
Self-encrypting Code to Protect Against Analysis and Tampering

Jan Cappaert, Nessim Kisserli, Dries Schellekens, and Bart Preneel

Katholieke Universiteit Leuven
Department of Electrical Engineering, ESAT/SCD-COSIC

Kasteelpark Arenberg 10
B-3001 Heverlee, Belgium

{jcappaer,nkisserl,dschelle,preneel}@esat.kuleuven.be

Abstract

Confidentiality and data authenticity are two
basic concepts in security. The first guaran-
tees secrecy of a message, while the latter pro-
tects its integrity. This paper examines the use
of encryption to secure software static analysis
and tampering attacks. We present the concept
of code encryption, which offers confidentiality,
and a method to create code dependencies that
implicitly protect integrity. For the latter we
propose several dependency schemes based on
a static call graph which allow runtime code
decryption simultaneous with code verification.
If code is modified statically or dynamically, it
will result in incorrect decryption of other code,
producing a corrupted executable.

1 Introduction

From the early 60s until 80s application se-
curity was merely solved by designing se-
cure hardware, such as ATM terminals, or
set-top boxes. Since the 90s, however, se-
cure software gained much interest due to
its low cost and flexibility. Nowadays, we
are surrounded by software applications which
we use for webbanking, communication, e-
voting, . . . As a side effect, more threats
such as piracy, reverse engineering and tam-

pering emerge. These threats try to exploit
critical and poorly protected software. This
illustrates the importance of thorough threat
analysis (e.g. STRIDE [13]) and new software
protection schemes, needed to protect software
from analysis and tampering attacks. This pa-
per provides a technique to protect against the
last two threats, namely reverse engineering
and tampering.

For decades encryption has provided the
means to hide information. Originally, it
served for encrypting letters or communica-
tions, but quickly became a technique to secure
all critical data, either for short-term trans-
mission or long-term storage. While software
enterprises offer commercial tools for perform-
ing software protection, an arms race is going
on between the software programmers and the
people attacking software. Although, encryp-
tion is one of the best understood informa-
tion hiding techniques, encryption of software
is still an open research area. In this paper we
examine the use of self-encrypting code as a
means of software protection.

Section 1 introduces our motivation and
Section 2 describes software security and its
threats. Section 3 gives a brief overview
of related research, while Section 4 elabo-
rates on code encryption. In Section 5 we
present a framework that facilitates generation

1



of tamper-resistant programs and show some
empirical results as a proof of concept. Section
6 explains several attacks and possible counter-
measures. And finally, Section 7 summarises
this paper and outlines some conclusions.

2 Software security and
threats

One of a company’s biggest concerns is that
their software falls prey to reverse engineering.
A secret algorithm that is extracted and reused
by a competitor can have major consequences
for software companies. Also secret keys, con-
fidential data or security related code are not
intended to be analysed, extracted and stolen
or even corrupted. Even if legal actions such as
patenting and cyber crime laws are in place, re-
verse engineering remains a considerable threat
to software developers and security experts.

Often the software is not only analysed, but
also tampered with. In a branch jamming at-
tack, for example, an attacker just replaces
a conditional jump by an unconditional one,
forcing a specific branch to execute even when
it is not supposed to under those conditions.
Such attacks can have a major impact on ap-
plications which involve licensing, billing, or
even e-voting.

Before actually changing the code in a mean-
ingful way, one always needs to understand the
internals of a program. Changing a program
at random places can no longer guarantee the
correct working of the application after modifi-
cation. Several papers present the idea of self-
verifying code [2, 12] which is able to detect any
changes to critical code. These schemes, how-
ever, do not protect against analysis of code.
In this paper we try to solve analysis and tam-
pering attacks simultaneously.

We can distinguish two main categories of
analysis techniques: static analysis and dy-
namic analysis. Static analysis is applied to

non-executing code, e.g. disassembly or decom-
pilation [5]. Dynamic analysis is performed
while the code is executed. It is typically eas-
ier to obstruct static analysis than protect the
code against dynamic attacks.

In this paper we focus on software-only so-
lutions because of their low cost and flexibil-
ity. It is clear that code encryption is useful
if encrypted code can be sent to a secure co-
processor [22]. But when this component is not
available, as it is in most current systems, it be-
comes less obvious how to tackle this problem.
As opposed to a black-box system, where the
attacker is only able to monitor I/O of a pro-
cess, an environment where the attacker has
full privileges behaves like a white box, where
everything can be monitored. Chow et al. [4]
call this a white-box environment and propose
a method to hide a key within an encryption
algorithm.

