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1. Introduction

Factoringa positive integern means finding positive integersu andv such that the product
of u andv equalsn, and such that bothu andv are greater than 1. Suchu andv are called
factors (or divisors) of n, andn = u · v is called afactorizationof n. Positive integers
that can be factored are calledcomposites. Positive integers greater than 1 that cannot be
factored are calledprimes. For example,n = 15 can be factored as the product of the
primesu = 3 andv = 5, andn = 105 can be factored as the product of the primeu = 7
and the compositev = 15. A factorization of a composite number is not necessarily unique:
n = 105 can also be factored as the product of the primeu = 5 and the compositev = 21.
But theprime factorizationof a number—writing it as a product of prime numbers—is
unique, up to the order of the factors:n = 3 · 5 · 7 is theprime factorization ofn = 105,
andn = 5 is the prime factorization ofn = 5.

In this article we concentrate on finding just a factorization. The prime factorization can
be obtained by further factoring the factors that happen to be composite: both factorizations
n = 7 · 15 andn = 5 · 21 of n = 105 can be further refined to the prime factorization
n = 3 · 5 · 7 of n = 105, the first by further factoring 15, the second by factoring 21. There
are efficient methods to distinguish primes from composites that do not require factoring the
composites (cf. [29], [50], and Section 2). These methods can be used to establish beyond
doubt that a certain number is composite without, however, giving any information about
its factors.

Factoring a composite integer is believed to be a hard problem. This is, of course, not
the case forall composites—composites with small factors are easy to factor—but, in
general, the problem seems to be difficult. As yet there is no firm mathematical ground
on which this assumption can be based. The only evidence that factoring is hard consists
of our failure so far to find a fast and practical factoring algorithm. (The polynomial-time
factoring algorithms that are based on the use of quantum computers are not considered
to be practical and not addressed in this survey.) Interestingly, and to an outsider maybe
surprisingly, an entire industry is based on this belief that factoring is hard: the security,
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i.e., the unbreakability, of one of the most popular public key cryptosystems relies on the
supposed difficulty of factoring (cf. Appendix).

This relation between factoring and cryptography is one of the main reasons why people
are interested in evaluating the practical difficulty of the integer factorization problem.
Currently the limits of our factoring capabilities lie around 130 decimal digits. Factoring
hard integers in that range requires enormous amounts of computing power. A cheap and
convenient way to get the computing power needed is to distribute the computation over
the Internet. This approach was first used in 1988 to factor a 100-digit integer [32], since
then to factor many integers in the 100 to 120 digit range, and in 1994 to factor the famous
129-digit RSA-challenge number (cf. [4]).1 Most recently, in 1996 a 130-digit number was
factored, partially using a World Wide Web interface [13].

This survey is intended for people who want to get an impression how modern factoring
algorithms work. Using simple examples we illustrate the basic steps involved in the
factoring methods used to obtain the factorizations just mentioned and we explain how
these methods can be run in parallel on a loosely coupled computer network, such as the
Internet.

We distinguish two main types of factoring methods: those that work quickly if one is
lucky, and those that are almost guaranteed to work no matter how unlucky one is. The latter
are referred to asgeneral-purpose algorithmsand have an expected run time that depends
solely on the size of the numbern being factored. The former are calledspecial-purpose
algorithms; they have an expected run time that also depends on the properties of the—
unknown—factors ofn. When evaluating the security of factoring-based cryptosystems,
people employ general-purpose factoring algorithms. This survey therefore focuses on
this category of integer factoring algorithms, after a short description how primes can be
efficiently distinguished from composites (Section 2) and of some of the most important
special purpose algorithms in Section 3.

In Section 4 we sketch the basic approach of the general purpose algorithms. We show that
they consist of two main steps:data collection, anddata processing. Section 5 concentrates
on the quadratic sieve factoring algorithm, the algorithm that was considered to be the most
practical general purpose method from 1982 to 1994. We describe the data collection
step, how it can be improved using some simple additional tricks, and how it can be
parallelized over a network. Section 5 concludes with some data from quadratic sieve
factoring efforts.

The algorithm that is currently considered to be the most practical method (for sufficiently
large numbers)—the number field sieve—is sketched in Section 6. This sketch offers only
a vague indication of the algorithm: it omits most of the mathematics required to fully
understand the algorithm. In the appendix we describe the relation between factoring and
cryptography.

Understanding the material presented in this survey requires some willingness to bear with
a few easy examples and a few slightly more complicated formulas and descriptions. Some
of the descriptions below are oversimplified to the point of being partially inaccurate—in
particular the description of the number field sieve factoring algorithm is seriously deficient.
Nevertheless, we hope that this survey provides a useful introduction to factoring that
inspires the readers to consult the literature referred to in the references.
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2. Preliminaries

Notation. By ‘logb’ we denote the baseb logarithm, and ‘ln’ denotes the natural logarithm,
i.e., ln= loge with e≈ 2.71828. The largest integer<= x is denoted by ‘[x]’. The number
of primes≤ x is denoted by ‘π(x)’, the prime counting function; due to thePrime number
theorem[24] we know thatπ(x) ≈ x/ ln(x). To give an example of some values of the
prime counting function and its growth rate:

{π(10i ): 1≤ i ≤ 19}
= {4,25,168,1229,9592,78498,664579,57 61455,508 47534,4550 52511,

41180 54813,3 76079 12018,34 60655 36839,320 49417 50802,

2984 45704 22669,27923 83410 33925,2 62355 71576 54233,

24 73995 42877 40860,234 05766 72763 44607};
furthermore,π(4185 29658 14676 95669) = 1017 (cf. [16,27]). Building a table of all
primes≤ 1050 or of all 256-bit primes, as has often been proposed, is therefore completely
infeasible.

Smoothness.We say that a positive integer isB-smoothif all its prime factors are<= B.
An integer is said to besmooth with respect to S, whereS is some set of integers, if it can
be completely factored using the elements ofS. We often simply use the termsmooth, in
which case the boundB or the setS is clear from the context.

Smoothness probability. In the algorithms described in this paper we are interested
in the probability that randomly selected integers are smooth. Intuitively, the smaller a
number is, the higher the probability that it is smooth. For example, there are 39 positive 5-
smooth numbers≤ 143, but there are 29 positive 5-smooth numbers≤ 72. Therefore, if we
randomly pick positive numbers≤ m, we get a smoothness probability of 39/143= 0.27
for m = 143 but a higher probability 29/72 = 0.40 form = 72. Form = 1000 we get
87/1000 = 0.08, and form= 106 we get only 508/106 = 0.0005.

To express how the smoothness probability depends on the smoothness bound and the
size of the numbers involved, we introduce

Lx[u, v] = exp(v(ln x)u(ln ln x)1−u).

Let α, β, r , ands be real numbers withα, β > 0, 0< r ≤ 1, and 0< s < r . It follows
from [10,15] that a random positive integer≤ Lx[r, α] is Lx[s, β]-smooth with probability
Lx[r − s,−α(r − s)/β + o(1)] for x → ∞. Thus, withr = 1 ands = 1/2, a random
positive integer≤ nα is Ln[1/2, β]-smooth with probabilityLn[1/2,−α/(2β)+ o(1)], for
n→∞.

Run times. Throughout this survey, the functionLn is often used in run time estimates.
Note that, in such applications, its first argument interpolates between polynomial time
(u = 0) and exponential time(u = 1) in ln n:

Ln[0, v] = exp(v ln ln n) = (ln n)v and Ln[1, v] = exp(v ln n) = nv.

A run timeLn[u, v] with u < 1 andv constant is referred to assubexponential time.
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All run times involvingLn are forn→∞. This implies that theo(1)’s that might occur in
run time expressions go to zero. In practice, however, theo(1)’s are not zero. Therefore we
cannot encourage the practice of evaluating the run time expression for any of the factoring
methods presented here for a particularn with o(1) = 0, and to advertise the resulting
number as the ‘number of cycles’ necessary to factorn using that method. The expressions
are useful, however, to get an indication of the growth rate of the run time—they can be
used (witho(1) = 0) for limited range extrapolations to predict the expected run time for
m given the run time ofn, if | logm− logn| is not too large.

Modular arithmetic. Throughout this paper ‘x ≡ y modz’ means thatx−y is a multiple
of z, for integersx, y, andz with z> 0. Similarly, ‘x 6≡ y modz’ means thatx − y is not
a multiple ofz. Thus, 308≡ 22 mod 143 because 308− 22= 286= 2 · 143 is a multiple
of 143, and 143≡ 11 mod 22 because 143− 11 = 132= 6 · 22 is a multiple of 22; but
4 6≡ 1 mod 15 because 4−1= 3 is not a multiple of 15. By ‘x modz’ we mean any integer
y such thatx ≡ y modz; in practical circumstances we often use theleast non-negative
remainder, i.e., we assume that 0≤ y < z, or theleast absolute remainder, i.e., we assume
that−z/2 < y ≤ z/2. Thus, by 143 mod 22 we mean 11, or 33, or−11, or any integer
of the form 11+ k · 22, for some integerk; the least non-negative remainder and the least
absolute remainder of 143 mod 22 are both equal to 11.

Note that givenx modzandy modz it it possible to efficiently compute(x+y)modz, (x−
y)modz, or (x · y)modz: simply compute(x modz)+ (y modz), (x modz)− (y modz),
or (x modz) · (y modz) and if necessary remove multiples ofz from the result if least
remainders are used. The latter operation can be done using a division with remainder byz.
Examples of this so-calledmodular arithmetic(with modulus z) can be found throughout
the paper.

