
Elliptic Curve Cryptography – An Implementation Tutorial

 1

Elliptic Curve Cryptography

An Implementation Tutorial

Anoop MS
Tata Elxsi Ltd, Thiruvananthapuram, India

anoopms@tataelxsi.co.in

Abstract: The paper gives an introduction to elliptic curve cryptography
(ECC) and how it is used in the implementation of digital signature
(ECDSA) and key agreement (ECDH) Algorithms. The paper discusses the
implementation of ECC on two finite fields, prime field and binary field. It
also gives an overview of ECC implementation on different coordinate
systems called the projective coordinate systems. The paper also discusses
the basics of prime and binary field arithmetic.

1. Introduction
Elliptic Curve Cryptography (ECC) is a public key cryptography. In public key
cryptography each user or the device taking part in the communication generally have a
pair of keys, a public key and a private key, and a set of operations associated with the
keys to do the cryptographic operations. Only the particular user knows the private key
whereas the public key is distributed to all users taking part in the communication. Some
public key algorithm may require a set of predefined constants to be known by all the
devices taking part in the communication. ‘Domain parameters’ in ECC is an example of
such constants. Public key cryptography, unlike private key cryptography, does not
require any shared secret between the communicating parties but it is much slower than
the private key cryptography.
The mathematical operations of ECC is defined over the elliptic curve y2 = x3 + ax + b,
where 4a3 + 27b2 ≠ 0. Each value of the ‘a’ and ‘b’ gives a different elliptic curve. All
points (x, y) which satisfies the above equation plus a point at infinity lies on the elliptic
curve. The public key is a point in the curve and the private key is a random number. The
public key is obtained by multiplying the private key with the generator point G in the
curve. The generator point G, the curve parameters ‘a’ and ‘b’, together with few more
constants constitutes the domain parameter of ECC. The EC domain parameters are
explained in section 9.
One main advantage of ECC is its small key size. A 160-bit key in ECC is considered to be
as secured as 1024-bit key in RSA.

2. Discrete Logarithm Problem
The security of ECC depends on the difficulty of Elliptic Curve Discrete Logarithm
Problem. Let P and Q be two points on an elliptic curve such that kP = Q, where k is a
scalar. Given P and Q, it is computationally infeasible to obtain k, if k is sufficiently large.
k is the discrete logarithm of Q to the base P.
Hence the main operation involved in ECC is point multiplication. i.e. multiplication of a
scalar k with any point P on the curve to obtain another point Q on the curve.

Elliptic Curve Cryptography – An Implementation Tutorial

 2

3. Point multiplication
In point multiplication a point P on the elliptic curve is multiplied with a scalar k using
elliptic curve equation to obtain another point Q on the same elliptic curve.
i.e. kP=Q
Point multiplication is achieved by two basic elliptic curve operations
• Point addition, adding two points J and K to obtain another point L i.e., L = J + K.
• Point doubling, adding a point J to itself to obtain another point L i.e. L = 2J.
Point addition and doubling are explained in sections 4 and 5 respectively

Here is a simple example of point multiplication.
Let P be a point on an elliptic curve. Let k be a scalar that is multiplied with the point P to
obtain another point Q on the curve. i.e. to find Q = kP.
If k = 23 then kP = 23.P = 2(2(2(2P) + P) + P) + P.
Thus point multiplication uses point addition and point doubling repeatedly to find the
result. The above method is called ‘double and add’ method for point multiplication. There
are other efficient methods for point multiplication such as NAF (Non – Adjacent Form)
and wNAF (windowed NAF) method for point multiplication [1].

4. Point addition
Point addition is the addition of two points J and K on an elliptic curve to obtain another
point L on the same elliptic curve.

4.1. Geometrical explanation

Consider two points J and K on an elliptic curve as shown in figure (a). If K ≠ -J then a
line drawn through the points J and K will intersect the elliptic curve at exactly one more
point –L. The reflection of the point –L with respect to x-axis gives the point L, which is
the result of addition of points J and K.
Thus on an elliptic curve L = J + K.
If K = -J the line through this point intersect at a point at infinity O. Hence J + (-J) = O.
This is shown in figure (b). O is the additive identity of the elliptic curve group.
A negative of a point is the reflection of that point with respect to x-axis.