3 Related research

There are three major threats to software:
piracy, reverse engineering and tampering.
Collberg et al. [9] give a compact overview
of techniques to protect against these threats.
Software watermarking for example aims at
protecting software reactively against piracy.
It generally embeds hidden, unique informa-
tion into an application such that it can be
proved that a certain software instance belongs
to a certain individual or company. When this
information is unique for each instance, one
can trace copied software to the source unless
the watermark is destroyed. The second group,
code obfuscation, protects against reverse en-
gineering. This technique consists of one or
more program transformations that transform
a program in such a way that its functionality
remains the same but analysing the internals
of the program becomes very hard. A third
group of techniques aims to make software

2



‘tamper-proof’, also called tamper-resistant.
As this paper investigates protection mecha-
nisms against malicious analysis and tamper-
ing, we will not elaborate on software water-
marking.

3.1 Code obfuscation

As software gets distributed worldwide, it be-
comes harder and harder to control it from a
distance. This means that attackers often can
analyse, copy, and change it at will. Compa-
nies however have been inventing techniques
to make this analysis harder. The techniques
range from small tricks to counter debugging,
such as code stripping, to complex control flow
and data flow transformations that try to hide
a program’s internals. This hiding tries to ad-
dress the security objective of confidentiality.
For example, when Java bytecode was shown
to be susceptible to decompilation – yield-
ing the original source code – researchers be-
gan investigating techniques to protect against
this [7, 8, 15]. Protection of low-level code
against reverse engineering has been addressed
as well [25, 19].

3.2 Self-modifying code

While code obfuscation aims to protect code
against both static and dynamic analysis, there
exists another technique to protect against
code analysis, namely self-modifying code.
This technique offers the possibility to gener-
ate code at runtime, instead of transforming it
statically. In practice however, self-modifying
code is largely limited to the realm of viruses
and malware. Nevertheless, some publications
consider self-modifying code as a technique to
protect against static and dynamic analysis.
Madou et al. [16] for example consider dynamic
code generation. They propose a technique
where functions are constructed prior to their
first call at runtime. Furthermore, clustering

is proposed such that a common template can
be used to construct each function in a clus-
ter, performing a minimal amount of changes.
To protect the constant ‘edits’ against dynamic
analysis, the authors propose use of a pseudo
random number generator (PRNG).

Our decryption at runtime technique is
equivalent with code generation, except the
fact that the decryption key can rely on other
code, rather then on a PRNG. Furthermore
minimises re-encryption the visability of code
during execution, while Madou et al. do not
explicitly protect a function template after the
function executed.

3.3 Tamper resistance

Protecting code against tampering can be con-
sidered as the problem of data authenticity,
where in this context ‘data’ refers to the pro-
gram code. In ’96 Aucsmith [1] illustrated
in his paper a scheme to implement tamper-
resistant software. His technique protects
against analysis and tampering. For this,
he uses small, armoured code segments, also
called integrity verification kernels (IVKs), to
verify code integrity. These IVKs are protected
through encryption and digital signatures such
that it is hard to modify them. Furthermore,
these IVKs can communicate with each other
and across applications through an integrity
verification protocol. Many papers in the field
of tamper resistance base their techniques on
one or more of Aucsmith’s ideas.

Several years later, Chang et al. [2] proposed
a scheme based on software guards. Their pro-
tection scheme relies on a complex network
of software guards which mutually verify each
other’s integrity and that of the program’s crit-
ical sections. A software guard is defined as a
small piece of code performing a specific tasks,
e.g. checksumming or repairing. When check-
summing code detects a modification, repair
code is able to undo this malicious tamper

3



attempt. The security of the scheme relies
partially on hiding the obfuscated guard code
and the complexity of the guard network. A
year later, Horne et al. [12] elaborated on the
same idea and proposed ‘testers’, small hashing
functions that verify the program at runtime.
These testers can be combined with embedded
software watermarks to result in a unique, wa-
termarked, self-checking program. Other re-
lated research is oblivious hashing [3] which
interweaves hashing instructions with program
instructions and which is able to prove whether
a program operated correctly or not.

Recently, Ge et al. [10] published a paper on
control flow based obfuscation. Although the
authors published their work as a contribution
to obfuscation, the control flow information is
protected with an Aucsmith-like tamper resis-
tance scheme.

