
CONTINUED FRACTIONS AND LATTICE SIEVING

JENS FRANKE, THORSTEN KLEINJUNG

Abstract. We present a new method of lattice sieving which we expect to
be faster by a constant factor than the method of Pollard, and which has
been used in recent GNFS records. We also explain how to efficiently split
the sieving region among several computing nodes and analyze the asymptotic
behaviour of the cost of sieving on a large parallel computer.

The asymptotic behaviour of the cost parallelized sieving has recently been
analyzed by D. Bernstein ([Ber]), who assumed that a two-dimensional mesh
is used. We propose a parallelized lattice siever using a butterfly-like topology.
The Bernstein cost function for this siever is superior to the cost function for
the methods proposed by Bernstein, both asymptotically and for projects of a
size comparable to current factorization records. For very large projects, of a
size well above RSA1024, one may encounter problems realizing this topology
in three-dimensional Euclidean space. We will explain in Remark 3 in the last
section that this problem is unlikely to occur for projects of a feasible size.

1. The algorithm for lattice sieving

We start with an outline of the procedure of lattice sieving, which was introduced
by Pollard. We give a brief description of the problems encountered when one wants
to implement this in an efficient way. These problems, as well as a practical solution
to them, were also described by Pollard. We present a solution which we believe to
be more elegant and which probably saves a constant factor over Pollard’s method.

A special q-pair is a pair (q, ρ) such that q is a prime and f(a, b) ≡ 0 mod p if
a ≡ ρb mod q. To carry out lattice sieving for a special q pair, one calculates a
reduced basis

(
(a0, b0), (a1, b1)

)
of the lattice of all (a, b) ∈ Z2 with a ≡ ρb mod q.

For highly skewed GNFS polynomials, a weighted scalar product is used for the
reduction. Then one looks for pairs (a, b) = i(a0, b0)+j(a1, b1), with (i, j) belonging
to the sieving regionA defined by the two conditions−I/2 ≤ i < I/2 and 0 < j ≤ J ,
for which f(a, b)/q is B0-smooth and g(a, b) is B1-smooth, where B0 and B1 are
appropriate factor base bounds for the lattice siever. One is only interested in
such a pair if i and j are coprime. To determine such pairs, one expresses both
polynomials in (i, j)-coordinates

h0(i, j) =
f(ia0 + ja1, ib0 + jb1)

q
h1(i, j) = g(ia0 + ja1, ib0 + jb1)

and considers the factor bases Bλ consisting of all sublattices p ⊂ Z2 such that the
order Z2/p is a prime p =: N(p) < Bλ which divides hλ(i, j) if (i, j) ∈ p. Note
that, with finitely many exceptions, N(p) is the norm of the ideal belonging to p.
For each λ ∈ {0; 1}, one calculates Bλ (by expressing a precalculated factor base
for the original polynomial pair in (i, j)-coordinates), initializes a sieve array with
S[i][j]← 0 for all (i, j) ∈ A, and then adds log(N(p)) to S[i][j] for each p ∈ Bλ and
each (i, j) ∈ p ∩ A. Then one takes a closer look at the (i, j) ∈ A for which S[i][j]

1

2 JENS FRANKE, THORSTEN KLEINJUNG

is large after both passes. All implementations we are aware of use a sieve array of
bytes and a one byte approximation to log(N(p)). This appears to be preferable
since memory throughput is one of the limiting factors for the speed of sieving, and
since higher accuracy is not normally necessary.

If p = N(p) does not exceed a small multiple of I and if p does not correspond
to the infinity point of the projective line P1(Z/pZ), then sieving proceeds by the
usual line sieving procedure as follows: For 0 < j ≤ J , one attempts to calculate
the smallest i with (i, j) ∈ A ∩ p, proceeding to the next factor base element if no
such i exists. Then one increments S[i][j] by log(N(p)) and, replacing i by i + p,
iterates this procedure until i ≥ I/2. If p is defined by the condition p|j, then the
same procedure may be used if the roles of i and j are interchanged. In practice
this exception is encountered only finitely many times, since one has irreducible
polynomials depending on both i and j. If this exception occurs only finitely many
times, or if the quotient I/J is bounded from above and below, then for I > J > 1
and Bλ > 10 the cost of using this procedure for all elements of Bλ is

O
(JBλ

log(Bλ)
+
∑

p∈Bλ

IJ

N(p)

)
= O

(JBλ
log(Bλ)

+ IJ log(logBλ)
)
.

