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Abstract

It has become more and more common to distribute
software in forms that retain most or all of the informa-
tion present in the original source code. An important
example is Java bytecode. Since such codes are easy to
decompile, they increase the risk of malicious reverse
engineering attacks.

In this paper we review several techniques for tech-
nical protection of software secrets. We will argue that
automatic code obfuscation is currently the most viable
method for preventing reverse engineering. We then
describe the design of a code obfuscator, a tool which
converts a program into an equivalent one that is more
difficult to understand and reverse engineer.

The obfuscator is based on the application of code
transformations, in many cases similar to those used
by compiler optimizers. We describe a large number of
such transformations, classify them, and evaluate them
with respect to their potency (To what degree is a hu-
man reader confused?), resilience (How well are auto-
matic deobfuscation attacks resisted?), and cost (How
much overhead is added to the application?).

We finally discuss some possible deobfuscation tech-
niques (such as program slicing) and possible counter-
measures an obfuscator could employ against them.

1 Introduction

Given enough time, effort and determination, a compe-
tent programmer will always be able to reverse engineer
any application. Having gained physical access to the
application, the reverse engineer can decompile it (us-
ing disassemblers or decompilers [4]) and then analyze
its data structures and control flow. This can either be
done manually or with the aid of reverse engineering
tools such as program slicers [28].

This is not a new problem. Until recently, however,
it is a problem that has received relatively little at-
tention from software developers. The reason is that
most programs are large, monolithic, and shipped as
stripped, native code, making them difficult (although
never impossible) to reverse engineer.

This situation is changing. It is becoming more and
more common to distribute software in forms that are
easy to decompile and reverse engineer. Important ex-
amples include Java bytecode [7] and the Architecture
Neutral Distribution Format (ANDF) [18]. Java appli-
cations in particular pose a problem to software de-
velopers. They are distributed over the Internet as
Java class files, a hardware-independent virtual ma-
chine code that retains virtually all the information of
the original Java source. Hence, these class files are easy
to decompile. Moreover, because much of the compu-
tation takes place in standard libraries, Java programs
are often small in size and therefore relatively easy to
reverse engineer.

The main concern of Java developers is not outright
reengineering of entire applications. There is relatively
little value in such behavior since it clearly violates
copyright law [26], and can be handled through liti-
gation. Rather, developers are mostly frightened by
the prospect of a competitor being able to extract pro-
prietary algorithms and data structures from their ap-
plications in order to incorporate them into their own
programs. Not only does it give the competitor a com-
mercial edge (by cutting development time and cost),
but it is also difficult to detect and pursue legally. The
last point is particularly valid for small developers who
may ill afford lengthy legal battles against powerful cor-
porations [19] with unlimited legal budgets.

The purpose of this paper is to discuss the various
forms of technical protection of intellectual property
which are available to software developers. We will re-
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Figure 1: Classification of (a) kinds of protection against malicious reverse engineering, (b) the quality of an obfuscating
transformation, (c) information targeted by an obfuscating transformation, (d) layout obfuscations, (e) data obfuscations, (f)

control obfuscations, and (g) preventive obfuscations.

strict our discussion to Java programs distributed over
the Internet as Java class-files, although most of our
results will apply to other languages and architecture-
neutral formats as well. We will argue that the only
reasonable approach to the protection of mobile code is
code obfuscation. We will furthermore present a number
of obfuscating transformations, classify them according
to effectiveness and efficiency, and show how they can
be put to use in an automatic obfuscation tool.

The remainder of the paper is structured as follows.
In Section 2 we give an overview of different forms
of technical protection against software theft and ar-
gue that code obfuscation currently affords the most
economical prevention. In Section 3 we give a brief
overview of the design of Kava, a code obfuscator for
Java, which is currently under construction. Sections 4
and 5 describe the criteria we use to classify and evalu-

ate different types of obfuscating transformations. The
main contributions of the paper are contained in Sec-
tions 6, 7, 8, and 9, which present a catalogue of ob-
fuscating transformations. In Section 10 we give more
detailed obfuscation algorithms. We conclude with a
summary of our results and a discussion of future direc-
tions of code obfuscation (Section 11).

2 Protecting Intellectual Property

Consider the following scenario. Alice is a small soft-
ware developer who wants to make her applications
available to users over the Internet, presumably at a
charge. Bob is a rival developer who feels that he could
gain a commercial edge over Alice if he had access to
her application’s key algorithms and data structures.
This can be seen as a two-player game between two



adversaries: the software developer (Alice) who tries to
protect her code from attack, and the reverse engineer
(Bob) whose task it is to analyze the application and
convert it into a form that is easy to read and under-
stand. Note that it is not necessary for Bob to convert
the application back to something close to Alice’s origi-
nal source; all that is necessary is that the reverse engi-
neered code be understandable by Bob and his program-
mers. Note also that it may not be necessary for Alice
to protect her entire application from Bob; it probably
consists mostly of “bread-and-butter code” that is of no
real interest to a competitor.

Alice can protect her code from Bob’s attack using
either legal or technical protection. While copyright law
does cover software artifacts, economic realities make
it difficult for a small company like Alice’s to enforce
the law against a larger and more powerful competi-
tor. A more attractive solution is for Alice to protect
her code by making reverse engineering so technically
difficult that it becomes impossible or at the very least
economically inviable. Some early attempts at technical
protection are described by Gosler [6].