Elliptic Curve Cryptography – An Implementation Tutorial

 3

4.2. Analytical explanation
Consider two distinct points J and K such that J = (xJ, yJ) and K = (xK, yK)
Let L = J + K where L = (xL, yL), then
xL = s2 - xJ – xK
yL = -yJ + s (xJ – xL)
s = (yJ – yK)/(xJ – xK), s is the slope of the line through J and K.
If K = -J i.e. K = (xJ, -yJ) then J + K = O. where O is the point at infinity.
If K = J then J + K = 2J then point doubling equations are used.
Also J + K = K + J

5. Point doubling
Point doubling is the addition of a point J on the elliptic curve to itself to obtain another
point L on the same elliptic curve.

5.1. Geometrical explanation

To double a point J to get L, i.e. to find L = 2J, consider a point J on an elliptic curve as
shown in figure (a). If y coordinate of the point J is not zero then the tangent line at J will
intersect the elliptic curve at exactly one more point –L. The reflection of the point –L
with respect to x-axis gives the point L, which is the result of doubling the point J.
Thus L = 2J.
If y coordinate of the point J is zero then the tangent at this point intersects at a point at
infinity O. Hence 2J = O when yJ = 0. This is shown in figure (b).

5.2. Analytical explanation
Consider a point J such that J = (xJ, yJ), where yJ ≠ 0
Let L = 2J where L = (xL, yL), Then
xL = s

2 – 2xJ

yL = -yJ + s(xJ - xL)

Elliptic Curve Cryptography – An Implementation Tutorial

 4

s = (3xJ
2 + a) / (2yJ), s is the tangent at point J and a is one of the parameters chosen

with the elliptic curve
If yJ = 0 then 2J = O, where O is the point at infinity.

6. Finite Fields
The elliptic curve operations defined above are on real numbers. Operations over the real
numbers are slow and inaccurate due to round-off error. Cryptographic operations need
to be faster and accurate. To make operations on elliptic curve accurate and more
efficient, the curve cryptography is defined over two finite fields.

• Prime field Fp and
• Binary field F2

m
The field is chosen with finitely large number of points suited for cryptographic
operations. Section 7 and 8 explains the EC operations on finite fields. The operations in
these sections are defined on affine coordinate system. Affine coordinate system is the
normal coordinate system that we are familiar with in which each point in the coordinate
system is represented by the vector (x, y).

7. EC on Prime field Fp
The equation of the elliptic curve on a prime field Fp is y

2 mod p= x3 + ax + b mod p,
where 4a3 + 27b2 mod p ≠ 0. Here the elements of the finite field are integers between
0 and p – 1. All the operations such as addition, substation, division, multiplication
involves integers between 0 and p – 1. This is modular arithmetic and is defined in
session 10.1. The prime number p is chosen such that there is finitely large number of
points on the elliptic curve to make the cryptosystem secure. SEC specifies curves with p
ranging between 112-521 bits [4].
The graph for this elliptic curve equation is not a smooth curve. Hence the geometrical
explanation of point addition and doubling as in real numbers will not work here.
However, the algebraic rules for point addition and point doubling can be adapted for
elliptic curves over Fp.

7.1. Point Addition
Consider two distinct points J and K such that J = (xJ, yJ) and K = (xK, yK)
Let L = J + K where L = (xL, yL), then
xL = s2 - xJ – xK mod p
yL = -yJ + s (xJ – xL) mod p
s = (yJ – yK)/(xJ – xK) mod p, s is the slope of the line through J and K.
If K = -J i.e. K = (xJ, -yJ mod p) then J + K = O. where O is the point at infinity.
If K = J then J + K = 2J then point doubling equations are used.
Also J + K = K + J

7.2. Point Subtraction
Consider two distinct points J and K such that J = (xJ, yJ) and K = (xK, yK)
Then J - K = J + (-K) where -K = (xk, -yk mod p)
Point subtraction is used in certain implementation of point multiplication such as NAF [1].

