
Elliptic curve cryptography
Formalization details

Elliptic Curve Cryptography
A case study in formalization using a

higher order logic theorem prover

Joe Hurd

Computing Laboratory
Oxford University

8 August 2005
Galois Connections, Inc

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Talk Plan

1 Elliptic curve cryptography
Introduction
The project

2 Formalization details
Elliptic curve points
Elliptic curve arithmetic

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Introduction
The project

The Elliptic Curve y2 = x3 − x

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Introduction
The project

The Etymology of “Elliptic Curve”

Elliptic curves over the reals are pairs (x,y) satisfying an
equation of the form

E : y2 = x3 + ax + b .

Studying the arc lengths of an ellipse leads to elliptic
integrals ∫

dx√
4x3 − g2x − g3

.

The inverse of an elliptic integral is a doubly periodic
function called an elliptic function.
Every doubly periodic function ℘ satisfies

℘′2 = 4℘3 − g2℘− g3

which is an instance of the elliptic curve equation.

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Introduction
The project

Cryptography Based On Groups

Many cryptographic primitives make use of the Discrete
Logarithm Problem (DLP) over a group G.

DLP: given x , y ∈ G, find a k such that xk = y .

The difficulty of DLP depends on the group G.

For some groups, such as integer addition modulo n, the
problem is easy.
For some groups, such as the multiplicative group GF (p)∗

of the finite field GF (p), the problem is difficult.
Warning: the number field sieve can solve this in
sub-exponential time.

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Introduction
The project

Cryptography Based On Elliptic Curve Groups

We can base DLP on an elliptic curve group E(GF (q))
over a finite field GF (q).

There are no known sub-exponential algorithms to solve
this problem.

This table shows equal security key sizes in DLP:

GF (p)∗ E(GF (q))

1024 bits 173 bits
4096 bits 313 bits

Elliptic curve groups require shorter keys than
multiplicative groups.

Elliptic curve cryptography benefits security applications
with constraints on bandwidth or computation power.

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Introduction
The project

Elliptic Curve Cryptography Project

A joint project between Oxford, Cambridge and Utah.

Overall goal: to formally verify ARM assembly code
programs implementing elliptic curve cryptography.

Need a model of ARM assembly code in HOL4.
√

Need a formalization of elliptic curve cryptography. ⇐=

Aim to prove a HOL4 theorem that ARM code correctly
implements elliptic curve arithmetic.

Proving the correctness of ARM code implementing elliptic
curve cryptography will rely on the theorem that elliptic
curve arithmetic forms a group.

An unusual example of a practical verification requiring the
formalization of highly abstract mathematics.

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Introduction
The project

Formalization Status

The formalization of elliptic curves in HOL4 is a work in
progress.

Currently about 4000 lines of ML, comprising:
3500 lines of definitions and theorems; and
500 lines of extensions to the system proof tools.

Complete up to the theorem that elliptic curve arithmetic
forms an Abelian group.

Specifically, stuck on the lemma that doubling a point on the
curve results in a point on the curve.

Will progress by improving either the proof strategy (to
reduce the size of the formulas) or the tactics (to deal with
larger formulas).

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Source Material

The definitions of elliptic curves, rational points and elliptic
curve arithmetic that we present come from the source
textbook for the formalization (Elliptic Curves in
Cryptography, by Ian Blake, Gadiel Seroussi and Nigel
Smart.)

A design goal in this work is for the formalized definitions to
match the textbook definitions as closely as possible, and
so the critical definitions are simply copied verbatim from
the textbook.

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Elliptic Curve Points

The Blake, Seroussi and Smart definition of elliptic curve points:

“An elliptic curve over a [field] K will be defined as the set of
solutions in the projective plane P2(K) of a homogenous
Weierstrass equation of the form

E : Y 2Z + a1XYZ + a3YZ 2 = X 3 + a2X 2Z + a4XZ 2 + a6Z 3

with a1, a2, a3, a4, a6 ∈ K .”