The most secure approach is for Alice not to sell
her application at all, but rather sell its services. In
other words, users never gain access to the application
itself but rather connect to Alice’s site to run the pro-
gram remotely (Figure 2(a)), paying a small amount
of electronic money every time. The advantage to Al-
ice is that Bob will never gain physical access to the
application and hence will not be able to reverse engi-
neer it. The downside is of course that, due to limits
on network bandwidth and latency, the application will
perform much worse than if it had run locally on the
user’s site. A partial solution is to break the application
into two parts: a public part that runs locally on the
user’s site, and a private part (that contains the algo-
rithms that Alice wants to protect) that is run remotely
(Figure 2(b)).

Another approach would be for Alice to encrypt
her code before it is sent off to the users (Fig-
ure 3). Unfortunately, this only works if the entire
decryption/execution process takes place in hardware.
Such systems are described in Herzberg [11] and Wil-
helm [31]. If the code is executed in software by a virtual
machine interpreter (as is most often the case with Java
bytecodes), then it will always be possible for Bob to
intercept and decompile the decrypted code.

Java has gained popularity mainly because of its ar-
chitecture neutral bytecode. While this clearly facili-
tates mobile code, it does decrease the performance by
an order of magnitude in comparison to native code.
Predictably, this has lead to the development of just-in-
time compilers that translate Java bytecodes to native
code on-the-fly. Alice could make use of such translators

to create native code versions of her application for all
popular architectures. When downloading the applica-
tion, the user’s site would have to identify the architec-
ture/operating system combination it is running, and
the corresponding version would be transmitted (Fig-
ure 4). Only having access to the native code will make
Bob’s task more difficult, although not impossible.

There is a further complication with transmitting
native code. The problem is that — unlike Java byte-
codes which are subjected to bytecode verification before
execution — native codes cannot be run with complete
security on the user’s machine. If Alice is a trusted
member of the community, the user may accept her
assurances that the application does not do anything
harmful at the user’s end. To make sure that no one
tries to contaminate the application, Alice would have
to digitally sign the codes as they are being transmit-
ted, to prove to the user that the code was the original
one written by her.

The final approach we are going to consider is code
obfuscation (Figure 5). The basic idea is for Alice to
run her application through an obfuscator, a program
that transforms the application into one that is func-
tionally identical to the original but which is much more
difficult for Bob to understand. It is our belief that ob-
fuscation is a viable technique for protecting software
trade secrets, that has yet to receive the attention that
it deserves.

Unlike server-side execution, code obfuscation can
never completely protect an application from malicious
reverse engineering efforts. Given enough time and de-
termination, Bob will always be able to dissect Alice’s
application to retrieve its important algorithms and
data structures. To aid this effort, Bob may try to run
the obfuscated code through an automatic deobfuscator
that attempts to undo the obfuscating transformations.

Hence, the level of security from reverse engineering
that an obfuscator adds to an application depends on
(a) the sophistication of the transformations employed
by the obfuscator, (b) the power of the available deob-
fuscation algorithms, and (c) the amount of resources
(time and space) available to the deobfuscator. Ide-
ally, we would like to mimic the situation in current
public-key cryptosystems, where there is a dramatic dif-
ference in the cost of encryption (finding large primes
is easy) and decryption (factoring large numbers is dif-
ficult). Later on in the paper we will see that there are,
in fact, obfuscating transformations that can be applied
in polynomial time but which require exponential time
to deobfuscate.
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Figure 2: Protection by (a) Server-side and (b) Partial Server-side execution.

3 The Design of a Java Obfuscator

Figure 6 outlines the design of the Java obfuscation tool
Kava (Konfused Java') which is currently under devel-
opment. Input to the tool is a Java application, given
as a set of Java class files. The user also selects the re-
quired level of obfuscation (the potency) and the maxi-
mum execution time/space penalty that the obfuscator
is allowed to add to the application (the cost). Kava
reads and parses the class files along with any library
files referenced directly or indirectly. A complete in-
heritance tree is constructed, as well as a symbol table
giving type information for all symbols, and control flow
graphs for all methods.

Kava contains a large pool of code transformations
which will be described later in this paper. Before these
can be applied, however, a preprocessing pass must col-
lect various types of information about the application.
Some kinds of information can be gathered using stan-
dard compiler techniques such as inter-procedural data-
flow analysis and data dependence analysis, some can be
provided by the user, and some are gathered using spe-

1Kava, made from the Kava root (Piper Methysticum), is a
ceremonial, slightly intoxicating, drink of the south pacific.

cialized techniques. Pragmatic analysis, for example,
analyses the application to see what sort of language
constructs and programming idioms it contains.

The information gathered during the preprocessing
pass is used to select and apply appropriate code trans-
formations. All types of language constructs in the ap-
plication can be the subject of obfuscation: classes can
be split or merged, methods can be changed or created,
new control- and data structures can be created and
original ones modified, etc. New constructs added to
the application are selected to be as similar as possi-
ble to the ones in the source application, based on the
pragmatic information gathered during the preprocess-
ing pass.

The transformation process is repeated until the re-
quired potency has been achieved or the maximum cost
has been exceeded. The output of the tool is a new ap-
plication — functionally equivalent to the original one —
normally given as a set of Java class files. The tool will
also be able to produce Java source files annotated with
information about which transformations have been ap-
plied, and how the obfuscated code relates to the orig-
inal source. The annotated source will be useful for
debugging.
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Figure 6: Architecture of Kava, the Java obfuscator. The main input to the tool is a set of Java class files and the obfuscation
level required by the user. The user may optionally provide files of profiling data, as generated by Java profiling tools. This
information can be used to guide the obfuscator to make sure that frequently executed parts of the application are not

obfuscated by very expensive transformations.

