;“ Designs, Codes and Cryptography, 19, 101-128 (2000)
‘. © 2000 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Integer Factoring

ARJEN K. LENSTRA arjen.lenstra@citicorp.com
Citibank, N.A., 1 North Gate Road, Mendham, NJ 07945-3104, USA

Abstract. Using simple examples and informal discussions this article surveys the key ideas and major advances
of the last quarter century in integer factorization.

Keywords: Integer factorization, quadratic sieve, number field sieve, elliptic curve method, Morrison—Brillhart
Approach

1. Introduction

Factoringa positive integen means finding positive integessandv such that the product
of u andv equalsn, and such that both andv are greater than 1. Suchandv are called
factors (or divisorg of n, andn = u - v is called afactorizationof n. Positive integers
that can be factored are calledmposites Positive integers greater than 1 that cannot be
factored are callegirimes For examplen = 15 can be factored as the product of the
primesu = 3 andv = 5, andn = 105 can be factored as the product of the prime 7

and the composite = 15. A factorization of a composite number is not necessarily unique:
n = 105 can also be factored as the product of the puree5 and the composite = 21.

But the prime factorizationof a number—uwriting it as a product of prime numbers—is
unique, up to the order of the factons:= 3.5 7 isthe prime factorization oh = 105,
andn = 5 is the prime factorization af = 5.

In this article we concentrate on finding just a factorization. The prime factorization can
be obtained by further factoring the factors that happen to be composite: both factorizations
n=7-15andn = 5- 21 ofn = 105 can be further refined to the prime factorization
n=3-5.7 of n = 105, the first by further factoring 15, the second by factoring 21. There
are efficient methods to distinguish primes from composites that do not require factoring the
composites (cf. [29], [50], and Section 2). These methods can be used to establish beyond
doubt that a certain number is composite without, however, giving any information about
its factors.

Factoring a composite integer is believed to be a hard problem. This is, of course, not
the case forall composites—composites with small factors are easy to factor—but, in
general, the problem seems to be difficult. As yet there is no firm mathematical ground
on which this assumption can be based. The only evidence that factoring is hard consists
of our failure so far to find a fast and practical factoring algorithm. (The polynomial-time
factoring algorithms that are based on the use of quantum computers are not considered
to be practical and not addressed in this survey.) Interestingly, and to an outsider maybe
surprisingly, an entire industry is based on this belief that factoring is hard: the security,

31

102 LENSTRA

i.e., the unbreakability, of one of the most popular public key cryptosystems relies on the
supposed difficulty of factoring (cf. Appendix).

This relation between factoring and cryptography is one of the main reasons why people
are interested in evaluating the practical difficulty of the integer factorization problem.
Currently the limits of our factoring capabilities lie around 130 decimal digits. Factoring
hard integers in that range requires enormous amounts of computing power. A cheap and
convenient way to get the computing power needed is to distribute the computation over
the Internet. This approach was first used in 1988 to factor a 100-digit integer [32], since
then to factor many integers in the 100 to 120 digit range, and in 1994 to factor the famous
129-digit RSA-challenge number (cf. [4])Most recently, in 1996 a 130-digit number was
factored, partially using a World Wide Web interface [13].

This survey is intended for people who want to get an impression how modern factoring
algorithms work. Using simple examples we illustrate the basic steps involved in the
factoring methods used to obtain the factorizations just mentioned and we explain how
these methods can be run in parallel on a loosely coupled computer network, such as the
Internet.

We distinguish two main types of factoring methods: those that work quickly if one is
lucky, and those that are almost guaranteed to work no matter how unlucky one is. The latter
are referred to ageneral-purpose algorithmasnd have an expected run time that depends
solely on the size of the numbarbeing factored. The former are callsdecial-purpose
algorithms they have an expected run time that also depends on the properties of the—
unknown—factors oh. When evaluating the security of factoring-based cryptosystems,
people employ general-purpose factoring algorithms. This survey therefore focuses on
this category of integer factoring algorithms, after a short description how primes can be
efficiently distinguished from composites (Section 2) and of some of the most important
special purpose algorithms in Section 3.

In Section 4 we sketch the basic approach of the general purpose algorithms. We show that
they consist of two main stepdata collectionanddata processingSection 5 concentrates
on the quadratic sieve factoring algorithm, the algorithm that was considered to be the most
practical general purpose method from 1982 to 1994. We describe the data collection
step, how it can be improved using some simple additional tricks, and how it can be
parallelized over a network. Section 5 concludes with some data from quadratic sieve
factoring efforts.

The algorithm that is currently considered to be the most practical method (for sufficiently
large numbers)—the number field sieve—is sketched in Section 6. This sketch offers only
a vague indication of the algorithm: it omits most of the mathematics required to fully
understand the algorithm. In the appendix we describe the relation between factoring and
cryptography.

Understanding the material presented in this survey requires some willingness to bear with
a few easy examples and a few slightly more complicated formulas and descriptions. Some
of the descriptions below are oversimplified to the point of being partially inaccurate—in
particular the description of the number field sieve factoring algorithm is seriously deficient.
Nevertheless, we hope that this survey provides a useful introduction to factoring that
inspires the readers to consult the literature referred to in the references.

32

INTEGER FACTORING 103

2. Preliminaries

Notation. By ‘log,’ we denote the badelogarithm, and ‘In’ denotes the natural logarithm,
i.e., In=log, with e ~ 2.71828. The largest integer= x is denoted by %]'. The number

of primes< x is denoted byt (x)’, the prime counting functiondue to thePrime number
theorem[24] we know thatr (X) ~ x/In(x). To give an example of some values of the
prime counting function and its growth rate:

(r(10): 1<i <19

= {4, 25,168 1229 9592 78498 66457957 61455508 475344550 52511
41180548133 76079 1201834 60655 36833820 49417 50802

2984 45704 226627923 83410 33922 62355 71576 54233
247399542877 4086@34 05766 72763 44607

furthermore, (4185 29658 14676 95669= 107 (cf. [16,27]). Building a table of all
primes< 10°° or of all 256-bit primes, as has often been proposed, is therefore completely
infeasible.

Smoothness.We say that a positive integeris-smoothf all its prime factors are<= B.

An integer is said to bemooth with respect to, 8vhereSis some set of integers, if it can
be completely factored using the element$SofWe often simply use the tersmooth in
which case the bounB or the setSis clear from the context.

Smoothness probability In the algorithms described in this paper we are interested
in the probability that randomly selected integers are smooth. Intuitively, the smaller a
number is, the higher the probability that it is smooth. For example, there are 39 positive 5-
smooth numbers: 143, but there are 29 positive 5-smooth numbei&. Therefore, if we
randomly pick positive numbers m, we get a smoothness probability of/343 = 0.27
for m = 143 but a higher probability 29/72 = 0.40 for = 72. Form = 1000 we get
87/1000 = 0.08, and fan = 10° we get only 50810° = 0.0005.

To express how the smoothness probability depends on the smoothness bound and the
size of the numbers involved, we introduce

Ly[u, v] = expiv(Inx)!(InInx)*Y).

Leta, B, r, ands be real numbers with, 8 > 0,0<r <1, and O< s < r. It follows
from [10,15] that a random positive integerL«[r, o] is L[S, B]-smooth with probability
Li[r —s, —a(r —9s)/B + o(D)] for X — oo. Thus, withr = 1 ands = 1/2, a random
positive integer n¥ is Ly[1/2, 8]-smooth with probability_,[1/2, —«/(28) + 0(1)], for
n — oo.

Run times. Throughout this survey, the functidry, is often used in run time estimates.
Note that, in such applications, its first argument interpolates between polynomial time
(u = 0) and exponential timéu = 1) in Inn:

Ln[0,v] = exp(vIininn) = (Inn)* and Ly[1, v] = explvinn) =n".

A runtimeL,[u, v] with u < 1 andv constant is referred to @sibexponential time

33

104 LENSTRA

Allruntimes involvingL,, are forn — oo. Thisimplies thatthe(1)’s that might occur in
run time expressions go to zero. In practice, howevemthgs are not zero. Therefore we
cannot encourage the practice of evaluating the run time expression for any of the factoring
methods presented here for a particuiawith o(1) = 0, and to advertise the resulting
number as the ‘number of cycles’ necessary to factasing that method. The expressions
are useful, however, to get an indication of the growth rate of the run time—they can be
used (witho(1) = 0) for limited range extrapolations to predict the expected run time for
m given the run time of, if |logm — logn| is not too large.

Modular arithmetic. Throughoutthis papek’'= y modz' means thak —y is a multiple
of z, for integersx, y, andz with z > 0. Similarly, ‘x # ymodz' means thak — y is not
a multiple ofz. Thus, 308= 22 mod 143 because 36822 = 286 = 2- 143 is a multiple
of 143, and 143= 11 mod 22 because 14311 = 132 = 6- 22 is a multiple of 22; but
4 £ 1 mod 15 because41 = 3is not a multiple of 15. Byx modz’ we mean any integer
y such thatx = ymodz; in practical circumstances we often use tbast non-negative
remainderi.e., we assume thatf y < z, or theleast absolute remaindgire., we assume
that—z/2 < y < z/2. Thus, by 143 mod 22 we mean 11, or 33,-ck1, or any integer
of the form 11+ k - 22, for some integek; the least non-negative remainder and the least
absolute remainder of 143 mod 22 are both equal to 11.

Note that giverx modzandy modzit it possible to efficiently computec+y) modz, (x—
y) modz, or (x - y) modz: simply computgx modz) + (y modz), (x modz) — (y modz),
or (xmodz) - (ymodz) and if necessary remove multiples ofrom the result if least
remainders are used. The latter operation can be done using a division with remainder by
Examples of this so-calleshodular arithmetiqwith modulus 2 can be found throughout
the paper.

To be able to divide in modular arithmetic, for instance to compit&) modz, we need
a little more. An important operation on which many factoring and other algorithms rely
is finding thegreatest common divisaf two non-negative integers, sayandz, i.e., the
largest factor thax andz have in common. Of course, the greatest common diviser of
andz (‘gcd(x, 2)’ for short) can be found by computing the prime factorizationg ahdz
and multiplying all prime factors they have in common. A much faster method to compute
gcd(x, 2) is Euclid’s algorithm a method that was invented more than 2000 years ago. It
is based on the observation that gcd)) = x, that gcdx, z) = gcd(z, x modz) if z # 0,
and that, ifx > z and least non-negative remainders are used, the ‘new{paimodz)
is substantially ‘smaller’ than the ‘old’ paix, z). As an example:

gcd(308 143 = gcd(143 22) = gcd(22, 11) = ged(11, 0) = 11,
and
gcd(143 19) = ged(19, 10) = gcd(10, 9) = gcd(9, 1) = gecd(1, 0) = 1.