To be able to divide in modular arithmetic, for instance to compute(1/x)modz, we need
a little more. An important operation on which many factoring and other algorithms rely
is finding thegreatest common divisorof two non-negative integers, sayx andz, i.e., the
largest factor thatx andz have in common. Of course, the greatest common divisor ofx
andz (‘gcd(x, z)’ for short) can be found by computing the prime factorizations ofx andz
and multiplying all prime factors they have in common. A much faster method to compute
gcd(x, z) is Euclid’s algorithm, a method that was invented more than 2000 years ago. It
is based on the observation that gcd(x,0) = x, that gcd(x, z) = gcd(z, x modz) if z 6= 0,
and that, ifx ≥ z and least non-negative remainders are used, the ‘new’ pair(z, x modz)
is substantially ‘smaller’ than the ‘old’ pair(x, z). As an example:

gcd(308,143) = gcd(143,22) = gcd(22,11) = gcd(11,0) = 11,

and

gcd(143,19) = gcd(19,10) = gcd(10,9) = gcd(9,1) = gcd(1,0) = 1.

If gcd(x, z) = 1 as in the latter example, we say thatx andz are coprime, i.e.,x andz do
not have any factors> 1 in common.

If x andzare coprime, we can compute(1/x)modz, using a variant of Euclid’s algorithm
that is generally referred to as theextended Euclidean algorithm. Actually, the extended
Euclidean algorithm does more: it computes gcd(x, z) and, if the latter equals 1, it computes
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(1/x)modz as well. The process is illustrated in the following example where we compute
(1/19)mod 143. In thei th line we havex = 19, z = 143 and two other numbers,ri and
si , such thatx · ri ≡ si modz. Assuming that 0≤ x < z we haver1 = 0, s1 = z, r2 = 1,
ands2 = x. The (i + 1)st line follows from the(i − 1)st andi th by subtracting thei th
as many times as possible from the(i − 1)st, without making the right hand side of the
resulting(i + 1)st line negative. The process terminates as soon as somesi = 0; if sk = 0
thensk−1 = gcd(x, z), and ifsk−1 equals 1, thenrk−1 ≡ (1/x)modz:

19 · 0 ≡ 143 mod 143

19 · 1 ≡ 19 mod 143 (subtract [143/9] = 7 times)

19 · (−7) ≡ 10 mod 143 (subtract [19/10]= 1 times)

19 · 8 ≡ 9 mod 143 (subtract [10/9] = 1 times)

19 · (−15) ≡ 1 mod 143 (subtract [9/1] = 9 times)

19 · 143 ≡ 0 mod 143 (done).

Thus, 128= −15+ 143 is the least non-negative remainder of(1/19)mod 143. We say
that 128 is theinverseof 19 modulo 143. Note that the numbers on the right hand sides in
the example also appear in the earlier example where we computed gcd(143, 19). For more
background on Euclid’s algorithm and the extended Euclidean algorithm see [25].

Compositeness testing.A famous theorem of Fermat (hislittle theorem) says that ifn
is prime anda is an integer that is not divisible byn, then

an−1 ≡ 1 modn.

For instance, forn = 7 anda = 2 we find that

26 = 64= 1+ 9 · 7≡ 1 mod 7.

This does not prove that 7 is prime, it is merely an example of Fermat’s little theorem for
n = 7 anda = 2. Note, however, that if we have two integersn > 1 anda such thatn and
a do not have any factor in common, and such that

an−1 6≡ 1 modn,

thenn cannot be a prime number because that would contradict Fermat’s little theorem.
Therefore, Fermat’s little theorem can be used toprovethat a number is composite. Ana
that can be used in this way to prove the compositeness ofn is often called awitnessto the
compositeness ofn. For instance, forn = 15 anda = 2 we find that

214 = 16384= 4+ 1092· 15≡ 4 6≡ 1 mod 15,

so that 2 is a witness to the compositeness of 15.
This is certainly not the fastest way to prove that 15 is composite—indeed, it is much

faster to note that 15= 3 · 5. But for generaln, finding a factor ofn is much harder than
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computingan−1 modn, because the latter can be done using a quick method calledrepeated
square and multiply. Using this method in the example, we compute

22 mod 15= 4,

23 mod 15= 2 · (22 mod 15)mod 15= 2 · 4= 8,

26 mod 15= (23 mod 15)2 mod 15= 82 mod 15= 64= 4+ 4 · 15≡ 4 mod 15,

27 mod 15= 2 · (26 mod 15)mod 15≡ 2 · 4= 8,

and

214 mod 15= (27 mod 15)2 mod 15= 82 mod 15= 64≡ 4 mod 15.

If we use least non-negative remainders, all numbers involved in this computation are< n2.
The number of squares and multiplies is bounded by 2· log2(n). The pattern of squares
and multiplies can be found by looking at the binary representation of the exponentn− 1
(cf. [25]).

Thus, we can computean−1 modn efficiently, which should allow us to easily prove that
n is composite if we simplemindedly assume that witnesses are not too rare: simply pick
a randoma with 1 < a < n, check thatn anda are coprime2, computean−1 modn if
they are, and hope that the outcome is not equal to 1. Unfortunately, this process does not
work for all compositen: there are composite numbers for whichan−1 ≡ 1 modn for all a
that are coprime ton. These numbers are calledCarmichael numbers; the smallest one is
561. It has recently been proved that there are infinitely many Carmichael numbers: there
are at leastx2/7 of them≤ x, oncex is sufficiently large (cf. [2]). This invalidates the
simple compositeness test based on Fermat’s little theorem: for a Carmichael numbern
the testan−1 ≡ 1 modn never fails, ifn anda are coprime, and therefore never proves the
compositeness ofn.

Fortunately, there is an easy fix to this problem, if we use Selfridge’s slight variation of
Fermat’s little theorem: ifn is an odd prime,n− 1= 2t · u for integerst andu with u odd,
anda is an integer that is not divisible byn, then

eitherau ≡ 1 modn or a2i u ≡ −1 modn for somei with 0≤ i < t .

For odd compositen it can be proved that a randomly selected integera ∈ {2,3, . . . ,n−1}
has a chance of at least 75% not to satisfy these conditions and thereby be a witness to
n’s compositeness (cf. [38,49]); see also [3]. This makes proving compositeness ofn in
practice an easy matter: apply Selfridge’s test for randomly pickeda’s, until ana is found
that is a witness to the compositeness ofn. If no witness can be found after some reasonable
number of attempts, the compositeness test fails, andn is declared to beprobably prime.
The chance that a composite number is declared to be probably prime afterk trials is less
than 1/4k. Note that a probably prime number isonly a number for which we failed to
prove the compositeness—this does not imply that its primality has been proved; proving
primality is an entirely different subject which will not be discussed in this paper. In [31:
2.5] it is shown how Selfridge’s test can also be used to rule out prime powers.
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3. Special Purpose Factoring Algorithms

We briefly discuss six of the most important special purpose factoring methods:trial
division, Pollard’s rho method, Pollard’s p−1 method, theelliptic curve method, Fermat’s
method, andsqufof. None of these methods is currently considered to be applicable to
composites that are used in cryptosystems. But for numbers that come from different
sources, and that might have small or otherwise ‘lucky’ factors, any of these methods can
be quite useful. Examples are the eighth, tenth, and eleventh Fermat numbers (Fk = 22k+1
for k = 8,10,11 cf. [8,7]), and also numbers that have to be factored in the course of the
general purpose algorithms described in the next sections.

Throughout this sectionn denotes the number to be factored. Using the results from
Section 2 we may assume thatn is composite and not a prime power.

Trial division. The smallest prime factorp of n can in principle be found by trying ifn is
divisible by 2,3,5,7,11,13,17, . . ., i.e., all primes in succession, untilp is reached. If we
assume that a table of all primes≤ p is available (which can be generated in approximately
p steps using for instance thesieve of Erathostenes, cf. [25]), this process takesπ(p)
division attempts (so-called ‘trial divisions’), whereπ is the prime counting function from
Section 2. Becauseπ(p) ≈ p/ ln(p), finding the factorp of n in this way takes at least
approximatelyp steps—how many precisely depends on how we count the cost of each
trial division. Even for fairly smallp, sayp > 106, trial division is already quite inefficient
compared to the methods described below.

Sincen has at least one factor≤ √n, factoringn using trial division takes approximately√
n operations, in the worst case. For many composites trial division is therefore infeasible

as factoring method. For most numbers it is very effective, however, because most numbers
have small factors: 88% of all positive integers have a factor< 100, and almost 92% have
a factor< 1000.

Pollard’s rho method. Pollard’s rho method [44] is based on a combination of two ideas
that are also useful for various other factoring methods. The first idea is the well known
birthday paradox: a group of at least 23 (randomly selected) people contains two persons
with the same birthday in more than 50% of the cases. More generally: if numbers are
picked at random from a set containingp numbers, the probability of picking the same
number twice exceeds 50% after 1.177

√
p numbers have been picked. The first duplicate

can be expected afterc · √p numbers have been selected, for some small constantc. The
second idea is the following: ifp is some unknown divisor ofn andx andy are two integers
that are suspected to be identical modulop, i.e.,x ≡ y modp, then this can be checked by
computing gcd(|x − y|,n); more importantly, this computation may reveal a factorization
of n, unlessx andy are also identical modulon.