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Elliptic Curve Points in Projective Coordinates

The HOL4 definition of elliptic curve points:

Constant Definition
curve_points e =
(let f = e.field in

...
let a6 = e.a6 in
{ project f [x; y; z] |

[x; y; z] IN nonorigin f /\
(y**2 * z + a1 * x * y * z + a3 * y * z**2 =

x**3 + a2 * x**2 * z + a4 * x * z**2 + a6 * z**3) }

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Elliptic Curve Points in Affine Coordinates (1)

In common with most texts, Blake, Seroussi and Smart use
affine coordinates as well as projective coordinates:

“The curve has exactly one rational point with coordinate Z
equal to zero, namely (0, 1, 0). This is the point at infinity,
which will be denoted by O.

For convenience, we will most often use the affine
version of the Weierstrass equation, given by

E : Y 2 + a1XY + a3Y = X 3 + a2X 2 + a4X + a6

where ai ∈ K . The K̂ -rational points in the affine case are
the solutions to E in K̂ 2, and the point at infinity O. [. . .] We
will switch freely between the projective and affine
presentations of the curve, denoting the equation in both
cases by E.”

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Elliptic Curve Points in Affine Coordinates (2)

To avoid switching between two different representations, we
treat affine coordinates as an abbreviation for projective
coordinates.

Constant Definition
affine f v = project f (v ++ [field_one f])

Equality in affine coordinates is much simpler than equality in
projective coordinates.

Theorem
|- !f :: Field. !v1 v2.

(affine f v1 = affine f v2) = (v1 = v2)

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Elliptic Curve Points in Affine Coordinates (3)

First define the point at infinity O:

Constant Definition
curve_zero e =
project e.field

[field_zero e.field; field_one e.field; field_zero e.field]

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Elliptic Curve Points in Affine Coordinates (4)

From the definition of elliptic curve points in projective
coordinates, it is possible to recover the equation for affine
coordinates:

Theorem
|- !e :: Curve. curve_zero e IN curve_points e

|- !e :: Curve. !x y :: (e.field.carrier).
affine e.field [x; y] IN curve_points e =
let f = e.field in
...
let a6 = e.a6 in
y**2 + a1 * x * y + a3 * y =
x**3 + a2 * x**2 + a4 * x + a6

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Elliptic Curve Points in Affine Coordinates (5)

We also prove that all elliptic curve points are either O or can
be expressed in affine coordinates, and that O cannot be
expressed in affine coordinates:

Theorem
|- !e :: Curve. !p :: curve_points e.

(p = curve_zero e) \/
?x y :: (e.field.carrier). p = affine e.field [x; y]

|- !e :: Curve. !x y.
~(curve_zero e = affine e.field [x; y])

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Elliptic Curve Points in Affine Coordinates (6)

Finally we prove a ‘case theorem’ allowing us to define
functions on elliptic curve points using affine coordinates.

Theorem
|- !e :: Curve. !z f.

(curve_case e z f (curve_zero e) = z) /\
!x y. curve_case e z f (affine e.field [x; y]) = f x y

At this point there is no further need to reason about the
projective version of elliptic curves.

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Negation of Elliptic Curve Points (1)

Blake, Seroussi and Smart define negation of elliptic curve
points using affine coordinates:

“Let E denote an elliptic curve given by

E : Y 2 + a1XY + a3Y = X 3 + a2X 2 + a4X + a6

and let P1 = (x1, y1) [denote a point] on the curve. Then

−P1 = (x1,−y1 − a1x1 − a3) .”

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Negation of Elliptic Curve Points (2)

Negation is formalized using the case theorem, which smoothly
handles the special case of O:

Constant Definition
curve_neg e =
let f = e.field in
...
let a3 = e.a3 in
curve_case e (curve_zero e)

(\x1 y1.
let x = x1 in
let y = ~y1 - a1 * x1 - a3 in
affine f [x; y])

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Negation of Elliptic Curve Points (3)

Negation maps points on the curve to points on the curve.

Theorem

|- !e :: Curve. !p :: curve_points e.
curve_neg e p IN curve_points e

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

The Elliptic Curve Group

The (current) high water mark of the HOL4 formalization of
elliptic curves is the ability to define the elliptic curve group.

Constant Definition
curve_group e =
<| carrier := curve_points e;

id := curve_zero e;
inv := curve_neg e;
mult := curve_add e |>

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

ElGamal Encryption (1)

The ElGamal encryption algorithm uses an instance gx = h of
the Discrete Logarithm Problem.

