, 50-line, and 60-line mode. The
43-, 50-, and 60-line modes are only valid on VGA display adapters. For the Universal Video
Driver, you can specify any number of lines greater than 25.

Using LINES with no parameters displays the current state of LINES. The default number of
display lines is 25.

If you enter the ALTSCR command, SoftICE changes to 25-line mode automatically. If you
change back to a VGA display and want a larger line mode, enter the LINES command again.
To display in 50-line mode on a serial terminal, first place the console mode of the serial
terminal into 50-line mode using the DOS MODE command.

For Windows 95 and Windows NT

You can display 60 lines for single monitor debugging.

When debugging in serial mode, all line counts are supported for VGA displays.

Example To change the SoftICE display to 53 lines using the Universal Video Driver, use the following
command. The current font affects the number of lines SoftICE can display.

LINES 53

See Also SET, WIDTH
SoftICE Command Reference 125

SoftICE Commands
LOCALS Windows 95, Windows 98, Windows NT Symbol/Source Command

Lists local variables from the current stack frame.

Syntax LOCALS

Use Use the LOCALS command to list local variables from the current stack frame to the
Command window.

Output The following information displays for each local symbol:

• Stack Offset

• Type definition

• Value, Data, or structure symbol ({...})

The type of local determines whether a value, data, or structure symbol ({...}) is displayed. If
the local is a pointer, the data it points to is displayed. If it is a structure, the structure symbol
is displayed. If the local is neither a pointer nor a structure, its value is displayed.

Hint: You can expand structures, arrays, and character strings to display their contents. Use
the WL command to display the Locals window, then double-click the item you want
to expand. Note that expandable items are delineated with a plus (+) mark.

Example The following example displays the local variables for the current stack frame:

:LOCALS

[EBP-4] struct_BOUNCEDATA * pdb=0x0000013F <{...}>
[EBP+8] void * hWnd=0x000006D8

See Also TYPES, WL
126 SoftICE Command Reference

SoftICE Commands
M Windows 3.1, Windows 95, Windows 98, Windows NT Miscellaneous

Move data.

Syntax M source-address l length dest-address

source-address Start of address range to move.

length Length in bytes.

dest-address Start of destination address range.

Use The specified number of bytes are moved from the source-address to the dest-address.

Example Moves 2000h bytes (8KB) from memory location DS:1000h to ES:5000h.

M ds:1000 l 2000 es:5000
SoftICE Command Reference 127

SoftICE Commands
MACRO Windows 95, Windows 98, Windows NT Customization

Define a new command that is a superset of SoftICE commands.

Syntax MACRO [macro-name] | [*] | [= “ macro body ”]

macro-name Case-insensitive, 3-8 character name for the macro being defined, or
the name of an existing macro.

macro-body Quoted string that contains a list of SoftICE commands and
parameters separated by semi-colons (;).

* Delete one or all defined macros.

= Define (or redefine) a macro.

Use The MACRO command is used to define new Macro commands that are supersets of existing
SoftICE commands. Defined macros can be executed directly from the SoftICE command
line. The MACRO command is also used to list, edit, or delete individual macros. Macros are
directly related to breakpoint actions, as breakpoint actions are simply macros that do not
have names, and can only be executed by the SoftICE breakpoint engine.

If no options are provided, a list of all defined macros will be displayed, or if a macro-name is
specified, that macro will be inserted into the command buffer so that it can be edited.

When defining or redefining a macro, the following form of the macro command is used:

MACRO macro-name = “ macro-body ”

The macro-name parameter can be between 3 and 8 characters long, and may contain any
alphanumeric character or underscore (_). If the macro-name parameter specifies an existing
macro, the existing macro will be redefined. The macro-name cannot be a duplicate of an
existing SoftICE command. The macro-name must be followed by an equal sign “=”, which
must be followed by the quoted string that defines the macro-body.

The macro-body parameter must be embedded between beginning and ending quotation
marks (“). The macro-body is made up of a collection of existing SoftICE commands, or
defined macros, separated by semi-colons. Each command may contain appropriate ‘literal’
parameters, or can use the form%<parameter#>, where parameter# must be between 1 and 8.
When the macro is executed from the command line, any parameter references will expand
into the macro-body from the parameters specified when the command was executed. If you
need to embed a literal quote character (”) or a percent sign (%) within the macro body
precede the character with a backslash character (\). Because the backslash character is used for
escape sequences, to specify a literal backslash character, use two consecutive backslashes (\\).
The final command within the macro-body does not need to be terminated by a semi-colon.
128 SoftICE Command Reference

SoftICE Commands
You can define macros in the SoftICE Loader using the same syntax described here. When
you load SoftICE, each macro definition is created and available for use. SoftICE displays a
message for each defined macro to remind you of it presence. Since macros consume memory,
you can set the maximum number of named and unnamed macros (that is, breakpoint
actions) that can be defined during a SoftICE session. The default value of 32 is also the
minimum value. The maximum value is 256.

Note: A macro-body cannot be empty. It must contain one or more non-white space
characters. A macro-body can execute other macros, or define another macro, or even a
breakpoint with a breakpoint action. A macro can even refer to itself, although
recursion of macros is not extremely useful because there is no programmatic way to
terminate the macro. Macros that use recursion execute up to the number of times that
SoftICE permits (32 levels of recursion are supported), no more, and no less. Even
with this limitation, macro recursion, although crude, can be useful for walking nested
or linked data structures. To get a recursive macro to execute as you expect, you have to
devise clever macro definitions.

Example The following is an example of using the MACRO command without parameters or options:

:MACRO

XWHAT = "WHAT EAX;WHAT EBX;WHAT ECX; WHAT EDX; WHAT ESI; WHAT EDI"
OOPS = "I3HERE OFF;GENINT 3"
1shot = "bpx eip do \"bc bpindex \""

Note: The name of the macro is listed to the left, and the macro body definition to the right.

The following are more examples of basic usage of the MACRO command:

:MACRO * Delete all named macros.

:MACRO oops * Delete the macro named oops.

:MACRO xwhat Edit the macro named xwhat.

Note: Because macros can be redefined at any time, when you use the edit form of the
MACRO command (MACRO macro-name) the macro definition will be placed in the
edit buffer so that it can be edited. If you do not wish to modify the macro, press ESC.
The existing macro will remain unchanged. If you modify the macro-body without
changing the macro name, the macro will be redefined (assuming the syntax is correct!)

The following is a simple example of a macro definition:

:MACRO help = “h”
SoftICE Command Reference 129

SoftICE Commands
The next example uses a literal parameter within the macro-body. Its usefulness is limited to
specific situations or values:

:MACRO help = “h exp”

In this example, the SoftICE H command is executed with the parameter EXP every time the
macro executes. This causes the help for the SoftICE EXP command to display.

This is a slightly more useful definition of the same macro:

:MACRO help= “help %1”

In this example, an optional parameter was defined to pass to the SoftICE H command. If the
command is executed with no parameters, the argument to the H command is empty, and the
macro performs exactly as the first definition; help for all commands is displayed. If the macro
executes with 1 parameter, the parameter is passed to the H command, and the help for the
command specified by parameter 1 is displayed. For execution of macros, all parameters are
considered optional, and any unused parameters are ignored.

The following are examples of legal macro definitions:

:MACRO qexp = “addr explorer; query %1” qexp

or

qexp 1 40000

:MACRO 1shot = “bpx %1 do \”bc bpindex\”” 1shot eip

or

1shot @esp

:MACRO ddt = “dd thread” ddt

:MACRO ddp = “dd process” ddp

:MACRO thr = “thread %1 tid” thr

or

thr -x

The following are examples of illegal macro definitions, with an explanation and a corrected
example:

Illegal Definition: MACRO dd = “dd dataaddr”

Explanation: This is a duplication of a SoftICE command. SoftICE commands cannot be
redefined.
Corrected Example: MACRO dda = “dd dataaddr”
130 SoftICE Command Reference

SoftICE Commands
Illegal Definition: MACRO aa = “addr %1”

Explanation: The macro command name is too short. A macro name must be between 3 and
8 characters long.
Corrected Example: MACRO aaa = “addr %1”

Illegal Definition: MACRO pbsz = ? hibyte(hiword(*(%1-8))) << 5

Explanation: The macro body must be surrounded by quote characters (“).
Corrected Example: MACRO pbsz = “? hibyte(hiword(*(%1-8))) << 5”

Illegal Definition: MACRO tag = “? *(%2-4)”

Explanation: The macro body references parameter %2 without referencing parameter %1.
You cannot reference parameter %n+1 without having referenced parameter %n.
Corrected Example: MACRO tag = “? *(%1-4)”
SoftICE Command Reference 131

SoftICE Commands
MAP32 Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display a memory map of all 32-bit modules currently loaded in memory.

Syntax For Windows 3.1

MAP32 [module-name | module-handle]

module-name Windows module-name.

module-handle Base address of a module image.

For Windows 95 and Windows NT

MAP32 [module-name | module-handle | address]

module name Windows module-name.

module handle Base address of a module image.

address Any address that falls within an executable image.

Use MAP32 with no parameters lists information about all 32-bit modules.

If you specify either a module-name or module-handle as a parameter, only sections from the
module are shown. For each module, one line of data is printed for every section belonging to
the module.

Since the MAP32 command takes any address that falls within an executable image, an easy
way to see the memory map of the module that contains the current EIP is to enter:

MAP32 eip

For Windows 95

No matter what process/context you are in, you see the same list of drivers because memory
above 2GB is globally mapped.

You see different lists of applications/DLLs because they are always private to an address
context.
132 SoftICE Command Reference

SoftICE Commands
For Windows NT

MAP32 lists kernel drivers as well as applications and DLLs that exist in the current process.
They can be distinguished in the map because drivers always occupy addresses above 2GB,
while applications and DLLs are always below 2GB.

Output Each line in MAP32’s output contains the following information:

Owner Module name.

Name Section name from the executable file.

Obj# Section number from the executable file.

Address Selector:offset address of the section.

Size Section’s size in bytes.

Type Type and attributes of the section, as follows:

Example For Windows 3.1

The following example illustrates sample output for MAP32 executed on a Visual C module.

:MAP32 msvcrt10

Type Attributes

CODE Code

IDATA Initialized Data

UDATA Uninitialized Data

RO Read Only

RW Read/Write

SHARED Object is shared

Owner Obj Name Obj# Address Size Type

MSVCRT10 .text 0001 2197:86C81000 00024A00 CODE RO

MSVCRT10 .bss 0002 219F:86CA6000 00001A00 UDATA RW

MSVCRT10 .rdata 0003 219F:86CA8000 00000200 IDATA RO
SoftICE Command Reference 133

SoftICE Commands
MSVCRT10 .edata 0004 219F:86CA9000 00005C00 IDATA RO

MSVCRT10 .data 0005 219F:86CAF000 00006A00 IDATA RW

MSVCRT10 .idata 0006 219F:86CB6000 00000A00 IDATA RW

MSVCRT10 .reloc 0007 219F:86CB7000 00001800 IDATA RO
134 SoftICE Command Reference

SoftICE Commands
MAPV86 Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display the DOS memory map of the current Virtual Machine.

Syntax MAPV86 [address]

address Segment:offset type address.

Use If no address parameter is specified, a map of the entire current virtual machine’s V86 address
space is displayed. Information about the area in the map where a certain address lies can be
obtained by specifying the address.

Pages of DOS VM memory may not be valid (not mapped in) when you enter the MAPV86
command. If this occurs, the output from the MAPV86 command will terminate with a
PAGE NOT PRESENT message. Often, just popping out of, and then back into, SoftICE
will result in those pages being mapped in.

A useful application of the MAPV86 command is in obtaining addresses to which a symbol
table must be aligned with the SYMLOC command. DOS programs that were started before
Windows will not automatically have their symbol information mapped to their location in
V86 memory. By obtaining the start of their static code segment (and adding 10h to it if the
program is a .EXE) with the MAPV6 command, and setting the symbol table alignment to
that value, source level debugging for these global DOS programs is possible.

For Windows NT

The MAPV86 command is process specific. You must be in an NTVDM process because
these are the only ones that contain V86 boxes. There is no global MSDOS in Windows NT.

Output For Windows 3.1 and Windows 95

The following summary information is displayed by the MAPV86 command:

VM ID Virtual machine (VM) ID. VM1 is the System VM.

VM handle 32-bit virtual machine handle.

CRS pointer VM’s 32-bit client register structure pointer.

VM address 32-bit linear address of the VM. This is the high linear address of the
virtual machine, which is also currently mapped to linear address 0.
SoftICE Command Reference 135

SoftICE Commands
If the current CS:IP belongs to a MAPV86 entry, that line will be highlighted. Each line of
the MAPV86 display contains the following information:

Start Segment:offset start address of the component.

Length Length of the component in paragraphs.

Name Owner name of the component.

Example The following example illustrates how to use the MAPV86 command to display the entire
V86 map for the current VM:

:MAPV86

ID=01 Handle=80441000 CRS Ptr=80013390 Linear=80C00000

Start Length Name

0000:0000 0040 Interrupt Vector Table

0040:0000 0030 ROM BIOS Variables

0070:0000 025D I/O System

02CD:0000 08E6 DOS

0BB5:0012 0000 NUMEGA

0C8B:0000 00E8 SOFTICE1

0D41:0000 00B6 XMSXXXX0

10D0:0000 038F SMARTAAR
136 SoftICE Command Reference

SoftICE Commands
MOD Windows 3.1 System Information

Display the Windows module list.

Syntax MOD [partial-name]

partial-name Prefix of the Windows module name.

Use This command displays the Windows module list in the Command window. A module is a
Windows application or DLL. All 16-bit modules will be displayed first, followed by all 32 bit
modules. If a partial name is specified, only those modules that begin with the name will be
displayed.

Output For each loaded module the following information is displayed:

module handle 16-bit handle that Windows assigns to each module. It is actually a
16-bit selector of the module database record which is similar in
format to the EXE header of the module file.

For Windows 95 and
Windows NT, refer to
MOD on page 139.

pe-header Selector:offset of the PE File header for that module.
Note: A value will only be displayed in this column for 32-bit modules.

module name Name specified in the .DEF file using the 'NAME' or 'LIBRARY'
keyword.

file name Full path and file name of the module's executable file.

Example The following example shows abbreviated output of MOD to display all modules in the
system:

:MOD

hMod PEHeader Module Name .EXE File Name

0117 KERNEL C:\WINDOWS\SYSTEM\KRNL386.EXE

0147 SYSTEM C:\WINDOWS\SYSTEM\SYSTEM.DRV

014F KEYBOARD C:\WINDOWS\SYSTEM\KEYBOARD.DRV

0167 MOUSE C:\WINDOWS\SYSTEM\LMOUSE.DRV

01C7 DISPLAY C:\WINDOWS\SYSTEM\VGA.DRV

01E7 SOUND C:\WINDOWS\SYSTEM\MMSOUND.DRV
SoftICE Command Reference 137

SoftICE Commands
See Also For Windows 95 and Windows NT, refer to MOD on page 139.

0237 COMM C:\WINDOWS\SYSTEM\COMM.DRV

0000 2987:80756080 W32SKRNL C:\WINDOWS\SYSTEM\win32s\w32skrnl.dll

12C7 2987:86C20080 FREECELL C:\WIN32APP\FREECELL\FREECELL.EXE

1FC7 2987:86C40080 CARDS C:\WIN32APP\FREECELL\CARDS.dll

1FDF 2987:86C70080 w32scomb C:\WINDOWS\SYSTEM\win32s\w32scomb.dll

hMod PEHeader Module Name .EXE File Name
138 SoftICE Command Reference

SoftICE Commands
MOD Windows 95 , Windows 98, Windows NT System Information

Display the Windows module list.

Syntax MOD [partial-name]

partial-name Prefix of the Windows module name

Use This command displays the Windows module list in the Command window. If a partial name
is specified, only modules that begin with the name will be displayed. SoftICE displays
modules in the following order:

For Windows 3.1,
refer to MOD on
page 137.

• 16-bit modules

• 32-bit driver modules (Windows NT only)

• 32-bit application modules

For Windows 95

The module list is global. A module is a Windows application or DLL. All modules have an
hMod value.