7.3. Point Doubling
Consider a point J such that J = (xJ, yJ), where yJ ≠ 0
Let L = 2J where L = (xL, yL), Then
xL = s

2 – 2xJ mod p
yL = -yJ + s(xJ - xL) mod p

Elliptic Curve Cryptography – An Implementation Tutorial

 5

s = (3xJ
2 + a) / (2yJ) mod p, s is the tangent at point J and a is one of the parameters

chosen with the elliptic curve
If yJ = 0 then 2J = O, where O is the point at infinity.

8. EC on Binary field F2
m

The equation of the elliptic curve on a binary field F2
m is y2 + xy = x3 + ax2 + b, where

b ≠ 0. Here the elements of the finite field are integers of length at most m bits. These
numbers can be considered as a binary polynomial of degree m – 1. In binary polynomial
the coefficients can only be 0 or 1. All the operation such as addition, substation, division,
multiplication involves polynomials of degree m – 1 or lesser. The polynomial arithmetic
is defined in session 10.2. The m is chosen such that there is finitely large number of
points on the elliptic curve to make the cryptosystem secure. SEC specifies curves with m
ranging between 113-571 bits [4].
The graph for this equation is not a smooth curve. Hence the geometrical explanation of
point addition and doubling as in real numbers will not work here. However, the algebraic
rules for point addition and point doubling can be adapted for elliptic curves over F2

m
.

8.1. Point Addition
Consider two distinct points J and K such that J = (xJ, yJ) and K = (xK, yK)
Let L = J + K where L = (xL, yL), then
xL = s2 + s + xJ + xK + a
yL = s (xJ + xL) + xL + yJ
s = (yJ + yK)/(xJ + xK), s is the slope of the line through J and K.
If K = -J i.e. K = (xJ, xJ + yJ) then J + K = O. where O is the point at infinity.
If K = J then J + K = 2J then point doubling equations are used.
Also J + K = K + J

8.2. Point Subtraction
Consider two distinct points J and K such that J = (xJ, yJ) and K = (xK, yK)
Then J - K = J + (-K) where -K = (xk, xk + yk)
Point subtraction is used in certain implementation of point multiplication such as NAF [1].

8.3. Point Doubling
Consider a point J such that J = (xJ, yJ), where xJ ≠ 0
Let L = 2J where L = (xL, yL), Then
xL = s

2 + s + a
yL = xJ

2 + (s + 1)*xL
s = xJ + yJ/ xJ, s is the tangent at point J and a is one of the parameters chosen with the
elliptic curve
If xJ = 0 then 2J = O, where O is the point at infinity.

9. Elliptic Curve Domain parameters
Apart from the curve parameters a and b, there are other parameters that must be
agreed by both parties involved in secured and trusted communication using ECC. These
are domain parameters. The domain parameters for prime fields and binary fields are
described below. The generation of domain parameters is out of scope of this paper.
There are several standard domain parameters defined by SEC [4].
Generally the protocols implementing the ECC specify the domain parameters to be used.

Elliptic Curve Cryptography – An Implementation Tutorial

 6

9.1. Domain parameters for EC over field Fp
The domain parameters for Elliptic curve over Fp are p, a, b, G, n and h.
p is the prime number defined for finite field Fp . a and b are the parameters defining the
curve y2 mod p= x3 + ax + b mod p. G is the generator point (xG, yG), a point on the
elliptic curve chosen for cryptographic operations. n is the order of the elliptic curve. The
scalar for point multiplication is chosen as a number between 0 and n – 1. h is the
cofactor where h = #E(Fp)/n. #E(Fp) is the number of points on an elliptic curve.