If gcd(x, z) = 1 as in the latter example, we say tixaandz are coprime, i.ex andz do
not have any factors 1 in common.

If x andz are coprime, we can comput®/x) modz, using a variant of Euclid’s algorithm
that is generally referred to as tle&tended Euclidean algorithmActually, the extended
Euclidean algorithm does more: it computes@ca) and, if the latter equals 1, it computes

34

INTEGER FACTORING 105

(1/x) modz as well. The process is illustrated in the following example where we compute
(1/19 mod 143. In thath line we havex = 19,z = 143 and two other numbens, and

S, such thai - r; = 5 modz. Assuming that O< X < zwe haver; = 0,5, = 7,1, = 1,
ands, = X. The(i + 1)st line follows from the(i — 1)st andith by subtracting théth

as many times as possible from ttie— 1)st, without making the right hand side of the
resulting(i + 1)st line negative. The process terminates as soon as§ome; if ¢ = 0
thens,_; = gcd(x, 2), and ifs._1 equals 1, then,_; = (1/x) modz:

19.0 = 143 mod 143
19-1 = 19mod 143 (subtract [148] = 7 times)

19.(-7) = 10mod 143 (subtract[}40]= 1times)
19-8 = 9mod 143 (subtract [1®] = 1 times)
19-(-15 = 1mod143 (subtract [d] = 9 times)

19.143 = Omod 143 (done).

Thus, 128= —15+ 143 is the least non-negative remaindebf19) mod 143. We say

that 128 is theénverseof 19 modulo 143. Note that the numbers on the right hand sides in

the example also appear in the earlier example where we computed gcd(143, 19). For more

background on Euclid’s algorithm and the extended Euclidean algorithm see [25].
Compositeness testingA famous theorem of Fermat (hiigtle theoren) says that ifn

is prime anda is an integer that is not divisible by, then

a" ! = 1modn.
For instance, fon = 7 anda = 2 we find that
2®=64=14+9-7=1mod7

This does not prove that 7 is prime, it is merely an example of Fermat's little theorem for
n = 7 anda = 2. Note, however, that if we have two integars- 1 anda such than and
a do not have any factor in common, and such that

a" ! % 1 modn,

thenn cannot be a prime number because that would contradict Fermat's little theorem.
Therefore, Fermat's little theorem can be usegrnavethat a number is composite. An

that can be used in this way to prove the compositenessobften called avitnessto the
compositeness af. For instance, fon = 15 anda = 2 we find that

214 = 16384= 4+ 1092- 15= 4 # 1 mod 15

so that 2 is a witness to the compositeness of 15.
This is certainly not the fastest way to prove that 15 is composite—indeed, it is much
faster to note that 15 3- 5. But for generah, finding a factor o is much harder than

35

106 LENSTRA

computinga"~* modn, because the latter can be done using a quick method capledted
square and multiplyUsing this method in the example, we compute

22mod 15= 4,
2°mod15=2- (2 mod15mod15=2-4 = 8,
25mod 15= (22 mod 152 mod 15= 82mod 15= 64 =4+ 4. 15= 4mod 15
2"'mod15=2- (2 mod15mod15=2-4 =8,
and

2%mod 15= (2’ mod 152 mod 15= 8’ mod 15= 64 = 4 mod 15

If we use least non-negative remainders, all numbers involved in this computatiarmdre
The number of squares and multiplies is bounded byog,(n). The pattern of squares
and multiplies can be found by looking at the binary representation of the exporeht
(cf. [25]).

Thus, we can comput ! modn efficiently, which should allow us to easily prove that
n is composite if we simplemindedly assume that witnesses are not too rare: simply pick
a randoma with 1 < a < n, check thain anda are coprimé, computea"!modn if
they are, and hope that the outcome is not equal to 1. Unfortunately, this process does not
work for all compositen: there are composite numbers for whah! = 1 modn for all a
that are coprime to. These numbers are call€@hrmichael numberghe smallest one is
561. It has recently been proved that there are infinitely many Carmichael numbers: there
are at leask?’ of them < x, oncex is sufficiently large (cf. [2]). This invalidates the
simple compositeness test based on Fermat’s little theorem: for a Carmichael number
the testa"~! = 1 modn never fails, ifn anda are coprime, and therefore never proves the
compositeness of.

Fortunately, there is an easy fix to this problem, if we use Selfridge’s slight variation of
Fermat's little theorem: if is an odd primen — 1 = 2! - u for integerst andu with u odd,
anda is an integer that is not divisible by, then

eithera’ = 1 modn or a?¥ = —1 modn for somei with 0 <i<t.

For odd composita it can be proved that a randomly selected integer{2, 3, ...,n—1}

has a chance of at least 75% not to satisfy these conditions and thereby be a witness to
n's compositeness (cf. [38,49]); see also [3]. This makes proving compositenasn of
practice an easy matter: apply Selfridge’s test for randomly pielsdintil ana is found

that is a witness to the compositenesa.off no witness can be found after some reasonable
number of attempts, the compositeness test fails,raisddeclared to b@robably prime

The chance that a composite number is declared to be probably primé& &ftds is less

than /4. Note that a probably prime numberasly a number for which we failed to
prove the compositeness—this does not imply that its primality has been proved; proving
primality is an entirely different subject which will not be discussed in this paper. In [31:
2.5] it is shown how Selfridge’s test can also be used to rule out prime powers.

36

INTEGER FACTORING 107

3. Special Purpose Factoring Algorithms

We briefly discuss six of the most important special purpose factoring methadds:
division Pollard’s rho methodPollard’s p— 1 methodtheelliptic curve methodFermat’s
method andsqufof None of these methods is currently considered to be applicable to
composites that are used in cryptosystems. But for numbers that come from different
sources, and that might have small or otherwise ‘lucky’ factors, any of these methods can
be quite useful. Examples are the eighth, tenth, and eleventh Fermat nuﬁ]berﬁ{ +1

for k = 8, 10, 11 cf. [8,7]), and also numbers that have to be factored in the course of the
general purpose algorithms described in the next sections.

Throughout this section denotes the number to be factored. Using the results from
Section 2 we may assume this composite and not a prime power.

Trial division. The smallest prime factqy of n can in principle be found by trying if is
divisibleby 2 3,5, 7, 11,13, 17,, i.e., all primes in succession, untilis reached. If we
assume that a table of all primgsp is available (which can be generated in approximately
p steps using for instance ttedeve of Erathostenesf. [25]), this process takes(p)
division attempts (so-called ‘trial divisions’), whetteis the prime counting function from
Section 2. Because(p) ~ p/In(p), finding the factorp of n in this way takes at least
approximatelyp steps—how many precisely depends on how we count the cost of each
trial division. Even for fairly smalp, sayp > 10, trial division is already quite inefficient
compared to the methods described below.

Sincen has at least one facter ,/n, factoringn using trial division takes approximately
»/n operations, in the worst case. For many composites trial division is therefore infeasible
as factoring method. For most numbers itis very effective, however, because most numbers
have small factors: 88% of all positive integers have a faetd00, and almost 92% have
a factor< 1000.

Pollard’s rho method. Pollard’s rho method [44] is based on a combination of two ideas
that are also useful for various other factoring methods. The first idea is the well known
birthday paradox a group of at least 23 (randomly selected) people contains two persons
with the same birthday in more than 50% of the cases. More generally: if numbers are
picked at random from a set containipghumbers, the probability of picking the same
number twice exceeds 50% afted I7,/p numbers have been picked. The first duplicate
can be expected after- ,/p numbers have been selected, for some small constartte
second idea is the following: {f is some unknown divisor af andx andy are two integers
that are suspected to be identical modpjd.e.,x = y modp, then this can be checked by
computing gcdx — y|, n); more importantly, this computation may reveal a factorization
of n, unlessx andy are also identical modulo.

These ideas can be combined into a factoring algorithm in the following way. Generate a
sequenceifo, 1, ..., n—1} by randomly selectingy and by definings .1 as the least non-
negative remainder of? + 1 modn. Sincep dividesn the least non-negative remainders
X modp andx; modp are equal if and only ik; andx; are identical modulg. Since
thex; mod p behave more or less as random integef®ird, ..., p — 1} we can expect to
factorn by computing gedx; — x|, n) fori # | after about,/p elements of the sequence
have been computed.

37

108 LENSTRA

This suggests that approximatety\/ﬁ)z/Z pairsx;, x; have to be considered. However,
this can easily be avoided by only computing ged— x|, n), fori = 0,1, ..., i.e., by
generating two copies of the sequence, one at the regular speed and one at the double speed,
until the sequence ‘bites in its own tail’ (which explains the ‘rhp) (n the name of the
method); this can be expected to result in a factorizatianafter approximately &p gcd
computations.

As an example, consider= 143 andxp = 2:

Xt =2>+1=05x =5 +1=26:gcd|5— 26],143 =1,
Xo = 26, X4 = (26° + 1)+ 1 = 15mod 143 : gc(26 — 15/, 143 = 11.

With xg = 3 it goes even faster, but we find a different factor:
Xp=32+1=10 %, = 10° + 1 =101 : gcd|10— 101], 143 = 13,

The most remarkable success of Pollard’s rho method so far was the discovery in 1980 by
Brent and Pollard of the factorization of the eighth Fermat number (cf. [8]):

22 +1=12389263615 52897p62,

wherep62 denotes a 62-digit prime number.

Pollard’s p—1method. Pollard’sp—1 method [43]follows, very roughly, from Pollard’s
rho method by replacing the birthday paradox by Fermat'’s little theorem (cf. Section 2).
Let p again be a prime factor of. For any integea with 1 < a < p we have, according
to Fermat's little theorem, thaP~—! = 1 modp, so thatak(P~V = 1K = 1 modp for any
integerk. Therefore, for any multiplen of p— 1 we have thaa™ = 1 modp, i.e., p divides
a™ — 1. Thus, computing ggd™ — 1, n) might reveal a factorization af. Note that it
suffices to compute g¢ch™ — 1) modn, n) (and thatp divides (@™ — 1) modn as well,
because dividesn).