For Windows NT

The Mod command is process specific. All modules will be displayed that are visible within
the current process. This includes all 16-bit modules, all 32-bit modules, and all driver
modules. This means if you want to see specific modules, you must switch to the appropriate
address context before using the MOD command.

You can distinguish application modules from driver modules because application modules
have base addresses below 2GB (80000000h).

The 16-bit modules will be the only modules that have an hMod value.

Output For each loaded module the following information is displayed:

module handle 16-bit handle that Windows assigns to each module. It is actually a
16-bit selector of the module database record which is similar in
format to the EXE header of the module file.

base Base linear address of the executable file. This is also used as the
module handle for 32-bit executables.
Note: A value will only be displayed in this column for 32-bit modules.
SoftICE Command Reference 139

SoftICE Commands
pe-header Selector:offset of the PE File header for that module.
Note: A value will only be displayed in this column for 32-bit modules.

module name Name specified in the .DEF file using the 'NAME' or 'LIBRARY'
keyword.

file name Full path and file name of the module's executable file.

Example The following example is abbreviated output of MOD used on the NTVDM WOW process:

:MOD

hMod Base PEHeader ModuleName File Name

021F KERNEL D:\WINNT35\SYSTEM32\KRNL386.EXE

020F SYSTEM D:\WINNT35\SYSTEM32\SYSTEM.DRV

01B7 KEYBOARD D:\WINNT35\SYSTEM32\KEYBOARD.DRV

02B7 MOUSE D:\WINNT35\SYSTEM32\MOUSE.DRV

02CF DISPLAY D:\WINNT35\SYSTEM32\VGA.DRV

02E7 SOUND D:\WINNT35\SYSTEM32\SOUND.DRV

0307 COMM D:\WINNT35\SYSTEM32\COMM.DRV

031F USER D:\WINNT35\SYSTEM32\USER.EXE

0397 GDI D:\WINNT35\SYSTEM32\GDI.EXE

0347 WOWEXEC D:\WINNT35\SYSTEM32\WOWEXEC.EXE

03DF SHELL D:\WINNT35\SYSTEM32\SHELL.DLL

0C3F WFWNET D:\WINNT35\SYSTEM32\WFWNET.DRV

0BFF MMSYSTEM D:\WINNT35\SYSTEM32\MMSYSTEM.DLL

0BF7 TIMER D:\WINNT35\SYSTEM32\TIMER.DRV

80100000
80100080

ntoskrnl \WINNT35\System32\ntoskrnl.exe

80400000
80400080

hal \WINNT35\System32\hal.dll

80010000
80010080

atapi atapi.sys

80013000
80013080

SCSIPORT \WINNT35\System32\Drivers\SCSIPORT.SYS

80001000
80001080

Atdisk Atdisk.sys
140 SoftICE Command Reference

SoftICE Commands
See Also For Windows 3.1, refer to MOD on page 137.

8001B000
8001B080

Scsidisk Scsidisk.sys

803AE000
803AE080

Fastfat Fastfat.sys

FB000000
FB000080

Floppy \SystemRoot\System32\Drivers\Floppy.SYS

FB010000
FB010080

Scsicdrm \SystemRoot\System32\Drivers\Scsicdrm.SYS

FB020000
FB020080

Fs_Rec \SystemRoot\System32\Drivers\Fs_Rec.SYS

FB030000
FB030080

Null \SystemRoot\System32\Drivers\Null.SYS

hMod Base PEHeader ModuleName File Name
SoftICE Command Reference 141

SoftICE Commands
NTCALL Windows NT System Information

Display NTOSKRNL calls used by NTDLL.

Syntax NTCALL

Use The NTCALL command displays all NTOSKRNL calls that are used by NTDLL. Many of
the API's in NTDLL are nothing more than a wrapper for routines in NTOSKRNL, where
the real work is done at level 0. If you use SoftICE to step through one of these calls, you will
see that it immediately performs an INT 2Eh instruction. The INT 2Eh instructions serve as
the interface for transitions between a privilege level 3 API and a privilege level 0 routine that
actually implements the call.

When an INT 2Eh is executed, the EDX register is set to point at the parameter stack frame
for the API and the EAX register is set to the index number of the function. When the current
instruction pointer reference is an INT 2Eh instruction, the SoftICE disassembler will show
the address of the privilege level 0 routine that will be called when the INT 2Eh executes,
along with the number of dword parameters that are being passed in the stack frame pointed
at by EDX. If you wish to see the symbol name of the routine, you must load symbols for
NTOSKRNL and make sure that it is the current symbol table. Refer to TABLE on page 194.

Output The NTCALL command display all the level 0 API's available. For each API, the following
information displays:

Func. Hexadecimal index number of the function passed in EAX.

Address Selector:offset address of the start of the function.

Params Number of dword parameters passed to the function.

Name Either the symbolic name of the function, or the offset within
NTOSKRNL if no symbols are loaded.

An example of the disassembler output follows. Note how SoftICE indicates that the INT
2Eh instruction’s execution result in the NTOSKRNL function _NTSetEvent being called
with 2 dword parameters.

ntdll!NtSetEvent

001B:77F8918C MOV EAX,00000095

001B:77F89191 LEA EDX,[ESP+04]

001B:77F89195 INT 2E ; _NtSetEvent(params=02)

001B:77F89197 RET 0008
142 SoftICE Command Reference

SoftICE Commands
Example The following example shows abbreviated output of the NTCALL command. It can be seen
from this listing that the NTOSKRNL routine, _NTAccessCheck, is located at
8:80182B9Eh, that it is assigned a function identifier of 1, and that it takes 8 dword
parameters.

00 0008:80160D42 params=06 _NtAcceptConnectPort

01 0008:80182B9E params=08 _NtAccessCheck

02 0008:80184234 params=0B _NtAccessCheckAndAuditAlarm

03 0008:80180C0A params=06 _NtAdjustGroupsToken

04 0008:80180868 params=06 _NtAdjustPrivilegesToken

05 0008:8017F9A6 params=02 _NtAlertResumeThread

06 0008:8017F95E params=01 _NtAlertThread

07 0008:8014B0C4 params=01 _NtAllocateLocallyUniqueId

08 0008:8014B39A params=03 _NtAllocateUuids
SoftICE Command Reference 143

SoftICE Commands
O Windows 3.1, Windows 95, Windows NT I/O Port

Output a value to an I/O port.

Syntax O[size] port value

size

port Port address.

value Byte, word, or dword value as specified by size.

Use Output to PORT commands are used to write a value to a hardware port. Output can be
done to byte, word, or dword ports. If no size is specified, the default is B.

All outs are done immediately to the hardware with the exception of the interrupt mask
registers (Port 21h & A1h). These do not take effect until the next time you exit from the
SoftICE screen.

Example This command performs an out to port 21, which unmasks all interrupts for interrupt
controller one.

O 21 0

Value Description

B Byte

W Word

D Dword
144 SoftICE Command Reference

SoftICE Commands
OBJDIR Windows 98, Windows NT System Information

Displays objects in a Windows NT Object Manager’s object directory.

Syntax OBJDIR [object-directory-name]

Use Use the OBJDIR command to display the named objects within the Object Manager’s object
directory. Using OBJDIR with no parameters displays the named objects within the root
object directory. To list the objects in a subdirectory, enter the full object directory path.

Output The following information will be displayed by the OBJDIR command:

Object Address of the object body.

ObjHdr Address of the object header.

Name Name of the object.

Type Windows NT-defined data type of the object.

Example The following example is abbreviated output of OBJDIR listing objects in the Device object
directory:

OBJDIR device

Directory of \Device at FD8E7F30

Object ObjHdr Name Type

FD8CC750 FD8CC728 Beep Device

FD89A030 FD89A008 NwlnkIpx Device

FD889150 FD889128 Netbios Device

FD8979F0 FD8979C8 Ip Device

FD8C9ED0 FD8C9EA8 KeyboardClass0 Device

FD8C5038 FD8C5010 Video0 Device

FD8C4040 FD8C4018 Video1 Device
SoftICE Command Reference 145

SoftICE Commands
In the following example, the OBJDIR command is used with a specified object directory
pathname to list the objects in the \Device\Harddisk0 subdirectory.

OBJDIR \device\harddisk0

Directory of \Device\Harddisk0 at FD8D38D0

See Also OBJTAB

Object ObjHdr Name Type

FD8D3730 FD8D3708 Partition0 Device

FD8D3410 FD8D33E8 Partition1 Device

FD8D32D0 FD8D32A8 Partition2 Device

3 Object(s)
146 SoftICE Command Reference

SoftICE Commands
OBJTAB Windows NT System Information

Display entries in the WIN32 user object-handle table.

Syntax OBJTAB [handle | object-type-name | -h]

handle Object handle.

object-type-name One of the object-type-names, predefined by SoftICE:

-h Display list of valid object-type-names.

Use Use the OBJTAB command to display all entries in the master object-handle table created
and maintained by CSRSS, or to obtain information about a specific object or objects of a
certain type. The master object-handle table contains information for translating user object-
handles such as an hWnd or hCursor into the actual data that represents the object.

If you use OBJTAB without parameters, SoftICE lists the full contents of the master object-
handle table. If an object handle is specified, just that object is listed. If an object-type-name is
entered, all objects in the master object-handle table of that type are listed.

FREE Free handle

HWND Hwnd

Menu Menu or Sub-menu object

Icon (or Crsr) HICON or HCURSOR

DFRW DeferWindowPos data

HOOK Hook

TINF Thread Info data

QUE (3.51 only) Message queue

CPD Call Proc Data thunk

ACCL Accelerator table

WSTN Workstation object

DESK(3.51 only) Desktop object

DDE DDE String
SoftICE Command Reference 147

SoftICE Commands
Output The following information is displayed by the OBJTAB command:

Object Pointer to the object’s data.

Type Type of the object.

Id Object’s type ID.

Handle Win32 handle value for the object.

Owner CSRSS specific instance data for the process or thread that owns the
object.

Flags Object’s flags.

Example The following is an abbreviated example using the OBJTAB command without parameters or
options:

:OBJTAB

See Also OBJDIR

Object Type Id Handle Owner Flags

7F2D4DA0 Hwnd 01 0004005C 7F2D5F88 00

7F2D85B8 Menu 02 0001005D 00298B40 00

7F2D4E58 Hwnd 01 0003005E 7F2D5F88 00

7F2D1820 Queue 07 0002005F 00000000 00

003E50E0 Accel. Table 09 00030060 00298B40 00
148 SoftICE Command Reference

SoftICE Commands
P Windows 3.1, Windows 95, Windows 98, Windows NT Flow Control

F10, F12 for P RET

Execute one program step.

Syntax P [RET]

Use The P command is a logical program step. In assembly mode, one instruction at the current
CS:EIP is executed unless the instruction is a call, interrupt, loop, or repeated string
instruction. In those cases, the entire routine or iteration is completed before control is
returned to SoftICE.

If RET is specified, SoftICE will step until it finds a return or return from interrupt
instruction. This function works in either 16- or 32-bit code and also works in level 0 code.

The P command uses the single step flag for most instructions. For call, interrupt, loop, or
repeated string instructions, a one-time INT 3 style breakpoint execution breakpoint is used.

In source mode one source statement is executed. If the source statement involves calling
another procedure, the call is not followed. The called procedure is treated like a single
statement.

If the Register window is visible when SoftICE pops up, all registers that have been altered
since the P command was issued will be displayed with the bold video attribute. For call
instructions, this will show what registers a subroutine has not preserved.

In an unusually long procedure, there can be a noticeable delay when using the P RET
command, because SoftICE is single stepping every instruction.

For Windows 95 and Windows NT

The P command, by default, is thread specific. If the current EIP is executing in thread X,
SoftICE will not break until the program step occurs in thread X. This prevents the case of
Windows NT process switching or thread switching during the program step causing
execution to stop in a different thread or process than the one you were debugging. To change
this behavior, either use the SET command with the THREADP keyword or disable thread-
specific stepping in the troubleshooting SoftICE initialization settings.

Example To execute one program step, use the command:

P

SoftICE Command Reference 149

SoftICE Commands
PAGE Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display page table information.

Syntax PAGE [address [L length]]

address Virtual address, segment:offset address, or selector:offset address that
you want to know page table information about, including the virtual
and physical address.

length Number of pages to display.

Use The PAGE command can be used to list the contents of the current page directory or the
contents of individual page table entries.

Note: Multiple page directories are used only by Windows NT.

In the x86 architecture, a page directory contains 1024 4-byte entries, where an entry specifies
the location and attributes of a page table that is used to map a range of memory related to the
entry’s position in the directory. (These ranges are shown on the far right in the PAGE
command’s output of the page directory.)

Each entry represents the location and attributes of a specific page within the memory range
mapped by the page table. An x86 processor page is 4KB in size, so a page table maps
4KB/page * 1024 entries = 4MB of memory, and the page directory maps up to 4MB/page
table * 1024 entries = 4GB of memory.

NT 4.0 uses the 4 MB page feature of the Pentium/Pentium Pro processors. NTOSKRNL,
HAL, and all boot drivers are mapped into a 4 MB page starting at 2 GB (80000000h).

When the address parameter is specified, information about the page table entry that maps
the address is shown. This includes the following:

• The linear virtual address of the start of the page mapped by the entry.

• The physical address that corresponds to the start of the page mapped by the entry.

• The page table entry attributes of the page. This information corresponds directly to
processor defined attributes. Page table attributes are represented by bits that indicate
whether or not the entry is valid, the page is dirty or has been accessed, whether its a
supervisor or user-mode page, and its access protections. Only bit attributes that are set
are shown by SoftICE.

• The page type. This information is interpreted from the Windows-defined bit field in the
page table entry and the types displayed by SoftICE correspond to Windows definitions.
150 SoftICE Command Reference

SoftICE Commands
Use the length parameter with the address parameter to list information about a range of
consecutive page table entries. It should be noted that the PAGE command will not cross page
table boundaries when listing a range. This means that a second PAGE command must be
used to list the pages starting where the first listing stopped, in the case that fewer entries are
listed than you specified.

If no parameters are specified, the PAGE command shows the contents of the current page
directory. Each line listed represents 4MB of linear address space. The first line shows the
physical and linear address of the page directory. Each following line displays the information
in each page directory entry. The data shown for each entry is the same as is described above
for individual page table entries, however, in this output addresses represent the locations of
page tables rather than pages.

Output The following information is displayed by the PAGE command:

physical address If a page directory is being displayed then this is the physical address
of the page table that a page directory entry refers to. Each page
directory entry references one page table which controls 4MB of
memory.

If an address parameter is entered so that specific pages are displayed,
then this is the physical address that corresponds to the start of a page.

linear address For Windows 3.1 and Windows 95 only: If the page directory is being
displayed then this is the virtual address of a page table. This is the
address you would use in SoftICE to display the page table with the D
command.

If specific pages are being displayed, this is the virtual address of a
page. If a length was entered then this is the virtual address of the start
of each page.

attribute This is the attribute of the page directory or page table entry. The valid
attributes are, as follows:

Windows 3.1, Windows
95, and Windows NT

Windows NT Only

P Present S Supervisor

D Dirty RW Read/Write

A Accessed 4M 4 MB page
(NT 4.0 only)

U User

R Read Only

NP Not Present
SoftICE Command Reference 151

SoftICE Commands
type For Windows 3.1 and Windows 95 only: Each page directory entry
has a three-bit field that can be used by the operating system to classify
page tables. Windows classifies page tables into the following six
categories:

If a page is marked Not Present, then all that is displayed is NP followed by the dword
contents of the page table entry.

Example For Windows 3.1 and Windows 95

PAGE with no parameters displays page directory information. The following is a sample
PAGE command output:

PAGE

Page Directory Physical=002B6000 Linear=006B600

System Private

Instance Relock

VM Hooked

Physical Linear Attributes Type Linear Address Range

002B7000 006B7000 P A U System 00000000-003FFFFF

00109000 00509000 P A U System 00400000-007FFFFF

0010A000 0050A000 P U System 00800000-00BFFFFF

0010B000 0050B000 P U System 00C00000-00FFFFFF

0010C000 0050C000 P U System 01000000-013FFFFF

002B8000 006B8000 P A U System 80000000-803FFFFF

00106000 00506000 P A U System 80400000-807FFFFF

00107000 00507000 P U System 80800000-80BFFFFF

00108000 00508000 P U System 80C00000-80FFFFFF

002B7000 006B7000 P A U System 81000000-813FFFFF
152 SoftICE Command Reference

SoftICE Commands
PAGE with an address specified displays the page table entry that corresponds to that address.
In this example, three page table entries are shown starting with the page table entry that
corresponds to address 00106018. Notice that when the length parameter is specified, the
linear address is truncated to the base address of the memory page that contains address.