9.2. Domain parameters for EC over field F2
m

The domain parameters for elliptic curve over F2
m

 are m, f(x), a, b, G, n and h.
m is an integer defined for finite field F2

m
. The elements of the finite field F2

m are integers
of length at most m bits. f(x) is the irreducible polynomial of degree m used for elliptic
curve operations which is discussed in section 10.2. a and b are the parameters defining
the curve y2 + xy = x3 + ax2 + b. G is the generator point (xG, yG), a point on the elliptic
curve chosen for cryptographic operations. n is the order of the elliptic curve. The scalar
for point multiplication is chosen as a number between 0 and n – 1. h is the cofactor
where h = #E(F2

m)/n. #E(F2
m) is the number of points on an elliptic curve.

10. Field Arithmetic
ECC uses modular arithmetic or polynomial arithmetic for its operations depending on the
field chosen. The arithmetic involves big numbers in the range of 100s of bits. This
section gives a brief overview for these two finite field operations.

10.1. Modular Arithmetic
Modular arithmetic over a number p involves arithmetic between numbers 0 and p – 1. If
the number happens to be out of this range in any of the operation the result is wrapped
around in to the range 0 and p – 1.

Addition
Let p = 23, a = 15, b = 20
a + b (mod p) = 15 + 20 (mod 23) = 35 mod 23 = 12
Since the result of a + b = 35 which is out of the range [0 22], The result is wrapped
around in to the range [0 22] by subtracting 35 with 23 till the result is in range [0 22].
a mod b is thus explained as remainder of division a/b.

Subtraction
Let p = 23, a = 15, b = 20
a - b (mod p) = 15 - 20 (mod 23) = -5 mod 23 = 18
Since the result of a - b = -5 which is negative and out of the range [0 22], The result is
wrapped around in to the range [0 22] by adding -5 with 23 till the result is in range
[0 22].

Multiplication
Let p = 23, a = 15, b = 20
a * b (mod p) = 15 * 20 (mod 23) = 300 mod 23 = 1
Since the result of a * b = 300 which is out of the range [0 22], The result is wrapped
around in to the range [0 22] by subtracting 300 with 23 till the result is in range [0 22].

Division
The division a/b (mod p) is defined as a * b-1 (mod p). b-1 is the multiplicative inverse of
b over p.

Elliptic Curve Cryptography – An Implementation Tutorial

 7

Multiplicative Inverse
Multiplicative inverse of number b with respect to mod p is defined as a number b-1 such
that b*b-1 (mod p) = 1. Multiplicative inverse exists only if b and n are relatively prime.
The algorithm such as extended Euclidean algorithm [7] can be used to find the
multiplicative inverse of a number efficiently. Finding multiplicative inverse is a costly
operation.
Finding x mod y
x mod y is the remainder of the division x/y. Finding x mod y by repeatedly subtracting y
with x till the result is in range [0 y-1] is a costly operation. Methods such as Barrett
Reduction [7] can be used to find modulus of a number in efficient manner.

10.2. Polynomial Arithmetic
Elliptic curve over field F2

m involves arithmetic of integer of length m bits. These numbers
can be considered as binary polynomial of degree m – 1. The binary string (am-1 ... a1 a0)
can be expressed as polynomial am-1x

m-1 + am-2x
m-2 + ... + a2x

2 + a1x + a0 where ai = 0 or
1. For e.g., a 4 bit number 11012 can be represented by polynomial as x3 + x2 + 1.
Similar to the modulus p on modular arithmetic, there is an irreducible polynomial of
degree m in polynomial arithmetic. If in any operation the degree of polynomial is greater
than or equal to m, the result is reduced to a degree less than m using irreducible
polynomial also called as reduction polynomial.
In binary polynomial the coefficients of the polynomial can be either 0 or 1. If in any
operation the coefficient becomes greater than 1, it can be reduced to 0 or 1 by modulo 2
operation on the coefficient.
All the operations below are defined in field F2

4 are on irreducible polynomial f(x) = x4 + x
+ 1. Since m = 4 the operation involves polynomial of degree 3 or lesser.