These ideas can be combined into a factoring algorithm in the following way. Generate a
sequence in{0,1, . . . ,n−1} by randomly selectingx0 and by definingxi+1 as the least non-
negative remainder ofx2

i + 1 modn. Sincep dividesn the least non-negative remainders
xi modp andxj modp are equal if and only ifxi andxj are identical modulop. Since
thexi modp behave more or less as random integers in{0,1, . . . , p− 1} we can expect to
factorn by computing gcd(|xi − xj |,n) for i 6= j after aboutc

√
p elements of the sequence

have been computed.
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This suggests that approximately(c
√

p)2/2 pairsxi , xj have to be considered. However,
this can easily be avoided by only computing gcd(|xi − x2i |,n), for i = 0,1, . . . , i.e., by
generating two copies of the sequence, one at the regular speed and one at the double speed,
until the sequence ‘bites in its own tail’ (which explains the ‘rho’ (ρ) in the name of the
method); this can be expected to result in a factorization ofn after approximately 2

√
p gcd

computations.
As an example, considern = 143 andx0 = 2:

x1 = 22+ 1= 5, x2 = 52+ 1= 26 : gcd(|5− 26|,143) = 1,

x2 = 26, x4 = (262+ 1)2+ 1≡ 15 mod 143 : gcd(|26− 15|,143) = 11.

With x0 = 3 it goes even faster, but we find a different factor:

x1 = 32+ 1= 10, x2 = 102+ 1= 101 : gcd(|10− 101|,143) = 13.

The most remarkable success of Pollard’s rho method so far was the discovery in 1980 by
Brent and Pollard of the factorization of the eighth Fermat number (cf. [8]):

228 + 1= 1 23892 63615 52897· p62,

wherep62 denotes a 62-digit prime number.
Pollard’s p−1method. Pollard’sp−1 method [43] follows, very roughly, from Pollard’s

rho method by replacing the birthday paradox by Fermat’s little theorem (cf. Section 2).
Let p again be a prime factor ofn. For any integera with 1 < a < p we have, according
to Fermat’s little theorem, thatap−1 ≡ 1 modp, so thatak(p−1) ≡ 1k ≡ 1 modp for any
integerk. Therefore, for any multiplem of p−1 we have thatam ≡ 1 modp, i.e., p divides
am − 1. Thus, computing gcd(am − 1,n) might reveal a factorization ofn. Note that it
suffices to compute gcd((am − 1)modn,n) (and thatp divides(am − 1)modn as well,
becausep dividesn).

It remains to find a multiplem> 1 of p− 1. The idea here is that one simply hopes that
p− 1 is B-smooth (cf. Section 2) for some relatively small boundB, i.e., thatp− 1 has
only prime factors≤ B. This would imply that anm of the form

∏
q≤B q, with the product

ranging over prime powersq, could be a multiple ofp − 1. Since(am − 1)modn for
suchm can be computed in time roughly proportional toB, Pollard’sp− 1 method can be
used to discover factorsp in time roughly proportional to the largest prime factor inp− 1.
Evidently, this is only going to be efficient forp for which p−1 is smooth. It explains why
some people insist on using primes of the form 2q + 1 (with q prime) in factoring-based
cryptosystems, a precaution that is rendered useless by the elliptic curve method.

As an example, letn again be 143, and leta = 2. If we raisea to small successive prime
powers and compute the relevant gcd’s, we findp = 13= 22 · 3+ 1 after processing the
prime powers 22 and 3:

24 = 16,gcd(16− 1,143) = 1,

163 = (162) · 16≡ 113· 16≡ 92 mod 143,gcd(92− 1,143) = 13.
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If, on the other hand, we simply keep raisinga = 2 to the next prime, we findp = 11=
2 · 5+ 1 after processing the primes 2, 3, and 5:

22 = 4,gcd(4− 1,143) = 1,

43 = 64,gcd(64− 1,143) = 1,

645 = (642)2 · 64≡ 922 · 64≡ 12 mod 143,gcd(12− 1,143) = 11.

For variations of Pollard’sp− 1 method and fast ways to implement it refer to [39].
The elliptic curve method. The major disadvantage of Pollard’sp− 1 method is that

it only works efficiently if the number to be factored happens to have a factorp for which
p− 1 is B-smooth, for some reasonably small boundB. So, it only works for ‘lucky’n.
The elliptic curve method [34] can be regarded as a variation of thep − 1 method that
does not have this disadvantage. It consists of any number of trials, where each trial can be
lucky—and factorn—independently of the other trials: a trial is successful if some random
number close to some prime factor ofn is smooth. Thus, the probability of success of each
trial depends only on the size and not on any other fixed properties of the factors ofn (cf.
Section 2).

A detailed description of the method is beyond the scope of this survey. Roughly speaking,
the following happens. During each trial an elliptic curve modulon is selected at random.
For any primep dividing n, any pointa on the curve satisfies an equation that is similar
to Fermat’s little theorem, with two important differences. In the first place, and this is
why the elliptic curve method is so powerful, the exponentp − 1 is replaced by some
random number̂p close top − 1. Secondly, the exponentiation is not a regular integer
exponentiation modulon: sincea is not an integer but a point on a curve, other operations
have to be performed on it to ‘exponentiate on the curve’. The number of elementary
arithmetic operations to be carried out for such an exponentiation is a constant multiple of
the number of operations needed for a regular integer exponentiation modulon with the
same exponent.

Just as in Pollard’sp− 1 method it is the case that ifa is exponentiated on the curve to a
power that is a multiple of̂p, then a factorization ofn may be discovered; if̂p is B-smooth,
then this can be done in roughlyc(ln n)2B elementary arithmetic operations, wherec is a
small constant. Thus, it suffices to keep trying new curves (thereby getting newp̂’s), and
to exponentiate the points to large smooth powers, till ap̂ divides the smooth power.

From the smoothness probability in Section 2, and assuming thatp̂ behaves as a random
positive integer close top, it follows that p̂ is L p[1/2,

√
1/2]-smooth with probability

L p[1/2,−√1/2+ o(1)], for p→∞. Therefore, if one runsL p[1/2,
√

1/2+ o(1)] trials
in parallel, spending time proportional to(ln n)2L p[1/2,

√
1/2] per trial, one may expect to

find p. We find that the heuristic asymptotic expected run time of the elliptic curve method
to find the smallest prime factorp of n is

(ln n)2L p[1/2,
√

2+ o(1)],

for p→∞. In the worst case, i.e.,p ≈ √n, this becomesLn[1/2,1+ o(1)], for n→∞
(note that the(ln n)2 disappears in theo(1)). Thus, in the worst case the elliptic curve
method can be expected to run in subexponential time. This is substantially faster than any
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of the other methods discussed in this section, which all have an exponential-time worst
case behavior.

Two remarkable factorizations obtained using the elliptic curve method are those of the
tenth and eleventh Fermat numbers, both by Brent3 [7]. In 1988 he found a 21 and a 22-digit
factor of(2211 + 1)/(319489· 974849), thereby completing the factorization ofF11:

2211 + 1 = 319489· 974849· 1 67988 55634 17604 75137

· 35 60841 90644 58339 20513· p564,

wherep564 denotes a 564-digit prime; and in 1995 he found a 40-digit factor of(2210 +
1)/(45592577· 6487031809), which completed the factorization ofF10:

2210 + 1 = 455 92577· 64870 31809

· 46597 75785 22001 85432 64560 74307 67781 92897· p252,

wherep252 denotes a 252-digit prime. The largest factor found by the elliptic curve method,
as of March 1996, has 47 digits (155 bits), and was found by P. L. Montgomery. For a
complete description of the elliptic curve method refer to [34] and [29]. For implementation
details, refer to [6, 39].

Fermat’s method. In the course of the general purpose factoring methods described
below we frequently have to factor numbersn that are suspected to have two relatively
large prime factors and for which typically 232 < n < 264. If those factors are close
to each other, they can easily be found using Fermat’s method. Letn = p1 · p2 with
p1 < p2, both p1 and p2 odd, andp2 − p1 = 2d for some smalld. Thenx = p1 + d,
y = d satisfyn = (x − y)(x + y), and thereforen = x2 − y2. The properx can thus
be found by tryingx = [

√
n] + 1, [

√
n] + 2, [

√
n] + 3, . . . in succession untilx2 − n is a

perfect square (in which casey2 = x2− n). Obviously, this method is efficient only ifd is
small. For the examplen = 143 Fermat’s method needs only one trial: the firstx equals
[
√

143]+ 1= 12 andx2− n = 122− 143= 1 is a perfect square, so thatx = 12, y = 1,
and 143= (12− 1)(12+ 1).

Congruence of squares.More generally, in Fermat’s method one attempts to solve a
congruence of squares, i.e., integersx andy such thatx2 − y2 is amultipleof n. Namely,
if n dividesx2 − y2, it also divides(x − y)(x + y) = x2 − y2. Therefore, the factors of
n must be factors ofx − y, or they must be factors ofx + y, or some of them must be
factors ofx− y and some must be factors ofx + y. In the first case,n is a factor ofx− y,
which can be checked easily. In the second case,n is a factor ofx + y, which can also be
checked easily. If neither of those cases hold, then the factors ofn must be split, in some
way, amongx − y andx + y. This gives us a way to find factors ofn because we have an
efficient method to find out which factorsn andx− y have in common, and which factorsn
andx+ y have in common: as we have seen in Section 2 we simply compute gcd(n, x± y),
the greatest common divisor ofn andx ± y. If n is composite, not a prime power, andx
and y are random integers satisfyingx2 ≡ y2 modn, then there is at least a 50% chance
that gcd(x − y,n) and gcd(x + y,n) are non-trivial factors ofn.