PAGE 00106018 l 3

In this example PAGE can be used to find both the virtual and physical address of
selector:offset address.

PAGE #585:263C

For Windows NT

When the Page command displays information on either PTEs or PDEs for NT 4.0, 4 MB
pages are indicated by a pneumonic 4M in the Attributes field. The following sample output
shows the region starting at 2 GB.

:PAGE
Page Directory Physical=00030000
Physical Attributes Linear Address Range
00000000 P A S RW 4M 80000000 - 803FFFFF
00400000 P A S RW 4M 80400000 - 807FFFFF
00800000 P A S RW 4M 80800000 - 80BFFFFF
00C00000 P A S RW 4M 80C00000 - 80FFFFFF
01034000 P A S RW 4M 81000000 - 813FFFFF

Linear Physical Attributes Type

00106000 00006000 P U VM

00107000 00007000 P U VM

00108000 00008000 P U VM

Linear Physical Attributes Type

0004A89C 00218442 P U Instance
SoftICE Command Reference 153

SoftICE Commands
The following example is a partial listing of output from the PAGE command being executed
without parameters on Windows NT 3.51 so that the page directory contents are printed.

:PAGE
Page Directory Physical=00030000
Physical Attributes Linear Address Range
00380000 P A U RW 00000000 - 003FFFFF
00611000 P A U RW 77C00000 - 77FFFFFF
00610000 P A U RW 7FC00000 - 7FFFFFFF
00032000 P A S RW 80000000 - 803FFFFF
00034000 P A S RW 80400000 - 807FFFFF
00035000 P A S RW 80800000 - 80BFFFFF
00033000 P A S RW 80C00000 - 80FFFFFF
00030000 P A S RW C0000000 - C03FFFFF
00040000 P A S RW C0400000 - C07FFFFF
00001000 P A S RW C0C00000 - C0FFFFFF

Here is an example of the PAGE command being used to display the attributes and addresses
of the page that instructions are currently being executed from.

:PAGE eip

Linear Physical Attributes
80404292 00404292 P D A S RW
154 SoftICE Command Reference

SoftICE Commands
PAUSE Windows 3.1, Windows 95, Windows 98, Windows NT Customization

Pause after each screen.

Syntax PAUSE [on | off]

Use The PAUSE command controls screen pause at the end of each page. If PAUSE is on, you are
prompted to press any key before information scrolls off the Command window. The Enter
key scrolls a single line at a time. Any other key scrolls a page at a time. The prompt displays
in the status line at the bottom of the Command window.

If you do not specify a parameter, the current state of PAUSE displays.

The default is PAUSE on.

Example The following command specifies that the subsequent Command window display will not
automatically scroll off the screen. You are prompted to press a key before information scrolls
off the screen.

PAUSE on

See Also SET
SoftICE Command Reference 155

SoftICE Commands
PCI Windows 95, Windows 98, Windows NT System Information

Dump the configuration registers for each PCI device in the system.

Syntax PCI

Use The PCI command dumps the registers for each PCI device in the system. Do not use this
command on non-PCI systems. Many of the entries are self-explanatory, but some are not.
Consult the PCI specification for more information about this output.

Example The following example illustrates a partial sample output for the PCI command:

:PCI

Bus 00 Device 00 Function00
 Vendor: 8086 Intel
 Device: 1237
 Revision: 02
 Device class: 06 Bridge device
 Device subclass: 00 Host bridge
 Device sub-subclass: 00
 Interrupt line: 00Interrupt pin: 00 Min_Gnt: 00 MaxLat: 00
 Cache line size: 00 Latency timer: 40 Header type: 00BIST: 00
 I/O:0 Mem:1 BusMAST:1 Special:0 MemInv:0
 Parity:0 Wait:0 SERR:1 Back2Back:0 Snoop:0
Bus 00 Device 07 Function00
 Vendor: 8086 Intel
 Device: 7000
 Revision: 01
 Device class: 06 Bridge device
 Device subclass: 01 ISA bridge
 Device sub-subclass: 00
 Interrupt line: 00Interrupt pin: 00 Min_Gnt: 00 MaxLat: 00
 Cache line size: 00 Latency timer: 00 Header type: 80BIST: 00
 I/O:1 Mem:1 BusMAST:1 Special:1 MemInv:0
 Parity:0 Wait:0 SERR:0 Back2Back:0 Snoop:0
156 SoftICE Command Reference

SoftICE Commands
PEEK Windows 95, Windows 98, Windows NT Display/Change Memory

Read from physical memory.

Syntax PEEK[size] address

size B (byte), W (word), or D (dword). Size defaults to B.

address Physical memory address.

Use PEEK displays the byte, word, or dword at a given physical memory location. PEEK is useful
for reading memory-mapped I/O registers.

Example The following example displays the dword at physical address FF000000:

PEEKD FF000000

See Also PAGE, PHYS, POKE
SoftICE Command Reference 157

SoftICE Commands
PHYS Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display all virtual addresses that correspond to a physical address.

Syntax PHYS physical-address

physical-address Memory address that the x86 generates after a virtual address has been
translated by its paging unit. It is the address that appears on the
computer's BUS, and is important when dealing with memory-
mapped hardware devices such as video memory.

Use Windows uses x86 virtual addressing support to define a relationship between virtual
addresses, used by all system and user code, and physical addresses that are used by the
underlying hardware. In many cases a physical address range may appear in more than one
page table entry, and therefore more than one virtual address range.

SoftICE does not accept physical addresses in expressions. To view the contents of physical
memory you must use the PHYS command to obtain linear addresses that can be used in
expressions.

For Windows 95 and Windows NT

The PHYS command is specific to the current address context. It searches the Page Tables and
Page Directory associated with the current SoftICE address context.

Example Physical address A0000h is the start of VGA video memory. Video memory often shows up in
multiple virtual address in Windows. In this example there are three different virtual addresses
that correspond to physical A0000 as shown:

:PHYS a0000

000A0000
004A0000
80CA0000
158 SoftICE Command Reference

SoftICE Commands
POKE Windows 95, Windows 98, Windows NT Display/Change Memory

Write to physical memory

Syntax POKE[size] address value

size B (byte), W (word), or D (dword). Size defaults to B.

address Physical memory address.

value Value to write to memory.

Use POKE writes a byte, word, or dword value to a given physical memory location. POKE is
useful for writing to memory-mapped I/O registers.

Example The following example writes the dword value 0x12345678 to physical address FF000000:

POKED FF000000 12345678

See Also PAGE, PEEK, PHYS
SoftICE Command Reference 159

SoftICE Commands
Print
Screen
Key

Windows 3.1, Windows 95, Windows 98, Windows NT Customization

Print contents of screen.

Syntax PRINT SCREEN key

Use Pressing PRINT SCREEN dumps all the information from the SoftICE screen to your printer.
By default, the printer port is LPT1. Use the PRN command to change your printer port.
Since SoftICE accesses the hardware directly for all of its I/O, Print Screen works only on
printers connected directly to a COM or LPT port. It does not work on network printers.

If you do not want to dump to a printer, choose Save SoftICE History from the File menu in
the SoftICE Loader to write the SoftICE command line window history to a file.

For Windows 95 and Windows NT

From a DOS VM, use the DLOG.EXE utility to log the SoftICE Command window
information.

See Also PRN
160 SoftICE Command Reference

SoftICE Commands
PRN Windows 3.1, Windows 95, Windows 98, Windows NT Customization

Set printer output port.

Syntax PRN [lpt x | com x]

x Decimal number between 1 and 2 for LPT, or between 1 and 4 for
COM .

Use The PRN command allows you to send output from Print Screen to a different printer port.
If no parameters are supplied, PRN displays the currently assigned printer port.

Example This command causes Print Screen output to go to the COM1 port.

PRN com1
SoftICE Command Reference 161

SoftICE Commands
PROC Windows 95, Windows 98, Windows NT System Information

Display summary information about any or all processes in the system.

Syntax For Windows 95

PROC [-xo] [task]

For Windows NT

PROC [[-xom] process-type | thread-type]

-eXtended Display extended information for each thread.

-Objects Display list of objects in processes handle table.

-Memory Display information about the memory usage of a process.

task Task name.

process-type Process handle, process ID, or process name.

thread-type Thread handle or thread ID.

 Use If you specify PROC with no options, summary information is presented for one or all
processes in the system. The information the -Memory option provides is also included when
you specify the -eXtended option for Windows NT. It is provided for convenience, because
the amount of extended information displayed is quite large.

For all process (and thread) times, as well as process memory information, SoftICE uses raw
values from within the OS data structures without performing calculations to convert them
into standardized units.

The -Object option displays the object pointer, the object handle, and the object type for
every object in the processes object handle table. Because object information is allocated from
the systems pageable pool, the objects type name will not always be available. In this case,
question marks (???) are displayed.
162 SoftICE Command Reference

SoftICE Commands
Output For Windows 95

For each process the following summary information is provided:

Process Task name.

pProcess Pointer to process database (pdb).

Process ID The Ring 3 ID of the process.

Threads Number of threads the process owns.

Context Address context.

DefHeap Default heap.

DebuggeeCB Debuggee context block.

For Windows NT

For each process the following summary information is provided:

Process Process name.

KPEB Address of the Kernel Process Environment Block.

PID Process ID.

Threads Number of threads the process owns.

Priority Base priority of the process .

User Time Relative amount of time the process spent executing code at user level.

Krnl Time Relative amount of time the process spent executing code at the kernel
level.

Status Current status of the process:

• Running: The process is currently running.

• Ready: The process is in a ready to run state.

• Idle: The process is inactive.

• Swapped: The process is inactive, and its address space has been
deleted.

• Transition: The process is currently between states.

• Terminating: The process is terminating.
SoftICE Command Reference 163

SoftICE Commands
Example For Windows 95

This example lists all the processes in the system.

:PROC

This example shows extended information for GDIDEMO:

:PROC -x gdidemo

Process Information for Gdidemo at 81569F04

Process pProcess ProcessID Threads Context DefHeap DebuggeeCB

Winword 8156ACA8 FFFC8817 00000001 C10474D4 00400000 00000000

Gdidemo 81569F04 FFFCBBBB 00000001 C1033E38 00410000 00000000

Loader32 8156630C FFFC47B3 00000001 C10476D0 00470000 00000000

Explorer 815614C0 FFFC307F 00000002 C104577C 00440000 00000000

Mprexe 8155DFA4 FFFFFB1B 00000002 C1043340 00510000 00000000

MSGSRV32 8155D018 FFFFF4A7 00000001 C1041E28 00400000 00000000

KERNEL32 8165A31C FFFCF87A3 00000004 C10D9EDC 00640000 00000000

Type: 00000005 RefCount: 00000002 Unknown1: 00000000

pEvent: 81569FC8 TermStatus: 00000103 Unknown2: 00000000

DefaultHeap: 00410000 MemContext: C1033E38

Flags: 00000000

pPSP: 0001A1A0 PSPSelector: 26E7 MTEIndex: 0019

Threads: 0001 ThrNotTerm: 0001 Unknown3: 00000000

R0threads: 0001 HeapHandle: 8155B000 K16TDB: 2816

MMFViews: 00000000 pEDB: 8156A448 pHandleTable: 8156A2C0

ParentPDB: 8156630C MODREFlist: 8156ABB0 Threadlist: 81569FE8

DebuggeeCB: 00000000 LHFreeHead: 00000000 InitialR0ID: 00000000

&crtLoadLock: 81569F64 pConsole: 00000000 Unknown4: C007757C

ProcDWORD0: 00003734 ProcGroup: 8156630C ParentMODREF: 8156ABB0

TopExFilter: 00000000 PriorityBase: 00000008 Heapownlist: 00650000

HHandleBlks: 0051000C Unknown5: 00000000 pConProvider: 00000000

wEnvSel: 19B7 wErrorMode: 0000 pEvtLdFinish 8156A2A0

UTState: 0000
164 SoftICE Command Reference

SoftICE Commands
Environment Database

This example shows a partial listing of the objects in Kernel32:

:PROC -o kernel32

Environment: 00520020 Unknown1: 00000000

CommandLine: 8156A500 C:\PROJECTS\GDIDEMO\Gdidemo.exe

CurrentDir: 8156A524 C:\PROJECTS\GDIDEMO

StartupInfo: 8156A53C hStdIn: FFFFFFFF hStdOut: FFFFFFFF

hStdError: FFFFFFFF Unknown2: 00000001 InheritCon 00000000

BreakType: 00000000 BreakSem: 00000000 BreakEvent: 00000000

BreakThreadId: 00000000 BrkHandlers: 00000000

Handle Object Type

1 8165A32C Process

2 8155BFFC Event

3 C103E3A4 Memory Mapped file

4 C0FFE0E0 Memory Mapped file

5 C0FFE22C Memory Mapped file

6 C0FF1058 Memory Mapped file

7 8155C01C Event

8 8155CCE4 Event

9 8155CD5C Event

A 8155CD8C Thread

B 8155D008 Event

C C1041C04 Memory Mapped file

D 8155D870 Event
SoftICE Command Reference 165

SoftICE Commands
For Windows NT

The following is an example using the PROC command without parameters:

:PROC

Note: The process that was active when SoftICE popped up will be highlighted. The
currently active process/address context within SoftICE will be indicated by an asterisk
(*).

Process KPEB PID Threads Pri User
Time

Krnl
Time

Status

System FD8E0020 2 14 8 00000000 00001A48 Ready

smss FD8B9020 13 6 B 00000022 00000022 Swapped

csrss FD8B3DC0 1F 12 D 00B416C5 00049C4E Ready

winlogon FD8AD020 19 2 D 00000028 00000072 Idle

services FD8A6880 28 B 9 0000018E 0000055A Idle

lsass FD8A4020 2A C 9 0000001B 00000058 Idle

spoolss FD87ACA0 43 6 8 000000AB 000000BD Idle

nddeagnt FD872780 4A 1 8 00000004 0000000C Idle

*ntvdm FD86DDC0 50 6 9 00125B98 0003C0BE Running

scm FD85B300 5D 3 8 00000024 0000008A Idle

Explorer FD850020 60 3 D 000002DE 00000447 Ready

Idle 8016A9E0 0 1 0 00000000 00135D03 Ready
166 SoftICE Command Reference

SoftICE Commands
The following is an example of using the -eXtended option for a specific process, in this case
Explorer:

:PROC -x explorer

Extended Process Information for Explorer(60)

KPEB: FD850020 PID: 60 Parent: Unknown(48)
Base Pri: D Mem Pri: 0 Quantum: 2
Usage Cnt: 1 Win Ver: 4.00 Err. Mode: 0
Status: Ready

Processor: 00000000 Affinity: 1
Page Directory: 011CA000 LDT Base: 00000000 LDT Limit: 0000

Kernel Time: 00000447 User Time: 000002DE
Create Time: 01BB10646E2DBE90
Exit Time: 0000000000000000

Vad Root: FD842E28 MRU Vad: FD842E28 Empty Vad: FD823D08
DebugPort: 00000000 ExceptPort: E118B040 SE token: E1240450
SpinLock: 00000000 HUPEB: 00000004 UPEB: 7FFDF000

ForkInProgress: FALSE Thread: 00000000(0)
Process Lock: 00000001 Owner: 00000000(0)
Copy Mem Lock: 00000000 Owner: 00000000(0)

Locked Pages: 00000000 ProtoPTEs: 000000DD Modified Pages: 000000E4
Private Pages: 0000014F Virt Size: 013F8000 Peak Virt Size: 01894000

 ---- Working Set Information ----

Update Time: 01BB11D0D7B299C0
Data: C0502000 Table: C0502470
Pages: 00000879 Faults: 00000899 Peak Size: 00000374
Size: 000002AF Minimum: 00000032 Maximum: 00000159

 ---- Non Pageable Pool Statistics ----

Quota Usage: 00000E78 Peak Usage: 00001238
Inherited Usage: 0000C093 Peak Usage: 00056555 Limit: 00080000

 ---- Pageable Pool Statistics ----

Quota Usage: 00003127 Peak Usage: 00004195
Inherited Usage: 0000C000 Peak Usage: 00004768 Limit: 000009CA

 ---- Pagefile Statistics ----

Quota Usage: 00000151 Peak Usage: 0000016E
Inherited Usage: FFFFFFFF Peak Usage: 00000151 Limit: 00000000

 ---- Handle Table Information ----

Handle Table: E10CE5E8 Handle Array: E1265D48 Entries: 50
SoftICE Command Reference 167

SoftICE Commands
QUERY Windows 95, Windows 98, Windows NT System Information

Display the virtual address map of a process.