4 Code encryption

The following sections give an overview of dy-
namic code encryption. This is encrypting
binary code at runtime. Often this is also
covered by the terms self-modifying or self-
generating code. Encryption generally assures
the confidentiality of the data. In the context
of binary code, this technique mainly protects
against static analysis. For example, several
encryption techniques are used by polymorphic
viruses [21] and polymorphic shell code [6].
In this way, they are able to bypass intrusion
detection systems, virus scanners, and other
pattern-matching interception tools. The fol-
lowing sections present several methods of en-
crypting code at runtime.

4.1 Bulk encryption

If a program is encrypted completely with a
single routine, we call it bulk encryption. The
decryption routine is usually prepended to the

encrypted body. At runtime this routine de-
crypts the body and then transfers control to
it. The decrypting routine can either consult
an embedded key or fetch one dynamically (e.g.
from user input or from the operating system).
The main advantage of such a mechanism is
that as long as the program is encrypted its
internals are hidden and therefore protected
against static analysis. Another advantage is
that the encrypted body makes it hard for an
attacker to statically change bits in a mean-
ingful way. Changing a single bit will result in
one or more bit flips in the decrypted code and
thus modifying one or more instructions, which
might crash the program or cause other unin-
tended behaviour due to binary code’s brittle-
ness. Nevertheless, a simple construction such
as bulk encryption, has certain desirable prop-
erties:

• it protects the code against static analysis
and forces an attacker to perform a dy-
namic attack;

• as long as the code is encrypted, it is pro-
tected against targeted tampering;

• it has a very limited overhead in size and
performance as the encryption is done all
at once.

However, as all code is decrypted simultane-
ously, it is inherently weak. An attacker simply
waits for the decryption to occur before dump-
ing the process image to disk in clear form for
analysis.

4.2 Partial encryption

In contrast to bulk encryption where pro-
gram code is decrypted all at once, one could
increase granularity and decrypt small parts
at runtime. Shiva [17] is a binary encryp-
tor that uses obfuscation, anti-debugging tech-
niques and multi-layer encryption to protect

4



ELF binaries. However, to the best of our
knowledge it still encrypts large code blocks,
although one at a time, and thus exposes large
portions of code at runtime. Viega et al. [24]
provide a method in C to write self-modifying
programs that decrypt a function at runtime.
While implementing self-modifying code on a
high level is not straightforward (no address in-
formation is known before compilation), their
proposed solution is easy-to-use as it is based
on predefined macros, an external encryption
program and a four step build phase, which
goes as follows:

• initial build: the code is instrumented to
collect the required address information;

• the actual address information is gener-
ated by executing the instrumented exe-
cutable;

• final build: software is built and the neces-
sary encryption routines are put in place;

• an external encryption program uses the
address information to encrypt the func-
tion that should be initially hidden.

Figure 1 illustrates how a function will be
decrypted at runtime. A function cipher is
used to modify (decrypt) a block code. The
code block key is read and used as key.

This scheme overcomes the weaknesses of re-
vealing all code at runtime as it offers the pos-
sibility to decrypt only the necessary parts, in-
stead of the whole body, as bulk encryption
usually does. The disadvantage is a slight in-
crease in overhead due to multiple calls to the
decryption routine.

call

key

code

“modify”

“read”

cipher

Figure 1: A basic scheme for function de-
cryption where correct decryption of a func-
tion, called code, depends on another func-
tion’s code, called key. The code that performs
this operation is called cipher.

5 Function encryption frame-
work

5.1 Basic principle

For our code encryption framework we rely
on function encryption and code dependen-
cies. For this we use the principle of encrypting
functions mentioned above. We define a new
kind of software guard, which decrypts (D) or
encrypts (E) the code of a function a using
the code of another function b. Using param-
eters a and b decryption can be expressed as
a = Db(A), where A is the encrypted function
a or A = Eb(a). Furthermore, we would like
the guard to have the following properties:

5



• if one bit is modified in b, then 1 or more
bits in a should change; and

• if one bit is modified in A, then 1 or more
bits should be modified in a after decryp-
tion.