The first summand of the left hand side contains the initialization costs and the
error made when the number of elements of Z × {j} ∩ A ∩ p is approximated by
I/N(p). The transition to the right hand side is made by an application of Merten’s
law for number fields. For the naive method of sieving described above, this cost
estimate cannot be improved. For Bλ � I , the first summand (containing the
initialization cost per j) dominates. This means that it is necessary to look for
a different treatment of the factor base elements with N(p) � I if one wants to
obtain a procedure with heuristic run time

(1) IJ log log(Bλ).

Pollard [Pol] achieves this by calculating a reduced basis (bκ)1
κ=0 of the lattice p.

Using effectively computable bounds for the coefficients (x, y) ∈ Z2 of the represen-
tation of an element s ∈ A∩p as s = xb0 +yb1, one obtains an algorithm whose run
time is, at least heuristically, given by (1). This method is also described in [BL]
and [GLM] and has been used in the lattice siever, written by A. Lenstra, which
was used in the RSA130–RSA155 GNFS records and in the SNFS records obtained
during that time.

Our method of lattice sieving depends on the following two facts:

Proposition 1. Let p ⊂ Z2 be a lattice such that Z2/p is cyclic of order p, and
such that Z × {0} ∩ p = pZ. Let a number I ≤ p be given. Then there exists a
unique basis {(α, β), (γ, δ)} of p with the following properties:

• We have β > 0 and δ > 0.
• We have −I < α ≤ 0 ≤ γ < I.
• We have γ − α ≥ I.

If (i, j) ∈ p satisfies −I < i < I and j ≥ 0, then (i, j) = k(α, β) + l(γ, δ) with k ≥ 0
and l ≥ 0.

Proof. Our assumptions imply the existence of an integer r such that 0 ≤ r < p
and p =

{
(i, j) ∈ Z2

∣∣ i ≡ rj mod p
}

. We define a sequence of integer pairs by
(i0, j0) = (−p, 0), (i1, j1) = (r, 1), and (ik+1, jk+1) = (ik−1, jk−1)+ak(ik, jk), where
the positive integer ak is obtained by rounding |ik−1/ik| towards 0. The sequence

CONTINUED FRACTIONS AND LATTICE SIEVING 3

stops if ik = ±1. By induction, (ik−1, jk−1) and (ik, jk) form a basis of p. It is easy
to see that jk is positive for k > 0, and that the sequence (−1)k+1ik is a strictly
decreasing sequence of non-negative integers. Therefore, and because of i0 ≤ −I ,
there exists an integer k > 0 with |ik| < I and |ik−1| ≥ I . Let a be the smallest
integer with |ik−1| − a |ik| < I . If k is odd, then (α, β) = (ik−1, jk−1) + a(ik, jk)
(we have β > 0 since a > 0 and jk > 0) and (γ, δ) = (ik, jk) are easily seen to
satisfy all three conditions. For even k, the same holds for (α, β) = (ik, jk) and
(γ, δ) = (ik−1, jk−1) + a(ik, jk). This proves the existence of a basis of p with the
properties described above.

Let {(α, β); (γ, δ)} be a basis of p satisfying these conditions. Also, let (i, j) 6= 0
satisfy the conditions of the last assertion of the proposition. Since (i, j) ∈ p, we
have (i, j) = k(α, β) + l(γ, δ) with integers k and l. We have to show that both
k and l are non-negative. If this fails to hold, then either both of them are non-
positive, with one of them being negative, or they are both different from zero and
have different signs. The first possibility yields the contradiction j < 0 since β and
δ are both positive. The second possibility leads to the contradiction

|kα+ lγ| = |l| γ − |k|α ≥ γ − α ≥ I,
where the equality holds because kα and lγ have the same sign.

We have just shown that the second assertion of the proposition holds for each
lattice base satisfying the assumptions of the first assertion. This implies that (α, β)
coincides with the element (i, j) of [1 − I, 0] × (0,∞) ∩ p for which j is smallest,
whereas the other basis vector is the element of [0, I − 1]× (0,∞) ∩ p for which j
is smallest. This proves the uniqueness assertion. �

Proposition 2. Let p, I, (α, β) and (γ, δ) be the same as in the previous propo-

sition. Let A ∈ N and Ã = Z2 ∩
(
[A,A + I − 1] × Z

)
. Let (i, j) in Ã ∩ p. If

(i′, j′) ∈ Ã ∩ p where j′ > j and j′ is as small as possible, then

(2) (i′, j′) = (i, j) +





(α, β) i ≥ A− α
(γ, δ) i < A+ I − γ
(α, β) + (γ, δ) A+ I − γ ≤ i < A− α

Proof. It is easy to see that precisely one of the three cases occurs, and that the
right hand side of (2) is always an element of Ã ∩ p whose second coordinate ĵ is

> j. If (̃i, j̃) ∈ Ã ∩ p with j̃ > j, then 1 implies

(̃i, j̃) = (i, j) + k(α, β) + l(γ, δ)

with k ≥ 0, l ≥ 0 and k+ l > 0. In the first and third case, the condition ĩ < A+ I
is violated if k = 0 and l > 0. Therefore, k > 0 in the first and third case. Similarly,
the condition ĩ ≥ A forces l > 0 in the second and third case. In all three cases, we
obtain j̃ ≥ ĵ. �

Remark 1. We outline some implementation details for the application of proposi-
tion 2 to lattice sieving. First of all, it is possible to restrict to the case J ≤ I/2
by exchanging the two coordinates of A and using the fact that (i, j) and −(i, j)
are equivalent number field sieve reports. Recall that A = [−I/2, I/2− 1]× [1, J].
If p is a factor base element with p = N(p) ≥ I which violates the assumption of
proposition 1, then p is defined by the congruence p|j, which contradicts (i, j) ∈ A.
Therefore, propositions 1 and 2 can be applied to all factor base elements with

4 JENS FRANKE, THORSTEN KLEINJUNG

p∩A 6= ∅ which are not treated by the line sieving procedure. For such factor base
elements, one does not store the pairs (α, β) and (γ, δ) but the numbers a = βI+α
and c = δI + γ. Before starting the inner sieving loop which will produce all ele-
ments of A ∩ p, one calculates the bounds b0 = −α and b1 = I − γ from a and c.
The elements (i, j) of A ∩ p are parametrized by x = jI + i + I/2, and the sieve
array S is treated as a one-dimensional array. After calculating (by application of
2 to the pair (0, 0)) the smallest x or reading some previously used x from memory,
the inner sieving loop proceeds in the following steps:

• i← x%I
• S(x)← S(x) + log(N(p))
• If i ≥ b0, x← x+ a.
• If i < b1, x← x+ c

which are executed until x ≥ I(J + 1). If I is a power of 2, the first step is just a
bitwise AND. In our SNFS and GNFS records, as well as in the RSA140 and RSA155
factorizations, I was a power of 2.

The first two steps are always independent of each other, and at least some
substeps of steps 3 and 4 are independent of each other and of step 2. Also, steps 3
and 4 are easily implemented in a jump-free way on a modern CPU. For these
reasons, and because a truncated Euclidean algorithm is probably faster than a
lattice reduction in most cases, the procedure is probably very fast. However,
we have no comparisons with implementations of other lattice sieving methods
optimized for the same target machines.

In reality, the sieving region is broken into blocks of size L1 equal to the L1
cache, and for primes exceeding the cache size the second step is not carried out
directly. Instead, the remainder of x modulo L1 is pushed to the appropriate
entry of a one-dimensional array of stacks containing one stack for each L1 block.
When the i-th block of size L1 is sieved, the entries xi,j of the i-th stack are read
and the appropriate value is added at offset xi,j of an array of bytes of size L1.
To reduce the amount of memory used by this method, and to make it more cache
efficient, this procedure is actually broken into several steps corresponding to several
intermediate bounds on the factor base primes. For instance, for factor base primes
L1 ≤ p ≤ 16L1, the values xi,j are only stored for 16 adjacent values of i. For
larger primes, more adjacent values of i have to be considered in order to retain
the log log-behaviour of Merten’s law.

To facilitate the trial division sieve ([GLM]), we also store a hint which allows
the reconstruction of the factor base element. The trial division sieve is carried out
seperately for each of the subregions of size L1 of the sieve region.

Remark 2. Let (ik, jk) be the sequence considered in the proof of proposition 1. It
is easy to see that the quotients nk/jk, where nk = (jkr− ik)/p, are the continued
fraction approximations to r/p. The pair (α, β) or (γ, δ) whose second coordinate is
smallest corresponds to the first diophantine approximation n/m = [0, a1, . . . , ak−1]

to r/p with
∣∣∣mrp − n

∣∣∣ < mI . The other pair is only a one-sided diophantine ap-

proximation to r/p, and corresponds to [0, a1, . . . , ak−1, a] with 1 ≤ a ≤ ak. This
explains the title of the paper and explains why proposition 1 is a modification of
the well-known theorem about diophantine approximations and continued fractions.