1 Alice obtains a copy of Bob’s public key (g, h).
2 Alice generates a randomly chosen natural number

k ∈ {1, . . . ,]G − 1} and computes a = gk and b = hkm.
3 Alice sends the encrypted message (a, b) to Bob.
4 Bob receives the encrypted message (a, b). To recover the

message m he uses his private key x to compute

ba−x = hkmg−kx = gxk−xkm = m .

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

ElGamal Encryption (2)

We first formalize the ElGamal encryption packet that Alice
sends to Bob.

Constant Definition
elgamal G g h m k =
(group_exp G g k, G.mult (group_exp G h k) m)

This follows the algorithm precisely.

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

ElGamal Encryption (3)

We next prove the theorem that Bob can decrypt the ElGamal
encryption packet to reveal the message (assuming he knows
his private key).

Theorem

|- !G :: Group. !g h m :: G.carrier. !k x.
(h = group_exp G g x) ==>
(let (a,b) = elgamal G g h m k in

G.mult (G.inv (group_exp G a x)) b = m)

This diverges slightly from the algorithm by having Bob
compute a−xb instead of ba−x , but results in a stronger
theorem since the group G does not have to be Abelian.

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Verified Elliptic Curve Calculations

It is often desirable to derive calculations that provably
follow from the definitions.

Can be used to test the model,
or provide ‘golden reference’ results.

The inference rule is fairly basic, and just consists of
unfolding definitions in the correct order.

The numerous side conditions are proved with predicate
subtype style reasoning.

For this version we simply assume that 751 ∈ Prime (and
thus GF(751) ∈ Field), but in future we’ll need a way to
prove that our field sizes really are prime.

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Rational Points on Elliptic Curves

We begin by defining an elliptic curve equation from an
exercise in Koblitz (1987).

Constant Definition
ec = curve (GF 751) 0 0 1 750 0 : thm

We next prove that it defines an elliptic curve and that two
points given in the exercise do indeed lie on the curve.

Theorem
|- ec IN Curve
|- affine (GF 751) [361; 383] IN curve_points ec
|- affine (GF 751) [241; 605] IN curve_points ec

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Efficiently Calculating Field Inverses

Elliptic curve arithmetic requires computing field inverses.

Field inverse in GF(p) is defined as λk . kp−2 .

To make this more efficient, we verify a version of
exponentiation using repeated squaring.

Constant Definition
modexp a n m =
if n = 0 then 1
else if n MOD 2 = 0 then modexp ((a * a) MOD m) (n DIV 2) m
else (a * modexp ((a * a) MOD m) (n DIV 2) m) MOD m

Theorem
|- !a n m. 1 < m ==> (modexp a n m = (a ** n) MOD m)

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Elliptic Curve Arithmetic

We verify some elliptic curve arithmetic calculations and test
that the results are points on the curve.

Example
|- curve_neg ec (affine (GF 751) [361; 383]) =

affine (GF 751) [361; 367]

|- affine (GF 751) [361; 367] IN curve_points ec

|- curve_add ec (affine (GF 751) [361; 383])
(affine (GF 751) [241; 605]) =

affine (GF 751) [680; 469]

|- affine (GF 751) [680; 469] IN curve_points ec

|- curve_double ec (affine (GF 751) [361; 383]) =
affine (GF 751) [710; 395]

|- affine (GF 751) [710; 395] IN curve_points ec

Doing this revealed a bug in the definition of point doubling!

Joe Hurd Elliptic Curve Cryptography

Elliptic curve cryptography
Formalization details

Elliptic curve points
Elliptic curve arithmetic

Summary

This talk has given a brief overview of the elliptic curve
formalization in higher order logic, showing how to bridge
the gap between mathematics and executable programs.

The formalization is designed to interface with the verifying
compilation to ARM assembly code, but could be
‘retargeted’ to export Cryptol programs or verified test
vectors.

Joe Hurd Elliptic Curve Cryptography

	Elliptic curve cryptography
	Introduction
	The project

	Formalization details
	Elliptic curve points
	Elliptic curve arithmetic