Many functions meet these requirements
however. For the first requirement a crypto-
graphic function with b as key could be used.
For example Viega et al. [24] use the stream
cipher RC4 where the key is the code of an-
other function. The advantage of an additive
stream cipher is that encryption and decryp-
tion are the same computation, thus the same
code. This also holds for certain block ciphers,
such as DES [18], but not for all (e.g. AES); us-
ing a suitable mode of operation, like counter
mode (in this case you use the block cipher as a
stream cipher), can overcome this inconvience.
However, the key size for symmetric crypto-
graphic algorithms is limited, e.g. to 128 or 256
bits. RC4 for example allows a key up to 256
bytes. This means that any modification to b
beyond the first 256 bytes will not cause any
change to a, which violates our first require-
ment. Therefore we need some kind of com-
pression function that maps a variable length
code block to a fixed length string, which is
then used as key for the encryption routine.
Possible functions are checksum functions, e.g.
CRC32, or cryptographic hash functions [18].

Using code of b to decrypt A could be seen as
an implicit way of creating tamper resistance;
modifying b will result in an incorrect hash
value, i.e. encryption key, and consequently in-
correct decryption of A. Furthermore, flipping
a bit in A will flip at least one bit in a; in case
of an additive stream cipher a bit change in the
ciphertext will happen at the same location in
the plaintext, while the error propagation for
block ciphers depends on the used mode of op-
eration. This might be sufficient to make most
applications crash due to binary code’s brittle-
ness. For example, a single bit flip in the clear

code might change the opcode of an instruc-
tion, resulting in an incorrect instruction to be
executed, but also in desynchronising the next
instructions [14], which most likely will crash
the program. Changing one of the operands
of an instruction will cause incorrect or unpre-
dictable program behaviour.

Another advantage of this scheme is that
the key is computed at runtime (relying on
other code), which means the key is not hard-
coded in the binary and therefore hard to
find through static analysis (e.g. entropy scan-
ning [20]). The main disadvantage is perfor-
mance: loading a fixed length cryptographic
key is usually more compact and faster than
computing one at runtime, which may involve
calculating a hash value. Furthermore, the key
setup of symmetric cryptographic algorithm
will also have a performance impact.

Although we believe that cryptographic hash
functions and stream ciphers are more secure,
we used for our experiments a self-designed
XOR-based scheme – which satisfies our two
properties – to minimise the cost in speed and
size after embedding the software guards.

5.2 Dependency schemes

With this basic function encryption method we
now can build a network of code dependencies
that make it hard to change code statically or
dynamically. We propose three schemes which
are based on call graph information to make
functions depend on each other such that static
and dynamic tampering becomes difficult.

Scheme 1 Initially all callees, the called
functions, are encrypted, except main(), which
has to be in clear when the program transfers
control to it. A function is decrypted before
its call and the decryption key is based on the
code of the caller, the calling function.

Note that in the above case once a function
is decrypted it stays so and is susceptible to

6



static analysis, e.g. if a user forces a dump of
the process’ memory space.

Scheme 2 Initially all callees are encrypted.
Their caller calls a guard to decrypt them just
before they are called and to re-encrypt them
when they return. Again the decryption key is
based on the code of the calling function. This
will tampering of the caller without affecting
the callees very difficult.

We remark that if a function is only de-
crypted before it is called and is re-encrypted
after it returns, then the code of all callers in
the call path (this is the path in the call graph
leading to the called function) will be in clear-
text.

Scheme 3 Initially all callees are encrypted.
Each caller decrypts its callee before the call
and re-encrypts it after it returns. Addition-
ally, the callee encrypts its caller upon being
called and decrypts it before returning.

In this last case the maximum number of
functions in cleartext during execution is min-
imised. Though, guard code is implicitly con-
sidered to be in cleartext as well.

The memory layout of a function call pro-
tected according to scheme 3 is sketched in
Figure 2. A function is called through the fol-
lowing steps:

1. a guard is called to decrypt the callee;

2. control is transferred to the callee;

3. the callee calls a guard to encrypts his
caller;

4. the callee executes;

5. before returning, the callee calls a guard
to decrypt the caller code;

6. control is transferred to the caller;

guard

caller
1 2

3

5 6

callee

7

4

Figure 2: Memory layout of scheme 3: 1, 3,
5, and 7 are guard calls; 2 and 6 are control
transfers.

7. the caller calls a guard to re-encrypt the
callee code.

All functions that call a guard to decrypt or
encrypt another function use their own code as
key material. It can be shown that in this case
tampering will always be detected (‘detected’
here implies that incorrect execution and un-
desired behaviour will appear):

• If a function is tampered with while it is
encrypted, this will result in a modified
version and all callees of this function will
be decrypted incorrectly (and their callees
as well, etc.). This is ā = Db(Ā).