CONTINUED FRACTIONS AND LATTICE SIEVING 5

2. Splitting the sieving region

A simple parallelization of lattice sieving may split the sieving region A = Z2 ∩
([−I/2, I/2−1]× [1, J]) into pieces Aa = Z2∩ ([−I/2, I/2−1]× [aJ1 +1, (a+1)J1])
with 0 ≤ a < K = J/J1, where J1 divides J . Each of the K nodes stores all factor
base elements with N(p) < IJ1. The other factor base elements are distributed
among the K nodes. The a-th node calculates all elements of Aa ∩ p for the factor
base elements with N(p) < IJ1. For the other factor base elements, it receives
part of the information from the other nodes. For its own share of the factor base
elements with N(p) ≥ IJ1, the node calculates the elements z of p ∩ A and sends
them to the destination node with z ∈ Aa. For the factor base elements with
N(p) < IJ1, the a-th node has to calculate the element of Aa ∩ p whose second
coordinate is smallest. This is easily seen to be a special case of the following
problem.

Let p, a = (α, β), c = (γ, δ) and Ã be the same as in proposition 2. Let

i = (i, j) ∈ Ã and D > 0 be given, and let ĩ = (̃i, j̃) be the element of Ã ∩ p whose

second coordinate is the smallest possible with j̃ > j+D. To determine ĩ, one may
proceed in the following steps:

Step 1: Let (0, D) = ξa + υc, and let x and y be obtained by rounding the
rational numbers ξ and υ (which are easily seen to be positive) towards
zero. Let i1 = (i1, j1) = i + (x + 1)a + yc, i2 = (i2, j2) = i + xa + (y + 1)c,
and i3 = (i3, j3) = i + (x + 1)a + (y + 1)c. We have i1 ≤ i < A + I and
i2 ≥ i ≥ A. If i1 ≥ A, then output i1 if j1 > j + D and go to Step 2 if
j1 ≤ j + D. If i2 < A + I , go to Step 3 if j2 ≤ j + D and output i2 if
j2 > j +D. If i1 < A and i2 ≥ A+ I , output i3.

Step 2: We have i1 ∈ Ã ∩ p. An iterated application of proposition 2 to this
pair shows that (̃i, j̃) can be found as follows: Let l be the largest non-
negative integer with i1 + lα ≥ A and j1 + lβ ≤ j+D. If i1 + (l+ 1)α ≥ A,
output i1+(l+1)a. Otherwise, output i3+la if i3+lα < A+I or i3+(l+1)a
if i3 + lα ≥ A+ I .

Step 3: We apply a similar procedure to i2: Let l ≥ 0 be the largest integer
with i2 + lγ < A+ I and j2 + lδ ≤ j +D. Output i2 + (l + 1)c if the first
entry of this pair is < A + I . Otherwise, output i3 + lc or i3 + (l + 1)c,
preferring the first pair if its first entry is ≥ A.

In steps 2 and 3, we repeatedly apply proposition 2 to a pair i + x′a + y′c where
the coefficient of one of the basis vectors satisfies x′ ≥ ξ or y′ ≥ υ. As soon as the
other basis vector is added, the repeated application of (2) will produce an element

of Ã ∩ p with second coordinate > j + D, but it may do so earlier. This justifies
steps 2 and 3, and it remains to justify step 1 in the cases where it produces the
output.

If i1 ≥ A, then i1 ∈ Ã ∩ p, and every element î = (̂i, ĵ) of Ã ∩ p with ĵ < j1 has,

by application of proposition 1 to i1− î, the form i + x̂a + ŷc with x̂ ≤ ξ and ŷ ≤ υ.
This demonstrates ĵ ≤ j + D, and implies ĩ = i1 if i1 ∈ Ã ∩ p and j1 > j + D. A
similar consideration justifies step 1 if i2 < A+ I .