Syntax QUERY [[- x] address] | [process-type]

-x Shows the mapping for a specific linear address within every context
where it is valid.

address Linear address to query.

process-type Expression that can be interpreted as a process.

Use The QUERY command displays a map of a single process’s virtual address space or the
mapping for a specific linear address. If no parameter is specified, QUERY displays the map of
the current process. If a process parameter is specified, QUERY displays information about
each address range in the process.

Output For Windows 95

Under Windows 95, the QUERY command displays the following information:

Base Pointer to the base address of the region of pages.

AllocBase Pointer to the base address of a range of pages allocated by the
VirtualAlloc function that contains the base address in the Base
column.

AllocProtect Access protection assigned when the region was initially allocated.

Size Size, in bytes, of the region starting at the base address in which all
pages have the same attributes.

State State of the pages in the region : Commit, Free, or Reserve.

• Commit — Committed pages for which physical storage was
allocated

• Free — Free pages not accessible to the calling process and
available to be allocated. AllocBase, AllocProtect, Protect, and
Owner are undefined.

• Reserve — Reserved pages. A range of the process’s virtual address
space is reserved, but physical storage is not allocated. Current
Access Protection (Protect) is undefined.
168 SoftICE Command Reference

SoftICE Commands
Protect Current Access protection.

Owner Owner of the region.

Context Address context.

For Windows NT

The QUERY command displays the following information:

Context Address context.

Address Range Start and end address of the linear range.

Flags Flags from the node structure.

MMCI Pointer to the memory management structure.

PTE Structure that contains the ProtoPTEs for the address range.

Name Additional information about the range. This includes the following:

• Memory mapped files will show the name of the mapped file.

• Executable modules will show the file name of the DLL or EXE.

• Stacks will be displayed as STACK(thread ID).

• Thread information blocks will be displayed as TIB(thread ID).

• Any address that the WHAT command can identify may also
appear.
SoftICE Command Reference 169

SoftICE Commands
Example Windows 95

The following example uses the QUERY command with no parameters to display a partial
listing of the map for the current process, GDIDEMO:

: QUERY

The following example shows every context where base address 416000 is valid:

: QUERY -x 416000

Base AllocBase AllocProt Size State Protect Owner

0 0 0 400000 Free NA

400000 400000 1 7000 Commit RO GDIDEMO

407000 400000 1 2000 Commit RW GDIDEMO

409000 400000 1 2000 Commit RO GDIDEMO

40B000 400000 1 5000 Reserve NA GDIDEMO

410000 410000 1 1000 Commit RW Heap 32

411000 410000 1 FF000 Reserve NA Heap 32

510000 410000 1 1000 Commit RW Heap 32

511000 410000 1 F000 Reserve NA Heap 32

520000 520000 4 1000 Commit RW

521000 520000 4 F000 Reserve NA

Base AllocBase AllocProt Size State Protect Owner Context

416000 400000 1 F1000 Reserve NA KERNEL32

416000 400000 1 E9000 Reserve NA Heap 32 MSGSRV32

416000 400000 1 D000 Commit RO EXPLORER Explorer

416000 410000 1 F9000 Reserve NA Heap 32 WINFILE

416000 400000 1 2000 Commit RO CONSOLE Console

416000 400000 1 E9000 Reserve NA Heap 32 WINOLDAP

416000 410000 0 EA000 Free NA Mprexe

416000 410000 1 FA000 Reserve NA Heap 32 Spool32
170 SoftICE Command Reference

SoftICE Commands
The following example shows a partial listing of the virtual address map for Explorer:

: QUERY EXPLORER

Windows NT

The following example uses the QUERY command to map a specific linear address for
Windows NT:

:QUERY 7f2d0123

Base AllocBase AllocProt Size State Protect Owner

0 0 0 400000 Free NA

400000 400000 1 23000 Commit RO EXPLORER

423000 400000 1 1000 Commit RW EXPLORER

424000 400000 1 11000 Commit RO EXPLORER

435000 400000 1 B000 Reserve NA EXPLORER

440000 440000 1 9000 Commit RW Heap32

449000 440000 1 F7000 Reserve NA Heap32

540000 440000 1 1000 Commit RW Heap32

541000 440000 1 F000 Reserve NA Heap32

550000 550000 4 1000 Commit RW

551000 550000 4 F000 Reserve NA

560000 560000 1 106000 Reserve NA

Context Address Range Flags MMCI PTE Name

csrss 7F2D0000-7F5CFFFF 06000000 FD8AC128 E1191068 Heap #07
SoftICE Command Reference 171

SoftICE Commands
The following example uses the QUERY command to list the address map of the
PROGMAN process for Windows NT:

:QUERY progman

:query progman
Address Range Flags MMCI PTE Name
00010000-00010FFF C4000001
00020000-00020FFF C4000001
00030000-0012FFFF 84000004 STACK(6E)
00130000-00130FFF C4000001
00140000-0023FFFF 8400002D Heap #01
00240000-0024FFFF 04000000 FF0960C8 E1249948 Heap #02
00250000-00258FFF 01800000 FF0E8088 E11B9068 unicode.nls
00260000-0026DFFF 01800000 FF0E7F68 E11BBD88 locale.nls
00270000-002B0FFF 01800000 FF0E7C68 E11B6688 sortkey.nls
002C0000-002C0FFF 01800000 FF0E7AE8 E11BBA08 sorttbls.nls
002D0000-002DFFFF 04000000 FF09F3C8 E1249E88
002E0000-0035FFFF 84000001
00360000-00360FFF C4000001
00370000-0046FFFF 84000003 STACK(2E)
00470000-0047FFFF 04000000 FF0DF4E8 E124AAA8
00480000-00481FFF 01800000 FF0E7DE8 E110C6E8 ctype.nls
01A00000-01A30FFF 07300005 FF097AC8 E1246448 progman.exe
77DE0000-77DEFFFF 07300003 FF0FC008 E1108928 shell32.dll
77E20000-77E4BFFF 07300007 FF0FBA08 E1110A08 advapi32.dll
77E50000-77E54FFF 07300002 FF0FADC8 E1103EE8 rpcltc1.dll
77E60000-77E9BFFF 07300003 FF0FB728 E1110C48 rpcrt4.dll
77EA0000-77ED7FFF 07300003 FF0FCE08 E11048C8 user32.dll
77EE0000-77F12FFF 07300002 FF0FD868 E110F608 gdi32.dll
77F20000-77F73FFF 07300003 FF0EE1A8 E110C768 kernel32.dll
77F80000-77FCDFFF 07300005 FF0FDB48 E1101068 ntdll.dll
7F2D0000-7F5CFFFF 03400000 FF0E2C08 E11C3068 Heap #05
7F5F0000-7F7EFFFF 03400000 FF0E8EA8 E11B77E8
7FF70000-7FFAFFFF 84000001
7FFB0000-7FFD3FFF 01600000 FF116288 E1000188 Ansi Code Page
7FFDD000-7FFDDFFF C4000001 TIB(2E)
7FFDE000-7FFDEFFF C4000001 TIB(6E)
7FFDF000-7FFDFFFF C4000001 SubSystem Process
172 SoftICE Command Reference

SoftICE Commands
R Windows 3.1, Windows 95, Windows 98, Windows NT Display/Change Memory

Display or change the register values.

Syntax For Windows 3.1

R [register-name [[=] value]]

For Windows 95 and Windows NT

R [-d | register-name | register-name [=] value]

register-name Any of the following: AL, AH, AX, EAX, BL, BH, BX, EBX, CL,
CH, CX, ECX, DL, DH, DX, EDX, DI, EDI, SI, ESI, BP, EBP, SP,
ESP, IP, EIP, FL, DS, ES, SS, CS FS, GS.

value If register-name is any name other than FL, the value is a hexadecimal
value or an expression. If register-name is FL, the value is a series of
one or more of the following flag symbols, each optionally preceded
by a plus or minus sign:

• O (Overflow flag)

• D (Direction flag)

• I (Interrupt flag)

• S (Sign flag)

• Z (Zero flag)

• A (Auxiliary carry flag)

• P (Parity flag)

• C (Carry flag)

-d Displays the registers in the Command window.

Use If no parameters are supplied, the cursor moves up to the Register window, and the registers
can be edited in place. If the Register window is not currently visible, it is made visible. If
register-name is supplied without a value, the cursor moves up to the Register window
positioned at the beginning of the appropriate register field.

If both register-name and value are supplied, the specified register's contents are changed to
the value.
SoftICE Command Reference 173

SoftICE Commands
To change a flag value, use FL as the register-name, followed by the symbols of the flag whose
values you want to toggle. To turn a flag on, precede the flag symbol with a plus sign. To turn
a flag off, precede the flag symbol with a minus sign. If neither a plus or negative sign is
specified, the flag value will toggle from its current state. The flags can be listed in any order.

Example This example sets the AH register equal to 5.

R ah=5

This example toggles the O, Z, and P flag values.

R fl=ozp

This example moves the cursor into the Register window position under the first flag field.

R fl

This example toggles the O flag value, turns on the A flag value, and turns off the C flag value.

R fl=o+a-c
174 SoftICE Command Reference

SoftICE Commands
RS Windows 3.1, Windows 95, Windows 98, Windows NT Window Control

F4

Restore the program screen.

Syntax RS

Use The RS command allows you to restore the program screen temporarily.

This feature is useful when debugging programs that update the screen frequently. Use the RS
command to redisplay your program screen. To return to the SoftICE screen, press any key.
SoftICE Command Reference 175

SoftICE Commands
S Windows 3.1, Windows 95, Windows 98, Windows NT Miscellaneous

Search memory for data.

Syntax For Windows 3.1

S [address L length data-list]

For Windows 95 and Windows NT

S [-cu][address L length data-list]

address Starting address for search.

length Length in bytes.

data-list List of bytes or quoted strings separated by commas or spaces. A
quoted string can be enclosed with single or double quotes.

-c Make search case-insensitive.

-u Search for Unicode string.

Use Memory is searched for a series of bytes or characters that matches the data-list. The search
begins at the specified address and continues for the length specified. When a match is found,
the memory at that address is displayed in the Data window. and the following message is
displayed in the Command window.

PATTERN FOUND AT location

If the Data window is not visible, it is made visible.

To search for subsequent occurrences of the data-list, use the S command with no parameters.
The search will continue from the address where the data-list was last found, until it finds
another occurrence of data-list or the length is exhausted.

The S command ignores pages that are marked not present. This makes it possible to search
large areas of address space using the flat data selector (Windows 3.1/Windows 95: 30h,
Windows NT: 10h).

Example This example searches for the string 'Hello' followed by the bytes 12h and 34h starting at
offset ES:DI+10 for a length of ECX bytes.

S es:di+10 L ecx 'Hello',12,34
176 SoftICE Command Reference

SoftICE Commands
This example searches the entire 4GB virtual address range for 'string'.

S 30:0 L ffffffff 'string'
SoftICE Command Reference 177

SoftICE Commands
SERIAL Windows 3.1, Windows 95, Windows 98, Windows NT Customization

Redirect console to serial terminal.

Syntax SERIAL [on [com-port] [baud-rate] | off]

com-port Number from 1 to 4 that corresponds to COM1, COM2, COM3 or
COM4. Default is COM1.

baud-rate Baud-rate to use for serial communications. The default is to have
SoftICE automatically determine the fastest possible baud-rate that
can be used. The rates are 1200, 2400, 4800, 9600, 19200, 23040,
28800, 38400, 57000, 115000.

Use Use the SERIAL command to establish a remote debugging session through a serial port (refer
to DIAL on page 67 for establishing remote sessions over a modem). Remote debugging
requires a second IBM-compatible PC running MSDOS. The machine being debugged is
known as the local machine, and the machine where SoftICE is being controlled remotely is
known as the remote machine.

To use the SERIAL command, the remote and local machines must be connected with a null
modem cable, with wiring as shown in the following figure, attached through serial ports.
Before using the SERIAL command on the local machine, you must first run the
SERIAL.EXE program on the remote machine.

The syntax for the SERIAL.EXE program is the same as the syntax of the SERIAL command,
so the following information is applicable to both.

The SERIAL command has two optional parameters. The first parameter specifies the com-
port through which the connection will be made (on the machine where the command is
entered). If no com-port is specified, com-port 1 (COM1) is chosen by default. The second
parameter specifies a baud-rate. If a baud-rate is specified, the same baud-rate must be
explicitly specified on both sides of the connection. If no baud-rate is specified, SoftICE will
attempt to determine the fastest baud-rate that can be used over the connection without data
loss. The process of arriving at the maximum rate can take a few seconds, during which
SoftICE prints the rates it is checking. After the maximum rate is determined, SoftICE
indicates the result.

When a connection is established between a remote machine and a local machine, the user of
the remote machine is presented with the same SoftICE interface they would see if they were
debugging on the local machine. The display on the local machine is restored to the Windows
screen while the connection is maintained.
178 SoftICE Command Reference

SoftICE Commands
Ctrl D is always the pop-up hot key sequence on the remote machine. SoftICE can also be
popped up from the local machine with the local machine’s pop-up hot key sequence (which
may have been set via the ALTKEY command).

If the remote machine has a monochrome display, the COLOR command can be used to
make SoftICE’s output more readable.

If for any reason data is lost over the connection and SoftICE output on the remote machine
becomes corrupted, Shift \ (backslash) can be typed on the remote machine to force a repaint
of the SoftICE screen.

Specifying SERIAL OFF will end the remote debugging session and SoftICE will resume
using the local machine for I/O. SERIAL with no parameters will display the current serial
state and the com-port and baud-rate being used if SERIAL is ON.

Using Ctrl-Z will exit the SERIAL.EXE program on the remote machine after a remote
debugging session is complete.

If you place the SERIAL command in the SoftICE initialization string setting, SERIAL.EXE
must be running on the remote machine before SoftICE is started on the local machine.

Pins
2
3
4
5
6
7
8
20

Pins
2
3
4
5
6
7
8
20

25-Pin Null-Modem Configuration

Pins
2
3
5
7
8
6
1
4

Pins
2
3
5
7
8
6
1
4

9-Pin Null-Modem Configuration
SoftICE Command Reference 179

SoftICE Commands
For Windows 3.1

Prior to using the SERIAL command, you must place the COMn keyword on a separate line
in the WINICE.DAT file to reserve a specific COM port for the serial connection. The n is a
number between 1 and 4 representing the COM port. If this statement is not present in
WINICE.DAT, SoftICE cannot be popped up from the remote machine. To set Com 2 as the
serial post, use:

Com2

For Windows 95

Select the desired com port in the remote debugging initialization settings within Symbol
Loader.

Example On the remote machine:

SERIAL.EXE on 19200

On the local machine:

SERIAL on 2 19200

When the first command is executed, the remote machine will be prepared to receive a
connection request from the local machine on its first com-port at 19200bps. The second
command establishes a connection between the two machines through the local machine’s
second com-port. Since the first command explicitly specified a baud rate, the SERIAL
command on the local machine must explicitly specify the same baud rate of 19200bps.

Once the connection is established, the remote machine will serve as the SoftICE interface for
debugging the local machine until SERIAL off is entered on the remote machine.

See Also Chapter 7, “Debugging Remotely,” in the Using SoftICE manual.
180 SoftICE Command Reference

SoftICE Commands
SET Windows 95, Windows 98, Windows NT Mode Control

Display or change the state of an internal variable.

Syntax SET [keyword] [on | off] [value]

Use Use the SET command to display or change the state of internal SoftICE variables.