It remains to find a multiplen > 1 of p — 1. The idea here is that one simply hopes that
p — 1 is B-smooth (cf. Section 2) for some relatively small bousidi.e., thatp — 1 has
only prime factors< B. This would imply that amn of the form]'[qu g, with the product
ranging over prime powerg, could be a multiple ofp — 1. Since(@™ — 1) modn for
suchm can be computed in time roughly proportionaBpPollard’sp — 1 method can be
used to discover factonsin time roughly proportional to the largest prime factompin- 1.
Evidently, this is only going to be efficient fqrfor which p — 1 is smooth. It explains why
some people insist on using primes of the forqn21 (with g prime) in factoring-based
cryptosystems, a precaution that is rendered useless by the elliptic curve method.

As an example, lat again be 143, and let= 2. If we raisea to small successive prime
powers and compute the relevant gcd’s, we fing: 13 = 22 . 3 + 1 after processing the
prime powers 2and 3:

2*=16,gcd16— 1,143 =1,
16° = (16°) - 16 = 113- 16 = 92 mod 143gcd(92 — 1, 143 = 13

38

INTEGER FACTORING 109

If, on the other hand, we simply keep raisiag= 2 to the next prime, we fingg = 11 =
2.5+ 1 after processing the primes 2, 3, and 5:

22 =4,gcd4—1,143 =1,
4 = 64,gcd64— 1,143 =1,
64° = (64%)% . 64=92°. 64 = 12mod 143gcd(12— 1, 143 = 11.

For variations of Pollard’p — 1 method and fast ways to implement it refer to [39].

The elliptic curve method. The major disadvantage of Pollards— 1 method is that
it only works efficiently if the number to be factored happens to have a factor which
p — 1 is B-smooth, for some reasonably small bouBd So, it only works for ‘lucky’n.

The elliptic curve method [34] can be regarded as a variation opthel method that

does not have this disadvantage. It consists of any humber of trials, where each trial can be
lucky—and facton—independently of the other trials: a trial is successful if some random
number close to some prime factorrofs smooth. Thus, the probability of success of each
trial depends only on the size and not on any other fixed properties of the facto(sfof
Section 2).

A detailed description of the method is beyond the scope of this survey. Roughly speaking,

the following happens. During each trial an elliptic curve moduls selected at random.

For any primep dividing n, any pointa on the curve satisfies an equation that is similar

to Fermat’s little theorem, with two important differences. In the first place, and this is
why the elliptic curve method is so powerful, the exponent 1 is replaced by some
random numbep close top — 1. Secondly, the exponentiation is not a regular integer
exponentiation modula: sincea is not an integer but a point on a curve, other operations
have to be performed on it to ‘exponentiate on the curve’. The number of elementary
arithmetic operations to be carried out for such an exponentiation is a constant multiple of
the number of operations needed for a regular integer exponentiation moehith the

same exponent.

Just as in Pollard'p — 1 method it is the case thatdfis exponentiated on the curve to a
power that is a multiple op, then a factorization af may be discovered; if is B-smooth,
then this can be done in roughtyin n)°B elementary arithmetic operations, wheres a
small constant. Thus, it suffices to keep trying new curves (thereby gettingsgvwand
to exponentiate the points to large smooth powers, filldivides the smooth power.

From the smoothness probability in Section 2, and assumingthahaves as a random
positive integer close t@, it follows that p is Lp[1/2, \/1/2]-smooth with probability
Lp[1/2, —/1/2+ 0(1)], for p — oo. Therefore, if one runk p[1/2, /1/2 + o(1)] trials
in parallel, spending time proportional o n)2L ,[1/2, ./1/2] per trial, one may expect to
find p. We find that the heuristic asymptotic expected run time of the elliptic curve method
to find the smallest prime factgrof nis

(Inn)2Lp[1/2, v/2 + o(D)],

for p — oco. In the worst case, i.ep ~ /n, this become&.,[1/2, 1+ o(1)], for n — oo
(note that the(In n)? disappears in the(1)). Thus, in the worst case the elliptic curve
method can be expected to run in subexponential time. This is substantially faster than any

39

110 LENSTRA

of the other methods discussed in this section, which all have an exponential-time worst
case behavior.

Two remarkable factorizations obtained using the elliptic curve method are those of the
tenth and eleventh Fermat numbers, both by Brigfjt In 1988 he found a 21 and a 22-digit
factor of (22" + 1)/(319489. 974849, thereby completing the factorization Bf;:

22" 41 = 319489 974849 16798855634 17604 75137
- 356084190644 58339 20519564,

where p564 denotes a 564-digit prime; and in 1995 he found a 40-digit fact¢@?0f+
1)/(45592577 6487031809 which completed the factorization &f:

22" +1 = 45592577 6487031809
- 46597 7578522001 85432 64560 74307 67781 92§252,

wherep252 denotes a 252-digit prime. The largest factor found by the elliptic curve method,
as of March 1996, has 47 digits (155 bits), and was found by P. L. Montgomery. For a
complete description of the elliptic curve method refer to [34] and [29]. For implementation
details, refer to [6, 39].

Fermat's method. In the course of the general purpose factoring methods described
below we frequently have to factor numberghat are suspected to have two relatively
large prime factors and for which typically’2 < n < 2%4. If those factors are close
to each other, they can easily be found using Fermat's method.n et p; - p, with
p1 < p2, both p; and p, odd, andp, — p1 = 2d for some smald. Thenx = p; + d,

y = d satisfyn = (x — y)(x + y), and thereforen = x> — y2. The properx can thus
be found by tryingx = [/n] + 1, [/n] + 2,[/N] + 3, ... in succession untk? — nis a
perfect square (in which cag@ = x2 — n). Obviously, this method is efficient onlydfis

small. For the example = 143 Fermat’s method needs only one trial: the firgiquals
[V143]+ 1 =12 andx? — n = 12 — 143= 1 is a perfect square, so that= 12,y = 1,

and 143= (12— 1)(12+ 1).

Congruence of squares.More generally, in Fermat’s method one attempts to solve a
congruence of squarese., integersx andy such thaix? — y? is amultiple of n. Namely,
if n dividesx? — y?, it also divides(x — y)(x + y) = x? — y2. Therefore, the factors of
n must be factors ok — vy, or they must be factors of + y, or some of them must be
factors ofx — y and some must be factorsoft- y. In the first casen is a factor ofx — vy,
which can be checked easily. In the second casea factor ofx 4 y, which can also be
checked easily. If neither of those cases hold, then the factarsmfst be split, in some
way, amongx — y andx + y. This gives us a way to find factors ntbecause we have an
efficient method to find out which factonsandx — y have in common, and which factars
andx + y have in common: as we have seen in Section 2 we simply compute,gedt v),
the greatest common divisor nfandx &+ y. If nis composite, not a prime power, ard
andy are random integers satisfying = y?>modn, then there is at least a 50% chance
that gcdx — vy, n) and gcdx + y, n) are non-trivial factors of.

Fermat’'s method is surprisingly efficient in the application mentioned above, and often
more efficient than Pollard’s rho method. The reason is that Pollard’s rho method requires

40

INTEGER FACTORING 111

rather intensive arithmetic on numbers moduo|ovhich is relatively inefficient for such
smalln that are nevertheless too large to be conveniently handled on most 32-bit processors.
Another method that is particularly efficient in this case is the following.

Squfof. Squfof stands for ‘square form factorization’. It makes use of binary quadratic
forms, a subject that is beyond the scope of this survey. The expected time needed by
squfof to factom is proportional ton'/®, on assumption of certain generalized Riemann
hypotheses. After a short initialization it only requires arithmetic on numbers that are at
most,/n. This makes the method remarkably efficient for the application mentioned above,
when run on 32-bit processors. For a description of squfof refer to [11,52,53].

4. The Morrison—Brillhart Approach

Most factorizations mentioned in the introduction were obtained usingubdratic sieve
factoring algorithm, Carl Pomerance’s variation (1981, cf. {46f Richard Schroeppel’s

linear sieve algorithm (1977). These are both general-purpose factoring algorithms, and
both are based on the classical congruence of squares method, on which also Fermat’s
method is based. There we have seen that to faciors useful to find integers and

y such thatx?> — y? is a multiple ofn. Summarizing the argument presented above, if

x? = y?>modn, thenn divides(x — y)(x + y), and therefore

n divides gcdx — vy, n) - gcdX + vy, n).

Since gcd’s can be computed rapidly, one can quickly check whether the latter identity
leads to a factorization of, and if n is composite there is at least a 50% chance that the
factorization is non-trivial.

Finding congruences of squaresFor practical purposes in order to factgrone need
only generate a few random looking paxksy such that?> = y?> modn. Note that simply
picking some random positiue computings, as the least non-negative remainder modulo
n of v2, and hoping thas, is the square of some integg(in which casex is set equal te),
is unlikely to work (unles® < ./n, but in that caset = y and gcdx — y, n) = n): there
are only./n squares less tham so the chance of hitting one of them is onlAn, which
implies that this ‘factoring algorithm’ cannot be expected to be faster than trial division.

The Morrison-Brillhart approach does something that is similar, but instead of waiting for
a single very lucky and unlikely ‘big hit’, it combines the results of several much more likely
‘small hits”: instead of randomly picking's until one is found for which the corresponding
s, = v’modn is a perfect square, we collees for which s, satisfies a certain much
weaker condition. Once we have a sufficient number of pgisg, we combine them to
solvex? = y?modn. Thus, the factoring process (i.e., the method to obtain solutions to the
congruence? = y?2 modn) is splitinto two main steps: th#ata collection stepvherev, s,
pairs satisfying some particular condition are collected, andale processing stephere
the pairs are combined to find solutions to the congruence. The ‘much weaker condition
ons, can informally be described as ‘it should be easy to fully fastbii.e., s, should be
B-smooth for some reasonably smRl{cf. Section 2). How the pairs s, can be combined
can be seen in the example below.

41

112 LENSTRA

To find pairsv, s, such thas, is smooth Morrison and Brillhart, in their original paper that
introduced the Morrison-Brillhart approach, used a technique based on continued fractions.
For a description of their method, ‘CFRAC’, see [42]. It was used, in 1970, to factor the
seventh Fermat number:

2% 4+ 1=596495891274 972157 04689 20068 51290 54721

A less efficient but conceptually much easier method to find pag;ssuch thas, is smooth
is Dixon’s algorithm simply randomly pick’s and keep those for which is smooth until
we have sufficiently many different pairss, for which's, is smooth.