It remains to justify step 1 if i1 6∈ Ã and i2 6∈ Ã. In this case, i3 = i1 + γ <
A+ γ < A+ I , i3 = i2 + α ≥ A+ I + α > A, and j3 > j + ξβ + υδ = j +D, which

proves i3 ∈ Ã ∩ p with j3 > j +D. If î ∈ Ã ∩ p with second coordinate ĵ < j3, then

an application of proposition 1 to i3 − î gives î = i + x̂a + ŷc with x̂ ≤ x + 1 and

6 JENS FRANKE, THORSTEN KLEINJUNG

ŷ ≤ y+ 1, where one of these inequalities must be strict. If only the first inequality
is strict, we obtain the contradiction î ≥ i2 ≥ A + I . If the second inequality is
strict while the first one is not, we have the contradiction î ≤ i1 < A. Since both
inequalities are strict, we have x̂ ≤ ξ and ŷ ≤ υ, which implies ĵ ≤ j + D. The
justification of the above procedure is complete.

3. Parallelization of the lattice siever

If just a few nodes are involved, then the all-to-all communication scheme ex-
plained in the last subsection may be appropriate. This may change for larger
projects like RSA1024, which may need factor base sizes up to 1010. This means
that up to a few hundred nodes are involved. It is the aim of this section to analyse
the Bernstein cost function for a large multicomputer dedicated to sieving.

For line sieving, we suppose that the “mathematical” sieving region is a+([0, A]∩
Z)×Z, where A = 2k+l is a power of two and a is a vector in the domain of definition

of the polynomial pair. It is mapped bijectively to the interval Ã = Z∩ [0, 2k+l−1]
which is divided into 2l pieces of size 2k. In the case of the lattice siever, the same
is achieved by mapping A = [−I/2, I/2− 1]× [1, J]∩Z2 bijectively to Ã, mapping
(i, j) to (j − 1) ∗ I + i + I/2. In this case, it is assumed that 2k+l = IJ . For
the sake of simplicity, we always assume N(p) < 2k+l for factor base elements.
This assumption is reasonable up to a factor of at most log(k + l), since otherwise
initialization costs start to dominate over sieving costs. For a factor base element
p, Ãp denotes the image of A ∩ p under the bijection A ∼=−−→ Ã.

The parallel computer consists of l+1 layers, each containing 2l nodes. The b-th
layer, 0 ≤ b ≤ l, contains the nodes Na,b, 0 ≤ a < 2l. If b > 0, then Na,b has an
outgoing connection to Na,b−1 and to Na±2b−1,b−1, where in a± 2b−1 the +-sign is

chosen if the remainder of the division a/2b is < 2b−1, and the −-sign is chosen if

this remainder is ≥ 2b−1. Each node only looks at a part B
(a,b)
λ of the factor base

and a part Ãa,b of the sieving interval. We put Ãa,0 = Z∩ [a2k, (a+ 1)2k − 1]. For

b > 0, we put Ãa,b = Ãa,b−1 ∪ Ãa′,b−1 where Na′,b−1, a′ 6= a is the unique node in

layer b− 1 connected to Na,b. Let B
(0)
λ consist of all p ∈ Bλ such that N(p) < 2k.

For b > 0, let B
(b)
λ consist of all p ∈ Bλ such that 2k+b−1 ≤ N(p) < 2k+b. We

assume that, for each p ∈ B
(b)
λ , a random number rp ∈ Z ∩ [0, 2b − 1] is calculated

such that the rp are equidistributed and statistically independent. This means

that for j distinct elements of B
(b)
λ and (i1, . . . , ij) ∈ [0, 2b − 1] the probability of

rpm = im for each m with 1 ≤ m ≤ j equals 2−bj . We define B
(a,b)
λ to be the set

of all p ∈ B
(b)
λ for which rp is equal to the remainder of the division of a by 2b. It

is easy to see that for each pair (x, p) ∈ Ã ×Bλ, there is precisely one node Na,b

with x ∈ Ãa,b and p ∈ B
(a,b)
λ . and Ãa,b,p = Ãp ∩ Ãa,b for all factor base elements

and (a, b)-pairs. The preimage of Ãa,b in A will be denoted by Aa,b.
The hosts Na,0 of the bottom layer actually allocate memory for an array of bytes

S[x] with x ∈ Ãa,0. All hosts Na,b allocate memory for the elements of B
(a,b)
λ . In

addition, all hosts have to allocate some buffers for the communication described
below.

The sieving of a special q by the parallel computer takes l + 2 steps which we
describe now, at least in the case of line sieving. In step 0, Na,b calculates the set

Sa,b of all pairs (x, p) with p ∈ B
(a,b)
λ and x ∈ Aa,b,p. If b = 0, then log(N(p)) is

CONTINUED FRACTIONS AND LATTICE SIEVING 7

added to S[x] for each pair (x, p) ∈ Sa,b. Otherwise, Na,b sends (x, p) to Na′,b−1,
where a′ is determined by the conditions that the target node is one of the two
nodes to which Na,b has an outgoing connection, and that x ∈ Ãa′,b−1.