If you specify SET with a keyword, ON or OFF enables or disables that option. If you specify
SET with a keyword and value, it assigns the value to the keyword. If SET is followed by a
keyword with no additional parameters, it displays the state of the keyword.

Using SET without parameters displays the state of all keywords.

SET supports the following keywords:

ALTSCR [on|off]

BUTTONREVERSE [on|off]

CASESENSITIVE [on|off]

CODE [on|off]

EXCLUDE [on|off]

FAULTS [on|off]

FLASH [on|off]

FONT [1|2|3]

FORCEPALETTE [on|off]

I1HERE [on|off]

I3HERE [on|off]

LOWERCASE [on|off]

MOUSE [on|off] [1|2|3]

ORIGIN x y

PAUSE [on|off]

SYMBOLS [on|off]
SoftICE Command Reference 181

SoftICE Commands
SET CASESENSITIVE ON makes global and local symbol names case sensitive. Enter them
exactly as displayed by the SYM command.

SET MOUSE ON enables mouse support and SET MOUSE OFF disables it. To adjust the
speed at which the mouse moves, use one of the following: 1 (slowest speed); 2 (intermediate
speed–this is the mouse default.); 3 (fastest speed).

SET SYMBOLS ON instructs the disassembler to show the symbol names in disassembled
code. SET SYMBOLS OFF instructs the disassembler to show numbers (for example, offsets
and addresses). This command applies to both local and global symbol names.

Example The following example enables SoftICE fault trapping:

SET faults on

The following example sets the mouse to the fastest speed:

SET mouse 3

See Also ALTSCR, CODE, FAULTS, FLASH, I1HERE, I3HERE, THREADP

TABS [on|off] [1|2|3|4|5|6|7|8]

THREADP [on|off]

VERBOSE [on|off]

WHEELLINES n
182 SoftICE Command Reference

SoftICE Commands
SHOW Windows 3.1, Windows 95, Windows 98 Symbol/Source

Ctrl-F11

Display instructions from the back trace history buffer.

Syntax SHOW [B | start] [l length]

start Hexadecimal number specifying the index within the back trace
history buffer to start disassembling from. An index of 1 corresponds
to the newest instruction in the buffer.

length Number of instructions to display.

Use Use the SHOW command to display instructions from the back trace history buffer. If source
is available for the instructions, the display is in mixed mode; otherwise, only code is
displayed.

All instructions and source are displayed in the Command window. Each instruction is
preceded by its index within the back trace history buffer. The instruction whose index is 1 is
the newest instruction in the buffer. Once SHOW is entered, you can use the Up and Down
Arrow keys to scroll through the contents of the back trace history buffer. To exit from
SHOW, press the Esc key.

SHOW with no parameters or SHOW B will begin displaying from the back trace history
buffer starting with the oldest instruction in the buffer. SHOW followed by a start number
begins displaying instructions starting at the specified index within the back trace history
buffer.

You can use the SHOW command only if the back trace history buffer contains instructions.
To fill the back trace history buffer, use the BPR command with either the T or TW
parameter to specifying a range breakpoint.

Example This command starts displaying instructions in the Command window, starting at the oldest
instruction in the back trace history buffer.

SHOW B

See Also BPR
SoftICE Command Reference 183

SoftICE Commands
SRC Windows 3.1, Windows 95, Windows 98, Windows NT Symbol/Source

F3

Toggle between displaying source, mixed, and code in the Code window.

Syntax SRC

Use Use the SRC command to toggle among the following modes in the Code window: source
mode, mixed mode, and code mode.

Hint: Use F3 to toggle modes quickly.

Example The following example changes the current mode of the Code window:

SRC
184 SoftICE Command Reference

SoftICE Commands
SS Windows 3.1, Windows 95, Windows 98, Windows NT Symbol/Source

Search the current source file for a string.

Syntax SS [line-number] [' string ']

line-number Decimal number.

string Character string surrounded by quotes.

Use The SS command searches the current source file for the specified character string. If there is a
match, the line that contains the string is displayed as the top line in the Code window.

The search starts at the specified line-number. If no line-number is specified, the search starts
at the top line displayed in the Code window.

If no parameters are specified, the search continues for the previously specified string.

The Code window must be visible and in source mode before using the SS command. To
make the Code window visible, use the WC command. To make the Code window display
source, use the SRC command.

Example In the following example, the current source file is searched starting at line 1 for the string 'if
(i==3)'. The line containing the next occurrence of the string becomes the top line displayed
in the Code window.

SS 1 'if (i==3)'
SoftICE Command Reference 185

SoftICE Commands
STACK Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display a call stack.

Syntax For Windows 3.1 and Windows 95

STACK [task-name | SS:[E]BP]

task-name Name of the task as displayed by the TASK command.

SS:[E]BP SS:[E]BP of a valid stack frame.

For Windows NT

STACK [thread-type | stack frame]

thread-type Thread handle or thread ID.

stack frame Value that is not a thread-type is interpreted as a stack frame.

Use Use the STACK command to display the call stacks for DOS programs, Windows tasks, and
32-bit code.

If you enter STACK with no parameters, the current SS:[E]BP is used as a base for the stack
frame displayed. You can explicitly specify a stack base with a task-name or base address, and
under Windows NT, with a thread identifier.

If you are using STACK to display the stack of a Windows task that is not the current one,
specify either its task-name or a valid SS:[E]BP stack frame. You can use the TASK command
to obtain a list of running tasks. However, you should avoid using the STACK command
with the current task of the TASK command’s output (marked with an '*'), because the task’s
last known SS:[E]BP is no longer valid.

The STACK command walks the stack starting at the base by traversing x86 stack frames. If
an invalid stack frame or address that has been paged out is encountered during the walk, the
traversal will stop. The address of the call instruction at each frame is displayed along with the
name of the routine it is in, if the routine is found in the current symbol table. If the routine
is not in the symbol table, the export list and module name list are searched for nearby
symbols. If stack variables are present, they are displayed as well.
186 SoftICE Command Reference

SoftICE Commands
The STACK command works in 32-bit code, however, since 32-bit symbol information
support is limited to that provided in .SYM files, local variables cannot be shown. For each
frame in the call stack, both the nearest symbol to the call instruction, and the actual address,
are displayed. If there is no symbol available, the module name and object/section name are
displayed instead.

The 32-bit call stack support is not limited to applications; it will also work for VxDs and
Windows NT device driver code at ring 0. Since many VxDs are written in assembly
language, there may not be a valid call stack to walk from a VxD-stack base address.

For Windows 3.1 and Windows 95, the call stack is not followed through thunks or ring
transitions, but under Windows NT it is.

For Windows 3.1 and Windows 95

If you want SoftICE to pop up when a non-active task is restarted, you can use the STACK
command with the task as a parameter to find the address on which to set an execution
breakpoint. To do this, enter STACK followed by the task-name. The bottom line of the call
stack will show an address preceded by the word 'at'. This is the address of the CALL
instruction the program made to Windows that has not yet returned. You must set an
execution breakpoint at the address following this call.

You can also use this technique to stop at other routines higher on the call stack. This is useful
when you do not want to single step through library code until execution resumes in your
program's code.

Output Each entry of the call stack contains the following information:

• Symbol name or module name in which the return address falls

• SS:[E]BP value of this entry

• Call instruction’s source line number if available

• Address of the first line of this routine or the name of the routine that was called to reach
this routine

If stack variables are available for this entry, the following information about each is displayed:

• SS:[E]BP relative offset

• Stack variable name

• Data in the stack variable if it is of type char, int, or long
SoftICE Command Reference 187

SoftICE Commands
Example This is the output of the STACK command after a breakpoint is set in the message handler of
a Windows program.

:STACK

__astart at 0935:1021 [?]
WinMain at 0935:0d76 [00750]

[BP+000C]hInstance 0935
[BP+000A]hPrev 0000
[BP+0006]lpszCmdLine
[BP+0004]CmdShow
[BP-0002]width 00DD
[BP-0004]hWnd 00E5

USER!SENDMESSAGE+004F at 05CD:06A7
USER(01) at 0595:04A0 [?] 0595:048b
USER(06) at 05BD:1A83 [?]
=>ClockWndProc at 0935:006F [0179]

[BP+000E]hWnd 1954
[BP+000C]message 0024
[BP+000A]wParam 0000
[BP+0006]lParam 06ED:07A4
[BP-0022]ps 0000

This is an example of the STACK command in 32-bit mode. Execution has been stopped
within the C library DLL's memset routine:

:STACK

W32SCOMB!DispatchCB32+01FF at 2197:86C5003B
UTSAMP!.text+01A4 at 2197:86C211A4
_MyGetFreeSpace@0+0016 at 2197:86C7113B
=> MSVCRT10!memset+0005 at 2197:86C94F89
188 SoftICE Command Reference

SoftICE Commands
SYM Windows 3.1, Windows 95, Windows 98, Windows NT Symbol/Source

Display or set symbol.

Syntax SYM [[section-name] !] symbol-name [value]]

section-name Valid section-name. Also can be a partial section-name. This allows
displaying symbols in a particular section. If section-name is specified,
it must be followed by an exclamation point (!). For example, you
could use the command
SYM .TEXT! to display all symbols in the .TEXT section of the
executable.

! If “!” is the only parameter specified, the modules in this symbol table
are listed.

symbol-name Valid symbol-name. The symbol-name can end with an asterisk (*).
This allows searching if only the first part of the symbol-name is
known. The comma “,” character can be used as a wildcard character
in place of any character in the symbol-name.

value Value that is used to set a symbol to a specific address.

Use Use the SYM command to display and set symbol addresses. If you enter SYM without
parameters, all symbols display. The address of each symbol displays next to the symbol-name.

If you specify a symbol-name without a value, the symbol-name and its address display. If the
symbol-name is not found, nothing displays.

If section-name! precedes symbol-name or asterisk (*), only symbols from the specified section
are shown.

The SYM command is often useful for finding a symbol when you can only remember a
portion of the name. Two wildcard methods are available for locating symbols. If symbol-
name ends with an asterisk (*), all symbols that match the actual characters typed prior to the
asterisk display, regardless of their ending characters. If you use a comma (,) in place of a
specific character in symbol-name, that character is a wild card character.

If you specify a value, the address of all symbols that match symbol-name are set to the value.

If you place an address between square brackets as a parameter to the SYM command, the
closest symbol above and below the address display.
SoftICE Command Reference 189

SoftICE Commands
Example All symbols that start with FOO display.

SYM foo*

All symbols that start with FOO are given the address 6000.

SYM foo* 6000

All sections for the current symbol table display.

SYM !

All symbols in section MAIN that start with FOO display.

SYM main!foo*
190 SoftICE Command Reference

SoftICE Commands
SYMLOC Windows 3.1, Windows 95, Windows 98, Windows NT Symbol/Source

Relocate the symbol base.

Syntax For Windows 3.1

SYMLOC [segment-address | o | r |
(section-number selector linear-address)]

For Windows 95 and Windows NT

SYMLOC [segment-address | o | r | -c process-type |
(section-number selector linear-address)]

segment address Only use to relocate DOS programs.

o For 16-bit Windows table only. Changes all selector values back to
their ordinal state.

r For 16-bit Windows table only. Changes all segment ordinals to their
appropriate selector value.

-c Specify a context value for a symbol table. Use when debugging DOS
extended applications.

section-number For 32-bit tables only. PE file 1 based section-number.

selector For 32-bit tables only. Protected mode selector.

linear-address For 32-bit tables only. Base address of the section.

Use The SYMLOC command handles symbol fixups in a loaded symbol table. The command
contains support for DOS tables, 16-bit protected mode Windows tables (using O and R
commands only), and 32-bit protected mode tables. The 32-bit support is intended for 32-bit
code that must be manually fixed up such as DOS 32-bit extender applications.

In a DOS program, SYMLOC relocates the segment components of all symbols relative to the
specified segment-address. This function is necessary when debugging loadable device drivers
or other programs that cannot be loaded directly with the SoftICE Loader.

When relocating for a loadable device driver, use the value of the base address of the driver as
found in the MAP command. When relocating for an .EXE program, the value is 10h greater
than that found as the base in the MAP command. When relocating for a .COM program,
use the base segment address that is found in the MAP command.
SoftICE Command Reference 191

SoftICE Commands
The MAP command displays at least two entries for each program. The first is typically the
environment and the second is typically the program. The base address of the program is the
relocation value.

For Windows 95 and Windows NT

The SYMLOC -C option allows you to associate a specific address context with the current
symbol table. This option is useful for debugging an extender application under Windows
NT where SoftICE would not be able to assign a context to the symbol table automatically.

Example The following example relocates all segments in the symbol table relative to 1244. The +10
relocates a TSR that was originally an .EXE file. If it is a .COM file or a DOS loadable device
driver, the +10 is not necessary.

:SYMLOC 1244+10

The following example relocates all symbols in section 1 of the table to 401000h using
selector 1Bh. Each section of the 32-bit table must be relocated separately.

:SYMLOC 1 1b 401000

The following example sets the context of the current symbol table to the process whose
process ID is 47. Subsequently, when symbols are used, SoftICE will automatically switch to
that process.

:SYMLOC -c 47
192 SoftICE Command Reference

SoftICE Commands
T Windows 3.1, Windows 95, Windows 98, Windows NT Flow Control

F8

Trace one instruction.

Syntax T [=start-address] [count]

count Specify how many times SoftICE should single step before stopping.

Use The T command uses the single step flag to single step one instruction.

Execution begins at the current CS:EIP, unless you specify the start-address parameter. If you
specify this parameter, CS:EIP is changed to start-address prior to single stepping.

If you specify count, SoftICE single steps count times. Use the Esc key to terminate stepping
with a count.

If the Register window is visible when SoftICE pops up, all registers that were altered since the
T command was issued are displayed with the bold video attribute.

If the Code window is in source mode, this command single steps to the next source
statement.

Example This example single steps through eight instructions starting at memory location CS:1112.

T = cs:1112 8
SoftICE Command Reference 193

SoftICE Commands
TABLE Windows 3.1, Windows 95, Windows 98, Windows NT Symbol/Source

Change or display the current symbol table.

Syntax For Windows 3.1

TABLE [[r] partial-table-name] | autoon | autooff | $

For Windows 95 and Windows NT

TABLE [partial-table-name] | autoon | autooff | $

partial-table-name Symbol table name or enough of the first few characters to define a
unique name.

autoon Key word that turns auto table switching on.

autooff Key word that turns auto table switching off.

$ Specify $ to switch to the table where the current instruction pointer is
located.

Use If you do not specify any parameters, all the currently loaded symbol tables are displayed with
the current symbol table highlighted. If you specify a partial-table-name, that table becomes
the current symbol table.

Use the TABLE command when you have multiple symbol tables loaded. SoftICE supports
symbol tables for 16- and 32-bit Windows applications and DLLs, 32-bit Windows VxDs,
Windows NT device drivers, DOS programs, DOS loadable device drivers, and TSRs.

Symbols are only accessible from one symbol table at time. You must use the TABLE
command to switch to a symbol table before using symbols from that table.

If you use the AUTOON keyword, SoftICE will switch to auto table switching mode. This
will cause the current table to become whichever table the instruction pointer is in when
SoftICE pops up. AUTOOFF turns off this mode.

Tables are not automatically removed when your program exits. If you reload your program
with the SoftICE Loader, the symbol table corresponding to the loaded program is replaced
with the new one.

For Windows 3.1

If the R parameter precedes partial-table-name, the specified table is removed. Specifying an
“*” after the R parameter removes all symbol tables.
194 SoftICE Command Reference

SoftICE Commands
For Windows 95 and Windows NT

Symbol tables can be tied to an address context or multiple address contexts. If a table is tied
to a context, switching to that table using the TABLE command switches to the appropriate
address context. If you use any symbol from a context sensitive table, SoftICE switches to that
context. Use View Symbol Tables in SoftICE Loader to remove tables from memory. The R
parameter is not supported.

Example Since no parameters are specified in the following command, all loaded symbol tables are
listed. GENERIC is highlighted, because it is the current table. The amount of available
symbol table memory is displayed at the bottom.

:TABLE
 MYTSR.EXE
 MYAPP.EXE
 MYVXD
 GENERIC
 006412 bytes of symbol table memory available

In the following example, the current table is changed to MYTSR.EXE. Notice that only
enough characters to identify a unique table were entered.