• If a function is tampered with while it is
decrypted, this will result in incorrect de-
cryption of the callees that are decrypted

7



after this moment in time. This corre-
sponds to ā = Db̄(A).

Note that it is also possible to generate
schemes based on heuristic information, such
as other software guards [2] do, where the
owner specifies which code is critical and where
the protection techniques focus on that part
only. However, our schemes are applied to the
whole call graph, thus protecting the whole bi-
nary.

Consider a program P and its modified ver-
sion P̄ , then we define the time cost Ct and the
space cost Cs as

Ct(P, P̄ ) =
T (P̄ )
T (P )

Cs(P, P̄ ) =
S(P̄ )
S(P )

where T (X) is the execution time of pro-
gram X and S(X) its size. Table 1 gives an
overview the performance cost of schemes 1, 2,
and 3 applied on some basic implementation
of common UNIX commands. The command
du outputs how much space files represent on
disk, tar is an archiving utility, and wc is a
program that counts words in a file. We clearly
notice that wc has the largest performance loss
when protected by scheme 3. This is due to
the numerous loops that also contain a lot of
guard calls to decrypt or re-encrypt code. Call-
ing more guards outside the loops would speed
up the program, but it would reveal functions
longer than needed at runtime. Scheme 1 ap-
pears to run faster than the original program.
This might be a result of extensive caching of
code and data fragments (our code is treated
as data when we decrypt it). Space cost ranged
from 1.031 to 1.170 which is an increase of 3 up
to 17% of the original program size. This ex-
pansion is proportional to the number of guard
calls and the size of the guard code.

Program Scheme 1 Scheme 2 Scheme 3
du 0.899 3.612 8.364
tar 0.822 1.339 2.783
wc 0.989 39.715 91.031

Table 1: Performance cost Ct when using self-
modifying code with dependency schemes.

5.3 Scheme restrictions

Opposed to the simplicity of our schemes,
generic programs face each scheme to specific
difficulties. Some of them are easy, others
harder to solve. An overview is given below.

Loops Scheme 1 poses a problem when a
function call is nested within a loop and is de-
crypted prior the function call; during different
iterations the function will be decrypted mul-
tiple times resulting in incorrect code. There-
fore, we propose placing the decryption routine
outside the loop. Schemes 2 and 3 do not en-
counter this problem as they always re-encrypt
the called function after it returns. However,
placing the encryption and decryption routines
outside the loop could always be considered for
performance reasons. This implies code will be
decrypted and thus unprotected as long as the
loop is running, but it reduces overhead.

Recursion For all three schemes care with
recursion needs to be taken. If a function
calls itself (pure recursive call), it should – ac-
cording to our scheme definitions – decrypt it-
self, although it is in cleartext already. There-
fore, we decrypt a recursive function only once:
namely when it gets called by another function.
We can extend this to recursive cycles, where
a group of functions together form a recursion.

Multiple callers If a function a is called
by different callers bi, one could choose to en-
crypt the callee a with the cleartext code of

8



only one of the callers, e.g. based on profil-
ing information. The function that calls the
particular callee the most, could then be used
as key to decrypt it. However, when another
caller is modified, this will not result in incor-
rect decryption of a. Therefore we state that
the decryption of A should rely on all bi. The
problem is: when a is called, only one bi might
be in clear. To encrypt all bi yields a number
of guard calls that decrypt the paths from the
actual caller to the key code functions. After
this, it should actually re-encrypt all the de-
crypted functions to reduce visibility in mem-
ory. The maximum number of decryptions re-
quired to get the key code in cleartext for a pair
of callers bx and by is lx+ ly where lx and ly are
the nesting levels of ax, respectively ay, rela-
tive to main(). The same number of encryp-
tions is needed to re-encrypt all these functions
after the target function is decrypted. In the
case of n callers, we need

∑n
i=1 li guards in the

worst case to decrypt all callers bi and then an-
other n guards to decrypt A. To overcome this
overhead we propose to rely on the encrypted
code of the callers, namely all Bi, and decrypt
A even before control is given to any bi. For
this we only need n extra guards instead of
n +

∑n
i=1 li and any change in any caller will

still be propagated to the callee.
Other options involve:

• not encrypting functions which have mul-
tiple callers (most trivial solution), which
violates our schemes;

• inlining the callee, but the callee may call
other functions itself, which only shifts the
problem, because the callees of the inlined
callee will have multiple callers after inlin-
ing;

• encrypting with another (possibly en-
crypted) code as key code, e.g. the encryp-
tion code itself (see also Section 6.1);

• modifying the guard, such that it foresees
a correction value c which compensates
the hash of a function b2 when function a
is encrypted with b1 yielding hash(b1) =
hash(b2) ⊕ c. However, this value also
facilitates attackers to modify code. All
they have to do is compute the new hash
and compensate it in the correction value.