4 Classifying Obfuscating Transformations

In the remainder of this paper we will describe, classify,
and evaluate various obfuscating transformations. We
start by formalizing the notion of an obfuscating trans-
formation:

DEFINITION 1 (OBFUSCATING TRANSFORMATION)

Let P -5 P’ be a transformation of a source program
P into a target program P'.

P T, Plisan obfuscating transformation, if P and
P' have the same observable behavior. More precisely,
in order for P I+ P’ to be a legal obfuscating trans-
formation the following conditions must hold:

o If P fails to terminate or terminates with an error
condition, then P’ may or may not terminate.

e Otherwise, P’ must terminate and produce the
same output as P.

O

Observable behavior is defined loosely as “behavior as
experienced by the user.” This means that P’ may have
side-effects (such as creating files, sending messages over

the Internet, etc) that P does not, as long as these side
effects are not experienced by the user. Note that we do
not require P and P’ to equally efficient. In fact, many
of our transformations will result in P’ being slower or
using more memory than P.

The main dividing line between different classes of
obfuscation techniques is shown in Figure 1(c). We pri-
marily classify an obfuscating transformation according
to the kind of information it targets. Some simple trans-
formations target the lexical structure (the layout) of
the application, such as source code formatting, names
of variables, etc. In this paper, the more sophisticated
transformations that we are interested target either the
data structures used by the application or its flow of
control.

Secondly, we classify a transformation according to
the kind of operation it performs on the targeted in-
formation. As can be seen from Figures 1(d—g), there
are several transformations that manipulate the aggre-
gation of control or data. Such transformations typ-
ically break up abstractions created by the program-
mer, or construct new bogus abstractions by bundling
together unrelated data or control.



Similarly, some transformations affect the ordering
of data or control. In many cases the order in which
two items are declared or two computations are per-
formed has no effect on the observable behavior of the
program. There can, however, be much useful informa-
tion embedded in the chosen order, to the programmer
who wrote the program as well as to a reverse engineer.
The closer two items or events are in space or time, the
higher the likelihood that they are related in one way or
another. Ordering transformations try to explore this
by randomizing the order of declarations or computa-
tions.

5 Evaluating Obfuscating Transformations

Before we can attempt to design any obfuscating trans-
formations, we need to be able to evaluate the quality
of such a transformation. In this section we will at-
tempt to classify transformations according to several
criteria: how much obscurity they add to the program,
how difficult they are to break for a deobfuscator, and
how much computational overhead they add to the ob-
fuscated application.

5.1 Measures of Potency

We will first define what it means for a program P’ to be
more obscure (or complex or unreadable) than a program
P. Any such metric will, by definition, be rather vague,
since it must be based (in part) on human cognitive
abilities.

Fortunately, we can draw upon the vast body of
work in the Software Complexity Metrics branch of Soft-
ware Engineering. In this field, metrics are designed
with the intent to aid the construction of readable, re-
liable, and maintainable software. The metrics are fre-
quently based on counting various textual properties of
the source code and combining these counts into a mea-
sure of complexity. While some of the formulas that
have been proposed have been derived from empirical
studies of real programs, others have been purely spec-
ulative.

The detailed complexity formulas found in the met-
rics’ literature are of little interest to us, but they can
be used to derive general statements such as: “if pro-
grams P and P’ are identical except that P’ contains
more of property ¢ than P, then P’ is more complex
than P.” Given such a statement, we can attempt to
construct a transformation which adds more of the g-
property to a program, knowing that this is likely to
increase its obscurity.

In Table 1 we paraphrase some of the more pop-
ular complexity measures. When used in a software
construction project the goal is to minimize these mea-

sures. In contrast, when obfuscating a program we want
to mazimize the measures.

The complexity metrics allow us to formalize the
concept of potency which will be used in the remain-
der of this article as a measure of the usefulness of a
transformation. Informally, a transformation is potent
if it does a good job confusing Bob, by hiding the intent
of Alice’s original code. In other words, the potency of
a transformation measures how much more difficult the
obfuscated code is to understand (for a human) than
the original code. This is formalized in the following
definition:

DEFINITION 2 (TRANSFORMATION POTENCY) Let 7
be a behavior-conserving transformation, such that

P Iy P! transforms a source program P into a tar-
get program P'. Let E(P) be the complexity of P, as
defined by one of the metrics? in Table 1.

Toot(P), the potency of T with respect to a program
P, is a measure of the extent to which 7 changes the
complexity of P. It is defined as

Toot(P) & E(P')/E(P) - 1.
T is a potent obfuscating transformation if Toor(P) > 0.
O

For the purposes of this paper, we will measure potency
on a three-point scale, (low, medium, high).

The observations in Table 1 make it possible for us to
list some desirable properties of a transformation 7. In
order for 7 to be a potent obfuscating transformation,
it should

e increase overall program size (u1) and introduce
new classes and methods (u3).

e introduce new predicates (u2) and increase the
nesting level of conditional and looping constructs

(u3)-

e increase the number of method arguments (us5) and
inter-class instance variable dependencies (ug).

b,
pr)-

—

e increase the height of the inheritance tree

~~

e increase long-range variable dependencies (p4).