:TABLE myt
SoftICE Command Reference 195

SoftICE Commands
TABS Windows 3.1, Windows 95, Windows 98, Windows NT Customization

Display or set the tab settings for source display.

Syntax TABS [tab-setting]

tab-setting Number from 1 through 8 that specifies how many columns between
tab stops.

Use Use the TABS command to display or set tab-settings for the display of source files. Tab stops
can be anywhere from 1 to 8 columns. The default TABS setting is 8. TABS with no
parameters display the current tab-setting. Specifying a tab-setting of 1 allows the most source
to be viewed since each tab will be replaced by a single space.

Example This example causes the tabs setting to change to every fourth column starting at the first
display column.

TABS 4
196 SoftICE Command Reference

SoftICE Commands
TASK Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display the Windows task list.

Syntax TASK

Use The TASK command displays information about all tasks that are currently running. The task
that has focus is displayed with an asterisk after its name. This command is useful when a
general protection fault occurs because it indicates which program caused the fault.

For Windows NT

The TASK command is process specific and only shows 16-bit tasks under Windows NT. In
addition, it is only useful when the current context is that of an NTVDM process containing
a WOW box. To view information or processes, refer to PROC on page 162.

Output For each running task, the following information displays:

Task Name Name of the task.

SS:SP Stack address of the task when it last relinquished control.

StackTop Top of stack offset.

StackBot Bottom of stack offset.

StackLow Lowest value that SP has ever had when there was a context-switch
away from the task.

TaskDB Selector for the task data base segment.

hQueue Queue handle for the task. This is just the selector for the queue.

Events Number of outstanding events in the queue.

For Windows 3.1 and Windows 95

The TASK command works for 16- and 32-bit tasks, however, the following fields change for
32-bit tasks:

StackBot Highest legal address of the stack shown as a 32-bit flat offset.

StackTop Lowest legal address of the stack shown as a 32-bit flat offset.
SoftICE Command Reference 197

SoftICE Commands
StackLow Field is not used.

SS:SP Contains the 16-bit selector offset address of the stack. If you examine
the base address of the 16-bit selector, you see that this points at the
same memory as does the flat 32-bit pointer used with the 32-bit data
selector.

Example The following example shows the TASK command on Windows 3.1 running Win32s and its
output.

:TASK

TaskNm SS:SP StackTop StackBot Low TaskDB hQueue Events

FREECELL 21BF:7D96 86CE0000 86D00000 10FF 121F 0000

PROGMAN 17A7:200A 0936 2070 14CE 064F 07D7 0000

CLOCK 1427:1916 02E4 1A4E 143E 144F 1437 0000

MSWORD * 29AF:913E 5956 93A4 7ADE 1F67 1F47 0000
198 SoftICE Command Reference

SoftICE Commands
THREAD Windows 95, Windows 98 System Information

Display thread information.

Syntax THREAD [TCB | ID | task-name]

TCB Thread Control Block.

ID Thread ID number.

task-name Name of a currently running 32-bit process.

Use Use the THREAD command to obtain information about a thread.

• If you do not specify any options or parameters, the THREAD command displays
information for every active thread in the system.

For Windows NT,
refer to THREAD
on page 201.

• If you specify a task-name as a parameter, all active threads for that process display.

• If you specify a TCB or ID, only information for that thread displays.

Output For each thread, the following information is shown:

Ring0TCB Address of the Ring-0 thread control block. This is the address that is
passed to VxDs for thread creation and termination.

ID VMM Thread ID.

Context Context handle associated with the process of the thread.

Ring3TCB Address of the KERNEL32 Ring-3 thread control block

Thread ID Ring-3 thread ID

Process Address of the KERNEL32 process database that owns the thread.

TaskDB Selector of the task database that owns the thread.

PDB Selector of the program database (protected-mode PSP).

SZ Size of the thread which can be either 16 or 32 bit.

Owner Process name of the owner.
SoftICE Command Reference 199

SoftICE Commands
If you specify TCB or ID, this information displays for the thread with that TCB or ID:

• Current register contents for the thread.

• All thread local storage offsets within the thread. This shows the offset in the thread
control block of the VMM TLS entry, the contents of the TLS entry, and the owner of
the TLS entry.

Example This example displays the thread that belongs to the Winword process:

:THREAD

The following example shows abbreviated information about the thread with ID 8B.

:THREAD 8B

See Also For Windows NT, refer to THREAD on page 201.

Ring0TCB ID Context Ring3TCB ThreadID Process TaskDB PDB SZ Owner

C1051808 008B C104B990 815842CC FFF0671F 8158AAA8 274E 25B7 32 *Winword

Ring0TCB ID Context Ring3TCB ThreadID Process TaskDB PDB SZ Owner

C1051808 008B C104B990 815842CC FFF0671F 8158AAA8 274E 25B7 32 *Winword

CS:EIP=0137:BFF96868 SS:ESP=013F:0062FC3C DS=013F ES=013F FS=2EBF GS=0000

EAX=002A002E EBX=815805B8 ECX=815842CC EDX=815805B8 I S P

ESI=00000000 EDI=815805B8 EBP=0062FC80 ECODE=00000000

TLS Offset 007C = 00000000 VPICD

TLS Offset 0080 = 00000000 DOSMGR

TLS Offset 0084 = 00000000 SHELL

TLS Offset 0088 = C1053434 VMCPD

TLS Offset 008C = C104EA74 VWIN32

TLS Offset 0090 = 00000000 VFAT

TLS Offset 0094 = 00000000 IFSMgr
200 SoftICE Command Reference

SoftICE Commands
THREAD Windows NT System Information

Display information about a thread.

Syntax THREAD [-r | -x | -u] [thread-type | process-type]

-r Display value of the thread’s registers.

-x Display extended information for each thread.

-u Display threads with user-level components.

thread-type Thread handle or thread id.

process-type Process-handle, process-id or process-name.

Use Use the THREAD command to obtain information about a thread.

• If you do not specify any options or parameters the THREAD command displays
information for every active thread in the system.

For Windows 95,
refer to THREAD
on page 199.

• If you specify a process-type as a parameter, all the active threads for that process display.

• If you specify a thread-type, only information for that thread displays.

For the -R and -X options, the registers shown are those that are saved on thread context
switches: ESI, EDI, EBX and EBP.

Output For each thread, the following summary information is displayed:

TID Thread ID.

Krnl TEB Kernel Thread Environment Block.

StackBtm Address of the bottom of the thread’s stack.

StackTop Address of the start of the thread’s stack.

StackPtr Threads current stack pointer value.

User TEB User thread environment block.

Process(Id) Owner process-name and process-id.
SoftICE Command Reference 201

SoftICE Commands
Many fields of thread environment blocks are shown when extended output is specified, with
most being self-explanatory. Some are particularly useful and deserve to be highlighted:

TID Thread ID.

KTEB Kernel Thread Environment Block.

Base Pri, Dyn. Pri Threads base priority and current priority.

Mode Indicates whether the thread is executing in user or kernel mode.

Switches Number of context switches made by the thread.

Affinity Processor affinity mask of the thread. Bit positions that are set
represent processors on which the thread is allowed to execute.

Restart Address at which the thread will start executing when it is resumed.

The thread’s stack trace is displayed last.

Example The following example uses the THREAD command to display the threads that belong to the
Explorer process:

:THREAD explorer

This example displays extended information on the thread with ID 5Fh:

: THREAD -x 5f
 Extended Thread Info for thread 5F
 KTEB: FD850D80 TID: 05F Process: Explorer(60)
 Base Pri: D Dyn. Pri: E Quantum: 2
 Mode: User Suspended: 0 Switches: 00024B4F
 TickCount: 00EE8DA4 Wait Irql: 0
 Status: User Wait for WrEventPair
 Start EIP: KERNEL32!LeaveCriticalSection+0058 (6060744C)
 Affinity: 00000001 Context Flags: A
 KSS EBP: FB1C3F04 Callback ESP: 00000000
 Kernel Stack: FB1C2000 - FB1C4000 Stack Ptr: FB1C3ED8
 User Stack: 00030000 - 00130000 Stack Ptr: 0012FE3C
 Kernel Time: 0000014A User Time: 0000015F
 Create Time: 01BB10646E2DBE90
 SpinLock: 00000000 Service Table: 80174A40 Queue: 00000000
 SE Token: 00000000 SE Acc. Flags: 001F03FF
 UTEB: 7FFDE000 Except Frame: 0012FEB4 Last Err: 00000006

TID Krnl TEB StackBtm StkTop StackPtr User TEB Process(Id)

006A FD857DA0 FB1CB000 FB1CD000 FB1CCED8 7FFDE000 Explorer(6B)

006F FD854620 FB235000 FB237000 FB236B2C 7FFDD000 Explorer(6B)

007C FD840020 FD72F000 FD731000 FD730E24 7FFDB000 Explorer(6B)
202 SoftICE Command Reference

SoftICE Commands
 Registers: ESI=FD850D80 EDI=0012FEC4 EBX=77F6BA0C
EBP=FB1C3F04

 Restart : EIP=80168757 a.k.a. _KiSetServerWaitClientEvent+01CF
Explorer!.text+975D at 001B:0100A75D
Explorer!.text+9945 at 001B:0100A945
Explorer!.text+A3F8 at 001B:0100B3F8
USER32!WaitMessage+004F at 001B:60A0CA4B
user32!.text+070A at 001B:60A0170A
=> ntdll!CsrClientSendMessage+0072 at 001B:77F6BA0C

See Also For Windows 95, refer to THREAD on page 199.
SoftICE Command Reference 203

SoftICE Commands
TRACE Windows 3.1, Windows 95, Windows 98 Symbol/Source

CTRL-F9, TRACE B, CTRL-F12

Enter or exit Trace simulation mode.

Syntax TRACE [b | off | start]

start Hexadecimal number specifying the index within the back trace
history buffer to start tracing from. An index of 1 corresponds to the
newest instruction in the buffer.

Use Use the TRACE command to enter, exit, and display the current state of the trace simulation
mode. TRACE with no parameters displays the current state of trace simulation mode.
TRACE followed by off exits from trace simulation mode and returns to regular debugging
mode. TRACE B enters trace simulation mode starting from the oldest instruction in the
back trace history buffer. TRACE followed by a start number enters trace simulation mode at
the specified index within the back trace history buffer.

You can use the trace simulation mode only if the back trace history buffer contains
instructions. To fill the back trace history buffer, use the BPR command with either the T or
TW parameter to specifying a range breakpoint.

When trace simulation mode is active, the help line on the bottom of the screen shows this, as
well as the index of the current instruction within the back trace history buffer.

Use the XT, XP, and XG commands to step through the instructions in the back trace history
buffer from within the trace simulation mode. When stepping through the back trace history
buffer, the only register that changes is the EIP register because back trace ranges do NOT
record the contents of all the registers. You can use all the SoftICE commands within trace
simulation mode except for the following: X, T, G, P, HERE, and XRSET.

Example This example enters trace simulation mode starting at the eighth instruction in the back trace
history buffer.

TRACE 8

See Also BPR, BPRW, SHOW
204 SoftICE Command Reference

SoftICE Commands
TSS Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display task state segment and I/O port hooks.

Syntax For Windows 3.1

TSS

For Windows 95 and Windows NT

TSS [TSS-selector]

TSS-selector Any GDT selector that represents a TSS.

Use This command displays the contents of the task state segment after reading the task register
(TR) to obtain its address.

You can display any 32-bit TSS by supplying a valid 32-bit Task Gate selector as a parameter.
Use the GDT command to find TSS selectors. If you do not specify a parameter, the current
TSS is shown.

Output The following information is displayed:

TSS selector value TSS selector number.

selector base Linear address of the TSS.

selector limit Size of the TSS.

The next four lines of the display show the contents of the register fields in the TSS. The
following registers are displayed:

LDT, GS, FS, DS, SS, CS, ES, CR3
EAX, EBX, ECX, EDX, EIP
ESI, EDI, EBP, ESP, EFLAGS
Level 0, 1 and 2 stack SS:ESP

For Windows 3.1 and Windows 95

Next, the TSS bit mask array is printed, which shows each I/O port that has been hooked by a
Windows virtual device driver (VxD). For each port, the following information is displayed:

port number 16-bit port number.

handler address 32-bit flat address of the port’s I/O handler. All I/O instructions on
the port will be reflected to this handler.
SoftICE Command Reference 205

SoftICE Commands
handler name Symbolic name of the I/O handler for the port. If symbols are
available for the VxD, the nearest symbol will be displayed; otherwise
the name of the VxD followed by the handler’s offset within the VxD
will be displayed.

For Windows 95 and Windows NT

The I/O permission map base and size are also displayed. A size of zero indicates that all I/O is
trapped. A non-zero size indicates that the I/O permission map determines if an I/O port is
trapped.

Example The following example displays the task state segment in the Command window (output of
the bit mask array is abbreviated).

:TSS

TR=0018 BASE=C000AEBC LIMIT=2069
LDT=0000 GS=0000 FS=0000 DS=0000 SS=0000 CS=0000 ES=0000
CR3=00000000
EAX=00000000 EBX=00000000 ECX=00000000 EDX=00000000 EIP=00000000
ESI=00000000 EDI=00000000 EBP=00000000 ESP=00000000 EFL=00000000
SS0=0030:C33EEFA8 SS1=0000:00000000 SS2=0000:00000000
I/O Map Base=0068 I/O Map Size=2000

Port Handler Trapped Owner
0000 C00C3E92 Yes VDMAD(01)+17BA
0001 C00C3F0E Yes VDMAD(01)+1836
0002 C00C3E92 Yes VDMAD(01)+17BA
0003 C00C3F0E Yes VDMAD(01)+1836
0004 C00C3E92 Yes VDMAD(01)+17BA
0005 C00C3F0E Yes VDMAD(01)+1836
0006 C00C3E92 Yes VDMAD(01)+17BA
0007 C00C3F0E Yes VDMAD(01)+1836
0008 C00C3C55 Yes VDMAD(01)+157D
0009 C00C3D98 Yes VDMAD(01)+16C0

If you are interested in which VxD has hooked port 21h (interrupt mask register), you would
look at the TSS bit mask output of the TSS display for the entry corresponding to the port.
The following output, taken from the TSS command’s output, indicates that the port is
hooked by the virtual PIC device and its handler is at offset 800792B4 in the flat code
segment. This corresponds to an offset of 0AF8h bytes from the beginning of VPICD's code
segment.

0021 800792B4 VPICD+0AF8
206 SoftICE Command Reference

SoftICE Commands
TYPES Windows 95, Windows 98, Windows NT Symbol/Source Command

List all types in the current context or list all type information for the type-name specified.

Syntax TYPES [type-name]

type-name List all type information for the type-name specified.

Use If you do not specify a type-name, TYPES lists all the types in the current context. If you do
specify a type-name, TYPES lists all the type information for the type-name you specified. If
the type-name you specified is a structure, TYPES expands the structure and lists the typedefs
for its members.

Example The following example displays a partial listing of all the types in the current context:

:TYPES

Size Type Name Typedef
0x0004 ABORTPROC int stdcall (*proc) (void)
0x0004 ACCESS_MASK unsigned long
0x0004 ACL_INFORMATION_CLASS int
0x0018 ARRAY_INFO struct ARRAY_INFO
0x0002 ATOM unsigned short
0x0048 BALLDATA struct _BALLDATA
0x0048 _BALLDATA struct _BALLDATA
0x0020 _BEZBUFFER struct _BEZBUFFER
0x0004 BOOL int
0x0001 BOOLEAN unsigned char
0x0010 _BOUNCEDATA struct _BOUNCEDATA
0x0004 BSTR unsigned short *

The following example displays all the type information for the type-name _bouncedata:

:TYPES _bouncedata

typedef struct _BOUNCEDATA {
public:
 void * hBall1 ;
 void * hBall2 ;
 void * hBall3 ;
 void * hBall4 ;
};

See Also LOCALS, WL
SoftICE Command Reference 207

SoftICE Commands
U Windows 3.1, Windows 95, Windows 98, Windows NT Display/Change Memory

Unassemble instructions.

Syntax For Windows 3.1

U [address] | [symbol-name]

For Windows 95 and Windows NT

U [address [l length]] | [symbol-name]

address Segment offset or selector offset.

symbol-name Scrolls the Code window to the function you specify.

length Number of instruction bytes.