In step s, where 1 ≤ s ≤ l, the nodes Na,b with b + s ≤ l have received
from one of their two links in layer b + 1 all pairs (x, p) ∈ Sa,b+s,b, the subset

of
⋃
a′≡a mod 2b Sa′,b+s defined by the condition x ∈ Ãa,b. It deals with these pairs

in the same way as with the pairs which it calculated in step 0. If b = 0, log(N(p))
is added to S[x]. Otherwise the pair (x, p) is sent to the node Na′,b−1 to which Na,b

has an outgoing connection and for which x ∈ Ãa′,b−1. The nodes with b > l − s
are idle in this step.

In step l + 1, the nodes of the bottom layer determine the set of all x ∈ Ãa,0
for which S[x] exceeds a certain threshold. For such x, they calculate the value
of the norm polynomials, test them for smoothness, and output the sieve report if
the norm polynomial is found to be smooth. Countless variations to this scheme
may be considered. First of all, one has to decide whether the above procedure
is carried out for λ = 0 only or for both values of λ. If sieving is only done for
λ = 0 (as proposed by Coppersmith [Cop] and Bernstein [Ber]), then all survivors of
sieving on this side have to be fed to the elliptic curve test. Otherwise, the nodes of
the bottom layer have to allocate two (or more, if Coppersmith’s multi-polynomial
version is used) sieve intervals. In this case, the inter-node communication also has
to keep track of λ. It is also possible to use a trial division sieve if, for some cut-

off parameter b′, the nodes of the bottom layer store the elements of
⋃l
b=b′ Sa,b,0

instead of just adding log(N(p)) to S[x].
Recall our announcement that the above procedure needs some modification if

the lattice siever is to be parallelized. Before we describe this modification, we give
an estimate of Bernstein’s cost function for the parallelized line siever. We fix k
and assume l→∞. Let n be the polynomial norm and d be the polynomial degree.

By Chebychev’s prime number theorem, the number of elements in B
(b)
λ is� d2k+b

k+b

unconditionally, and� 2k+b

k+b heuristically.1 In any case, their number is � 2k+b up

to factors which are at most polynomial in d. The number of elements Ãa,b,p with

p ∈ B
(b)
λ is O(1) with implied constant depending on k for b = 0 and independent of

k if b > 0 . If the elements of B
(b)
λ are evenly distributed among the nodes of layer

b which treat the same subset of Ã, then the amount of memory of Na,b needed

for storing B
(a,b)
λ and Sa,b, as well as the execution time of step 0, are of at most

polynomial growth in d and l. The fact that we used a random number generator

to distribute B
(b)
λ over the nodes introduces some difficulties which are easily dealt

with since they are similar to, but easier than the problems encountered in the later
steps.

Since it is not easy to prove useful unconditional inequalities for the number of
elements in Sa,b′,b with b′ > b, the cost of steps 1 to l is more difficult to estimate.
It is only possible to prove a probabilistic result. Let

Stot
a,b′,b =

{
(x, p)

∣∣ p ∈ B
(b′)
λ and x ∈ Ãa,b,p

}

1We write f(x)� g(x) if there exists a constant C such that 0 ≤ f(x) ≤ Cg(x) for all x of the
domain of definition of both functions.

8 JENS FRANKE, THORSTEN KLEINJUNG

This set does not change if a varies in a certain block of 2b consecutive integers,
and is the union of Sa′,b′,b with a′ varying in this block:

Stot
a,b′,b =

a02b+1−1⋃

a′=a02b

Sa′,b′,b for 2ba0 ≤ a < 2b+1a0.

To estimate the number of elements in this set, note that its elements are related
to prime divisors of the polynomial values at the 2b+k elements of Aa,b. Since each

prime factor is ≥ 2b
′+k, the number of elements in Stot

a,b′,b is

(3) Na,b′,b := #
(
Stot
a,b′,b

)
� (d(l + log |a|) + log n)2k+b

k + b′
.