As an example we refer to Figure 3 where
error print() can be called by errf()
and perrf(). Relying on their clear code
would yield decryption of main() as well as
counter() to decrypt error print(). When
relying however on encrypted code, we can
decrypt error print() just before one of its
callers is called and rely on their encrypted
code.

5.4 Code encryption as an addition
to code verification

Our guards, which modify code depending on
other code, offer several advantages over the
software guards proposed by Chang et al. [2]
that only verify (or repair) code:

• confidentiality: as long as code remains
encrypted in memory it is protected
against analysis attacks. With a good
code dependency scheme it is feasible to
ensure only a minimal number of code
blocks are present in memory in decrypted
form;

• tamper resistance: together with a good
dependency scheme, our guards offer pro-
tection against any tampering attempt. If
a function is tampered with statically or
even dynamically, the program will gener-
ate corrupted code when this function is
executed and will most likely eventually
crash due to illegal instructions. Further-
more, if the modification generates exe-
cutable code, this change will be propa-

9



errf

error print

counter report

main

getword

isword

perrf

1 main {wc.c 124}
2 errf {wc.c 32}
4 error_print {wc.c 20}
10 counter {wc.c 105}
12 perrf {wc.c 44}
14 error_print ... {4}
16 getword {wc.c 75}
19 isword {wc.c 62}
23 report {wc.c 55}
25 report ... {23}

Figure 3: Static call graph and tree of the UNIX word count command wc. The reduced static
call tree was produced with GNU’s cflow [11].

gated to other functions, resulting in erro-
neous code.

In some cases, programmers might opt for
self-checking code instead of self-encrypting
code, based on some of the following disadvan-
tages:

• implicit reaction to tampering: if a veri-
fied code section is tampered with the pro-
gram will crash (if executed parts rely on
this modified section). However, crashing
is not very user-friendly. In the case of
software guards [2, 12], detection of tam-
pering could be handled more technically
by triggering another routine that for ex-
ample exits the program after a random
time, calls repair code that fixes the mod-
ified code (or a hybrid scheme, which in-
volves both techniques), . . .

• limited hardware support: self-modifying
code requires memory pages to be exe-
cutable and writable at the same time.
However some operating systems enforce
a WˆX policy as a mechanism to make
the exploitation of security vulnerabilities
more difficult. This means a memory page
is either writable (data) or executable
(code), but not both. Depending on the

operating system, different approaches ex-
ist to bypass – legally – the WˆX protec-
tion: using mprotect(), the system call
for modifying the flags of a memory page,
to explicitly mark memory readable and
executable (e.g. used by OpenBSD) or set-
ting a special flag in the binary (e.g. in
case of PaX). A bypass mechanism will
most likely always exist to allow for some
special software like a JVM that optimises
the translation of Java bytecode to native
code on the fly.

6 Attacks and improvements

6.1 inlining of guard code

If implementation of dependency schemes (see
also Section 4.2) consists of a single instance
of the guard code and numerous calls to it,
an attacker can modify the guard or crypto
code to write all decrypted content to another
file or memory region. To avoid that an at-
tacker only needs to attack this single instance
of the guard code, inlining the entire guard
could thwart this attack and force an attacker
to modify all instances of the guard code at
runtime, as all nested guard code will initially
be encrypted. However, a disadvantage of this

10



Program Scheme 1 Scheme 2 Scheme 3
du 1.088 1.379 1.753
tar 1.213 1.484 2.219
wc 0.458 2.210 2.800

Table 2: Space cost Cs when using self-
modifying code with dependency schemes after
inlining all guards.

inlining is code expansion. Compact encryp-
tion routines might keep the spacial cost rela-
tively low, but implementations of secure cryp-
tographic functions are not always small.

Table 2 shows that wc almost tripled in size
after inlining guards according to scheme 3.
The performance cost, however, jumped from
91.031 to 1379.71 which was our worst case re-
sult after inlining guards. The program tar
ran only 35 times slower after inlining guards
as specified by scheme 3. Further optimisa-
tion of the guard code, and the cryptographic
algorithms should contribute to a lower space
cost and as a consequence also a smaller per-
formance penalty, as some guard code has to
be decrypted by other guards and so on.