Fermat’s method is surprisingly efficient in the application mentioned above, and often
more efficient than Pollard’s rho method. The reason is that Pollard’s rho method requires
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rather intensive arithmetic on numbers modulon, which is relatively inefficient for such
smalln that are nevertheless too large to be conveniently handled on most 32-bit processors.
Another method that is particularly efficient in this case is the following.

Squfof. Squfof stands for ‘square form factorization’. It makes use of binary quadratic
forms, a subject that is beyond the scope of this survey. The expected time needed by
squfof to factorn is proportional ton1/5, on assumption of certain generalized Riemann
hypotheses. After a short initialization it only requires arithmetic on numbers that are at
most
√

n. This makes the method remarkably efficient for the application mentioned above,
when run on 32-bit processors. For a description of squfof refer to [11,52,53].

4. The Morrison–Brillhart Approach

Most factorizations mentioned in the introduction were obtained using thequadratic sieve
factoring algorithm, Carl Pomerance’s variation (1981, cf. [46]4) of Richard Schroeppel’s
linear sieve algorithm (1977). These are both general-purpose factoring algorithms, and
both are based on the classical congruence of squares method, on which also Fermat’s
method is based. There we have seen that to factorn it is useful to find integersx and
y such thatx2 − y2 is a multiple ofn. Summarizing the argument presented above, if
x2 ≡ y2 modn, thenn divides(x − y)(x + y), and therefore

n divides gcd(x − y,n) · gcd(x + y,n).

Since gcd’s can be computed rapidly, one can quickly check whether the latter identity
leads to a factorization ofn, and if n is composite there is at least a 50% chance that the
factorization is non-trivial.

Finding congruences of squares.For practical purposes in order to factorn, one need
only generate a few random looking pairsx, y such thatx2 ≡ y2 modn. Note that simply
picking some random positivev, computingsv as the least non-negative remainder modulo
n of v2, and hoping thatsv is the square of some integery (in which casex is set equal tov),
is unlikely to work (unlessv <

√
n, but in that casex = y and gcd(x − y,n) = n): there

are only
√

n squares less thann, so the chance of hitting one of them is only 1/
√

n, which
implies that this ‘factoring algorithm’ cannot be expected to be faster than trial division.

The Morrison-Brillhart approach does something that is similar, but instead of waiting for
a single very lucky and unlikely ‘big hit’, it combines the results of several much more likely
‘small hits’: instead of randomly pickingv’s until one is found for which the corresponding
sv ≡ v2 modn is a perfect square, we collectv’s for which sv satisfies a certain much
weaker condition. Once we have a sufficient number of pairsv, sv, we combine them to
solvex2 ≡ y2 modn. Thus, the factoring process (i.e., the method to obtain solutions to the
congruencex2 ≡ y2 modn) is split into two main steps: thedata collection stepwherev, sv
pairs satisfying some particular condition are collected, and thedata processing stepwhere
the pairs are combined to find solutions to the congruence. The ‘much weaker condition’
onsv can informally be described as ‘it should be easy to fully factorsv ’, i.e., sv should be
B-smooth for some reasonably smallB (cf. Section 2). How the pairsv, sv can be combined
can be seen in the example below.
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To find pairsv, sv such thatsv is smooth Morrison and Brillhart, in their original paper that
introduced the Morrison-Brillhart approach, used a technique based on continued fractions.
For a description of their method, ‘CFRAC’, see [42]. It was used, in 1970, to factor the
seventh Fermat number:

227 + 1= 59 64958 91274 97217· 57 04689 20068 51290 54721.

A less efficient but conceptually much easier method to find pairsv, sv such thatsv is smooth
is Dixon’s algorithm: simply randomly pickv’s and keep those for whichsv is smooth until
we have sufficiently many different pairsv, sv for whichsv is smooth.

An example using random squares.Even though we already know thatn = 143 =
11·13, here is how Dixon’s version of the Morrison–Brillhart approach works forn = 143.
Since factors 2, 3, and 5 can easily be recognized, we useB = 5, i.e., ‘sv should be 5-
smooth’, or ‘it should be possible to factorsv completely using only 2, 3, and 5’. In general,
for larger numbers than 143, a largerB will be used, so that more primes will be allowed
in the factorization ofsv. This set of primes is usually referred to as thefactor base; we
will be interested insv ’s that are smooth with respect to the factor base. In the example, the
factor base is the set{2,3,5}.

Since we use Dixon’s algorithm we begin by randomly selecting some integerv; let
v = 17 be the first random choice. We find thatv2 = 289= 3+ 2 · 143≡ 3 mod 143, so
thats17 = 3. Obviously,s17 = 3 is smooth, so that we find the identity

172 ≡ 20 · 31 · 50 mod 143;

thus, we keep the pairv, sv for v = 17. Such identities are often referred to asrelations—
relations are the data collected during the data collection step. Since(v+1)2 = v2+2v+1,
a convenient next choice isv = 18: 182 = 172+2·17+1≡ 3+35= 38= 2·19 mod 143,
ands18 = 2 · 19 is not smooth, so thatv = 18 can be thrown away. Proceeding to 19 we
find that 192 = 182+ 2 · 18+ 1≡ 38+ 37= 75 mod 143, ands19 = 75 is smooth, so that
we keepv = 19 and have found our second relation:

192 ≡ 20 · 31 · 52 mod 143.

The next attempt 202 = 192+ 2 · 19+ 1≡ 75+ 39= 114= 2 · 3 · 19 mod 143 fails again,
after which we find the relation

212=202+2 ∗ 20+1≡114+41=155=12+143≡12=22 · 31 · 50 mod 143.

Looking at the three relations obtained so far, we observe that the product of the first two,
the product of the last two, and the product of the first and the last all lead to a congruence
of squares:

(17 · 19)2 ≡ 20 · 32 · 52 mod 143,

(19 · 21)2 ≡ 22 · 32 · 52 mod 143, and

(17 · 21)2 ≡ 22 · 32 · 50 mod 143.
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The first of these leads tox = 17 · 19, y = 3 · 5 and the factors gcd(323− 15,143) = 11
and gcd(323+ 15,143) = 13. The second leads tox = 19· 21, y = 2 · 3 · 5 and the trivial
factors gcd(399−30,143) = 1, gcd(399+30,143) = 143. The last one givesx = 17·21,
y = 2 · 3 and the factors gcd(357− 6,143) = 13 and gcd(357+ 6,143) = 11.

The first relation after the one forv = 21 would be 232 ≡ 22 · 30 · 52 mod 143 which
is already of the formx2 ≡ y2 modn. This congruence leads tox = 23, y = 10 and
the non-trivial factors gcd(23− 10,143) = 13 and gcd(23+ 10,143) = 11. For more
challenging numbers than 143 we cannot expect to be so lucky—indeed, after factoring
hundreds of numbers in the 70 to 130 digit range, thisneverhappened.

Finding the right combinations of relations. Suppose we have a setV of relations as a
result of the data collection step. In the data processing step we have to pick a subsetW of
V so that the relations fromW when multiplied together yield a solution to the congruence
x2 ≡ y2 modn. This can be achieved as follows. First observe that for anyW ⊂ V the
product of the ‘left hand sides’

∏
v∈W v

2 is a square, since it is a product of squares. The
product of the corresponding ‘right hand sides’, however, is not always a square: for each
prime p in the factor base the exponent in the product overW is the sum of the exponents
of p in the relations inW, and this sum is not necessarily even. If we identify each relation
with the vector of its exponents with respect to all elements of the factor base, the exponents
of the factor base elements in the product overW are given by the vector that is the sum of
the vectors for the relations inW. Thus, aW for which the product of the right hand sides
is also a square can be found by looking for a subset of vectors whose sum is a vector with
all even entries.

Finding all even combinations of vectors is a common problem in linear algebra, for which
several good algorithms exist: (structured) Gaussian elimination, (blocked) Lanczos, and
(blocked) Wiedemann are currently the most popular choices for our applications (see
[12,28,41,48] and the references therein). In general, if there arem relations andk primes
in the factor base, we have anm × k-matrix (i.e., a matrix consisting ofm rows andk
columns, where them rows correspond to them differentk-dimensional vectors consisting
of thek-tuples of exponents in them relations). For the example given above, we get the
matrix0 1 0

0 1 2
2 1 0

 .
If the matrix isover-square, i.e., if m> k, there are at leastm− k all even combinations of
the rows (i.e., of thek-dimensional vectors) each of which leads to an independent chance
to factorn. It follows that sufficiently many relations will in practice always lead to a
factorization; it also shows that we have been rather lucky in our example by finding so
many all even combinations in a 3× 3-matrix.

The data processing step, i.e., finding the right combinations of relations, is often referred
to as thematrix step.

The run time of Dixon’s algorithm. As an example we show part of the run time
analysis of Dixon’s algorithm. Letβ > 0. Assuming that thesv behave as random
numbers≤ n, it follows from the smoothness probabilities in Section 2 thatsv is Ln[1/2, β]-
smooth with probabilityLn[1/2,−1/(2β) + o(1)]. A single smoothsv can therefore be
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expected to be found after consideringLn[1/2,1/(2β) + o(1)] different v’s. The number
of smoothsv ’s that are needed to make the matrix of exponents over-square is, roughly,
π(Ln[1/2, β]) ≈ Ln[1/2, β]/ ln(Ln[1/2, β]) (cf. Section 2), which can conveniently be
written asLn[1/2, β+o(1)]. It follows that a total ofLn[1/2, β+1/(2β)+o(1)] different
v’s have to be considered.