Addition
Consider two polynomial A = x3 + x2 + 1 and B = x2 + x. On polynomial addition A + B
gives x3 + 2x2 + x + 1. Taking mod 2 over coefficients, A + B = x3 + x + 1.
On binary representation
A = 11012

B = 01102
A + B = 10112 which is an XOR operation between A and B. This is true in all cases.
Hence polynomial addition can be achieved by simple XOR of two numbers.
i.e. A + B = A XOR B

Subtraction
Addition and subtraction are same operation in F2

m.
Consider two polynomial A = x3 + x2 + 1 and B = x2 + x. On polynomial subtraction A - B
gives x3 – x + 1. Taking mod 2 over coefficients A - B = x3 + x + 1
On binary representation
A = 11012

B = 01102
A - B = 10112 which is an XOR operation between A and B. This is true in all cases. Hence
polynomial subtraction can be achieved by simple XOR of two numbers.
i.e. A - B = A XOR B

Multiplication
Consider two polynomial A = x3 + x2 + 1 and B = x2 + x. On polynomial multiplication A *
B gives x5 + x3 + x2 + x. Coefficient are reduced to mod 2. Since m = 4 the results are to
be reduces to a degree less than 4 by irreducible polynomial x4 + x + 1.
i.e. x5 + x3 + x2 + x (mod f(x))

= (x4 + x + 1)x + x5 + x3 + x2 + x
= 2x5 + x3 + 2x2 + 2x
= x3, on reducing the coefficient on mod 2

Elliptic Curve Cryptography – An Implementation Tutorial

 8

On binary representation
A = 11012

B = 01102
A * B = 10002

Division
The division a/b(mod f(x)) is defined as a * b-1 (mod f(x)). b-1 is the multiplicative inverse
of b over f(x).

Multiplicative Inverse
Multiplicative inverse of number b with respect to irreducible polynomial f(x) is defined as
a number b-1 such that b*b-1 (mod f(x)) = 1. The algorithm such as extended Euclidean
algorithm can be used to find the multiplicative inverse of a polynomial efficiently. Finding
multiplicative inverse is a costly operation.

Irreducible polynomial
Irreducible polynomial is an analogue to modulus p in modular arithmetic. Irreducible
polynomial is a polynomial of degree m that cannot be expressed as the product of two
polynomials of lesser degree.
If in any polynomial arithmetic operation the resultant polynomial is having degree
greater than or equal to m, it is reduced to a polynomial of degree less than m by the
irreducible polynomial. An example is shown in multiplication section above.
In many standard implementation of elliptic curve operation, for making polynomial
reduction more efficient the irreducible polynomial is chosen to be trinomial (polynomial
containing 3 terms) or pentanomial (polynomial containing 5 terms) [1].

11. EC Cryptography
The EC algorithms are specified in SEC 1: Elliptic Curve Cryptography [3]. An overview of
EC cryptographic algorithms for key agreement and digital signature are explained below.

11.1. ECDSA - Elliptic Curve Digital Signature Algorithm
Signature algorithm is used for authenticating a device or a message sent by the device.
For example consider two devices A and B. To authenticate a message sent by A, the
device A signs the message using its private key. The device A sends the message and
the signature to the device B. This signature can be verified only by using the public key
of device A. Since the device B knows A’s public key, it can verify whether the message is
indeed send by A or not.
ECDSA is a variant of the Digital Signature Algorithm (DSA) that operates on elliptic
curve groups. For sending a signed message from A to B, both have to agree up on
Elliptic Curve domain parameters. The domain parameters are defined in section 9.
Sender ‘A’ have a key pair consisting of a private key dA (a randomly selected integer less
than n, where n is the order of the curve, an elliptic curve domain parameter) and a
public key QA = dA * G (G is the generator point, an elliptic curve domain parameter). An
overview of ECDSA process is defined below.