Note that the sets Stot
a,b′,b depend only on the sieving task, not on the random

distribution of the factor base elements over the nodes in layer b′. This is no longer
the case for Sa,b′,b: An element (x, p) of Stot

a,b′,b belongs to Sa,b′,b if and only if

2b divides rp − a, where rp is the random variable introduced in the description of

B
(a′,b′)
λ . This means that the random variables r(x,p) associating to (x, p) ∈ Stot

a′,b′,b

the number a with x ∈ Sa,b′,b are equidistributed over a block of 2b consecutive

integers. Since we are working with the line siever and since the elements of B
(b′)
λ

satisfy N(p) > 2k+b, it is easy to see for each p ∈ B
(b′)
λ there is at most one

(x, p) ∈ Stot
a,b′,b. Since the rp are statistically independent, this implies that the

r(x,p) are also statistically independent.
Now we assume that the communication buffer of node Na,b, which is allocated

before sieving starts, contains at least

(4) Ma,b′,b =

⌈
l((l + log(|a|))d + log n)2k

k + b′

⌉

elements. It is assumed that the nodes are programmed in such a way that they
never write past the end of their communication buffers. Instead, they abort a
sieving for which the communication buffer overflows, or split the transmission
into several passes if this occurs. For the sake of simplicity, we assume the first
possibility. The probability that a sieving task is aborted because of buffer overflow
in node Na,b in step b′ − b is

pabort(a, b
′, b) ≤

Na,b′,b∑

s=Ma,b′ ,b+1

2−bs(1− 2−b)Na,b′,b−s
(
Na,b′,b
s

)

�
Na,b′,b∑

s=Ma,b′ ,b+1

2−bs
N
Na,b′,b
a,b′,b

ss(Na,b′,b − s)Na,b′,b−s

�
Na,b′,b∑

s=Ma,b′ ,b+1

(
2−bs

e ·Na,b′,b
s

)s
(5)

≤
(C
l

)l

for some constant C. The total probability of a sieving task being aborted is
bounded by (l + 1)22l times this expression, and is easily seen to tend to zero as
l→∞.

CONTINUED FRACTIONS AND LATTICE SIEVING 9

The cost of building a node which is able to allocate a communication buffer
of at least (4) elements of size 2 ∗ (k + l) bits grows at most polynomially in l,
log(|a| n) and d. If the communication buffer does not overflow, then the execution
time for each of the steps is also bounded by a multiple of the maximum of (4) over
0 ≤ b < b′ ≤ l times some power of k + l. We arrive at

Proposition 3. Using the parallel siever described above, the Bernstein cost func-
tion for executing a line sieving task of size 2k+l, with factor base bound < 2k+l,
polynomial norm n and degree d and with probability of success tending to 1 as
l→∞ uniformly in n and d, is

�k

(
l + d + log(|a| n)

)O(1)
2l.

The parallelization of the lattice siever is similar to the case of the line siever,
with one exception. For the line siever, we made use of the fact that the number
of elements of Ãa,b,p is ≤ 1 if N(p) ≥ 2k+b. This still holds for the lattice siever if

2k+b ≤ I . Otherwise, the number of “hits” of this factor base element in Ãa,b may
be as large as 2k+b/I , even if N(p) is much larger than 2k+b. This may occur if
one of the two basis vectors in proposition 1 is extremely short. For this reason, it
is necessary to fix some constant K and modify the procedure as follows:

• In step 0, the node Na,b applies the procedure explained in the proof of

proposition 1 to the elements of B
(a,b)
λ . It determines the smallest element

of Ãa,b,p, using the procedure outlined in the second subsection. If b = 0,
it carries out the sieving with this factor base element. If b > 0, there are
two integers a′ for which Na,b has an outgoing connection to Na′,b−1. For

each of them, Na,b determines whether the number of elements of Ãa′,b−1,p

is < K. In this case, it sends the pairs (x, p) with x ∈ Ãa′,b−1,p to Na′,b−1.
Otherwise, it treats p as degenerate and sends only p itself. This exception
can be encoded, for instance, by sending the pair (x, p) with some x outside
Aa′,b−1.

• In steps 1 through l, the hosts deal with the (x, p) pairs they receive in
precisely the same way as for line sieving. If a host receives an exceptional
factor base element p, it deals with p in the same way as with the elements

of B
(a,b)
λ in step 0.