If we use trial division to check the smoothness of eachsv (at a cost ofLn[1/2, β+o(1)] per
sv), the data collection step for Dixon’s algorithm requiresLn[1/2,2β + 1/(2β) + o(1)]
elementary operations. Using traditional matrix techniques, the right combinations of
vectors can be found inLn[1/2, β + o(1)]3 = Ln[1/2,3β + o(1)] operations. Combining
these run times, we find that Dixon’s algorithm requiresLn[1/2,max(2β + 1/(2β),3β)+
o(1)] operations, which becomesLn[1/2,2+ o(1)] for the optimal choiceβ = 1/2. With
this approach the data collection takes more time than the matrix step.

If we use the elliptic curve method to check thesv ’s for smoothness, eachsv costs only
time Ln[1/2,o(1)], so that the data collection step requiresLn[1/2, β + 1/(2β) + o(1)]
steps. Combined with the matrix step this yieldsLn[1/2,max(β + 1/(2β),3β)+ o(1)] =
Ln[1/2,3/2+ o(1)] steps for the optimal choiceβ = 1/2. In this case the data collection
and matrix steps take the same amount of time, asymptotically. But note that the data
collection could have been done faster forβ = √1/2, and that the matrix step forces us
to use aβ that is suboptimal for the data collection step. If we use the fact, however,
that at most log2(n) of the Ln[1/2, β + o(1)] entries per exponent-vector can be non-
zero and the fact that the Lanczos and Wiedemann methods referred to above process an
m×m matrix withw non-zero entries in time proportional tomw, we get a combined time
Ln[1/2,max(β + 1/(2β),2β)+ o(1)]. This becomesLn[1/2,

√
2+ o(1)] for the optimal

choiceβ = √1/2; data collection and data processing again take the same amount of time,
asymptotically.

Thus, with the elliptic curve method for trial division and a matrix step that takes advantage
of the sparsity of the matrix, the asymptotic expected run time of Dixon’s algorithm is
Ln[1/2,

√
2+ o(1)], for n→∞. This expected run time can rigorously be proved and is

not based on any unproved heuristics.

5. Quadratic Sieve

Finding relations faster, sieving. The smaller|sv| can be made, the higher probability
we should get that it is smooth. Therefore, it would be to our advantage to find ways of
selectingv such that|sv| can be guaranteed to be substantially smaller thann.

For randomly selectedv, the numbersv (the least non-negative remainder ofv2 modulo
n) can be expected to have roughly the same size asn. At best we can guarantee that|sv|
is one bit smaller thann if we redefinesv as the least absolute remainder ofv2 modulon,
and we include−1 in the factor base.

A better way to find smallsv ’s is by takingv close to
√

n. Let v(i ) = i + [
√

n] for some
small integeri . It follows thatsv(i ) = (i + [

√
n])2−n and that|sv(i )| is of the same order of

magnitude as 2i
√

n, because|[√n]2− n| is at most 2
√

n. This implies that|sv(i )| for small
i has a much higher chance to be smooth thansv for a randomly selectedv. Note, however,
that the smoothness probability decreases ifi gets larger.
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Quadratic sieve (QS) combines this better way of choosing ofv = v(i )with the following
important observation: if somep dividessv(i ), thenp dividessv(i+tp) for any integert . This
makes it possible to use asieveto quickly identify many possibly smoothsv(i ) with i in
some predetermined interval. The sieve is used to record ‘hits’ by the primes in the factor
base in an efficient manner: if a primep divides a certainsv(i ), then this is recorded at the
(i + tp)th location of the sieve, for all integerst such thati + tp is in the interval. Thus,
for eachp, we can quickly step through the sieve, with step-sizep, once we know where
we have to make the first step. To make the process of ‘recordingp’ efficient, we simply
add logb p to the relevant locations, for some appropriately chosen baseb.

Assuming that all sieve locations are initially zero, thei th location contains (after the
sieving) the sum of the logarithms of those primes that dividesv(i ). Therefore, if thei th
location is close to log|sv(i )|, we check whether|sv(i )| is indeed smooth, simply by trial
dividing |sv(i )| with all primes in the factor base. This entire process is calledsieving—it
is much faster than checking the smoothness of each individual|sv(i )| by trial dividing with
all primes in the factor base5.

In the multiple polynomial variationof QS the single polynomial(X + [
√

n])2 − n
is replaced by a sequence of polynomials that have more or less the same properties as
(X + [

√
n])2 − n, all for the same numbern to be factored. The advantage of multiple

polynomials is that for each polynomial the same smalli ’s can be used, thereby avoiding
the less profitable largeri ’s. A second important advantage is that different processors can
work independently of each other on different polynomials. This variation is due to P. L.
Montgomery (extending an idea of Davis and Holdridge (cf. [14])) and described in [29,54].

Another way of increasing the smoothness probability is by extending the factor base
(thus relaxing the definition of smoothness). However, this also implies that more relations
have to be found to make the matrix over-square, and that the linear algebra becomes more
involved. The optimal factor base size follows from an analysis of all these issues, as shown
below and in the run time analysis of Dixon’s algorithm. Refer to [37] for another informal
description of QS.

The run time of Quadratic Sieve. Assuming thatsv behaves as a random integer close to√
n, it is Ln[1/2, β]-smooth with probabilityLn[1/2,−1/(4β)+o(1)], which implies that

Ln[1/2, β + 1/(4β) + o(1)] different sv ’s have to be considered. Using the elliptic curve
method as smoothness test and taking advantage of the sparsity of the matrix (both as in the
analysis of Dixon’s algorithm), we find that QS has heuristic asymptotic expected run time
Ln[1/2,max(β+1/(4β),2β)+o(1)] = Ln[1/2,1+o(1)] for the optimal choiceβ = 1/2.

If we use sieving to checkLn[1/2, β + 1/(4β)+ o(1)] consecutivesv ’s for Ln[1/2, β]-
smoothness we get the following. Sieving for one primep takes timeLn[1/2, β+1/(4β)+
o(1)]/p. Sieving over ‘all’ primes therefore takes timeLn[1/2, β+1/(4β)+o(1)] ·∑1/p,
where the sum ranges over the firstπ(Ln[1/2, β]) = Ln[1/2, β + o(1)] primes. The sum∑

1/p disappears in theo(1), so that the complete sieving step takes timeLn[1/2, β +
1/(4β)+ o(1)]. The remainder of the analysis remains the same, and we conclude that QS
with sieving has the same heuristic asymptotic expected run timeLn[1/2,1+ o(1)] that
we got for QS with elliptic curve smoothness testing. Note that both the sieving and the
elliptic curve overhead disappear in theo(1). In practice, however, sieving is much faster
than elliptic curve smoothness testing.
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Surprisingly, QS is not the only factoring algorithm with this subexponential expected
run time: several other methods were proposed, some radically different from QS, that all
have the same heuristic asymptotic expected run time as QS. Even the elliptic curve method
has the same worst-case heuristic expected run time (where the worst case for the elliptic
curve method is the case where the smallest factor ofn is of order

√
n). An algorithm for

which theLn[1/2,1+ o(1)] expected run time can be proved rigorously was published
in [35]. As a consequence of this remarkable coincidence there was a growing suspicion
that Ln[1/2,1+ o(1)] would be the best we would ever be able to do for factoring. The
Ln[1/2,1+ o(1)]-spell was eventually broken by the number field sieve (cf. Section 6).

Large primes, partial relations, and cycles. In practice, sieving is not a precise process:
one often does not sieve with the small primes in the factor base, or with powers of elements
of the factor base; logb p is rounded to the nearest integer value; and the baseb of the
logarithm is chosen so that the values that are accumulated in thes(i )’s can be represented
by single bytes. The process can tolerate these imperfections because there are plenty of
good polynomials that can be used for sieving. It is not a problem, therefore, if occasionally
a good location is overlooked as long as the sieve identifies a sufficient number of possibly
smooth numbers as quickly as possible. How many relations we find per unit of time is
more important than how many we might have missed.

As a consequence of the approximations that are made during the sieving, the condition
thats(i ) should be close to logb |sv(i )| should be interpreted quite liberally. This, in turn,
leads to manyv(i )’s for which sv(i ) is ‘almost’ smooth (i.e., smooth with the exception of
one reasonably small factor that is not in the factor base). Such ‘almost smooth’ relations
are often referred to aspartial relationsif the non-smooth factor is prime, anddouble partial
relations if the non-smooth factor is the product of two primes. The non-smooth primes
are referred to as thelarge primes. The relations for whichsv(i ) can be factored completely
over the factor base may be distinguished by calling themfull relations.

Partial relations will be found at no extra cost during the sieving step, and double partial
relations at little extra cost. But keeping them, and investing that little extra effort to find
the double partials, only makes sense if they can be used in the factoring process. As an
example why partial relations can be useful, consider the examplen = 143 again. The
choicev = 18 was rejected becauses18 = 2 · 19 is not smooth (with respect to the factor
base{2,3,5}). After trial dividing s18 with 2, 3, and 5, it follows immediately that 19 is
prime (from the fact that 19< 52), so thatv = 18 leads to a partial relation with large
prime 19:

182 ≡ 21 · 30 · 50 · 19 mod 143.

Another choice that was rejected wasv = 20, becauses20 = 2 · 3 · 19, which leads, for the
same reason as above, to a partial relation—again with large prime 19:

202 ≡ 21 · 31 · 50 · 19 mod 143.