An example using random squares.Even though we already know that= 143 =
11.13, here is how Dixon’s version of the Morrison—Brillhart approach workafer 143.
Since factors 2, 3, and 5 can easily be recognized, weBuse5, i.e., ‘s, should be 5-
smooth’, or ‘it should be possible to factgrcompletely using only 2, 3, and 5'. In general,
for larger numbers than 143, a larg@mwill be used, so that more primes will be allowed
in the factorization o6,. This set of primes is usually referred to as fhetor base we
will be interested irs,’s that are smooth with respect to the factor base. In the example, the
factor base is the s€2, 3, 5}.

Since we use Dixon’s algorithm we begin by randomly selecting some integlet
v = 17 be the first random choice. We find thdt= 289 = 3 + 2. 143= 3mod 143, so
thats;7 = 3. Obviously,s;7 = 3 is smooth, so that we find the identity

177 =2°.3'.5mod 143

thus, we keep the pair, s, for v = 17. Such identities are often referred tarelations—
relations are the data collected during the data collection step. GiRecB? = v2+2v+1,

a convenient next choiceis= 18: 1& = 1724+2.17+1 = 3+35= 38= 2-19mod 143,
ands;g = 2 - 19 is not smooth, so that = 18 can be thrown away. Proceeding to 19 we
findthat 1§ = 182+ 2- 18+ 1 = 38+ 37 = 75mod 143, and;s = 75 is smooth, so that
we keepv = 19 and have found our second relation:

19 =2°.3'.52mod 143

The next attempt 20= 19 + 219+ 1 = 75+ 39= 114 = 2. 3. 19 mod 143 fails again,
after which we find the relation

212 =20P+2 % 20+1=114+41=155=12+143=12=2% . 3' . 52 mod 143

Looking at the three relations obtained so far, we observe that the product of the first two,
the product of the last two, and the product of the first and the last all lead to a congruence
of squares:

(17-192 = 2°.3%.5°mod 143
(19-21)% = 2°2.3%.5°mod 143 and
(17-21)% = 22.3?.5°mod 143

42

INTEGER FACTORING 113

The first of these leads to= 17- 19,y = 3. 5 and the factors g¢@823 — 15, 143) = 11
and gcd323+ 15, 143) = 13. The second leads o= 19-21,y = 2- 3.5 and the trivial
factors gcd399— 30, 143) = 1, gcd 399+ 30, 143) = 143. The last one gives= 17-21,
y = 2- 3 and the factors gg857 — 6, 143 = 13 and gc@357+ 6, 143 = 11.

The first relation after the one far = 21 would be 23 = 22 . 3° . 52 mod 143 which
is already of the fornx?> = y?>modn. This congruence leads to = 23,y = 10 and
the non-trivial factors go@3 — 10, 143) = 13 and gc3 + 10, 143) = 11. For more
challenging numbers than 143 we cannot expect to be so lucky—indeed, after factoring
hundreds of numbers in the 70 to 130 digit range, tl@gerhappened.

Finding the right combinations of relations. Suppose we have a sétof relations as a
result of the data collection step. In the data processing step we have to pick aWulifset
V so that the relations frow when multiplied together yield a solution to the congruence
x? = y?modn. This can be achieved as follows. First observe that for\ahy V the
product of the ‘left hand sideqT, ., v? is a square, since it is a product of squares. The
product of the corresponding ‘right hand sides’, however, is not always a square: for each
prime p in the factor base the exponent in the product &eis the sum of the exponents
of pin the relations iV, and this sum is not necessarily even. If we identify each relation
with the vector of its exponents with respect to all elements of the factor base, the exponents
of the factor base elements in the product dkeare given by the vector that is the sum of
the vectors for the relations W. Thus, aw for which the product of the right hand sides
is also a square can be found by looking for a subset of vectors whose sum is a vector with
all even entries.

Finding all even combinations of vectors is a common problem in linear algebra, for which
several good algorithms exist: (structured) Gaussian elimination, (blocked) Lanczos, and
(blocked) Wiedemann are currently the most popular choices for our applications (see
[12,28,41,48] and the references therein). In general, if thermaedations ank primes
in the factor base, we have am x k-matrix (i.e., a matrix consisting ah rows andk
columns, where the rows correspond to tha differentk-dimensional vectors consisting
of thek-tuples of exponents in tha relations). For the example given above, we get the
matrix

010
012
210

If the matrix isover-squarei.e., if m > k, there are at leash — k all even combinations of
the rows (i.e., of th&-dimensional vectors) each of which leads to an independent chance
to factorn. It follows that sufficiently many relations will in practice always lead to a
factorization; it also shows that we have been rather lucky in our example by finding so
many all even combinations in ax33-matrix.

The data processing step, i.e., finding the right combinations of relations, is often referred
to as thematrix step

The run time of Dixon’s algorithm. As an example we show part of the run time
analysis of Dixon’s algorithm. LeB > 0. Assuming that thes, behave as random
numbers< n, itfollows from the smoothness probabilities in Section 2 ha& L,[1/2, 8]-
smooth with probabilityL[1/2, —1/(28) + 0o(1)]. A single smooths, can therefore be

43

114 LENSTRA

expected to be found after consideribg[1/2, 1/(28) + o(1)] differentv’'s. The number

of smooths,’s that are needed to make the matrix of exponents over-square is, roughly,
w(Ln[1/2, B]) =~ Lnll/2, B]/In(Ln[1/2, B]) (cf. Section 2), which can conveniently be
writtenasL,[1/2, 8 +0(1)]. Itfollows that atotal ofL,[1/2, 8+ 1/(28) + o(1)] different

v’s have to be considered.

If we use trial division to check the smoothness of eg¢hta costof_,[1/2, 8+0(1)] per
s,), the data collection step for Dixon’s algorithm requiteg1/2, 28 + 1/(28) + o(1)]
elementary operations. Using traditional matrix techniques, the right combinations of
vectors can be found ib,[1/2, 8 + o(1)]° = Ln[1/2, 38 + 0o(1)] operations. Combining
these run times, we find that Dixon’s algorithm requikg$l /2, max(28 + 1/(28), 38) +
0(1)] operations, which becomés,[1/2, 2 + o(1)] for the optimal choices = 1/2. With
this approach the data collection takes more time than the matrix step.

If we use the elliptic curve method to check thés for smoothness, ead) costs only
time Ln[1/2, 0(1)], so that the data collection step requiteg1/2, 8 + 1/(28) + o(1)]
steps. Combined with the matrix step this yieldgl/2, max(8 + 1/(28), 38) + o(1)] =
Ln[1/2, 3/2 4+ 0(1)] steps for the optimal choicg = 1/2. In this case the data collection
and matrix steps take the same amount of time, asymptotically. But note that the data
collection could have been done faster foe= /1/2, and that the matrix step forces us
to use aB that is suboptimal for the data collection step. If we use the fact, however,
that at most log(n) of the L,[1/2, 8 + 0(1)] entries per exponent-vector can be non-
zero and the fact that the Lanczos and Wiedemann methods referred to above process an
m x m matrix with w non-zero entries in time proportionaltow, we get a combined time
Ln[1/2, max(8 + 1/(28), 28) + o(1)]. This becomes ,[1/2, /2 + o(1)] for the optimal
choicep = 4/1/2; data collection and data processing again take the same amount of time,
asymptotically.

Thus, with the elliptic curve method for trial division and a matrix step that takes advantage
of the sparsity of the matrix, the asymptotic expected run time of Dixon’s algorithm is
Ln[1/2, v/2 + 0(1)], for n — oco. This expected run time can rigorously be proved and is
not based on any unproved heuristics.

5. Quadratic Sieve

Finding relations faster, sieving. The smaller|s,| can be made, the higher probability
we should get that it is smooth. Therefore, it would be to our advantage to find ways of
selectingv such thats,| can be guaranteed to be substantially smaller than

For randomly selected, the numbes, (the least non-negative remaindendfmodulo
n) can be expected to have roughly the same size as best we can guarantee thaf|
is one hit smaller than if we redefines, as the least absolute remaindewdfmodulon,
and we include-1 in the factor base.

A better way to find smak,’s is by takingv close to/n. Letv(i) =i + [/n] for some
small integei . It follows thats,, = (i +[+/n])?> — n and thats,, | is of the same order of
magnitude asi2/n, becausé{,/n]? — n| is at most 2/n. This implies thats,, | for small
i has a much higher chance to be smooth tdor a randomly selected Note, however,
that the smoothness probability decreasegits larger.

44

INTEGER FACTORING 115

Quadratic sieve (QS) combines this better way of choosingefu (i) with the following
important observation: if somgdividess,, thenp dividess,tp for any integet. This
makes it possible to usesieveto quickly identify many possibly smootk,;, with i in
some predetermined interval. The sieve is used to record ‘hits’ by the primes in the factor
base in an efficient manner: if a pringedivides a certairs,,, then this is recorded at the
(i 4+ tp)th location of the sieve, for all integetssuch thai + tp is in the interval. Thus,
for eachp, we can quickly step through the sieve, with step-gizence we know where
we have to make the first step. To make the process of ‘recogliefficient, we simply
add log, p to the relevant locations, for some appropriately chosenthase

Assuming that all sieve locations are initially zero, fhie location contains (after the
sieving) the sum of the logarithms of those primes that diggdg. Therefore, if thath
location is close to logp,)|, we check whethels,| is indeed smooth, simply by trial
dividing |s,,| with all primes in the factor base. This entire process is calleding—it
is much faster than checking the smoothness of each indivislugl by trial dividing with
all primes in the factor base

In the multiple polynomial variationof QS the single polynomialX + [/n])?2 — n
is replaced by a sequence of polynomials that have more or less the same properties as
(X + [/N])? — n, all for the same number to be factored. The advantage of multiple
polynomials is that for each polynomial the same snialtan be used, thereby avoiding
the less profitable largeis. A second important advantage is that different processors can
work independently of each other on different polynomials. This variation is due to P. L.
Montgomery (extending an idea of Davis and Holdridge (cf. [14])) and described in [29,54].

Another way of increasing the smoothness probability is by extending the factor base
(thus relaxing the definition of smoothness). However, this also implies that more relations
have to be found to make the matrix over-square, and that the linear algebra becomes more
involved. The optimal factor base size follows from an analysis of all these issues, as shown
below and in the run time analysis of Dixon’s algorithm. Refer to [37] for another informal
description of QS.