Signature Generation
For signing a message m by sender A, using A’s private key dA

1. Calculate e = HASH (m), where HASH is a cryptographic hash function, such as
SHA-1

2. Select a random integer k from [1,n − 1]
3. Calculate r = x1 (mod n), where (x1, y1) = k * G. If r = 0, go to step 2
4. Calculate s = k − 1(e + dAr)(mod n). If s = 0, go to step 2
5. The signature is the pair (r, s)

Elliptic Curve Cryptography – An Implementation Tutorial

 9

Signature Verification
For B to authenticate A's signature, B must have A’s public key QA

1. Verify that r and s are integers in [1,n − 1]. If not, the signature is invalid
2. Calculate e = HASH (m), where HASH is the same function used in the signature

generation
3. Calculate w = s −1 (mod n)
4. Calculate u1 = ew (mod n) and u2 = rw (mod n)
5. Calculate (x1, y1) = u1G + u2QA
6. The signature is valid if x1 = r(mod n), invalid otherwise

11.2. ECDH – Elliptic Curve Diffie Hellman
ECDH is a key agreement protocol that allows two parties to establish a shared secret key
that can be used for private key algorithms. Both parties exchange some public
information to each other. Using this public data and their own private data these parties
calculates the shared secret. Any third party, who doesn’t have access to the private
details of each device, will not be able to calculate the shared secret from the available
public information. An overview of ECDH process is defined below.
For generating a shared secret between A and B using ECDH, both have to agree up on
Elliptic Curve domain parameters. The domain parameters are defined in section 9. Both
end have a key pair consisting of a private key d (a randomly selected integer less than
n, where n is the order of the curve, an elliptic curve domain parameter) and a public key
Q = d * G (G is the generator point, an elliptic curve domain parameter). Let (dA, QA) be
the private key - public key pair of A and (dB, QB) be the private key - public key pair of
B.

1. The end A computes K = (xK, yK) = dA * QB
2. The end B computes L = (xL, yL) = dB * QA
3. Since dAQB = dAdBG = dBdAG = dBQA. Therefore K = L and hence xK = xL
4. Hence the shared secret is xK

Since it is practically impossible to find the private key dA or dB from the public key K or L,
its not possible to obtain the shared secret for a third party.

12. To make it more efficient
As we discussed earlier the point multiplication is the main operation in elliptic curve
cryptography. Point multiplication involves plenty of point addition and point doubling.
Each point addition and doubling involves a multiplicative inverse operation each as seen
in sections 7 and 8. Finding multiplicative inverse is a costly operation in both finite fields,
Fp and F2

m.
Representing the points in projective coordinate systems can eliminate the need of
multiplicative inverse operation in point addition and point doubling and there by
increasing the efficiency of point multiplication operation.
For using the projective coordinate in elliptic curve one has to convert the given point in
affine coordinate to projective coordinate before point multiplication then convert it back
to affine coordinate after point multiplication. The entire process requires only one
multiplicative inverse operation. The operation in projective coordinate involves more
scalar multiplication than in affine coordinate. ECC on projective coordinate will be
efficient only when the implementation of scalar multiplication is much faster than
multiplicative inverse operation.

Elliptic Curve Cryptography – An Implementation Tutorial

 10

13. EC operations in Projective coordinate system
EC on various projective coordinates have been proposed out of which one each for
binary field and prime field are explained below.

13.1. Projective coordinate in field F2
m [1]

Here the point (X, Y, Z) in projective coordinate corresponds to the point (X/Z, Y/Z2) in
affine coordinate. The equation for the elliptic curve is Y2 + XYZ = X3Z + aX2Z2 + bZ4.
For point multiplication, convert the point (X, Y) in affine coordinate to (X, Y, 1) in
projective coordinate. After multiplication the result (X, Y, Z) is converted back to the
affine coordinate as (X/Z, Y/Z2) where Z ≠ 0. If Z = 0, then the point is considered as the
point at infinity.

Point addition
For adding two points in projective coordinate Let (X1, Y1, Z1) + (X2, Y2, 1) = (X3, Y3, Z3)
then

A = Y2. Z1

2 + Y1

B = X2. Z1 + X1

C = Z1. B
D = B2.(C + a. Z1

2)
Z3 = C2

E = A.C
X3 = A2 + D + E
F = X3 + X2. Z3
G = X3 + Y2. Z3

Y3 = E. F + Z3.G

Z2 = 1, since one operand in point addition will always be the input point in point
multiplication operation, which is an affine coordinate point.