These two partial relations have the same large prime, so we can combine them by multi-
plying them together, and get the following:

(18 · 20)2 ≡ 22 · 31 · 50 · 192 mod 143.
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Except for the ‘192’ on the right hand side, this looks like a full relation. In Section 2 we
have seen that 128≡ (1/19)mod 143. Therefore, if we multiply both sides of the above
‘almost smooth’ relation by 1282, we get

(128· 18 · 20)2 ≡ 22 · 31 · 50 · (128· 19)2 ≡ 22 · 31 · 50 mod 143,

which is, for factoring purposes, equivalent to the full relation

342 ≡ 22 · 31 · 50 mod 143

because 128· 18 · 20≡ 34 mod 143. Note that(1/19)mod 143 exists because 19 and 143
are coprime (cf. Section 2). Ifn and some large prime are not coprime, then that large prime
must be a factor ofn.

Double partials can be used in a slightly more complicated but similar way; it requires the
factorization of the composite non-smooth factors of thesv(i )’s, which can be done using
the methods that were mentioned at the end of Section 3. Combinations of partial and/or
double partial relations in which the large primes disappear (and that are therefore as useful
as full relations) are often referred to ascycles. Note that the cycle that we have found
in the example does not provide any useful new information, because it happens to be the
relation forv = 17 multiplied by 22.

How much luck is needed to find two partials with the same large primes, or to find a
double partial for which both large primes can be combined with large primes found in other
partials or double partials? The answer to this question is related to the birthday paradox
(cf. Section 3): if numbers are picked at random from a set containingr numbers, the
probability of picking the same number twice exceeds 50% after 1.177

√
r numbers have

been picked. In QS, the set consists of prime numbers larger than any in the factor base,
but smaller than a limit which is typically 230 or so. There are only a few tens of millions
of primes in this range, so we expect to be able to find matches between the large primes
once we have more than a few thousand partial and double partial relations. As shown in
[33] the distribution of the large primes that we find in QS is not homogeneous, but strongly
favors the relatively small large primes. This further increases the number of matches.

As illustrated in [32] and [33], cycles are indeed found in practice, and they speed up the
factoring process considerably. Using partial relations makes the sieving step approximately
2.5 times faster, and using double partial relations as well saves another factor 2 to 2.5. There
is a price to be paid for this acceleration: more data have to be collected; more disk space
is needed to store the data; and the matrix problem gets a bit harder (either due to higher
density of the rows of the matrix, or to larger matrices). The time saved in the sieving step,
however, certainly justifies incurring these inconveniences. For a discussion of these issues
see [4] and [17].

QS with large primes still runs in asymptotic expected timeLn[1/2,1+ o(1)]; i.e., all
savings disappear in theo(1).

Distributed factoring using QS. We have seen that QS consists of two major steps: the
sieving step, to collect the relations, and thematrix step, where the relations are combined
and the factorization is derived. For numbers in our current range of interest, the sieving
step is by far the most time consuming. It is also the step that allows easy parallelization,
with hardly any need for the processors to communicate. All a processor needs to stay
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busy for at least a few weeks is the number to be factored, the size of the factor base, and a
unique collection of polynomials to sieve with in order to find relations—the latter can be
achieved quite easily by assigning a unique integer to a processor. Given those data, any
number of processors can work independently and simultaneously on the sieving step for
the factorization of the same number. The resulting relations can be communicated to a
central location using electronic mail, say once per day, or each time some pre-set number
of relations has been found.

This parallelization approach is completely fault-tolerant. In the first place, the correct-
ness of all relations received at the central location can easily be verified by checking the
congruence. Furthermore, no particular relation is important, only the total number of
distinct relations received counts. Finally, there is a virtually infinite pool of ‘good’ almost
limitless intervals in which to look for polynomials. Thus, no matter how many processors
crash or do not use the interval assigned to them for other reasons, and no matter how mail-
ers or malicious contributors mangle the relations, as long as some processors contribute
some relations that check out, progress will be made in the sieving step. Since there is no
way to guarantee that relations are sent only once, all data have to be kept sorted at the
receiving site to be able to remove the duplicates. Currently there is also no way to prevent
contributors from flooding the mailbox at the central collecting site, but so far this has not
been a problem in distributed factoring.

All these properties make the sieving step for QS ideal for distribution over a loosely
coupled and rather informal network, such as the Internet, without any need to trust anyone
involved in the computation. Refer to [32] and [4] for information on how such factoring
efforts have been organized in the past.

The matrix step is done at a central location, as soon as the sieving step is complete (i.e., as
soon as a sufficient number of relations have been received to make the matrix over-square).
For details, refer to [32].

Some illustrative QS data. To give an impression of factor base sizes, the amount of
data collected, the influence of large primes, and practical run times of the sieving and
matrix steps, some data for the QS-factorization of a 116-digit, a 120-digit, and a 129-digit
number (from [33], [17], and [4], respectively) are presented in Table 1. The sieving step for
the 116-digit factorization was done entirely on the Internet using the software from [32].
For the 120-digit number it was carried out on 5 different Local Area Networks and on the
16384 processor MasPar MP-1 massively parallel computer at Bellcore, using in total four
different implementations of the sieving step. Sieving for the 129-digit number was mostly
done on the Internet using an updated version of the software from [32], with several sites
using their own independently written sieving software; about 14% of the sieving was done
on several MasPars. The matrix step for all numbers was done on Bellcore’s MasPar.

The amount of data is shown in gigabytes of disk space needed to store the data in un-
compressed format. The timing for the sieving step is given in units of MY, or ‘mips-years.’
By definition 1 MY is one year on a VAX 11/780, a relatively ancient machine that can
hardly be compared to current workstations. The timings were derived by assigning a rea-
sonable ‘mips-rating’ to the average workstation that was used; see [17] and [4] for details.
Although this measure is not very accurate, it gives a reasonable indication of the growth
rate of the sieving time for QS, as long as workstations are rated in a consistent manner.
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Table 1.

116-digit 120-digit 129-digit

size factor base 120000 245810 524339
large prime bound 108 230 230

fulls 25361 48665 112011
partials 284750 884323 1431337
double partials 953242 4172512 6881138
cycles 117420 203557 457455
amount of data 0.25 GB 1.1 GB 2 GB
timing sieving step 400 MY 825 MY 5000 MY
timing matrix step 0.5 hrs 4 hrs 45 hrs

The numbers of fulls, partials, double partials, and cycles are given in the table as they
were at the end of the sieving step. Note that in all cases the number of fulls plus the number
of cycles is larger than the size of the factor base, with a considerable difference for the two
Internet factorizations. Thisovershootis often large because the number of cycles grows
rapidly toward the end of the sieving step; since the ‘cease and desist’ message is only sent
out to the Internet-workers when the sum is large enough, and since it takes a while before
all client-processes are terminated, the final relations received at the central site cause a
large overshoot.

The timing for the matrix step is given in hours on the MasPar. By using a better algorithm,
the matrix timings can now be improved considerably: the matrix for the 129-digit number
can be processed in less than 10 hours on the MasPar, or in about 9 days on a Sparc 10
workstation (see [12,41], and Table 2 below).

From April 2, 1994, until April 10, 1996, the QS-factorization of the 129-digit number,
the ‘RSA-challenge number’ (cf. [21]), was the largest factorization published that was
found using a general purpose factoring method:

RSA− 129 = 1143 81625 75788 88676 69235 77997 61466 12010 21829 67212

42362 56256 18429 35706 93524 57338 97830 59712 35639 58705

05898 90751 47599 29002 68795 43541

= 3490 52951 08476 50949 14784 96199 03898 13341 77646 38493

38784 39908 20577

· 32769 13299 32667 09549 96198 81908 34461 41317 76429 67992

94253 97982 88533.

6. Number Field Sieve

The number field sieve.The number field sieve is based on an idea of John Pollard to
rapidly factor numbers of the special formx3 + k, for smallk. This idea first evolved in
thespecial number field sieve(SNFS) which can only be applied to numbers of a special
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form (similar to the form required by Pollard’s original method). In 1990 SNFS was used
to factor the ninth Fermat number 229 + 1 (cf. [31]):

229 + 1 = 24 24833·
7455 60282 56478 84208 33739 57362 00454 91878 33663 42657· p99,

wherep99 denotes a 99-digit prime. The ‘special form’ restrictions were later removed,
which resulted in thegeneral number field sieve. Currently one often simply uses NFS to
refer to the general algorithm. On April 10, 1996, NFS was used to factor the following
130-digit number, thereby breaking the 129-digit record set by QS of the largest published
factorization found using a general purpose factoring method.

RSA− 130 = 18070 82088 68740 48059 51656 16440 59055 66278 10251 67694

01349 17012 70214 50056 66254 02440 48387 34112 75908 12303

37178 18879 66563 18201 32148 80557

= 39685 99945 95974 54290 16112 61628 83786 06757 64491 12810

06483 25551 57243

· 45534 49864 67359 72188 40368 68972 74408 86435 63012 63205

06960 09990 44599.

More importantly, the NFS-factorization of RSA-130 required much less time than the
QS-factorization of RSA-129. Details can be found below.

NFS is considerably more complicated than the methods sketched so far. In this section
we explain what relations in NFS look like, why they can be found much faster than QS-
relations, and how we distributed the relation collection over the World-Wide-Web. How
the relations are combined to derive the factorization is beyond the scope of this survey; it
can be found in [30], along with further background on NFS. For additional information,
NFS implementations and factorizations, see [9, 13, 18, 19, 23].