The run time of Quadratic Sieve. Assuming thas, behaves as arandom integer close to
/N, itis Ly[1/2, B]-smooth with probability.[1/2, —1/(4B8) + 0(1)], which implies that
Ln[1/2, B + 1/(48) + o(1)] differents,’s have to be considered. Using the elliptic curve
method as smoothness test and taking advantage of the sparsity of the matrix (both as in the
analysis of Dixon’s algorithm), we find that QS has heuristic asymptotic expected run time
Ln[1/2, max(B+1/(48),28)+0(1)] = Ln[1/2, 14+ 0(1)] for the optimal choicgd = 1/2.

If we use sieving to check,[1/2, 8 + 1/(48) + 0(1)] consecutives,’s for L,[1/2, B]-
smoothness we get the following. Sieving for one priotakes timel,[1/2, 8+ 1/(48) +
o(1)]/p. Sieving over ‘all’ primes therefore takes tihg[1/2, 8+1/(48)+0o(1D)]-> " 1/p,
where the sum ranges over the fitstL,[1/2, 8]) = Ln[1/2, 8 + 0(1)] primes. The sum
> 1/p disappears in the(1), so that the complete sieving step takes tim§l/2, 8 +
1/(48) + o(1)]. The remainder of the analysis remains the same, and we conclude that QS
with sieving has the same heuristic asymptotic expected run ltigii/2, 1 + o(1)] that
we got for QS with elliptic curve smoothness testing. Note that both the sieving and the
elliptic curve overhead disappear in tb€l). In practice, however, sieving is much faster
than elliptic curve smoothness testing.

45

116 LENSTRA

Surprisingly, QS is not the only factoring algorithm with this subexponential expected
run time: several other methods were proposed, some radically different from QS, that all
have the same heuristic asymptotic expected run time as QS. Even the elliptic curve method
has the same worst-case heuristic expected run time (where the worst case for the elliptic
curve method is the case where the smallest factarisfof order,/n). An algorithm for
which theLy[1/2, 1 4+ 0o(1)] expected run time can be proved rigorously was published
in [35]. As a consequence of this remarkable coincidence there was a growing suspicion
thatL,[1/2, 1 4+ o(1)] would be the best we would ever be able to do for factoring. The
Ln[1/2, 1 4+ o(1)]-spell was eventually broken by the number field sieve (cf. Section 6).

Large primes, partial relations, and cycles. In practice, sieving is not a precise process:
one often does not sieve with the small primes in the factor base, or with powers of elements
of the factor base; Iggp is rounded to the nearest integer value; and the baskthe
logarithm is chosen so that the values that are accumulated gtiffgecan be represented
by single bytes. The process can tolerate these imperfections because there are plenty of
good polynomials that can be used for sieving. Itis not a problem, therefore, if occasionally
a good location is overlooked as long as the sieve identifies a sufficient number of possibly
smooth numbers as quickly as possible. How many relations we find per unit of time is
more important than how many we might have missed.

As a consequence of the approximations that are made during the sieving, the condition
thats(i) should be close to Igds,)| should be interpreted quite liberally. This, in turn,
leads to many(i)’s for which s, is ‘almost’ smooth (i.e., smooth with the exception of
one reasonably small factor that is not in the factor base). Such ‘almost smooth’ relations
are often referred to gmartial relationsif the non-smooth factor is prime, adduble partial
relationsif the non-smooth factor is the product of two primes. The non-smooth primes
are referred to as tHarge primes The relations for whicls,, can be factored completely
over the factor base may be distinguished by calling thdhrelations

Partial relations will be found at no extra cost during the sieving step, and double partial
relations at little extra cost. But keeping them, and investing that little extra effort to find
the double partials, only makes sense if they can be used in the factoring process. As an
example why partial relations can be useful, consider the exampiel43 again. The
choicev = 18 was rejected becausg = 2 - 19 is not smooth (with respect to the factor
base{2, 3, 5}). After trial dividing s;g with 2, 3, and 5, it follows immediately that 19 is
prime (from the fact that 1 57), so thatv = 18 leads to a partial relation with large
prime 19:

18 =2'.3°.5°.19mod 143

Another choice that was rejected was= 20, because,p = 2- 3- 19, which leads, for the
same reason as above, to a partial relation—again with large prime 19:

20 =2'.3'.5°.19mod 143

These two patrtial relations have the same large prime, so we can combine them by multi-
plying them together, and get the following:

(18-20)% = 22.3'.5°. 1% mod 143

46

INTEGER FACTORING 117

Except for the ‘19" on the right hand side, this looks like a full relation. In Section 2 we
have seen that 128 (1/19) mod 143. Therefore, if we multiply both sides of the above
‘almost smooth’ relation by 1Z8we get

(128-18-20)2 = 22 .3'.5°. (128- 19> = 22 . 3' . 5 mod 143
which is, for factoring purposes, equivalent to the full relation
342 =2%.3'.5°mod 143

because 12818 20 = 34 mod 143. Note thgtl/19) mod 143 exists because 19 and 143
are coprime (cf. Section 2). ifand some large prime are not coprime, then that large prime
must be a factor of.

Double partials can be used in a slightly more complicated but similar way; it requires the
factorization of the composite non-smooth factors ofghg’s, which can be done using
the methods that were mentioned at the end of Section 3. Combinations of partial and/or
double partial relations in which the large primes disappear (and that are therefore as useful
as full relations) are often referred to egcles Note that the cycle that we have found
in the example does not provide any useful new information, because it happens to be the
relation forv = 17 multiplied by 2.

How much luck is needed to find two partials with the same large primes, or to find a
double partial for which both large primes can be combined with large primes found in other
partials or double partials? The answer to this question is related to the birthday paradox
(cf. Section 3): if numbers are picked at random from a set containingmbers, the
probability of picking the same number twice exceeds 50% aftef71/r numbers have
been picked. In QS, the set consists of prime numbers larger than any in the factor base,
but smaller than a limit which is typically* or so. There are only a few tens of millions
of primes in this range, so we expect to be able to find matches between the large primes
once we have more than a few thousand partial and double partial relations. As shown in
[33] the distribution of the large primes that we find in QS is not homogeneous, but strongly
favors the relatively small large primes. This further increases the number of matches.

As illustrated in [32] and [33], cycles are indeed found in practice, and they speed up the
factoring process considerably. Using partial relations makes the sieving step approximately
2.5times faster, and using double partial relations as well saves another factor 2to 2.5. There
is a price to be paid for this acceleration: more data have to be collected; more disk space
is needed to store the data; and the matrix problem gets a bit harder (either due to higher
density of the rows of the matrix, or to larger matrices). The time saved in the sieving step,
however, certainly justifies incurring these inconveniences. For a discussion of these issues
see [4] and [17].

QS with large primes still runs in asymptotic expected timé§l/2, 1 + o(1)]; i.e., all
savings disappear in thegl).

Distributed factoring using QS. We have seen that QS consists of two major steps: the
sieving stepto collect the relations, and tmeatrix step where the relations are combined
and the factorization is derived. For numbers in our current range of interest, the sieving
step is by far the most time consuming. It is also the step that allows easy parallelization,
with hardly any need for the processors to communicate. All a processor needs to stay

47

118 LENSTRA

busy for at least a few weeks is the number to be factored, the size of the factor base, and a
unique collection of polynomials to sieve with in order to find relations—the latter can be
achieved quite easily by assigning a unique integer to a processor. Given those data, any
number of processors can work independently and simultaneously on the sieving step for
the factorization of the same number. The resulting relations can be communicated to a
central location using electronic mail, say once per day, or each time some pre-set number
of relations has been found.

This parallelization approach is completely fault-tolerant. In the first place, the correct-
ness of all relations received at the central location can easily be verified by checking the
congruence. Furthermore, no particular relation is important, only the total number of
distinct relations received counts. Finally, there is a virtually infinite pool of ‘good’ almost
limitless intervals in which to look for polynomials. Thus, no matter how many processors
crash or do not use the interval assigned to them for other reasons, and no matter how mail-
ers or malicious contributors mangle the relations, as long as some processors contribute
some relations that check out, progress will be made in the sieving step. Since there is no
way to guarantee that relations are sent only once, all data have to be kept sorted at the
receiving site to be able to remove the duplicates. Currently there is also no way to prevent
contributors from flooding the mailbox at the central collecting site, but so far this has not
been a problem in distributed factoring.

All these properties make the sieving step for QS ideal for distribution over a loosely
coupled and rather informal network, such as the Internet, without any need to trust anyone
involved in the computation. Refer to [32] and [4] for information on how such factoring
efforts have been organized in the past.

The matrix step is done at a central location, as soon as the sieving step is complete (i.e., as
soon as a sufficient number of relations have been received to make the matrix over-square).
For detalils, refer to [32].

Some illustrative QS data. To give an impression of factor base sizes, the amount of
data collected, the influence of large primes, and practical run times of the sieving and
matrix steps, some data for the QS-factorization of a 116-digit, a 120-digit, and a 129-digit
number (from [33], [17], and [4], respectively) are presented in Table 1. The sieving step for
the 116-digit factorization was done entirely on the Internet using the software from [32].
For the 120-digit number it was carried out on 5 different Local Area Networks and on the
16384 processor MasPar MP-1 massively parallel computer at Bellcore, using in total four
differentimplementations of the sieving step. Sieving for the 129-digit number was mostly
done on the Internet using an updated version of the software from [32], with several sites
using their own independently written sieving software; about 14% of the sieving was done
on several MasPars. The matrix step for all numbers was done on Bellcore’'s MasPar.

The amount of data is shown in gigabytes of disk space needed to store the data in un-
compressed format. The timing for the sieving step is given in units of MY, or ‘mips-years.’
By definition 1 MY is one year on a VAX 11/780, a relatively ancient machine that can
hardly be compared to current workstations. The timings were derived by assigning a rea-
sonable ‘mips-rating’ to the average workstation that was used; see [17] and [4] for detalils.
Although this measure is not very accurate, it gives a reasonable indication of the growth
rate of the sieving time for QS, as long as workstations are rated in a consistent manner.

48

INTEGER FACTORING 119

Table 1.