5.2 Maeasures of Resilience

At first glance it would seem that increasing 7pot(P)
would be trivial. To increase the ps metric, for example,
all we have to do is to add some arbitrary if-statements
to P:

2We are deliberately vague as to which particular metric (or

combination of metrics) to use since the exact choice is not critical
to our application.




METRIC

METRIC NAME CITATION

M1

Program Length Halstead [8]

E(P) increases with the number of operators and operands in P.

M2

Cyclomatic Complexity McCabe [20]

E(F) increases with the number of predicates in F'.

M3

Nesting Complexity Harrison [9]

E(F) increases with the nesting level of conditionals in F.

Ha

Data Flow Complexity Oviedo [23]

E(F) increases with the number of inter-basic block variable references in F.

Hs

Fan-in/out Complexity Henry [10]

E(F) increases with the number of formal parameters to F', and with the number of global
data structures read or updated by F'.

He

Data Structure Complexity Munson [21]

E(P) increases with the complexity of the static data structures declared in P. The complex-
ity of a scalar variable is constant. The complexity of an array increases with the number
of dimensions and with the complexity of the element type. The complexity of a record
increases with the number and complexity of its fields.

Hr

OO0 Metric Chidamber [3]

E(C) increases with (u2) the number of methods in C, (u2) the depth (distance from the
root) of C' in the inheritance tree, (u$) the number of direct subclasses of C, (ug) the number
of other classes to which C is coupled?, (%) the number of methods that can be executed in
response to a message sent to an object of C, (u}) the degree to which C’s methods do not
reference the same set of instance variables. Note: uf measures cohesion; i.e. how strongly

related the elements of a module are.

“Two classes are coupled if one uses the methods or instance variables of the other.

Table 1: Overview of some popular software complexity measures. E(X) is the complexity of a software component X. F is

a function or method, C a class, and P a program.

main() {
main() { S1;
S1; IN if (5==2) Si;
S2; S2;
} if (1>2) 93

}

Unfortunately, such transformations are virtually use-
less, since they can easily be undone by simple auto-
matic techniques. It is therefore necessary to introduce
the concept of resilience, which measures how well a
transformation holds up under attack from an auto-
matic deobfuscator. The resilience of a transformation
T can be seen as the combination of two measures:

Programmer Effort: the amount of time required to
construct an automatic deobfuscator that is able
to effectively reduce the potency of 7, and

Deobfuscator Effort: the execution time and space
required by such an automatic deobfuscator to ef-
fectively reduce the potency of 7.

It is important to distinguish between resilience and
potency. A transformation is potent if it manages to

confuse a human reader, but it is resilient if it confuses
an automatic deobfuscator.

We measure resilience on a scale from trivial to one-
way, as shown in Figure 7 (a). One-way transformations
are special, in the sense that they can never be undone.
This is typically because they remove information from
the program that was useful to the human program-
mer, but which is not necessary in order to execute the
program correctly. Examples include transformations
that remove formatting, scramble variable names, etc.
Other transformations typically add useless information
to the program that does not change its observable be-
havior, but which increases the “information load” on
a human reader. These transformations can be undone
with varying degrees of difficulty.

Figure 7 (b) shows that deobfuscator effort is classi-
fied as either polynomial time or exponential time. Pro-
grammer effort, the work required to automate the de-
obfuscation of a transformation 7, is measured as a
function of the scope of 7. This is based on the in-
tuition that it is easier to construct counter-measures
against an obfuscating transformation that only affects
a small part of a procedure, than against one that may
affect an entire program.
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The scope of a transformation is defined using ter-
minology borrowed from code optimization theory: T
is a local transformation if it affects a single basic block
of a control flow graph (CFG), it is global if it affects
an entire CFG, it is inter-procedural if it affects the flow
of information between procedures, and it is an inter-
process transformation if it affects the interaction be-
tween independently executing threads of control.

DEFINITION 3 (TRANSFORMATION RESILIENCE) Let
T be a behavior-conserving transformation, such that

P T, P' transforms a source program P into a target
program P’. T..s(P) is the resilience of T with respect
to a program P.

Tres(P)=o0ne-way if information is removed from P
such that P cannot be reconstructed from P’. Other-
wise,

def cq s
Tres = Res111ence(‘ﬁ)eobfuscator ’%rogra.mmer ),

effort effort

where Resilience is the function defined in the matrix
in Figure 7 (b). O

5.3 Maeasures of Execution Cost

In Figure 1(b) we see that potency and resilience are
two of the three components describing the quality of
a transformation. The third component, the cost of
a transformation, is the execution time/space penalty
which a transformation incurs on an obfuscated appli-
cation. We classify the cost on a four-point scale {free,
cheap, costly, dear), where each point is defined below:

DEFINITION 4 (TRANSFORMATION CoST) Let 7 be a

behavior-conserving transformation, such that P T,
P' transforms a source program P into a target program

P'. Teost(P) is the extra execution time/space of P’
compared to P.

if executing P’ requires ezpo-
dear  nentially more resources than

P.

if executing P’ requires
det | costly O(nP), p > 1, more resources

Teost (P) = 4 than P.
cheap if executing P’ requires O(n)
more resources than P.
free if executing P’ requires O(1)
\ more resources than P.

O

It should be noted that the actual cost associated
with a transformation depends on the environment in
which it is applied. For example, a simple assignment
statement "a=5" inserted at the topmost level of a pro-
gram will only incur a constant overhead. The same
statement inserted inside an inner loop will have a sub-
stantially higher cost. Unless noted otherwise, we al-
ways give the cost of a transformation as if it had been
applied at the outermost nesting level of the source pro-
gram.