Use The U command displays either source code or unassembled code at the specified address.
The code displays in the current mode (either code, mixed, or source) of the Code window,.
Source displays only if it is available for the specified address. To change the mode of the Code
window, use the SRC command (default key F3).

If you do not specify the address, the command unassembles at the address where you left off.

If the Code window is visible, the instructions display in the Code window, otherwise they
display in the Command window. In the Command window either eight lines display, or one
less than the length of the Command window.

To make the Code window visible, use the WC command (default key Alt-F3). To move the
cursor to the Code window, use the EC command (default key F6).

If the instruction is at the current CS:EIP, it displays using the reverse video attribute. If the
current CS:EIP instruction is a relative jump, it contains either the string JUMP or NO
JUMP, indicating whether or not the jump will be taken, and if so, an arrow indicating if the
jump will go up or down in the Code window. If the current CS:EIP instruction references a
memory location, the contents of the memory location display in the Register window
beneath the flags field. If the Register window is not visible, this value displays on the end of
the code line.

If a breakpoint is set on an instruction being displayed, the code line is displayed using the
bold attribute.
208 SoftICE Command Reference

SoftICE Commands
If any of the memory addresses within an instruction have a corresponding symbol, the
symbol displays instead of the hexadecimal address. If an instruction is located at a code
symbol, the symbol name displays on the line above the instruction.

To view or suppress the actual hexadecimal bytes of the instruction, use the CODE
command.

For Windows 95 and Windows NT

If you specify a length, SoftICE disassembles the instructions in the Command window
instead of the Code window. This is useful for reverse engineering, for example, disassembling
an entire routine and then using the SoftICE Loader Save SoftICE History function to
capture the output to a file.

Example To unassemble instructions beginning at 10 hexadecimal bytes before the current address, use
the command:

U eip - 10

To display source in the Code window starting at line number 121, use the command:
U .121

For Windows 95 and Windows NT

To disassemble 100 h bytes starting at MyProc to the Command window, use the command:

U myproc L100
SoftICE Command Reference 209

SoftICE Commands
VCALL Windows 3.1, Windows 95, Windows 98 System Information

Display the names and addresses of VxD callable routines.

Syntax VCALL [partial-name]

partial-name VxD callable routine name or the first few characters of the name. If
more than one routine’s name matches the partial-name, all routines
that start with the specified characters are listed.

Use The VCALL command displays the names and addresses of Windows VxD API routines.
These are Windows services provided by VxDs for other VxDs. All the routines SoftICE lists
are located in Windows system VxDs that are included as part of the base-line Windows
kernel.

The addresses displayed are not valid until the VMM VxD is initialized. If an X is not present
in the SoftICE initialization string, SoftICE pops up while Windows is booting and VMM is
not initialized.

The names of all VxD APIs are static. Only the function names provided in the Windows
DDK Include Files are available. These API names are not built into the final VxD executable
file. SoftICE provides API names for the following VxDs:

CONFIGMG IOS VCD VMCPD VSD

DOSMGR NDIS VCOMM VMD VTD

DOSNET PAGEFILE VCOND VMM VWIN32

EBIOS PAGESWAP VDD VMPOLL VXDLDR

ENABLE SHELL VDMAD VNETBIOS

IFSMGR V86MMGR VFBACKUP VPICD

INT13 VCACHE VKD VREDIR
210 SoftICE Command Reference

SoftICE Commands
Example The following example lists all Windows system VxD calls that start with Call. Sample output
follows the command.

VCALL call

80006E04 Call_When_VM_Returns

80009FD4 Call_Global_Event

80009FF4 Call_VM_Event

8000A018 Call_Priority_VM_Event

8000969C Call_When_VM_Ints_Enabled

800082C0 Call_When_Not_Critical

8000889F Call_When_Task_Switched

8000898C Call_When_Idle
SoftICE Command Reference 211

SoftICE Commands
VER Windows 3.1, Windows 95, Windows 98, Windows NT Miscellaneous

Display the SoftICE version number.

Syntax VER

Hint: To view your registration information and product serial number, start SoftIce Loader
and choose About SoftICE Loader from the Help menu.

Example The following example displays the SoftICE version number and operating system version:

VER
212 SoftICE Command Reference

SoftICE Commands
VM Windows 3.1, Windows 95, Windows 98 System Information

Display information on virtual machines.

Syntax VM [-S] [VM-ID]

-S Switches to the VM identified by the VM-ID.

VM-ID Index number of the virtual machine. Index numbers start at 1, where
index number 1 is always assigned to the Windows System VM (the
VM in which Windows applications run).

Use If no parameters are specified, the VM command displays information about all virtual
machines (VM) in the system. If a VM-ID is specified, the register values of the VM are
displayed. These registers are those found in the client register area of the virtual machine
control block so they represent the values last saved into the control block when there was a
context switch away from the VM. If SoftICE is popped up while a VM is executing, the
registers displayed in the SoftICE Register window, not the ones shown in the VM command
output, are the current registers for the VM. However, if you are in the first few instructions
of an interrupt routine where a virtual machine’s registers are being saved to the control block,
the CS:IP register may be the only valid register (the others have not been saved yet).

The command displays two sets of segment registers plus the EIP and SP registers. The
segment registers are used for the protected mode and the real mode contexts of the VM. If a
VM was executing in protected mode last, the protected mode registers are listed first. If V86
mode was the last execution mode, the V86 segment registers are listed first. The general
purpose registers (displayed below the segment registers) pertain to the segment registers listed
first.

A VM is a unit of scheduling for the Windows kernel. A VM can have one protected mode
thread under Windows 3.1, and multiple protected mode threads under Windows 95. In both
cases the VM has one V86 mode thread of execution. Windows, Windows applications, and
DLLs all run in protected mode threads of VM 1 (the System VM).

VMs other than the System VM normally have a V86 thread of execution only. However,
DPMI applications (also known as DOS extended applications) launched from these VMs
can also execute in a protected mode thread.

The VM command is very useful for debugging VxDs, DPMI programs, and DOS programs
running under Windows. For example, if the system hangs while running a DOS program,
you can often find the address of the last instruction it executed with the VM command (the
CS:EIP shown for the VM’s V86 thread).
SoftICE Command Reference 213

SoftICE Commands
Another more esoteric, but highly valuable use for the VM command is found when
Windows faults all the way back to DOS. There are times when Windows cannot handle a
fault and exits Windows and you end up back at the DOS prompt.

If this happens, duplicate the problem with I1HERE ON in SoftICE (Windows executes an
INT 1 prior to returning to DOS). When the fault happens, SoftICE pops up. Use the VM
command to find out the last address of execution and use the CR command to find the fault
address (CR2 contains the fault address). The ESI register usually points to an error message
at this point.

Output For each virtual machine, the following information displays:

VM Handle VM handle is actually a flat offset of the data structure that holds
information about the VM.

Status This is a bit mask that shows current state information for the VxD.
The values are as follows:

High Address Alternate address space for VM. This is where a VxD typically accesses
VM memory (instead of 0).
Note: It is likely for parts of the VM to be paged out at any one time

0001H Exclusive mode

0002H Runs in background

0004H In process of creating

0008H Suspended

0010H Partially destroyed

0020H Executing protected mode code

0040H Executing protected mode app

0080H Executing 32-bit protected app

0100H Executing call from VxD

0200H High priority background

0400H Blocked on semaphore

0800H Woke up after blocked

1000H Part of V86 App is pageable

2000H Rest of V86 is locked

4000H Scheduled by time-slices

8000H Idle, has released time slice
214 SoftICE Command Reference

SoftICE Commands
that you pop up SoftICE.

VM-ID Index number of this VxD, starting at 1.

Client Registers Address of the saved registers of this VM. This address actually points
into the level 0 stack for this VM.

Example VM

Sample output follows:

VM Handle Status High Addr VM-ID Client Regs

806A1000 00004000 81800000 3 806A8F94

8061A000 00000008 81400000 2 80515F94

80461000 00007060 81000000 1 80013390
SoftICE Command Reference 215

SoftICE Commands
VXD Windows 3.1 System Information

Display the Windows VxD map.

Syntax VXD [VxD-name | partial-VxD-name]

VxD-name Name of a virtual device driver.

partial-VxD-name First few characters of the name.

Use This command displays a map of all Windows virtual device drivers in the Command
window. If no parameters are specified, all VxDs are displayed. If a VxD-name is specified,
only information about the VxD with that name displays.

For Windows 95,
refer to VXD on page
218.

Information that is shown about a VxD includes the VxD’s control procedure address, its
Protected Mode and V86 API addresses, and the addresses of all VxD services it implements.
If the current CS:EIP belongs to one of the VxD's in the map, the line with the address range
that contains the CS:EIP will be highlighted.

If a partial name is specified, SoftICE displays information on all VxDs whose name begins
with the partial name.

Output If no parameters are specified, each entry in the VxD map contains the following information:

VxD name Name specified in the .DEF file when the VxD was built.

address Flat 32-bit address of one VxD section. VxDs are comprised of
multiple sections where each section contains both code and data. (i.e.
LockCode, LockData would be one section.)

size Length of the VxD section. This includes both the code and the data
of the VxD group.

code selector Flat code selector.

data selector Flat data selector.

type Section number from the .386 file.

id VxD ID number. The VxD ID numbers are used to obtain the
Protected Mode and V86 API addresses that applications call.

DDB Address of the VxDs Device Descriptor Block (DDB). This is a
control block that contains information about the VxD such as the
address of the Control Procedure and addresses of APIs.
216 SoftICE Command Reference

SoftICE Commands
If a VxD name is specified, the following information is displayed in addition to the previous
information:

Control Procedure Routine to which all VxD messages are dispatched.

Protected Mode API Address of the routine where all services called by protected mode
applications are processed.

V86 API Address Address of the routine where all services called by V86 applications are
processed.

VxD Services List of all VxD services that are callable from other VxDs. For the
Windows system VxDs, both the name and the address of the routines
are displayed.

Example This example displays the VxD map in the Command window. The first few lines of the
display would look something like the following. The VxD names in the previous table can be
used as symbol names. The address of seg 1 will be used when a VxD name is used in an
expression.

:VXD

See Also For Windows 95, refer to VXD on page 218.

VxDName Address Length Code Data Type ID DDB

VMM 80001000 000193D0 0028 0030 LGRP 01

VMM 80200000 00002F1C 0028 0030 IGRP

LoadHi 8001A3d0 000007E8 0028 0030 LGRP 02

LoadHi 80202F1C 00000788 0028 0030 IGRP

WINICE 8001ABB8 00027875 0028 0030 LGRP

CV1 80042430 0000036B 0028 0030 LGRP

VDDVGA 8004279C 00007AD8 0028 0030 LGRP

VDDVGA 802036A8 000005EC 0028 0030 IGRP
SoftICE Command Reference 217

SoftICE Commands
VXD Windows 95, Windows 98 System Information

Display the Windows VxD map.

Syntax VXD [VxD-name]

VxD-name Name or partial name of one or more virtual device drivers.

Use Use this command to obtain information about one or more VxDs. If you do not specify any
parameters, it displays a map of all the Windows virtual device drivers that are currently
loaded in the system. Dynamically loaded VxDs are listed after statically loaded VxDs. If a
VxD-name is specified, only that VxD, or VxDs with the same string at the start of their
name are displayed. For example, VM will match VMM and VMOUSE. If the current
CS:EIP belongs to one of the VxDs in the map, the line with the address range that contains
the CS:EIP is highlighted.

For Windows 3.1,
refer to VXD on page
216.

If no parameters are specified, each entry in the VxD map contains this information:

VxDName VxD Name.

Address Base address of the segment.

Length Length of the segment.

Seg Section number from the executable.

ID VxD ID.

DDB Address of the VxD descriptor block.

Control Address of the control dispatch handler.

PM Y, if the VxD has a protected mode API. N otherwise.

V86 Y, if the VxD has a V86 API. N otherwise.

VXD Number of VxD services implemented.

Win32 Number of Win32 services implemented.

If a unique VxD name is specified, the following additional information appears:

Init Order Order in which VxDs receive control messages. A zero value indicates
highest priority.

Reference Data The dword value that was passed from the real mode initialization
procedure (if any) of the VxD.
218 SoftICE Command Reference

SoftICE Commands
Version VxD version number.

PM API PM API FLAT procedure address and PM API Ring-3 address used by
applications. Refer to the following comments on PM and V86 APIs.

V86 API V86 API FLAT procedure address and V86 API Ring-3 address used
by applications. Refer to the next comments on PM and V86 APIs.

The PM API and V86 API parameters are register based and it is up to the individual VxD to
define subfunctions and parameter passing (on entry EBX-VM Handle, EBP-client registers).
If the Ring-3 address shown is 0:0, it means that no application code has yet requested the
API address through INT 2F function 1684h.

When the VxD being listed has a Win32 service table, the following information is presented
for each service:

Service Number Win32 Service Number.

Service Address Address of the service API handler.

Params Number of dword parameters the service requires.

When the VxD being listed has a VxD service table, the following is shown for each service:

Service Number VxD service number.

Service Address Flat address of service.

Service Name Symbol name if known (from VCALL list).

Example This example displays the VxD map in the Command window. The first few lines of the
display look similar to the following. The VxD names in the previous table can be used as
symbol names. The address of Seg 1 is used when a VxD name is used in an expression.

:VXD

See Also For Windows 3.1, refer to VXD on page 216.

VxD
Name

Address Length Seg ID DDB Control PM V86 VxD Win32

VMM C0001000 00FDC0 0001 0001 C000E990 C00024F8 Y Y 402 41

VMM C0200000 000897 0002

VMM C03E0000 000723 0003

VMM C0320000 000095 0004

VMM C0360000 00ED50 0005

VMM C0260000 007938 0006
SoftICE Command Reference 219

SoftICE Commands
WATCH Windows 3.1, Windows 95, Windows 98, Windows NT Watch

Add a watch expression.

Syntax WATCH expression

Use Use the WATCH command to display the results of expressions. SoftICE determines the size
of the result based on the expression’s type information. If SoftICE cannot determine the size,
dword is assumed. The expressions being watched are displayed in the Watch window. There
can be up to eight watch expressions at a time. Every time the SoftICE screen is popped up,
the Watch window displays the expression’s current values.

Each line in the Watch window contains the following information:

• Expression being evaluated.

• Expression type.

• Current value of the expression displayed in the appropriate format.

A plus sign (+) preceding the type indicates that you can expand it to view more information.
To expand the type, either double-click the type or press Alt-W to enter the Watch window,
use the UpArrow and DownArrow keys to move the highlight bar to the type you want to
expand, and press Enter.

If the expression being watched goes out of scope, SoftICE displays the following message:
“Error evaluating expression”.

To delete a watch, use either the mouse or keyboard to select the watch and press Delete.

Example This example creates an entry in the Watch window for the variable hInstance.

WATCH hInstance

This example indicates that the type for hInstance is void pointer (void *) and its current
value is 0x00400000.

hPrevInstance void * = 0x00400000

The following example displays the dword to which the DS:ESI registers point.

WATCH ds:esi
ds:esi void * =0x8158D72E

To watch what ds:esi points to, use the pointer operator (*):

WATCH * ds:esi
220 SoftICE Command Reference

SoftICE Commands
The following example sets a watch on a pointer to a character string lpszCmdLine. The
results show the value of the pointer (0x8158D72E) and the ASCII string (currently null).

WATCH lpszCmdLine +char * =0x8158D72E <"">

Double-clicking on this line expands it to show the actual string contents.

lpszCmdLine -char * =0x8158D72E
char = 0x0

See Also Alt-W, WW
SoftICE Command Reference 221

SoftICE Commands
WC Windows 3.1, Windows 95, Windows 98, Windows NT Window Control

Alt-F3

Toggles the Code window open or closed; and sets the size of the Code window.

Syntax WC [window-size]

window-size Decimal number.

Use If you do not specify window-size, WC toggles the window open or closed. If the Code
window is closed, WC opens it; and if it is open, WC closes it.

If you specify the window-size, the Code window is resized. If it is closed, WC opens it to the
specified size.

When the Code window is closed, the extra screen lines are added to the Command window.
When the Code window is opened, the lines are taken from the other windows in the
following order: Command and Data.