116-digit 120-digit ~ 129-digit
size factor base 120000 245810 524339
large prime bound 10 230 230
fulls 25361 48665 112011
partials 284750 884323 1431337
double partials 953242 4172512 6881138
cycles 117420 203557 457455
amount of data 0.25 GB 1.1GB 2GB
timing sieving step 400 MY 825MY 5000 MY
timing matrix step 0.5 hrs 4 hrs 45 hrs

The numbers of fulls, partials, double partials, and cycles are given in the table as they
were at the end of the sieving step. Note that in all cases the number of fulls plus the number
of cycles is larger than the size of the factor base, with a considerable difference for the two
Internet factorizations. Thigvershoots often large because the number of cycles grows
rapidly toward the end of the sieving step; since the ‘cease and desist’ message is only sent
out to the Internet-workers when the sum is large enough, and since it takes a while before
all client-processes are terminated, the final relations received at the central site cause a
large overshoot.

The timing for the matrix step is given in hours on the MasPar. By using a better algorithm,
the matrix timings can now be improved considerably: the matrix for the 129-digit number
can be processed in less than 10 hours on the MasPar, or in about 9 days on a Sparc 10
workstation (see [12,41], and Table 2 below).

From April 2, 1994, until April 10, 1996, the QS-factorization of the 129-digit number,
the ‘RSA-challenge number’ (cf. [21]), was the largest factorization published that was
found using a general purpose factoring method:

RSA—- 129 = 114381625 7578888676 6923577997 61466 12010 21829 67212
42362 56256 18429 35706 93524 57338 9783059712 35639 58705
0589890751 47599 29002 68795 43541
= 349052951 0847650949 1478496199 03898 13341 77646 38493
3878439908 20577
3276913299 32667 09549 96198 81908 34461 41317 76429 67992
9425397982 88533

6. Number Field Sieve
The number field sieve. The number field sieve is based on an idea of John Pollard to
rapidly factor numbers of the special ford + k, for smallk. This idea first evolved in

the special number field sie&NFS) which can only be applied to numbers of a special

49

120 LENSTRA

form (similar to the form required by Pollard’s original method). In 1990 SNFS was used
to factor the ninth Fermat numbe? 2+ 1 (cf. [31]):

22 1 1 — 2424833
7455 60282 56478 84208 33739 57362 00454 91878 33663 4265

where p99 denotes a 99-digit prime. The ‘special form’ restrictions were later removed,
which resulted in thgeneral number field sieveCurrently one often simply uses NFS to
refer to the general algorithm. On April 10, 1996, NFS was used to factor the following
130-digit number, thereby breaking the 129-digit record set by QS of the largest published
factorization found using a general purpose factoring method.

RSA— 130 = 1807082088 68740 4805951656 1644059055 66278 10251 67694
0134917012 7021450056 66254 0244048387 34112 75908 12303
3717818879 66563 18201 32148 80557
= 3968599945 95974 54290 1611261628 83786 06757 64491 12810
06483 2555157243
4553449864 67359 72188 40368 68972 74408 86435 63012 63205
06960 09990 44599

More importantly, the NFS-factorization of RSA-130 required much less time than the
QS-factorization of RSA-129. Details can be found below.

NFS is considerably more complicated than the methods sketched so far. In this section
we explain what relations in NFS look like, why they can be found much faster than QS-
relations, and how we distributed the relation collection over the World-Wide-Web. How
the relations are combined to derive the factorization is beyond the scope of this survey; it
can be found in [30], along with further background on NFS. For additional information,
NFS implementations and factorizations, see [9, 13, 18, 19, 23].

SNFS has heuristic asymptotic expected run tlmfL/3, (32/9)%2 + o(1)] ~ La[1/3,
1.526+0(1)], forn — oco. The general method, NFS, runs in heuristic asymptotic expected
time Ln[1/3, (64/9)Y/3 + 0(1)] & L,[1/3, 1.923+ 0(1)], for n — oo.

To put the progress from QS to NFS in perspective, note that trial division runs in exponen-
tial time n¥? = L,[1, 1/2] in the worst case, and that an (as yet unpublished) polynomial
time factoring algorithm would run in timé@n n)¢ = L [0, c], for some constant. Thus,

QS and the other algorithms with expected run tim§l /2, v] (with v constant) are, if we

only consider the first argumenbdf L ,[u, v], halfway between exponential and polynomial
time. In this metric, NFS represents a substantial step in the direction of polynomial time
algorithms.

Relations in the number field sieve.Let f; and f, be two distinct polynomials with
integer coefficients. There is no need to restrict ourselves to only two polynomials (cf.
[20]), but that is the most straightforward case. The polynomfaland f, must both
be irreducible, and they must have a common root moduice., an integem such that
both f1(m) and f,(m) are divisible byn). How such polynomials are found in general is

50

INTEGER FACTORING 121

not relevant here. The presentation in [30] is mostly restricted to the case mhsran
integer close taY/@*+D for some small integed (such as 4 or 5); the polynomials can
then be chosen ak (X) = X — mand fo(X) = Zid:O ¢ X', wheren = Zid:O ¢gm' with
—m/2 < ¢ < m/2is a basen representation afi.

For the factorization of 22+ 1 for instance, we chose= 8- (25124 1) = 25154 8, and
tookd = 5, m = 2103 f;(X) = X — 2198 and f,(X) = X5+ 8. Inthis casef;(21%%) =0
and f,(210%) = 25151 8 = n, so that bothf;(m) and f,(m) are divisible byn. Note that
the coefficients off, are quite small.

Forthe factorizationafi = RSA-130we used = 5,m = 12574411 16841 80059 80468,
f1(X) = X —m, and

f2(X) = 574830224 8738405200 + 988226191 74822 8610
— 1339249938 91281 76685 + 16875 25245 88776 84989
+ 375990017 48552 08738— 46769 93055 39319 05995

We have thatf;(m) = 0 and f,(m) = n, so thatf; and f, have the rootm in common
modulon. Note thatthe coefficients df and f, are of roughly the same order of magnitude.
These polynomials for RSA-130 were found by Scott Huddleston.

Forj = 1, 2 and integers, b, let

Nj(a, b) = fj(a/b)beoreeh).

Note thatN; (a, b) is an integer too. Furthermore, fpr= 1, 2, let there be some factor base
consisting of primes (up to a bound dependingfprthat may occur in the factorization of
N;j (a, b) for coprimea andb. Smoothness d¥|; (a, b) will always refer to smoothness with
respect to thg th factor base, and andb will always be assumed to be coprime integers
with b > 0. A relation is given by a paia, b for which bothN;(a, b) and N»(a, b) are
smooth.

The following is an indication why this is considered to be a relation (i.e., something
that can be combined with other relations to solve the congrueheey? modn). Letq;
denote a root off;. The prime factorization oN; (a, b) corresponds, roughly speaking, to
the ‘prime ideal factorization’ of — o b in the algebraic number field(«;). Sincef; and
f> have a common rooh modulon, the algebraic numbees— «;b anda — ayb are ‘the
same’ when taken mad let ¢; denote the homomorphism frofj«;] to Z/nZ that maps
«j to m modulon, theng:(a — a1b) = go(a — a2b) modn.

Assume that the number of relations we have is more than the sum of the sizes of the
two factor bases. This implies that we can determine, by means of the usual matrix step,
independent subse®of the set of relations such thpf, , .s Nj (a, b) is a square (irZ),
both forj = 1 and forj = 2. For thej with degre€f;) > 1 this does not imply that the
corresponding (S) = [[, pes(@—a;jb) isasquareiZ[o;] (for the j with degre€ fj) = 1
it does). But if we include in the matrix some additional information (so-cajleadratic
signature$ for eachN;(a, b) with degre¢f;) > 1, then we may safely assume that all
7 (S) are squares id[;] (cf. [1]). Note thatp:(y1(S)) = ¢2(y2(S)) modn.

Because the factorization of the norms of {h€S)’s is known (from the factorizations
of the N; (a, b) with (a, b) € S), the squarerogs; (S) of y;(S) in Z[«;] can be computed:

51

122 LENSTRA

trivially if degreg(f;) = 1, using the method described in [40] otherwise. The resulting
squareroots satisfgp:(81(S))? = (¢2(B1(S))? modn, which is the desired congruence of
the formx? = y? modn. Note that eacl$ leads to an independent chance to factor

If, for the j with degre€f;) > 1, generators for the prime ideals (and units¥[p;] can
be found, the squareroot can be computed faster by applyitmeach of those generators
(if degred f;) = 1 the squareroot computation is trivial, as mentioned above). In general
(in the general NFS) such generators cannot be found if defjpee 1, but in SNFS it
might be possible because tfigs of degree > 1 havemall coefficients (it was used, for
instance, for the ninth Fermat number).

Thus, after the sieving step, NFS requires a matrix step to determine several §jbsets
followed by a squareroot step for eaShintil a lucky one that factonsis encountered. The
picture of how many relations are needed is thoroughly confused by the use of large primes,
which can occur both ifN;(a, b) and inNy(a, b). The experiments with large primes in
NFS described in [18] suggest that, unlike QS, the number of cycles that can be built from
the partial relations suddenly grows extremely rapidly. If such a cycle explosion occurs,
the sieving step is most likely complete, but when this will happen is hard to predict.

Why NFS is faster than QS. A heuristic analysis of the asymptotic expected run time
of NFS goes along the same lines as the analyses of the run times of Dixon’s algorithm
and QS. Instead of giving this analysis, we give the following informal explanation why
we expect the run time of NFS to grow much more slowly than the run time of QS as the
numbers to be factored get larger.

Consider the choicd;(X) = X —mand f(X) = Y% ;6 X', with m close ton/@+D,

The probability that bottNy(a, b) = a — bmandNx(a, b) = Y% cia'bd~ are smooth
depends on the sizes afb, m, and thec;’s. By their choice m and thec;’s are all of the
ordern @D The sizes of andb depend on how mani; (a, b) andN,(a, b) have to be
considered so that we can expect enough of them to be smooth. But ‘enough’ and ‘smooth’
depend on the sizes of the factor bases: asin QS, a larger factor base requires more relations,
but at the same time relaxes the definition of smoothness. From an analysis of all relevant
smoothness probabilities it follows thatfis of the orderlogn/ loglogn)*/3, then it may

be expected that the largess andb’s needed will be such thaf' andb® are of the same

order of magnitude as and theg;’s, i.e.,nY @+ This implies thaiN;(a, b) andNy(a, b)

are at worst of orden9. Now note that 2d — 0 forn — oo due to the choice o, so

that asymptotically the numbers that have to be smooth in NF&aohsmaller than the
numbers of order roughly/n that have to be smooth in QS.