5.4 Measures of Quality

We can now give a formal definition of the quality of an
obfuscating transformation:

DEFINITION 5 (TRANSFORMATION QUALITY)
Tquat(P), the quality of a transformation 7, is
defined as the combination of the potency, resilience,
and cost of T:

%ual(P) = (%ot(P)aﬁes(P),%ost(P))-



5.5 Layout Transformations

Before we explore novel transformations, we will briefly
consider the trivial layout transformations which are
typical of current Java obfuscators such as Crema [29)].
The first transformation removes the source code for-
matting information sometimes available in Java class
files. This is a one-way transformation because once the
original formatting is gone it cannot be recovered; it is a
transformation with low potency, because there is very
little semantic content in formatting, and no great con-
fusion is introduced when that information is removed;
finally, this is a free transformation since the space and
time complexity of the application is not affected.

Scrambling identifier names is also a one-way and
free transformation. However, it has a much higher po-
tency than formatting removal since identifiers contain
a great deal of pragmatic information.

6 Control Transformations

In this and the next few sections we will present a cat-
alogue of obfuscating transformations. Some have been
derived from well-known transformations used in other
areas such as compiler optimization and software reengi-
neering, others have been developed for the sole purpose
of obfuscation and are presented here for the first time.

In this section we will discuss transformations that
attempt to obscure the control-flow of the source appli-
cation. As indicated in Figure 1(f), we classify these
transformations as affecting the aggregation, ordering,
or computations of the flow of control. Control aggrega-
tion transformations break up computations that logi-
cally belong together or merge computations that do
not. Control ordering transformations randomize the
order in which computations are carried out. Compu-
tation transformations, finally, insert new (redundant or
dead) code, or make algorithmic changes to the source
application.

For transformations that alter the flow of control, a
certain amount of computational overhead will be un-
avoidable. For Alice this means that she may have to
choose between a highly efficient program, and one that
is highly obfuscated. Typically, an obfuscator will assist
her in this trade-off by allowing her to choose between
cheap and expensive transformations.

6.1 Opaque Predicates

The real challenge when designing control-altering
transformations is to make them not only cheap, but
also resistant to attack from deobfuscators. To achieve
this, many transformations rely on the existence of
opagque variables and opaque predicates. Informally, a
variable V' is opaque if it has some property ¢ which is
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known a priori to the obfuscator, but which is difficult
for the deobfuscator to deduce. Similarly, a predicate P
(a boolean expression) is opaque if a deobfuscator can
deduce its outcome only with great difficulty, while this
outcome is well known to the obfuscator.

Being able to create opaque variables and predi-
cates which are difficult for an obfuscator to crack is
a major challenge to a creator of obfuscation tools,
and the key to highly resilient control transforma-
tions. We measure the resilience of an opaque vari-
able or predicate (i.e. its resistance to deobfusca-
tion attacks) on the same scale as transformation re-
silience, i.e. (trivial,weak,strong,full,one-way). Simi-
larly, we measure the added cost of an opaque con-
struct on the same scale as transformation cost, i.e.
(free,cheap, costly,dear).

DEFINITION 6 (OPAQUE CONSTRUCTS) A variable V
is opaque at a point p in a program, if V has a property
q at p which is known at obfuscation time. We write
this as V] or V7 if p is clear from context.

A predicate P is opaque at p if its outcome is known
at obfuscation time. We write PIF (PI;‘F ) if P always
evaluates to False (True) at p, and P, if P sometimes
evaluates to True and sometimes to False. See Fig-
ure 8. Again, p will be omitted if clear from context.

Aaladlne

Figure 8: Different types of opaque predicates. Solid lines
indicate paths that may sometimes be taken, dashed lines
paths that will never be taken.

Below we give some examples of simple opaque con-
structs. These are easy to construct for the obfuscator,
and equally easy to crack for the deobfuscator. Sec-
tion 8 give examples of opaque constructs with much
higher resilience.

6.1.1 Trivial and Weak Opaque Constructs

An opaque construct is trivial if a deobfuscator can
crack it (deduce its value) by a static local analysis.
An analysis is local if it is restricted to a single basic
block of a control flow graph. Figure 9(a) gives some
examples.

We also consider an opaque variable to be triv-
ial if it is computed from calls to library functions
with simple, well-understood semantics. For a lan-
guage like Java which requires all implementations to



support a standard set of library classes, such opaque
variables are easy to construct. A simple example is
Mint v€[1’5]=random(1,5)-', where random(a, b) is a li-
brary function that returns an integer in the range
a---b. Unfortunately, such opaque variables are equally
easy to deobfuscate. All that is required is for the
deobfuscator-designer to tabulate the semantics of all
simple library functions, and then pattern-match on the
function calls in the obfuscated code.

An opaque construct is weak if a deobfuscator can
crack it by a static global analysis. An analysis is global
if it is restricted to a single control flow graph. Fig-
ure 9(b) gives some examples.

6.2 Computation Transformations

Computation Transformations fall into three categories:
hide the real control-flow behind irrelevant statements
that do not contribute to the actual computations, in-
troduce code sequences at the object code level for
which there exist no corresponding high-level language
constructs, or remove real control-flow abstractions or
introduce spurious ones.