6.2 Hardware-assisted circumven-
tion attack

Last year, van Oorschot et al. [23] published a
hardware-assisted attack that circumvents self-
verifying code mechanisms. The attack ex-
ploits differences between data reads and in-
struction fetches. This is feasible due to the
fact that current computer architectures dis-
tinguish between data and code. When in-
structions are verified (e.g. checksummed or
hashed) they are treated as data, but when
instructions are fetched for execution they are
treated as code. The attack consists of dupli-
cating each memory page, one page containing
the original code, while another contains tam-
pered code. A modified kernel intercepts every

data read and redirects it to the page contain-
ing the original code, while the code that gets
executed is the modified one.

Our protection scheme is different however.
Redirecting the data reads to a page with un-
modified code will result in a correct hash to
decrypt the next function. However, this at-
tack implies that code is in clear and thus can
be modified. The only blocks in cleartext how-
ever are the guard code and main() and they
can thus be modified using van Oorschot’s at-
tack. If the decryption routines are not in-
lined, then an attacker could just modify the
encryption code (e.g. to redirect all generated
cleartext at runtime), while – if the integrity
of the decryption routine is verified – this will
not be detected due to the redirection of the
data reads. When cryptographic routines are
inlined, extending this attack to the inlined de-
cryption routines would require to duplicate
every memory page, as soon as a function gets
decrypted, and modify its decrypted body dy-
namically. This whole attack implies intercept-
ing ‘data writes’ that modify code, use this
as a trigger to dynamically copy a memory
page, and modify code dynamically. This at-
tack however is identical to a dynamic analysis
attack, where functions get decrypted, decryp-
tion routines are identified and all clear code is
intercepted, allowing an attacker to rebuild the
application without protection code and mod-
ifying it afterwards statically.

6.3 Increasing granularity

Our scheme is built on top of static call graph
information and therefore uses functions as
building blocks. Our implementation also uses
function pointers, which can be addressed at a
high level (e.g. C). Implementing self-verifying
or self-modifying code however can work with
any granularity if implemented carefully. The
only rule that should be respected is: code
should be in cleartext form (correct binary

11



code instructions, part of the original program)
whenever it is executed.

With inline Assembly (asm() in gcc) we can
inline Assembly labels in the C code. Just as
function pointers their scope is global. How-
ever, these labels can be placed anywhere in
a function, unlike function pointers which by
definition only occur at the beginning of the
function and which must be defined before they
can be used. A further benefit of using labels is
the elimination of the initial build phase which
gathered address information. Providing the
right addresses to the guard code is in this case
done by the assembler which just replaces the
labels by the corresponding addresses.

If one increases the granularity, and encrypts
parts of functions, the guards can be integrated
into the program’s control flow which will make
it even harder to analyse the network of guards,
especially when they are inlined. However, we
believe that such a fine-grained structure will
induce much more overhead. The code blocks
to be encrypted will be much smaller than the
added code. Furthermore, more guards will
be required to cover the whole program code.
Hence it is important to trade-off the use of
these guards and perhaps focus on some critical
parts of the program and avoid ‘hot spots’ such
as frequently executed code.

7 Conclusions

This paper presents a new type of software
guards which are able to encipher code at run-
time, relying on other code as key information.
This technique offers confidentiality of code,
a property that previously proposed software
guards [2, 12] did not offer yet. As code is
used as a key to decrypt other code, it becomes
possible to create code dependencies which
make the program more tamper-resistant. We
therefore propose three dependency schemes,
which are built on static call graph informa-

tion. These schemes make sure an introduced
modification is propagated through the rest of
the program, forcing the application to work
incorrectly or exit prematurely. As a proof of
concept we implemented our technique in C
and applied it on some small C programs.

Acknowledgements

This work was supported in part by the Re-
search Foundation - Flanders (FWO), the In-
stitue for the Promotion of Innovation through
Science and Technology in Flanders (IWT),
the Interdisciplinary Institute for BroadBand
Technology (IBBT), and the Concerted Re-
search Action (GOA) Ambiorics 2005/11 of the
Flemish Government.

References

[1] D. Aucsmith. Tamper resistant software:
an implementation. Information Hid-
ing, Lecture Notes in Computer Science,
1174:317–333, 1996.

[2] H. Chang and M. J. Atallah. Protecting
software codes by guards. ACM Work-
shop on Digital Rights Managment (DRM
2001), LNCS 2320:160–175, 2001.