Ifthe c;’s are small, asin SNF®,(a, b) is even more likely to be smooth, which explains
why SNFS is so much faster than the general NFS.

Finding relations in NFS. Since the smooth values that we are looking for are, asin QS,
values of polynomials evaluated at certain points, they can again be found using a geve: if
dividesN; (a, b) thenp also dividesN; (a+tp, b+wp) for any integers andw. The earliest
NFS implementations used the following simple sieving strategyb;fuse a sieve to find
a’s for which bothN; (a, b) andN,(a, b) might be smooth; and inspect thasg(a, b) and
N2(a, b) more closely (using trial division). Repeat this for differé until a sufficient
number of relations have been collected. This approach can be distributed over many
processors by assigning different range$'sfto different processors; it was used in [31]

52

INTEGER FACTORING 123

and is callectlassicalor line-by-line sieving Since smalleb’s are better than larger ones
the pool of ‘good’ inputs (th&’s) eventually dries out, a problem that does not exist in QS.

As shown in [45] the following is more efficient. Fix some reasonable Igrat can in

principle occur in the factorization of, salMp(a, b). Again use a sieve to locate paash
for which Ny (a, b) is smooth andN,(a, b) factors using only primes: g from the second
factor base, but restrict the search to pairb for which N, (a, b) is divisible byq. Repeat
this for differentg’s until a sufficient number of relations have been collected—actually this
step should be carried out for all paisrq whererq ranges over all roots of, moduloq,
a detail that we will not elaborate upon. Because of the restriction on thegyirsewer
pairs have to be considered ggmamely only those pairs that belong to a sublattigef
determinanty of the (a, b)-plane. For this reason Pollard called this way of sieVattice
sieving

For general, lattice sieving makes it possible and necessary tosieséng by vectors
another term introduced by Pollard. This is a way of quickly identifying, for epch
the proper sieve locations in a plane instead of on a line. Just as the 1-dimensional line-
by-line sieve makes use, for eaph of the shortest 1-dimensional vectqr), sieving by
vectors makes use, for eagh of two 2-dimensional vectors that form a reduced basis
for the appropriate sublattice of determingnof L. Again, the phrase ‘for eacf’ is
oversimplified and should read ‘for eaphr, pair’, wherer, is a root of f; modulop (with
p<qif j=2).

Sieving by vectors is possible because a substantial pdrt, afan be made to fit in
memory. It is necessary because this entire process has to be repeated foysndme
latter implies that we cannot afford the time to look atlalines for all relevantp for all
theseq’s, i.e., that line-by-line sieving in eadhy is too slow? The details of sieving by
vectors are rather messy (though not as bad as some of the rest of NFS) and can be found
in [23]; see also [5].

Differentg’s may lead to duplicata, b pairs, in particular when large primes are used.
This implies that duplicates have to be removed from the resulting relations, even in an
implementation where it can be guaranteed that each relguarmrocessed only once.

Distributed factoring using NFS. Although the sieving step of NFS is entirely different
from that of QS, it can be distributed over a network in almost the same way—except for
the way the inputs are handled. In the sieving step of QS it takes the average workstation
a considerable amount of time, say a few weeks, to exhaust a single input. Furthermore,
for each number to be factored, there are millions of good inputs that are all more or less
equally productive, and that lead to distinct relations.

The first distributed NFS implementation (cf. [31]) was based on the approach of [32] and
on classical sieving. It assigns disjoint rangeb’stto different processors. A singbecan
be processed in a matter of minutes on a workstation, so each processor needs a range of at
least a few thousartals to stay busy for a week. Largbis are less productive than smaller
ones, withb's on the order of a few million becoming almost worthless. This implies
that only a fairly limited number of ranges can be distributed, and that a range should be
redistributed when its results are not received within a reasonable amount of time. This
leads to even more duplicated results than we have to deal with in QS, but duplicates can
again easily be removed by keeping the relations sorted.

53

124 LENSTRA

A more recent distributed NFS implementation (cf. [13]) is based on use of the World
Wide Web and on lattice sieving. Because processing a girtgkes at most a few minutes,
disjoint ranges ofj's are assigned to different processors, just abthevere distributed
in classical sieving. The size of the range assigned to each contributor depends on the
resources available to that contributor: the types of processors and the amount of available
memory and computing time per processor. An advantage compared to classical sieving is
that the pool of ‘good(’s is relatively large (cf. [5, 13]), so that lattice sieving tasks can
be distributed quite liberally. Nevertheless, saygeare ‘better’ than others. It is therefore
still a good idea to keep track of the dates tf®have been distributed, and to redistribute
g’s whose results are not received within a reasonable amount of time. Note that there are
now three reasons why duplicates may be found: because they are intrinsic to lattice sieving
with large primes, because agynight be processed more than once, and because relations
from anyq may be received or submitted more than once.

In[13] we describe the convenient Web-interface that takes care of most of the interactions
with the contributors. Compared to the approach from [32] this interface makes it much
easier to contribute to future distributed factoring efforts: a few mouse clicks is all that is
needed. It should therefore not be difficult to perform the sieving step for numbers that
are considerable larger than the one reported in [13]. Once the sieving step is complete, a
non-trivial amount of computing has to be carried out at a location where enough computing
power is available. With the current state of technology, this may take considerably more
(real) time than the sieving step.

Some illustrative NFS data. In Table 2 we present some data for the general NFS-
factorizations of a 116-digit and a 119-digit number (both from [18]), and of a 130-digit
number (from [13]). For all three numbers we used two polynomials, with défiree 1
and degregef,) = 5. The 116-digit number was the first number sieved using the imple-
mentation described in [23], with very conservative (and suboptimal) choices for the factor
base sizes. The same implementation was later used for the sieving of the 119-digit number,
with a much better choice for the factor base sizes. For the 130-digit number, the imple-
mentation of [23] was extended to allow more liberal use of the large primes that define the
lattices (theq’s), as described in [13].

The ‘partials’ refer to the relations with one or more large primes: in the implementations
used relations can in principle have almost any number of large primes, though the majority
has at most 5.

For the matrix step a variety of different algorithms and implementations was used, as
shown in the table; ‘Gauss’ refers structured Gaussian eliminatiofef. [28, 48]), and
‘Lanczos’ refers to P. L. Montgomerylslocked Lanczos methddf. [12, 41]). Note that
for the two applications of ‘Lanczos’ the matrix is much larger than simply the sum of the
factor base sizes. This is due to the use of large primes and the fact that they are only
partially removed from the matrix during the cycle construction in an attempt to minimize
the run time for Lanczos; for details see [18, 13]. For the 116-digit number all large
primes were removed. All squareroot computations were carried out at the Centrum voor
Wiskunde en Informatica (CWI) in Amsterdam, using P. L. Montgomery’s implementa-
tion of his own method (cf. [40]). The squareroot timings in the table give the time per
dependency.

54

INTEGER FACTORING

125

Table 2.

116-digit 119-digit 130-digit
size first factor base 100001 100001 250001
size second factor base 400001 360001 750001
large prime bound 230 10°
fulls 61849 38741 48400
partials 45876382 35763524 56467272
cycles 2605463 472426 2844859
amount of data 3GB 2.2GB 3.5GB
timing sieving step 220 MY 250 MY 550 MY
matrix size ~ 500106 ~ 1475006 ~ 3505008
matrix algorithm Gauss Lanczos Lanczos
running on MasPar MP-1 MasPar MP-1 CRAY C-90
at Bellcore Bellcore Cwi
timing matrix step 114 hrs 60 hrs 67.5 hrs
timing squareroot step 60 hrs 20 hrs 49.5 hrs

Recentresults.In 1998-1999 P. L. Montgomery and B. Murphy developed a new method
to select the polynomial$; and f,. Using their method the 140-digit number RSA-140
was factored on February 2, 1999, and sieving for the 155-digit (and 512-bit) number RSA-
155 was completed on July 14, 1999. At the time of writing the matrix step was still in
progress. Also, on April 8, 1999, a new SNFS record was set with the factorization of the
211-digit number 107! — 1)/9. For details on these factorizations consult the web pages

at www.cwi.nl.

Acknowledgments

This paper was written while the author was employed by Bellcore. The Isaac Newton
Institute for Mathematical Sciences is gratefully acknowledged for its hospitality. Ac-
knowledgments are due to Bruce Dodson, Matt Fante, Stuart Haber, Paul Leyland, and Sue

Lowe for their help with this paper.

Appendix

Factoring and public-key cryptography. In public-key cryptography each party has two
keys: apublic keyand a correspondingecret key Anyone can encrypt a message using
the public key of the intended recipient, but only parties that know the secret key can
decrypt the encrypted message. One way to make such a seemingly impossible system
work is based on the supposed difficulty of factoring. R®@A-systertnamed after the
inventors Ron Rivest, Adi Shamir, and Len Adleman, cf. [51]) works as follows. Each
party generates two sufficiently large primpsaindq, selects integers andd such that

e-d = 1modp — 1)(g — 1), and computes the produnt = p - q; the public key
consists of the paifn, e), the secret key consists of the integefThis computation can be
carried out efficiently: randomly picked numbers can easily be checked for primality using

55

126 LENSTRA

probabilistic primality tests (as shown in Section 2); the density of primes is sufficiently
high (m (x) &~ x/In x, cf. Section 2)d can be derived from, p, andg, using the extended
Euclidean algorithm (it and(p — 1)(q — 1) are coprime); and multiplication is easy.

Let the messagem be a bit string shorter tham To encryptm using the public keyn, e)
one compute&€ (m) = m®modn, which is equal tan because of Fermat's little theorem
and the Chinese remainder theorem (cf. [25]). The modular exponentiations can be done
efficiently using the repeated square and multiply method, as shown in Section 2dSince
can be found giver and the factors af, factoringn suffices to break RSA. Conversely, it
is believed that in general, without knowledgedyffactoringn is necessary to be able to
decrypt RSA-encrypted messages.

RSA can also be used as a signature scheme: the owner of secrktwhpse public
key is (n,), is the only one who can compute the signat8(e) = m® modn for some
message, but everyone can check thaim) is the signature om of the owner of the secret
key corresponding tén, e) by verifying thatS(m)® modn equals the original message

Notes

1. The 116-digit factorization of a BlackNet PGP key described in [22] used the same software as [4] but was
distributed on a much smaller scale than the other efforts.