6.2.1 Insert Dead or Irrelevant Code

The po and ps metrics suggest that there is a strong
correlation between the perceived complexity of a piece
of code and the number of predicates it contains. For-
tunately, the existence of opaque predicates makes it
easy for us to devise transformations that introduce new
predicates in a program.

Consider the basic block § = S - -5, in Figure 10.
In Figure 10(a) we insert an opaque predicate PT into
S, essentially splitting it in half. The PT predicate is
irrelevant code since it will always evaluate to True.

In Figure 10(b) we again break S into two halves,
and then proceed to create two different obfuscated ver-
sions S% and S® of the second half. S and S° will be
created by applying different sets of obfuscating trans-
formations to the second half of S. Hence, it will not be
directly obvious to a reverse engineer that S and S® in
fact perform the same function. We use a predicate P’
to select between S® and S® at runtime.

Figure 10(c) is similar to Figure 10(b), but this time
we introduce a bug into S°. The PT predicate always
selects the correct version of the code, S°.

6.2.2 Extend Loop Conditions

Figure 11 shows how we can obfuscate a loop by mak-
ing the termination condition more complex. The basic
idea is to extend the loop condition with a PT or PF
predicate which will not affect the number of times the
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loop will execute. The predicate we have added in Fig-
ure 11(d), for example, will always evaluate to True
since z2(z +1)2 =0 (mod 4).

6.2.3 Convert a Reducible to a Non-Reducible Flow
Graph

Often, a programming language is compiled to a native
or virtual machine code which is more expressive than
the language itself. When this is the case, it allows us
to device language-breaking transformations. A trans-
formation is language-breaking if it introduces virtual
machine (or native code) instruction sequences which
have no direct correspondence with any source language
construct. When faced with such instruction sequences
a deobfuscator will either have to try to synthesize an
equivalent (but convoluted) source language program,
or give up altogether.

For example, the Java bytecode has a goto instruc-
tion while the Java language has no corresponding goto-
statement. This means that the Java bytecode can ex-
press arbitrary control flow, whereas the Java language
can only (easily) express structured control flow. Tech-
nically [1], we say that the control flow graphs produced
from Java programs will always be reducible, but the
Java bytecode can express non-reducible flow graphs.

Since expressing non-reducible flow graphs becomes
very awkward in languages without gotos, we construct
a transformation which converts a reducible flow graph
to a non-reducible one. This can be done by turning a
structured loop into a loop with multiple headers. In
Figure 12(a) we add an opaque predicate P¥ to a while
loop, to make it appear that there is a jump into the
middle of the loop. In fact, this branch will never be
taken.

A Java decompiler would have to turn a non-
reducible flow graph into one which either duplicates
code or which contains extraneous boolean variables.
Alternatively, a deobfuscator could guess that all non-
reducible flow graphs have been produced by an ob-
fuscator, and simply remove the opaque predicate. To
counter this we can sometimes use the alternative trans-
formation shown in Figure 12(b). If a deobfuscator
blindly removes P¥, the resulting code will be incor-
rect.

6.2.4 Remove Library Calls and Programming Id-
ioms

Most programs written in Java rely heavily on calls to
the standard libraries. Since the semantics of the library
functions are well known, such calls can provide useful
clues to a reverse engineer. The problem is exacerbated
by the fact that references to Java library classes are
always by name, and these names cannot be obfuscated.



{ int v, a=5; b=6;

{ ir_flv, a=5; b=6; if () ---

v—" =a + b; .

if (b>5)" .- : (b is unchanged)

. T

if (random(1,5) < O)F if (b< 7)) at+;

} v=36 = (a > 5)?v=b*b:v=b
}
(a) (b)

Figure 9: Examples of trivial (a) and weak (b) opaque constructs.

S1;S82;5+-+3;5n

T N F
P.
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‘ SJ@+1; 3 Sn ‘ S;-’+1;"-;52
o—
£(Si) = £(5¢) = £(S?) F(S:) = £(57)

£(Si) # £(8?)

Figure 10: The Branch Insertion transformation.

S
k — f(k) (®

k « f(k)
j < g(k,j)
L — 7
- i=1; j=100;
1=13 . . .. . .
while (i<100) { IR while ((1.<.1_°°) g (i (G+1)*(G+1)%==0)") {
o — "
p o j=j*i+3;
}
(c) (d)

Figure 11: The Loop Condition Insertion transformation.
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while (E) do {
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}
} else
while (E) do {
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Figure 12: Reducible to Non-Reducible Flow graphs. In (a) we split the loop body Sa into two parts (S§ and S3), and insert
a bogus jump to the beginning of S5. In (b) we also break S; into two parts, S¢ and S?. S? is moved into the loop and an
opaque predicate PT ensures that S? is always executed before the loop body. A second predicate Q¥ ensures that S? is only

executed once.

In many cases the obfuscator will be be able to
counter this by simply providing its own versions of
the standard libraries. For example, calls to the Java
Dictionary class (which uses a hash table implementa-
tion) could be turned into calls to a class with identical
behavior, but implemented as (say) a red-black tree.
The cost of this transformation is not so much in exe-
cution time, but in the size of the program.

A similar problem occurs with clichés (or patterns),
common programming idioms that occur frequently in
many applications. An experienced reverse engineer
will search for such patterns to jump-start his under-
standing of an unfamiliar program. As an example, con-
sider linked lists in Java. The Java library has no stan-
dard class that provides common list operations such
as insert, delete, enumerate, etc. Instead, most Java
programmers will construct lists of objects in an ad hoc
fashion by linking them together on a next field. Iterat-
ing through such lists is a very common pattern in Java
programs. Techniques invented in the field automatic
program recognition [32] can be used to identify com-
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mon patterns and replace them with less obvious ones.
In the linked list case, for example, we might represent
the standard list data structure with a less common one,
such as cursors into an array of elements.