SNFS has heuristic asymptotic expected run timeLn[1/3, (32/9)1/3 + o(1)] ≈ Ln[1/3,
1.526+o(1)], for n→∞. The general method, NFS, runs in heuristic asymptotic expected
time Ln[1/3, (64/9)1/3+ o(1)] ≈ Ln[1/3,1.923+ o(1)], for n→∞.

To put the progress from QS to NFS in perspective, note that trial division runs in exponen-
tial time n1/2 = Ln[1,1/2] in the worst case, and that an (as yet unpublished) polynomial
time factoring algorithm would run in time(ln n)c = Ln[0, c], for some constantc. Thus,
QS and the other algorithms with expected run timeLn[1/2, v] (with v constant) are, if we
only consider the first argumentu of Ln[u, v], halfway between exponential and polynomial
time. In this metric, NFS represents a substantial step in the direction of polynomial time
algorithms.

Relations in the number field sieve.Let f1 and f2 be two distinct polynomials with
integer coefficients. There is no need to restrict ourselves to only two polynomials (cf.
[20]), but that is the most straightforward case. The polynomialsf1 and f2 must both
be irreducible, and they must have a common root modulon (i.e., an integerm such that
both f1(m) and f2(m) are divisible byn). How such polynomials are found in general is
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not relevant here. The presentation in [30] is mostly restricted to the case wherem is an
integer close ton1/(d+1) for some small integerd (such as 4 or 5); the polynomials can
then be chosen asf1(X) = X −m and f2(X) =

∑d
i=0 ci Xi , wheren = ∑d

i=0 ci mi with
−m/2≤ ci ≤ m/2 is a basem representation ofn.

For the factorization of 2512+1 for instance, we chosen = 8 · (2512+1) = 2515+8, and
tookd = 5, m= 2103, f1(X) = X − 2103, and f2(X) = X5+ 8. In this case,f1(2103) = 0
and f2(2103) = 2515+ 8 = n, so that bothf1(m) and f2(m) are divisible byn. Note that
the coefficients off2 are quite small.

For the factorization ofn = RSA−130 we usedd = 5,m= 125 74411 16841 80059 80468,
f1(X) = X −m, and

f2(X) = 5748 30224 87384 05200X5+ 9882 26191 74822 86102X4

− 13392 49938 91281 76685X3+ 16875 25245 88776 84989X2

+ 3759 90017 48552 08738X − 46769 93055 39319 05995.

We have thatf1(m) = 0 and f2(m) = n, so that f1 and f2 have the rootm in common
modulon. Note that the coefficients off1 and f2 are of roughly the same order of magnitude.
These polynomials for RSA-130 were found by Scott Huddleston.

For j = 1,2 and integersa, b, let

Nj (a,b) = f j (a/b)b
degree( f j ).

Note thatNj (a,b) is an integer too. Furthermore, forj = 1,2, let there be some factor base
consisting of primes (up to a bound depending onf j ) that may occur in the factorization of
Nj (a,b) for coprimea andb. Smoothness ofNj (a,b)will always refer to smoothness with
respect to thej th factor base, anda andb will always be assumed to be coprime integers
with b > 0. A relation is given by a paira, b for which bothN1(a,b) and N2(a,b) are
smooth.

The following is an indication why this is considered to be a relation (i.e., something
that can be combined with other relations to solve the congruencex2 ≡ y2 modn). Let αj

denote a root off j . The prime factorization ofNj (a,b) corresponds, roughly speaking, to
the ‘prime ideal factorization’ ofa−αj b in the algebraic number fieldQ(αj ). Since f1 and
f2 have a common rootm modulon, the algebraic numbersa− α1b anda− α2b are ‘the
same’ when taken modn: let ϕj denote the homomorphism fromZ[αj ] to Z/nZ that maps
αj to m modulon, thenϕ1(a− α1b) ≡ ϕ2(a− α2b)modn.

Assume that the number of relations we have is more than the sum of the sizes of the
two factor bases. This implies that we can determine, by means of the usual matrix step,
independent subsetsSof the set of relations such that

∏
(a,b)∈S Nj (a,b) is a square (inZ),

both for j = 1 and for j = 2. For the j with degree( f j ) > 1 this does not imply that the
correspondingγj (S) =

∏
(a,b)∈S(a−αj b) is a square inZ[αj ] (for the j with degree( f j ) = 1

it does). But if we include in the matrix some additional information (so-calledquadratic
signatures) for eachNj (a,b) with degree( f j ) > 1, then we may safely assume that all
γj (S) are squares inZ[αj ] (cf. [1]). Note thatϕ1(γ1(S)) ≡ ϕ2(γ2(S))modn.

Because the factorization of the norms of theγj (S)’s is known (from the factorizations
of the Nj (a,b) with (a,b) ∈ S), the squarerootβj (S) of γj (S) in Z[αj ] can be computed:
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trivially if degree( f j ) = 1, using the method described in [40] otherwise. The resulting
squareroots satisfy(ϕ1(β1(S))2 ≡ (ϕ2(β1(S))2 modn, which is the desired congruence of
the formx2 ≡ y2 modn. Note that eachS leads to an independent chance to factorn.

If, for the j with degree( f j ) > 1, generators for the prime ideals (and units) inZ[αj ] can
be found, the squareroot can be computed faster by applyingϕj to each of those generators
(if degree( f j ) = 1 the squareroot computation is trivial, as mentioned above). In general
(in the general NFS) such generators cannot be found if degree( f j ) > 1, but in SNFS it
might be possible because thef j ’s of degree > 1 havesmall coefficients (it was used, for
instance, for the ninth Fermat number).

Thus, after the sieving step, NFS requires a matrix step to determine several subsetsS,
followed by a squareroot step for eachSuntil a lucky one that factorsn is encountered. The
picture of how many relations are needed is thoroughly confused by the use of large primes,
which can occur both inN1(a,b) and inN2(a,b). The experiments with large primes in
NFS described in [18] suggest that, unlike QS, the number of cycles that can be built from
the partial relations suddenly grows extremely rapidly. If such a cycle explosion occurs,
the sieving step is most likely complete, but when this will happen is hard to predict.

Why NFS is faster than QS. A heuristic analysis of the asymptotic expected run time
of NFS goes along the same lines as the analyses of the run times of Dixon’s algorithm
and QS. Instead of giving this analysis, we give the following informal explanation why
we expect the run time of NFS to grow much more slowly than the run time of QS as the
numbers to be factored get larger.

Consider the choicef1(X) = X −m and f2(X) =
∑d

i=0 ci Xi , with m close ton1/(d+1).
The probability that bothN1(a,b) = a − bm andN2(a,b) =

∑d
i=0 ci ai bd−i are smooth

depends on the sizes ofa, b, m, and theci ’s. By their choice ,m and theci ’s are all of the
ordern1/(d+1). The sizes ofa andb depend on how manyN1(a,b) andN2(a,b) have to be
considered so that we can expect enough of them to be smooth. But ‘enough’ and ‘smooth’
depend on the sizes of the factor bases: as in QS, a larger factor base requires more relations,
but at the same time relaxes the definition of smoothness. From an analysis of all relevant
smoothness probabilities it follows that ifd is of the order(logn/ log logn)1/3, then it may
be expected that the largesta’s andb’s needed will be such thatad andbd are of the same
order of magnitude asm and theci ’s, i.e.,n1/(d+1). This implies thatN1(a,b) andN2(a,b)
are at worst of ordern2/d. Now note that 2/d → 0 for n→∞ due to the choice ofd, so
that asymptotically the numbers that have to be smooth in NFS aremuchsmaller than the
numbers of order roughly

√
n that have to be smooth in QS.

If theci ’s are small, as in SNFS,N2(a,b) is even more likely to be smooth, which explains
why SNFS is so much faster than the general NFS.

Finding relations in NFS. Since the smooth values that we are looking for are, as in QS,
values of polynomials evaluated at certain points, they can again be found using a sieve: ifp
dividesNj (a,b) thenpalso dividesNj (a+tp,b+wp) for any integerst andw. The earliest
NFS implementations used the following simple sieving strategy: fixb; use a sieve to find
a’s for which bothN1(a,b) andN2(a,b)might be smooth; and inspect thoseN1(a,b) and
N2(a,b) more closely (using trial division). Repeat this for differentb’s until a sufficient
number of relations have been collected. This approach can be distributed over many
processors by assigning different ranges ofb’s to different processors; it was used in [31]
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and is calledclassicalor line-by-line sieving. Since smallerb’s are better than larger ones
the pool of ‘good’ inputs (theb’s) eventually dries out, a problem that does not exist in QS.

As shown in [45] the following is more efficient. Fix some reasonable largeq that can in
principle occur in the factorization of, say,N2(a,b). Again use a sieve to locate pairsa, b
for which N1(a,b) is smooth andN2(a,b) factors using only primes< q from the second
factor base, but restrict the search to pairsa, b for which N2(a,b) is divisible byq. Repeat
this for differentq’s until a sufficient number of relations have been collected—actually this
step should be carried out for all pairsq, rq whererq ranges over all roots off2 moduloq,
a detail that we will not elaborate upon. Because of the restriction on the pairsa, b, fewer
pairs have to be considered perq, namely only those pairs that belong to a sublatticeLq of
determinantq of the(a,b)-plane. For this reason Pollard called this way of sievinglattice
sieving.