The last step works in the same way as for line sieving. The constant K could be set
equal to 1 (such that all factor base elements are treated as exceptional) without
seriously changing the outcome of our asymptotic analysis, but in practice it is
larger and its optimal value may increase with l. In any case, the procedure makes
sure that no node, with the possible exception of the nodes in layer 0, spends more
than some power of (k + l) of computing time or memory on a single factor base
element which it treats. Defining Stot

a,b′,b and Sa,b′,b in the same way as for line

sieving, our considerations for (3) imply

(6) #
(
Stot
a,b′,b

)
� (d(l + log q) + log n)2k+b

k + b′

for the lattice siever. In particular, the number of factor base elements contributing
to Stot

a,b′,b is bounded by the right hand of this expression. If at least

(7) Ma,b′,b =

⌈
(K + 1)

l((l + log q)d + log n)2k

k + b′

⌉

10 JENS FRANKE, THORSTEN KLEINJUNG

elements are allocated in the communication buffer, then our analysis for the line
siever goes through. For the nodes of layer 0, we have Stot

a,0 = Sa,0, and a direct
application of (6) proves that the computing cost for the nodes of layer 0 stays
acceptable, although some factor base elements with N(q) > I may, in the case
where I < 2k, give an exceptionally high contribution to it. We obtain:

Proposition 4. Using the parallel siever described above, the Bernstein cost func-
tion for executing a lattice sieving task of size 2k+l, with factor base bound < 2k+l,
polynomial norm n and degree d and with probability of success tending to 1 as
l→∞ uniformly in n and d, is

�k

(
l+ d + log(qn)

)O(1)
2l,

where q is the special q treated by the siever.

Remark 3. In a GNFS factorization, k + l, d and log n, log(q) and log(|a|) are all
proportional to some power of the logarithm of the number which is to be factored.
This gives a cost estimate

� (k + l)O(1)2k+l.

Using elliptic curve smoothness tests, Bernstein also achieves cost

2(k+l)(1+rk+l)

with rn = o(1) as n → ∞, but in his case nrn grows like a multiple of
√
n since

the elliptic curve method is used for smoothness tests. This means that his sieving
method is asymptotically inferior to the straightforward parallelization presented
here. Of course, at some point physical problems will prevent the realization of
our design because the geometry of three-dimensional Euclidean space does not
permit the building of arbitrarily large butterfly multicomputers with uniformly
bounded communication costs per direct link and unit of information. For projects
of a huge size, the communication lines of the butterfly multicomputer will become
so long that, Bernstein’s design will win but we expect that this does not occur
in the range which is currently feasible, even for the worlds most powerful states.
For instance, the multicomputers needed to complete a sieving task for RSA1024
within a few minutes would probably only be medium sized by modern standards,
and it should not be difficult to realize the design using standard fast network
equipment. Larger projects will require larger clusters, but as long as the latency
time of the communication is at most a few seconds and the throughput rate remains
as decent as with contemporary LINUX clusters, neither the cost per node nor the
time required to complete a single sieving task (as opposed to the total number of
sieving tasks) will explode. We do not expect ECM smoothness testing to break
even unless the cryptanalyst has the resources to fill his entire country with powerful
multicomputers, each of which has the size of a major city.

For smaller projects, the difference between the two methods is similar to the
difference between the MPQS method and a CONFRAC implementation using
elliptic curve smoothness tests.

Remark 4. Modifications to the above scheme are, of course, possible. It is possible
to introduce more than two ramifications per node. It is also possible to “project”
the entire multicomputer to its bottom line. This increases the cost per node by
a factor of l, while it decreases the number of nodes by the same factor. The
computing time per special q will, however, increase.

CONTINUED FRACTIONS AND LATTICE SIEVING 11

References

[Ber] D. J. Bernstein, Circuits for Integer Factorization: A Proposal, Manuscript, November
2001.

http://cr.yp.to/papers.html#nfscircuit

[BL] D. J. Bernstein and A.K. Lenstra, A general number field sieve implementation, in
[LL], 103-126

[Cop] D. Coppersmith, Modifications to the Number Field Sieve, J. of Cryptology 6, 1993, 169-
180.

[GLM] R. A. Golliver, A. K. Lenstra and K. S. McCurley, Lattice sieving and trial divi-
sion, in: Algorithmic Number Theory (ed. by L. M. Adleman, M.-D. Huang), LNCS 877,
Springer, 1994, 18–27.

[LL] A.K. Lenstra and H.W. Lenstra, Jr. (eds.), The Development of the Number Field
Sieve, Lecture Notes in Math. 1554, Springer, 1993.

[Pol] J. M. Pollard, The lattice sieve, in [LL], 43-49

University of Bonn, Department of Mathematics, Beringstrasse 1, D-53115 Bonn,
Germany

E-mail address: {franke,thor}@math.uni-bonn.de