Point doubling
For doubling a point in projective coordinate Let 2(X1, Y1, Z1) = (X3, Y3, Z3) then
Z3 = X1

2. Z1
2

X3 = X1
4 + b. Z1

4

Y3 =
 b. Z1

4. Z3 + X3.(a. Z3 + Y1
2 + b.Z1

4)

13.2. Jacobian Projective coordinate in field Fp [2]
Here the point (X, Y, Z) in Jacobian projective coordinate corresponds to the point
(X/Z2, Y/Z3) in affine coordinate. The equation for the elliptic curve is Y2 = X3 – 3.XZ4 +
bZ6. For point multiplication, convert the point (X, Y) in affine coordinate to (X, Y, 1) in
Jacobian projective coordinate. After multiplication the result (X, Y, Z) is converted back
to the affine coordinate as (X/Z2, Y/Z3) where Z ≠ 0. If Z = 0, then the point is considered
as the point in infinity.

Point addition
For adding two points in projective coordinate Let (X1, Y1, Z1) + (X2, Y2, 1) = (X3, Y3, Z3)
then
A = X2. Z1

2

B = Y2. Z1
3

C = A – X1
D = B – Y1

X3 = D2 – (C3 + 2X1.C
2)

Y3 = D.(X1.C
2 – X3) – Y1.C

3
Z3 = Z1. C

Elliptic Curve Cryptography – An Implementation Tutorial

 11

Z2 = 1, since one operand in point addition will always be the input point in point
multiplication operation, which is an affine coordinate point.

Point doubling
For doubling a point in Jacobian projective coordinate Let 2(X1, Y1, Z1) = (X3, Y3, Z3) then
A = 4X1 + Y1

2

B = 8Y1
4

C = 3(X1 - Z1
2).(X1 + Z1

2)
D = -2A + C2
X3 = D

Y3 = C. (A - D) – B
Z3 = 2Y1.Z1

14. Conclusion
For efficient implementation of ECC, it is important for the point multiplication algorithm
and the underlying field arithmetic to be efficient. There are different methods for
efficient implementation point multiplication [1] and field arithmetic [1][7] suited for
different hardware configurations.
Implementation of ECC using projective coordinates has shown considerable
improvement in efficiency compared to the affine coordinate implementation. This
improvement in efficiency is due to the elimination of multiplicative inverse operation in
point addition and doubling that would otherwise cost considerable processor cycles.
If the irreducible polynomial in binary field implementation is chosen to be trinomial or
pentanomial the implementation of ECC on binary field can be made efficient than the
prime field implementation. In SEC specified domain parameters [4], the irreducible
polynomials are either trinomial or pentanomial. These chosen polynomials cause the
polynomial reduction in binary field to run much faster than the modular reduction in
prime field.

Reference
[1] Darrel Hankerson, Julio Lopez Hernandez, Alfred Menezes, Software Implementation of

Elliptic Curve Cryptography over Binary Fields, 2000, Available at
http://citeseer.ist.psu.edu/hankerson00software.html

[2] M. Brown, D. Hankerson, J. Lopez, A. Menezes, Software Implementation of the NIST
Elliptic Curves Over Prime Fields, 2001, Available at
http://citeseer.ist.psu.edu/brown01software.html

[3] Certicom, Standards for Efficient Cryptography, SEC 1: Elliptic Curve Cryptography,
Version 1.0, September 2000, Available at http://www.secg.org/download/aid-
385/sec1_final.pdf

[4] Certicom, Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve
Domain Parameters, Version 1.0, September 2000, Available at
http://www.secg.org/download/aid-386/sec2_final.pdf

[5] Openssl, http://www.openssl.org
[6] Certicom, http://www.certicom.com/index.php?action=ecc_tutorial,home
[7] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied

Cryptography, CRC Press, 1996

