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The RSA Algorithm 
Encryption is the act of encoding text so that others not privy to the decryption 
mechanism (the "key") cannot understand the content of the text. Encryption has 
long been the domain of spies and diplomats, but recently it has moved into the 
public eye with the concern of the protection of electronic transmissions and 
digitally stored data. Standard encryption methods usually have two basic flaws: 
(1) A secure channel must be established at some point so that the sender may 
exchange the decoding key with the receiver; and (2) There is no guarantee who 
sent a given message. Public key encryption has rapidly grown in popularity (and 
controversy, see, for example, discussions of the Clipper chip on the archives 
given below) because it offers a very secure encryption method that addresses 
these concerns.  

In a classic cryptosystem in order to make sure that nobody, except the intended 
recipient, deciphers the message, the people involved had to strive to keep the 
key secret. In a public-key cryptosystem. The public key cryptography solves one 
of the most vexing problems of all prior cryptography: the necessity of 
establishing a secure channel for the exchange of the key.  

The RSA algorithm, named for its creators Ron Rivest, Adi Shamir, and Leonard 
Adleman, is currently one of the favorite public key encryption methods. Here is 
the algorithm:  

1. Choose two (in practice, large 100 digit) prime numbers p and q and let n 
= pq.  

2. Let Pi be the block of (plain) text to be encrypted. Actually Pi is the 
numerical equivalent of the text which may either be single letters or 
blocks of letters, just as long as .  

3. Choose a random value E (usually small) such that E is relatively prime to 
. Then the encrypted text is calculated from  

 

The pair of values (n,E) act as the public key.  

4. To decode the ciphertext, we need to find an exponent D, which is known 
only to the person decoding the message, such that  

 

Note that . Then we may calculate  
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This step is based on the following result:  

 

where Show that this result is true.   
 
(Since , then for some integer m. Thus, 
applying Euler's theorem we have 

  ). 
 

 

By Euler's theorem  

 

provided E and are relatively prime, which is true by the choice of E. So we 
obtain  

 

 

 

Therefore, we have an equation that can be used to find the "key" exponent D. 
The central result of the RSA algorithm is that this equation is computationally 
solvable in polynomial time (actually using the Euclidean Algorithm) whereas 
solving by factoring n requires exponential computational time. [Note however 
that this last statement has never actually been proven but only demonstrated 
given today's algorithms. Should someone discover an algorithm that factors 
integers in polynomial time, the RSA and similar algorithms could be rendered 
useless for secure communications.] Central to these calculations is knowing the 
factorization of n, since we will need to calculate both and .  

Example 
Suppose we wish to encode the plaintext message Pi = 3 (that is, under our 
encoding some letter has been assigned the numerical value 3) subject to our 
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choices of p=11, q=17 (thus, n=187) and E=7 (note that 7 is relatively prime to 
187.) Then the ciphertext Ci is given by  

Ci = 37 = 2187 130 mod(187).  
Thus the receiver must decode the message Ci = 130. To decode this "message" 
the receiver must calculate the exponent D. [Note that in this example the 
factorization of n is relatively easy, so someone could break the code by 
factoring n and calculating D. However, in practice, we could choose n large so 
that only we would (theoretically) know the factorization.]  

Since n = 11 · 17, then , and 
[WARNING! WARNING! Will Robinson.] Thus we obtain  

 

Example: Calculate 763 mod(160).  

Why was there a warning in the previous example? If you have been closely 
examining what has taken place in the RSA algorithm you may have noticed that 
although we know the factorization of n (since we choose the prime factors p and 
q) and hence , we may not have an easy time determing 

, which requires us to know all the factors of what 
could be a very large number. This seems to contradict the polynomial time 
needed to solve for the key. The solution is (and is a key -- unintentional pun --
 element of the RSA algorithm) that the formula for D, although concise, is not 
the way the solution is found in practice. The actual method of solution (which 
does require polynomial time computation) is based on the Euclidean algorithm.  

Returning to our previous example, recall that we want to solve  

 

 

By our choice of E, 7 and 160 are relatively prime, and thus  

 

 

using the Euclidean algorithm. Working in reverse gives  
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In algebraic terms, we say we have written 1 as a linear combination of 7 and 
160. Since 160 is the modulus, we have  

 

Hence D=23! Thus the real key to the solution of D is knowing which 
requires the knowledge of the factorization of n since .  

 

A Simple explanation of RSA 
Algorithm in view to computer : 
Let p and q be distinct large primes and let n be their product. Assume that we 
also computed two integers, d (for decryption) and e (for encryption) such that  

d * e 1 (mod ø(n))  

where ø(n) is the number of positive integers smaller than n that have no factor 
except 1 in common with n  

The integers n and e are made public, while p, q, and d are kept secret.  

Let m be the message to be sent, where m is a positive integer less than and 
relativley prime to n. A plaintext message is easily converted to a number by 
using either the alphabet position of each letter (a=01, b=02, ..., z=26) or using 
the standard ASCII table. If necessary (so that m<n), the message can be broken 
into several blocks.  

. 

The encoder computes and sends the number  

m' = m^e mod n  

To decode, we simply compute  

e^d mod n  

Now, since both n and e are public, the question arises: can we 
compute from them d? The answer: it is possible, if n is factored into
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prime numbers.  

The security of RSA depends on the fact that it takes an impractical 
amount of time to factor large numbers.  
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