2. This can be done using Euclid’s algorithm, as explained before. Note that(d,god# 1 we have found a
factor> 1 of n (since 1< a < n), so thatn is composite.

3. ‘Some people have all the luck’ (cf. [47]).

4. A similar idea can also be found in [26].

5. In CFRACv’s such thats, is small are generated using continued fractionsa; /b; is theith continued
fraction convergent tQ/n, thenr (g;) = 312 — an2 satisfiegr (aj)| < 2./n. Thus, withv = & we have that
Isy] = Ir(a)| is bounded by /n. Even though this is smaller than th&,|’s that are generated in QS,
CFRAC is less efficient than QS because the smoothness ¢, {feein CFRAC cannot be detected using a
sieve, but has to be checked ‘individually’ geg| using trial division or elliptic curves.

6. Pollard refers to line-by-line sieving In, assieving by rowsFor a small minority ofy’s only a fewb's have
to be considered, in which case line-by-line (or row) sievsiipe preferred strategy.

References

1. L. M. Adleman, Factoring numbers using singular integBrec. 23rd Annual ACM Symp. on Theory of
Computing (STOGNew Orleans, (May 6-8, 1991) pp. 64-71.

2. W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael nuniterspf
Math, Vol. 140 (1994) pp. 703-722.

3. W. R. Alford, A. Granville, and C. Pomerance, On the difficulty of finding reliable witnesses, ANTS'94,
Lecture Notes in Comput. Sci., 877 (1994) pp. 1-16.

4. D. Atkins, M. Graff, A. K. Lenstra, and P. C. Leyland, The magic words are squeamish ossichgeces
in Cryptology Asiacrypt'94, Lecture Notes in Comput. Sci., 917 (1995) pp. 265-277.

5. D. J. Bernstein, The multiple-lattice number field sieve, Chapter 3 of Ph.D. thesis;
ftp://koobera.math.uic.edu/pub/papers/minfs.dvi.

6. W.Bosmaand A. K. Lenstra, Animplementation of the elliptic curve integer factorization m&bothuta-
tional Algebra and Number TheofW. Bosma and A. van der Poorten, eds.), Kluwer Academic Publishers,
Dordrecht, Boston, London (1995) pp. 119-136.

7. R.P.Brent, Factorization of the tenth and eleventh Fermat Numbers, manuscript (1996).

56

INTEGER FACTORING 127

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.
35.

R. P. Brent and J. M. Pollard, Factorization of the eighth Fermat nurvzh. Comp, Vol. 36 (1981)

pp. 627-630.

J. Buchmann, J. Loho, and J. Zayer, An implementation of the general number field sieve, Advances in
Cryptology, Crypto '93, Lecture Notes in Comput. Sci, 773 (1994) pp. 159-165.

E. R. Canfield, P. Eas; and C. Pomerance, On a problem of Oppenheim concerning “Factorisatio Numero-
rum,” J. Number Theoryol. 17 (1983) pp. 1-28.

H. Cohen, A course in computational number the@ngduate Texts in Mathematicsol. 138, Springer-
Verlag, Berlin (1993).

S. Contini and A. K. Lenstra, Implementations of blocked Lanczos and Wiedemann algorithms, manuscript.
J. Cowie, B. Dodson, R. M. Elkenbracht—Huizing, A. K. Lenstra, P. L. Montgomery, and J. Zayer, A World
Wide Number Field Sieve factoring record: on to 512 bits, Advances in Cryptography, Asiacrypt '96,
Lecture Notes in Computer Science, 1163 (1996) pp. 382—-394.

J. A. Davis and D. B. Holdridge, Factorization using the quadratic sieve algorithm, Tech. Report SAND
83-1346, Sandia National Laboratories, Albuquerque, NM (1983).

N. G. de Bruijn, On the number of positive integersc and free of prime factors vy, Il, Indag. Math,

Vol. 38 (1966) pp. 239-247.

M. Deleglise and J. Rivat, Computingx): the Meissel, Lehmer, Lagarias, Miller, Odlyzko methivthth.
Comp, Vol. 65 (1996) pp. 235-245.

T. Denny, B. Dodson, A. K. Lenstra, and M. S. Manasse, On the factorization of RSA-120, Advances in
Cryptology, Crypto '93, Lecture Notes in Comput. Sci., 773 (1994) pp. 166-174.

B. Dodson and A. K. Lenstra, NFS with four large primes: an explosive experiment, Advances in Cryptology,
Crypto '95, Lecture Notes in Comput. Sci., 963 (1995) pp. 372—-385.

R. M. Elkenbracht-Huizing, An implementation of the number field sieve, Technical Report NM-R9511,
Centrum voor Wiskunde en Informatica, Amsterdam, 1995; to appdaxperimental Mathematics

R. M. Elkenbracht-Huizing, A multiple polynomial general number field siBveproceedings ANTS I

(H. Cohen, ed.), Universttde Bordeaux (1996) pp. 101-116.

M. Gardner, Mathematical games, A new kind of cipher that would take millions of years to Bosehtific
American(August 1977) pp. 120-124.

J. Gillogly, A. K. Lenstra, P. C. Leyland, and A. Muffett, An unnoticed factoring attack on a PGP key,
presented at Crypto '95 rump session.

R. Golliver, A. K. Lenstra, and K. McCurley, Lattice sieving and trial division, ANTS'94, Lecture Notes in
Comput. Sci., 877 (1994) pp. 18-27.

G. H. Hardy and W. M. Wrigh#n Introduction to the Theory of Numbe&h ed., Oxford University Press,
Oxford (1979).

D. E. Knuth, Art of computer programming, volume&2minumerical Algorithm&nd ed., Addison-Wesley,
Reading, Massachusetts (1981).

M. Kraitchik, Theorie de Nombres, IGauthiers-Villars, Paris (1926) pp. 195-208.

J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computingx): The Meissel-Lehmer Methodijath.
Comp, Vol. 44 (1985) pp. 537-560.

B. A. LaMacchia and A. M. Odlyzko, Solving large sparse linear systems over finite fields, Advances in
Cryptology, Crypto’90, Lecture Notes in Comput. Sci., 537 (1991) pp. 109-133.

A. K. Lenstra and H. W. Lenstra, Jr., Algorithms in number theory, Chapter Hamabook of Theoretical
Computer Science, Volume A, Algorithms and Compldditwan Leeuwen, ed.), Elsevier, Amsterdam
(1990).

A. K. Lenstra and H. W. Lenstra, Jr., The development of the number field &iesteire Notes in Math.
Springer-Verlag, Berlin, 1554 (1993).

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, The factorization of the ninth Fermat
numberMath. Comp. \Vol. 61 (1993) pp. 319-349.

A. K. Lenstra and M. S. Manasse, Factoring by electronic mail, Advances in Cryptology, Eurocrypt '89,
Lecture Notes in Comput. Sci., 434 (1990) pp. 355-371.

A. K. Lenstraand M. S. Manasse, Factoring with two large primes, Advances in Cryptology, Eurocrypt '90,
Lecture Notes in Comput. Sci., 473 (1990) pp. 72-44ath. Comp, Vol. 63 (1994) pp. 785-798.

H. W. Lenstra, Jr., Factoring integers with elliptic curv@sn. of Math Vol. 126 (1987) pp. 649-673.

H. W. Lenstra, Jr., and C. Pomerance, A rigorous time bound for factoring intdgéusier. Math. Sog.

Vol. 5 (1992) pp. 483-516.

57

128

36.
37.
38.
39.
40.
41.
42.
43.
44,
45.

46.

47.
48.

49.
50.

51.
52.
53.

54.

58

LENSTRA

H. W. Lenstra, Jr. and R. Tijdeman (eds.), Computational methods in number tatiny,Centre Tracts

Vol. 154/155, Mathematisch Centrum, Amsterdam (1983).

P. C. Leyland, Multiple polynomial quadratic sieve, sans math, ftp://ftp.ox.ac.uk/pub/math/rsal29/
mpgssansmath.Z (1994).

L. Monier, Evaluation and comparison of two efficient probabilistic primality testing algoritfiimesor.
Comp. Sciengevol. 11 (1980) pp. 97-108.

P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorizitaih, Comp, Vol. 48
(1987) pp. 243-264.

P. L. Montgomery, Square roots of products of algebraic numPeoseedings of Symposia in Applied
Mathematicg{Walter Gautschi, ed.), Mathematics of Computation 1943-1993, Vancouver (1993).

P. L. Montgomery, A block Lanczos algorithm for finding dependencies over GF(2), Advances in Cryptology,
Eurocrypt’'95, Lecture Notes in Comput. Sci., 921 (1995) pp. 106-120.

M. A. Morrison and J. Brillhart, A method of factoring and the factorizatiofrgfMath. Comp. \Vol. 29
(1975) pp. 183-205.

J. M. Pollard, Theorems on factorization and primality tesfiigc. Cambridge Philos. Sqd/ol. 76 (1974)

pp. 521-528.

J. M. Pollard, A Monte Carlo method for factorizati@®iT, Vol. 15 (1975) pp. 331-334.

J. M. Pollard, The lattice sieveecture Notes in MathSpringer-Verlag, Berlin, 1554 (1993) pp. 43-49.

C. Pomerance, Analysis and comparison of some integer factoring algorithms, Computational methods in
number theoryMath. Centre TractsVol. 154/155, Mathematisch Centrum, Amsterdam (1983) pp. 89-139.
C. Pomerance, Private communication (March 1996).

C. Pomerance and J. W. Smith, Reduction of huge, sparse matrices over finite fields via created catastrophes,
Experiment. Math.Vol. 1 (1992) pp. 89-94.

M. O. Rabin, Probabilistic algorithms for primality testidgNumber Theoryol. 12 (1980) pp. 128-138.

H. Riesel, Prime numbers and computer methods for factoriz&iogt. Math, Vol. 57, Birkhduser, Boston
(1985).

R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryp-
tosystemsComm. ACMVol. 21 (1978) pp. 120-126.

R. Schoof, Quadratic fields and factorization, Computational methods in number thethy, Centre
Tracts Vol. 154/155, Mathematisch Centrum, Amsterdam (1983) pp. 235-286.

D. Shanks, Class number, a theory of factorization, and gelRgye, Symp. Pure MathVol. XX, AMS

(1971) pp. 415-440.

R. D. Silverman, The multiple polynomial quadratic sieMath. Comp. Vol. 84 (1987) pp. 327-339.