If you wish to move the cursor to the Code window, use the EC command (default key F6).

Example If the Code window is closed, the following example displays the window and sets it to twelve
lines. If the Code window is open, the example sets it to twelve lines.

WC 12
222 SoftICE Command Reference

SoftICE Commands
WD Windows 3.1, Windows 95, Windows 98, Windows NT Window Control

Alt-F2

Toggles the Data window open or closed; and sets the size of the Data window.

Syntax WD [window-size]

window-size Decimal number.

Use If you do not specify the window-size, WD toggles the Data window open or closed. If the
Data window is closed, WD opens it; and if it is open, WD closes it.

If you specify the window-size, the Data window is resized. If it is closed, WD opens it to the
specified size.

When the Data window is closed, the extra screen lines are added to the Command window.
When the Data window is opened, the lines are taken from the other windows in the
following order: Command and Code.

If you wish to move the cursor to the Data window to edit data, use the E command.

Example If the Data window is closed, the following example displays the window and sets it to one
line. If the Data window is open, the example sets it to one line.

WD 1
SoftICE Command Reference 223

SoftICE Commands
WF Windows 95, Windows 98, Windows NT Window Control

CTRL-F3

Display the floating point stack in either floating point or MMX format.

Syntax WF [-d] [b | w | d | f | *]

-d Display the floating point stack in the Command window. In addition
to the registers, both the FPU status word and the FPU control word
display in ASCII format.

b Display the floating point stack in byte hexadecimal format.

w Display the floating point stack in word hexadecimal format.

d Display the floating point stack in dword hexadecimal format.

f Display the floating point stack in 10-byte real format.

* Display the “next” format. The “*” keyword is present to allow cycling
through all the display formats by pressing a function key.

Use WF with no parameters toggles the display of the floating point Register window. The
window occupies four lines and is displayed immediately below the Register window. In 10
byte real format, the registers are labeled ST0-ST7. In all other formats the registers are
labeled MM0-MM7.

If the floating point stack contains an unmasked exception, SoftICE will NOT display the
stack contents. When reading the FPS, SoftICE obeys the tag bits and displays 'empty' if the
tag bits specify that state.

When displaying in the Command window, SoftICE displays both the status word and the
control word in ASCII format.

Example WF -d f

FPU Status Word: top=2
FPU Control Word: PM UM OM ZM DM IM pc=3 rc=0
ST0 1.619534411708533451e-289
ST1 9.930182991407099205e-293
ST2 6.779357630001165015e-296
ST3 4.274541060856685014e-299
224 SoftICE Command Reference

SoftICE Commands
ST4 2.782904336495237639e-302
ST5 1.818657819582844735e-305
ST6 empty
ST7 empty

Note: ASCII flags are documented in the INTEL Pentium Processor User’s Manual,
“Architecture and Programming,” Volume 3.

When displaying in any of the hexadecimal formats, SoftICE always display left to right from
most significant to least significant. For example, in word format, the following order would
be used:

Word format: bits(63-48) bits(47-32) bits(31-16) bits(15-0)
SoftICE Command Reference 225

SoftICE Commands
WHAT Windows 95, Windows 98, Windows NT System Information

Determine if a name or expression is a “known” type.

Syntax WHAT [name | expression]

name Any symbolic name that cannot evaluate as an expression.

expression Any expression that can be interpreted as an expression.

Use The WHAT command analyzes the parameter specified and compares it to known
names/values, enumerating each possible match, until no more matches can be found. Where
appropriate, type identification of a match is expanded to indicate relevant information such
as a related process or thread.

The name-type parameter is typically a collection of alphanumeric characters that represent
the name of an object. For example, Explorer would be interpreted as a name, and might be
identified as either a module, a process, or both.

The expression-type parameter is something that would not generally be considered a name-
type. That is, it is a number, a complex expression (an expression which contains operators,
such as Explorer + 0), or a register name. Although a register looks like a name, registers are
special cased as expressions since this usage is much more common. For example, for WHAT

eax , the parameter eax is interpreted as an expression-type. Symbol names are treated as
names, and will be correctly identified by the WHAT command as symbols.

Because the rules for determining name- and expression-types can be ambiguous at times, you
can force a parameter to be evaluated as a name-type by placing it in quotes. For example, for
WHAT “eax” , the quotes force eax to be interpreted as a name-type. To force a parameter that
might be interpreted as a name-type to an expression-type, use the unary “+” operator. For
example, for WHAT +Explorer , the presence of the unary “+” operator forces Explorer to be
interpreted as a symbol, instead of a name.

Example The following is an example of using the WHAT command on the name Explorer and the
resulting output. From the output, you can see that the name Explorer was identified twice:
once as a kernel process and once as a module.

WHAT explorer

The name (explorer) was identified and has the value FD854A80
The value (FD854A80) is a Kernel Process (KPEB) for Explorer(58)

The name (explorer) was identified and has the value 1000000
The value (1000000) is a Module Image Base for 'Explorer'
226 SoftICE Command Reference

SoftICE Commands
WL Windows 95, Windows 98, Windows NT Window Control Command

Toggles the Locals window open or closed; and sets the size of the Locals window.

Syntax WL [window-size]

window-size Decimal number.

Use If you do not specify the window-size, WL toggles the Locals window open or closed. If the
Local window is closed, WL opens it; and if it is open, WL closes it.

If you specify the window-size, the Locals window is resized. If it is closed, WL opens it to the
specified size.

When the Locals window is closed, the extra screen lines are added to the Command window.
When the Locals window is opened, the lines are taken from the other windows in the
following order: Command and Code.

Hint: From within the Locals window, you can expand structures, arrays, and character
strings to display their contents. Simply double-click the item you want to expand.
Note that expandable items are delineated with a plus (+) mark.

Example If the Locals window is closed, the following example displays the window and sets it to four
lines. If the Locals window is open, the example sets it to four lines.

WL 4

See Also LOCALS, TYPES
SoftICE Command Reference 227

SoftICE Commands
WMSG Windows 3.1, Windows 95, Windows 98, Windows NT System Information

Display the names and message numbers of Windows messages.

Syntax For Windows 3.1

WMSG [partial-name]

For Windows 95 and Windows NT

WMSG [partial-name | msg-number]

partial-name Windows message name or the first few characters of a Windows
message name. If multiple Windows messages match the partial-name
then all messages that start with the specified characters display.

msg-number Hexadecimal message number of the message. Only the message that
matches the msg-number displays.

Use This command displays the names and message numbers of Windows messages. It is useful
when logging or setting breakpoints on Windows messages with the BMSG command.

Example This command displays the names and message numbers of all Windows messages that start
with "WM_GET".

WMSG wm_get*

A sample output for this command follows:

000D WM_GETTEXT
000E WM_GETTEXTLENGTH
0024 WM_GETMINMAXINFO
0031 WM_GETFONT
0087 WM_GETDLGCODE

WMSG 111

0111 WM_Command
228 SoftICE Command Reference

SoftICE Commands
WR Windows 3.1, Windows 95, Windows 98, Windows NT Window Control

F2

Toggle the Register window.

Syntax WR

Use The WR command makes the Register window visible if it is not currently visible. If the
Register window is currently visible, WR closes the Register window.

The Register window displays the 80386 register set and the processor flags.

When the Register window is closed, the extra screen lines are added to the Command
window.

When the Register window is made visible, the lines are taken from the other windows in the
following order: Command, Code and Data.

For Windows 95 and Windows NT

The WR command also toggles the visibility of the floating point Register window if one is
open.
SoftICE Command Reference 229

SoftICE Commands
WW Windows 3.1, Windows 95, Windows 98, Windows NT Window Control

Alt-F4

Toggles the Watch window open or closed; and sets the size of the Watch window.

Syntax WW [window-size]

window-size Decimal number.

Use If you do not specify the window-size, WW toggles the Watch window open or closed. If the
Watch window is closed, WW opens it; and if it is open, WW closes it.

If you specify the window-size, the Watch window is resized. If it is closed, WW opens it to
the specified size.

When the Watch window is closed, the extra screen lines are added to the Command window.
When the Watch window is opened, the lines are taken from the other windows in the
following order: Command, Code, and Data.

Example If the Watch window is closed, the following example displays the window and sets it to four
lines. If the Watch window is open, the example sets it to four lines.

WW 4

See Also Alt-W, WATCH
230 SoftICE Command Reference

SoftICE Commands
X Windows 3.1, Windows 95, Windows 98, Windows NT Flow Control

F5

Exit from the SoftICE screen.

Syntax X

Use The X command exits SoftICE and restores control to the program that was interrupted to
bring up SoftICE. The SoftICE screen disappears. If you had set any breakpoints, they
become active.

Note: While in SoftICE, pressing the hot key sequence (default key Ctrl-D) or entering the
G command without any parameters is equivalent to entering the X command.
SoftICE Command Reference 231

SoftICE Commands
XFRAME Windows 95, Windows 98, Windows NT System Information

Display exception handler frames that are currently installed.

Syntax XFRAME [except-frame* | thread-type]

except-frame* Stack pointer value for an exception frame.

thread-type Value that SoftICE recognizes as a thread.

Use Exception frames are created by Microsoft's Structured Exception Handling API (SEH).
Handlers are instantiated on the stack, so they are context specific.

When an exception handler is installed, information about it is recorded in the current stack
frame. This information is referred to as an ExceptionRegistration. The XFRAME command
understands this information, and walks backwards through stack frames until it reaches the
top-most exception handler. From there it begins displaying each registration record up to the
currently active scope. From each registration, it determines if the handler is active or inactive;
its associated "global exception handler;" and if the handler is active, the SEH type: try/except
or try/finally: In the case of active exception handlers, it also displays the exception filter or
finally handler address.

Note: The global exception handler is actually an exception dispatcher that uses information
within an exception scope table to determine which, if any, exception handler handles
the exception. It also handles other tasks such as global and local unwinds.

You can use the global exception handler, and try/except/finally addresses to trap SEH
exceptions by setting breakpoints on appropriate handler addresses.

The XFRAME command is context-sensitive, so if you do not specify one of the optional
parameters, SoftICE reverts to the context that was active at pop-up time and displays the
exception frames for the current thread. When specifying an exception frame pointer as an
optional parameter, make sure you are in a context where that exception frame is valid. For
thread-type parameters, SoftICE automatically switches to the correct context for the thread.

Below the information for the ExceptionRegistration record, each active handler for that
exception frame is listed. For each active handler, its type (try/except or try/finally), the
address of its exception filter (for try/except only), and the address of the exception handler
display. Because exception handlers can be nested, more than one entry may be listed for each
ExceptionRegistration record.

The XFRAME command uses bare addresses in its output. You can use either the STACK or
WHAT commands to get an idea of which APIs installed which exception handlers.
232 SoftICE Command Reference

SoftICE Commands
Do not confuse the xScope value with the nesting level of exception handlers. Although these
values may appear to have some correlation, the value of xScope is simply an index into a
scope table (xTable). The scope table entry contains a link to its parent scope (if any).

In the event that a stack frame is not present, the XFRAME will not be able to complete the
stack walk.

Output For each exception frame that is installed, the following information displays:

xFrame Address of the ExceptionRegistration. This value is stack based.

xHandler Address of the global exception handler which dispatches the
exception to the appropriate try/except/finally filter/handler.

xTable Address of the scope table used by the global exception handler to
dispatch exceptions.

xScope Index into the xTable for the currently active exception handler. If this
value is -1, the exception handler is installed, but is inactive and will
not trap an exception.

Example The following example illustrates the use of the XFRAME command for the currently active
thread:

:XFRAME

xFrame xHandler xTable xScope

------ -------- ------ ------

0x45FFFDC 0x60639638 0x606018B8 00

 try/except (0000) filter=0x60606F72, handler=0x60606F85

0x45FFFA8 0x5FE16890 0x5FE11210 00

 try/except (0000) filter=0x5FE125EB, handler=0x5FE125F8

0x45FFB74 0x77F8B1BC 0x77F61370 00

 try/except (0000) filter=0x77F7DD21, handler=0x77F7DD31
SoftICE Command Reference 233

SoftICE Commands
XG Windows 3.1, Windows 95, Windows 98 Symbol/Source

Go to an address in trace simulation mode.

Syntax XG [r] address

Use XG does a Go to a specific code address within the back trace history buffer. This command
can only be used in trace simulation mode. The R parameter makes XG go backwards within
the back trace history buffer. If the specified address is not found within the back trace history
buffer, an error displays.

Example This example makes the instruction at address CS:2FF000h the current instruction in the
back trace history buffer.

XG 2ff000
234 SoftICE Command Reference

SoftICE Commands
XP Windows 3.1, Windows 95, Windows 98 Symbol/Source

Ctrl-F10

Program step in trace simulation mode.

Syntax XP

Use The XP command does a program step of the current instruction in the back trace history
buffer. It can only be used in trace simulation mode. Use this command to skip over calls to
procedures and rep string instructions.

Example This example does a program step over the current instruction in the back trace history buffer.

XP
SoftICE Command Reference 235

SoftICE Commands
XRSET Windows 3.1, Windows 95, Windows 98 Symbol/Source Command

Reset the back trace history buffer.

Syntax XRSET

Use XRSET clears all information from the back trace history buffer. It can only be used when
NOT in trace simulation mode.

Example This example clears the back trace history buffer.

XRSET
236 SoftICE Command Reference

SoftICE Commands
XT Windows 3.1, Windows 95, Windows 98 Symbol/Source Command

Ctrl-F8, XT R Alt-F8

Single step in trace simulation mode.

Syntax XT [R]

Use Use the XT command to single step the current instruction in the back trace history buffer.
The XT command is valid only within the in trace simulation mode. This command steps to
the next instruction contained in the back trace history buffer. The command XT R single
steps backwards within the back trace history buffer.

Example This example single steps one instruction forward in the back trace history buffer.

XT
SoftICE Command Reference 237

SoftICE Commands
ZAP Windows 3.1, Windows 95, Windows 98, Windows NT Mode Control Command

Replace an embedded interrupt 1 or 3 with a NOP.

Syntax ZAP

Use The ZAP command replaces an embedded interrupt 1 or 3 with the appropriate number of
NOP instructions. This is useful when the INT 1 or INT 3 is placed in code that is repeatedly
executed and you no longer want SoftICE to pop up. This command works only if the INT 1
or INT 3 instruction is the one before the current CS:EIP.

Example The embedded interrupt 1 or interrupt 3 will be replaced with NOP instructions in the
following example:

ZAP
238 SoftICE Command Reference

	SoftICE Commands
	.
	?
	A
	ACTION
	ADDR
	ADDR
	ALTKEY
	ALTSCR
	ANSWER
	BC
	BD
	BE
	BH
	BL
	BMSG
	BPE
	BPINT
	BPINT
	BPIO
	BPM
	BPR
	BPRW
	BPT
	BPX
	BSTAT
	C
	CLASS
	CLS
	CODE
	COLOR
	CPU
	CR
	CSIP
	D
	DATA
	DEVICE
	DEX
	DIAL
	DRIVER
	E
	EC
	EXIT
	EXP
	F
	FAULTS
	FIBER
	FILE
	FKEY
	FOBJ
	FLASH
	FORMAT
	G
	GDT
	GENINT
	H
	HBOOT
	HEAP
	HEAP32
	HEAP32
	HERE
	HWND
	HWND
	I
	I1HERE
	I3HERE
	IDT
	IRP
	LDT
	LHEAP
	LINES
	LOCALS
	M
	MACRO
	MAP32
	MAPV86
	MOD
	MOD
	NTCALL
	O
	OBJDIR
	OBJTAB
	P
	PAGE
	PAUSE
	PCI
	PEEK
	PHYS
	POKE
	Print Screen Key
	PRN
	PROC
	QUERY
	R
	RS
	S
	SERIAL
	SET
	SHOW
	SRC
	SS
	STACK
	SYM
	SYMLOC
	T
	TABLE
	TABS
	TASK
	THREAD
	THREAD
	TRACE
	TSS
	TYPES
	U
	VCALL
	VER
	VM
	VXD
	VXD
	WATCH
	WC
	WD
	WF
	WHAT
	WL
	WMSG
	WR
	WW
	X
	XFRAME
	XG
	XP
	XRSET
	XT
	ZAP