6.2.5 Table Interpretation

One of the most effective (and expensive) transforma-
tions is table interpretation.? The idea is to convert a
section of code (Java bytecode in our case) into a dif-
ferent virtual machine code. This new code is then exe-
cuted by a virtual machine interpreter included with the
obfuscated application. Obviously, a particular applica-
tion can contain several interpreters, each accepting a
different language and executing a different section of
the obfuscated application.

Since there is usually an order of magnitude slow-
down for each level of interpretation, this transforma-
tion should be reserved for sections of code that make
up a small part of the total runtime or which need a

3Thanks to Buz Uzgalis for pointing this out.



very high level of protection.

6.2.6 Add Redundant Operands

Once we have constructed some opaque variables we
can use algebraic laws to add redundant operands to
arithmetic expressions. This will increase the p; metric.
Obviously, this technique works best with integer ex-
pressions where numerical accuracy is not an issue. In
the obfuscated statement (1’) below we make use of an
opaque variable P whose value is 1. In statement (27)
we construct an opaque subexpression P/Q whose value
is 2. Obviously, we can let P and Q take on different
values during the execution of the program, as long as
their quotient is 2 whenever statement (2’) is reached.

(1) X=X+V; é

(2) Z=L+1;

(17) X=X+V*P=1;
(27) Z=L+(P=29/Q="/2) /2;

6.2.7 Parallelize Code

Automatic parallelization is an important compiler op-
timization used to increase the performance of applica-
tions running on multi-processor machines. Our reasons
for wanting to parallelize a program, of course, are dif-
ferent. We want to increase parallelism not to increase
performance, but to obscure the actual flow of control.
There are two possible operations available to us:

1. We can create dummy processes that perform no
useful task, and

2. we can split a sequential section of the application
code into multiple sections executing in parallel.

If the application is running on a single-processor ma-
chine, we can expect these transformations to have a
significant execution time penalty. This may be accept-
able in many situations, since the resilience of these
transformations is high: static analysis of parallel pro-
grams is very difficult since the number of possible ex-
ecution paths through a program grows exponentially
with the number of executing processes. Parallelization
also yields high levels of potency: a reverse engineer
will find a parallel program much more difficult to un-
derstand than a sequential one.

A section of code can be easily parallelized if it con-
tains no data dependencies (Wolfe [33]). For example,
if 51 and S» are two data-independent statements they
can be run in parallel:

2

Sa

Sl 52

T
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In a programming language like Java that has no ex-
plicit parallel constructs, programs will have to be par-
allelized using calls to thread (lightweight process) li-
braries.

A section of code that contains data dependencies
can be split into concurrent threads by inserting ap-
propriate synchronization primitives such as await and
advance [33]. Such a program will essentially be run-
ning sequentially, but the flow of control will be shifting
from one thread to the next:

S1
T s await (1) await(2)
s, | => 1 S, Ss
i advance advance
! W

6.3 Aggregation Transformations

Programmers overcome the inherent complexity of pro-
gramming by introducing abstractions. There is ab-
straction on many levels of a program, but the proce-
dural abstraction is the most important one. For this
reason, obscuring procedure and method calls is of the
utmost importance to the obfuscator. Below, we will
consider several ways in which methods and method
invocations can be obscured: inlining, outlining, inter-
leaving, and cloning. The basic idea behind all of these
is the same: (1) code which the programmer aggregated
into a method (presumably because it logically belonged
together) should be broken up and scattered over the
program and (2) code which seems not to belong to-
gether should be aggregated into one method.

6.3.1 Inline and Outline Methods

Inlining is, of course, a important compiler optimiza-
tion. It is also an extremely useful obfuscation trans-
formation since it removes procedural abstractions from
the program. Inlining is a highly resilient transforma-
tion (it is essentially one-way), since once a procedure
call has been replaced with the body of the called pro-
cedure and the procedure itself has been removed, there
is no trace of the abstraction left in the code.

Outlining (turning a sequence of statements into a
subroutine) is a very useful companion transformation
to inlining. Figure 13 shows how procedures P and @
are inlined at their call-sites, and then removed from
the code. Subsequently, we create a bogus procedural
abstraction by extracting the beginning of @’s code and
the end of P’s code into a new procedure R.
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Figure 13: Inlining and outlining transformations.

In object-oriented languages such as Java, inlining
may, in fact, not always be a fully one-way transforma-
tion. Consider a method invocation m.P(). The actual
procedure called will depend on the run-time type of m.
In cases when more than one method can be invoked at
a particular call site, we have to inline all possible meth-
ods [5] and select the appropriate code by branching on
the type of m (see Figure 14). Hence, even after inlin-
ing and removal of methods, the obfuscated code may
still contain some traces of the original abstractions.

Inline ‘ m.type = classl ‘

carmr() || (et L
i N

Figure 14: Inlining method calls. Unless we can stati-
cally determine the type of m, all possible methods to which
m.P()? could be bound must be inlined at the call site.