[3] Y. Chen, R. Venkatesan, M. Cary,
R. Pang, S. Sinha, and M. Jakubowski.
Oblivious hashing: a stealthy software in-
tegrity verification primitive. In Informa-
tion Hiding, 2002.

[4] S. Chow, P. Eisen, H. Johnson, and P. van
Oorschot. A White-Box DES Implemen-
tation for DRM Applications. In Pro-
ceedings of 2nd work ACM Workshop on
Digital Rights Management (DRM 2002),
November 18 2002.

[5] C. Cifuentes and K. Gough. Decompiling
of binary programs. Software – Practice
& Experience, 25(7):811–829, 1995.

12



[6] CLET team. Polymorphic shellcode
engine using spectrum analysis.
http://www.phrack.org/phrack/61/
p61-0x09_Polymorphic_Shellcode_
Engine%.txt.

[7] C. Collberg, C. Thomborson, and D. Low.
A taxonomy of obfuscating transforma-
tions. Technical Report #148, Depart-
ment of Computer Science, The Univer-
sity of Auckland, 1997.

[8] C. Collberg, C. Thomborson, and
D. Low. Manufacturing cheap, resilient,
and stealthy opaque constructs. Prin-
ciples of Programming Languages 1998,
POPL’98, pages 184–196, 1998.

[9] C. S. Collberg and C. Thomborson. Wa-
termarking, Tamper-Proofing, and Obfus-
cation – Tools for Software Protection. In
IEEE Transactions on Software Engineer-
ing, volume 28, pages 735–746, August
2002.

[10] J. Ge, S. Chaudhuri, and A. Tyagi. Con-
trol flow based obfuscation. In DRM ’05:
Proceedings of the 5th ACM workshop on
Digital rights management, pages 83–92,
2005.

[11] GNU. GNU cflow.
http://www.gnu.org/software/
cflow/.

[12] B. Horne, L. R. Matheson, C. Sheehan,
and R. E. Tarjan. Dynamic Self-Checking
Techniques for Improved Tamper Resis-
tance. In Proceedings of Workshop on Se-
curity and Privacy in Digital Rights Man-
agement 2001, pages 141–159, 2001.

[13] M. Howard and D. C. LeBlanc. Writing
Secure Code, Second Edition. Microsoft
Press, 2002.

[14] C. Linn and S. Debray. Obfuscation of
executable code to improve resistance to
static disassembly. In CCS ’03: Proceed-
ings of the 10th ACM conference on Com-
puter and communications security, pages
290–299, 2003.

[15] D. Low. Java Control Flow Obfuscation.
Master’s thesis, University of Auckland,
New Zealand, 1998.

[16] M. Madou, B. Anckaert, P. Moseley,
S. Debray, B. De Sutter, and K. De Boss-
chere. Software protection through dy-
namic code mutation. In J. Song,
T. Kwon, and M. Yung, editors, The 6th
International Workshop on Information
Security Applications (WISA 2005), vol-
ume LNCS 3786, pages 194–206. Springer-
Verlag, August 2006.

[17] N. Mehta and S. Clowes. Shiva – ELF
Executable Encryptor. Secure Reality.
http://www.securereality.com.au/.

[18] A. Menez, P. van Oorschot, and S. Van-
stone. Handbook of Applied Cryptography.
CRC Press, Inc., 1997.

[19] Scut, Team Teso. Burneye – x86/Linux
ELF Relocateable Object Obfuscator.

[20] A. Shamir and N. van Someren. Playing
“Hide and Seek” with Stored Keys.
Financial Cryptography ’99, LNCS
1648:118–124, 1999.

[21] Symantec. Understanding and Managing
Polymorphic Viruses.
http://www.symantec.com/avcenter/
reference/striker.pdf.

[22] J. D. Tygar and B. Yee. Dyad: A system
for using physically secure coprocessors.
In IP Workshop Proceedings, 1994.

13



[23] P. C. van Oorschot, A. Somayaji, and
G. Wurster. Hardware-assisted circum-
vention of self-hashing software tamper re-
sistance. IEEE Transactions on Depend-
able and Secure Computing, 02(2):82–92,
2005.

[24] J. Viega and M. Messier. Secure Program-
ming Cookbook for C and C++. O’Reilly
Media, Inc., 2003.

[25] G. Wroblewski. General Method of Pro-
gram Code Obfuscation. PhD thesis, Wro-
claw University of Technology, Institute of
Engineering Cybernetics, 2002.

14