For generalq, lattice sieving makes it possible and necessary to usesieving by vectors,
another term introduced by Pollard. This is a way of quickly identifying, for eachp,
the proper sieve locations in a plane instead of on a line. Just as the 1-dimensional line-
by-line sieve makes use, for eachp, of the shortest 1-dimensional vector(p), sieving by
vectors makes use, for eachp, of two 2-dimensional vectors that form a reduced basis
for the appropriate sublattice of determinantp of Lq. Again, the phrase ‘for eachp’ is
oversimplified and should read ‘for eachp, r p pair’, wherer p is a root of f j modulop (with
p < q if j = 2).

Sieving by vectors is possible because a substantial part ofLq can be made to fit in
memory. It is necessary because this entire process has to be repeated for manyq’s. The
latter implies that we cannot afford the time to look at allb-lines for all relevantp for all
theseq’s, i.e., that line-by-line sieving in eachLq is too slow.6 The details of sieving by
vectors are rather messy (though not as bad as some of the rest of NFS) and can be found
in [23]; see also [5].

Different q’s may lead to duplicatea, b pairs, in particular when large primes are used.
This implies that duplicates have to be removed from the resulting relations, even in an
implementation where it can be guaranteed that each relevantq is processed only once.

Distributed factoring using NFS.Although the sieving step of NFS is entirely different
from that of QS, it can be distributed over a network in almost the same way—except for
the way the inputs are handled. In the sieving step of QS it takes the average workstation
a considerable amount of time, say a few weeks, to exhaust a single input. Furthermore,
for each number to be factored, there are millions of good inputs that are all more or less
equally productive, and that lead to distinct relations.

The first distributed NFS implementation (cf. [31]) was based on the approach of [32] and
on classical sieving. It assigns disjoint ranges ofb’s to different processors. A singleb can
be processed in a matter of minutes on a workstation, so each processor needs a range of at
least a few thousandb’s to stay busy for a week. Largerb’s are less productive than smaller
ones, withb’s on the order of a few million becoming almost worthless. This implies
that only a fairly limited number of ranges can be distributed, and that a range should be
redistributed when its results are not received within a reasonable amount of time. This
leads to even more duplicated results than we have to deal with in QS, but duplicates can
again easily be removed by keeping the relations sorted.
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A more recent distributed NFS implementation (cf. [13]) is based on use of the World
Wide Web and on lattice sieving. Because processing a singleq takes at most a few minutes,
disjoint ranges ofq’s are assigned to different processors, just as theb’s were distributed
in classical sieving. The size of the range assigned to each contributor depends on the
resources available to that contributor: the types of processors and the amount of available
memory and computing time per processor. An advantage compared to classical sieving is
that the pool of ‘good’q’s is relatively large (cf. [5, 13]), so that lattice sieving tasks can
be distributed quite liberally. Nevertheless, someq’s are ‘better’ than others. It is therefore
still a good idea to keep track of the dates theq’s have been distributed, and to redistribute
q’s whose results are not received within a reasonable amount of time. Note that there are
now three reasons why duplicates may be found: because they are intrinsic to lattice sieving
with large primes, because anyq might be processed more than once, and because relations
from anyq may be received or submitted more than once.

In [13] we describe the convenient Web-interface that takes care of most of the interactions
with the contributors. Compared to the approach from [32] this interface makes it much
easier to contribute to future distributed factoring efforts: a few mouse clicks is all that is
needed. It should therefore not be difficult to perform the sieving step for numbers that
are considerable larger than the one reported in [13]. Once the sieving step is complete, a
non-trivial amount of computing has to be carried out at a location where enough computing
power is available. With the current state of technology, this may take considerably more
(real) time than the sieving step.

Some illustrative NFS data. In Table 2 we present some data for the general NFS-
factorizations of a 116-digit and a 119-digit number (both from [18]), and of a 130-digit
number (from [13]). For all three numbers we used two polynomials, with degree( f1) = 1
and degree( f2) = 5. The 116-digit number was the first number sieved using the imple-
mentation described in [23], with very conservative (and suboptimal) choices for the factor
base sizes. The same implementation was later used for the sieving of the 119-digit number,
with a much better choice for the factor base sizes. For the 130-digit number, the imple-
mentation of [23] was extended to allow more liberal use of the large primes that define the
lattices (theq’s), as described in [13].

The ‘partials’ refer to the relations with one or more large primes: in the implementations
used relations can in principle have almost any number of large primes, though the majority
has at most 5.

For the matrix step a variety of different algorithms and implementations was used, as
shown in the table; ‘Gauss’ refers tostructured Gaussian elimination(cf. [28, 48]), and
‘Lanczos’ refers to P. L. Montgomery’sblocked Lanczos method(cf. [12, 41]). Note that
for the two applications of ‘Lanczos’ the matrix is much larger than simply the sum of the
factor base sizes. This is due to the use of large primes and the fact that they are only
partially removed from the matrix during the cycle construction in an attempt to minimize
the run time for Lanczos; for details see [18, 13]. For the 116-digit number all large
primes were removed. All squareroot computations were carried out at the Centrum voor
Wiskunde en Informatica (CWI) in Amsterdam, using P. L. Montgomery’s implementa-
tion of his own method (cf. [40]). The squareroot timings in the table give the time per
dependency.
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Table 2.

116-digit 119-digit 130-digit

size first factor base 100001 100001 250001
size second factor base 400001 360001 750001
large prime bound 230 230 109

fulls 61849 38741 48400
partials 45876382 35763524 56467272
cycles 2605463 472426 2844859
amount of data 3 GB 2.2 GB 3.5 GB
timing sieving step 220 MY 250 MY 550 MY
matrix size ≈ 5001002 ≈ 14750002 ≈ 35050002

matrix algorithm Gauss Lanczos Lanczos
running on MasPar MP-1 MasPar MP-1 CRAY C-90
at Bellcore Bellcore CWI
timing matrix step 114 hrs 60 hrs 67.5 hrs
timing squareroot step 60 hrs 20 hrs 49.5 hrs

Recent results.In 1998–1999 P. L. Montgomery and B. Murphy developed a new method
to select the polynomialsf1 and f2. Using their method the 140-digit number RSA-140
was factored on February 2, 1999, and sieving for the 155-digit (and 512-bit) number RSA-
155 was completed on July 14, 1999. At the time of writing the matrix step was still in
progress. Also, on April 8, 1999, a new SNFS record was set with the factorization of the
211-digit number(10211− 1)/9. For details on these factorizations consult the web pages
at www.cwi.nl.
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Appendix

Factoring and public-key cryptography. In public-key cryptography each party has two
keys: apublic keyand a correspondingsecret key. Anyone can encrypt a message using
the public key of the intended recipient, but only parties that know the secret key can
decrypt the encrypted message. One way to make such a seemingly impossible system
work is based on the supposed difficulty of factoring. TheRSA-system(named after the
inventors Ron Rivest, Adi Shamir, and Len Adleman, cf. [51]) works as follows. Each
party generates two sufficiently large primesp andq, selects integerse andd such that
e · d ≡ 1 mod(p − 1)(q − 1), and computes the productn = p · q; the public key
consists of the pair(n,e), the secret key consists of the integerd. This computation can be
carried out efficiently: randomly picked numbers can easily be checked for primality using
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probabilistic primality tests (as shown in Section 2); the density of primes is sufficiently
high (π(x) ≈ x/ ln x, cf. Section 2);d can be derived frome, p, andq, using the extended
Euclidean algorithm (ife and(p− 1)(q − 1) are coprime); and multiplication is easy.

Let the messagem be a bit string shorter thann. To encryptm using the public key(n,e)
one computesE(m) = me modn, which is equal tom because of Fermat’s little theorem
and the Chinese remainder theorem (cf. [25]). The modular exponentiations can be done
efficiently using the repeated square and multiply method, as shown in Section 2. Sinced
can be found givene and the factors ofn, factoringn suffices to break RSA. Conversely, it
is believed that in general, without knowledge ofd, factoringn is necessary to be able to
decrypt RSA-encrypted messages.

RSA can also be used as a signature scheme: the owner of secret keyd, whose public
key is (n,e), is the only one who can compute the signatureS(m) = md modn for some
messagem, but everyone can check thatS(m) is the signature onmof the owner of the secret
key corresponding to(n,e) by verifying thatS(m)e modn equals the original messagem.

Notes

1. The 116-digit factorization of a BlackNet PGP key described in [22] used the same software as [4] but was
distributed on a much smaller scale than the other efforts.

2. This can be done using Euclid’s algorithm, as explained before. Note that if gcd(a,n) 6= 1 we have found a
factor> 1 of n (since 1< a < n), so thatn is composite.

3. ‘Some people have all the luck’ (cf. [47]).

4. A similar idea can also be found in [26].

5. In CFRACv’s such thatsv is small are generated using continued fractions. Ifai /bi is the i th continued
fraction convergent to

√
n, thenr (ai ) = a2

i − nb2
i satisfies|r (ai )| < 2

√
n. Thus, withv = ai we have that

|sv | = |r (ai )| is bounded by 2
√

n. Even though this is smaller than the|sv(i )|’s that are generated in QS,
CFRAC is less efficient than QS because the smoothness of the|sv |’s in CFRAC cannot be detected using a
sieve, but has to be checked ‘individually’ per|sv | using trial division or elliptic curves.

6. Pollard refers to line-by-line sieving inLq assieving by rows. For a small minority ofq’s only a fewb’s have
to be considered, in which case line-by-line (or row) sievingis the preferred strategy.
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