6.3.2 Interleave Methods

The detection of interleaved code is an important and
difficult reverse engineering task. Rugaber [25] writes:

One of the factors that can make a program
difficult to understand is that code responsible
for accomplishing more than one purpose may
be woven together in a single section. We call
this interleaving /[- - -/

Figure 15 shows how we can easily interleave two meth-
ods declared in the same class. The idea is to merge
the bodies and parameter lists of the methods and add
an extra parameter (or global variable) to discriminate
between calls to the individual methods. Ideally, the
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methods should be similar in nature to allow merging
of common code and parameters. This is the case in
Figure 15, where the first parameter of M1 and M2 have
the same type.

6.3.3 Clone Methods

When trying to understand the purpose of a subroutine
a reverse engineer will of course examine its signature
and body. However, equally important to understand-
ing the behavior of the routine are the different envi-
ronments in which it is being called. We can make this
process more difficult by obfuscating a method’s call
sites to make it appear that different routines are being
called, when, in fact, this is not the case.

Figure 16 shows how we can create several different
versions of a method by applying different sets of ob-
fuscating transformations to the original code. We use
method dispatch to select between the different versions
at runtime.

Method cloning is similar to the predicate insertion
transformations in Figure 10, except that here we are
using method dispatch rather than opaque predicates
to select between different versions of the code.

6.3.4 Loop Transformations

A large number of loop transformations have been de-
signed with the intent to improve the performance of (in
particular) numerical applications. See Bacon [2] for a
comprehensive survey. Some of these transformations
are useful to us since they also increase the complex-
ity metrics of Table 1. Loop Blocking (Figure 17(a)) is
used to improve the cache behavior of a loop by break-
ing up the iteration space so that the inner loop fits in
the cache. Loop unrolling (Figure 17(b)) replicates the
body of a loop one or more times. If the loop bounds
are known at compile time the loop can be unrolled
in its entirety. Loop fission (Figure 17(c)) turns a loop



class C {
method M1 (T1 a) {
S]lfl; . e e Szl;
}

method M2 (T1 b; T2 ¢) {
St 5%
}

L

}

{ C x=new C;
x.M1(a); x.M2(b, ¢); }

class C’ {
method M (T1 a; T2 c; int V) {
if (V==p) {S1%---S;'}
else {S12; ... gH2.1
}
}

{ C’ x=new C’;
x.M(a, c, V=P);
x.M(b, c, V79); }

Figure 15: Interleaving methods. An opaque variable V is passed to the interleaved method to discriminate between calls
to M1 and M2. There is, of course, nothing stopping us from merging the bodies in less obvious ways, possibly using several
opaque predicates P;(V): if (Pi(V)) SI' else ST°; if (Pa(V)) S5' else S5°; -7

class C {
method m (int x)
{85}

T

) L

{ Cx
x.m(5); ---
}

new C;
x.m(7);

class C1 {
method m (int x)
{st---S¢ }
method m1 (int x)
{8555}

}

class C2 inherits C1 {

}
{

method m (int x)

{88}
Cl x ;
if (P¥) x=new C1 else x=new C2;
x.m(5); ---; x.m1(7);

Figure 16: Cloning methods. €2::m and C1::m1 have been generated by applying different obfuscating transformations to the
body of C::m. The calls x.m(5)" and x.m1(7)" look as if they were made to two different methods, while in fact they go to
different-looking methods with identical behavior. C1::m is a buggy version of C: :m that is never called.

with a compound body into several loops with the same
iteration space.

All three transformations increase the p; and po
metrics, since they increase the source application’s to-
tal code size and number of conditions. The loop block-
ing transformation also introduces extra nesting, and
hence also increases the p3 metric.

Applied in isolation, the resilience of these transfor-
mations is quite low. It does not require much static
analysis for a deobfuscator to reroll an unrolled loop.
However, when the transformations are combined, the
resilience rises dramatically. For example, given the
simple loop in Figure 17(b), we could first apply un-
rolling, then fission, and finally blocking. Returning
the resulting loop to its original form would require a
fair amount of analysis for the deobfuscator.
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6.4 Ordering Transformations

Programmers tend to organize their source code to max-
imize its locality. The idea is that a program is easier
to read and understand if two items that are logically
related are also physically close in the source text. This
kind of locality works on every level of the source: there
is locality among terms within expressions, statements
within basic blocks, basic blocks within methods, meth-
ods within classes, classes within files, etc. All kinds of
spatial locality can provide useful clues to a reverse engi-
neer. Therefore, whenever possible, we randomize the
placement of any item in the source application. For
some types of items (methods within classes, for exam-
ple) this is trivial. In other cases (such as statements
within basic blocks) a data dependency analysis (see



L

for(i=1,i<=n,i++)
for(j=1,j<=n,j++)
ali,jl=bl[j,i]

(a)

for(I=1,I<=n,I+=64)

for (J=1,J<=n, J+=64)

for(i=I,i<=min(I+63,n),i++)
for(j=J,j<=min(J+63,n),j++)
ali,jl=blj,il

for(i=2,i<(n-1),i++)
a[i] += a[i-1]*a[i+1]

(b)

N

for(i=2,i<(n-2),i+=2) {
al[i] += al[i-1]#*al[i+1];
ali+1] += a[il*a[i+2];

}s

if (((n-2) % 2) 1)
a[n-1] += a[n-2]*a[n]

for(i=1,i<n,i++) {
a[i] += c;
x[i+i]l=d+x[i+1]*a[i]

T

(©) —

}

for(i=1,i<n,i++)
a[i] += c;
for(i=1,i<n,i++)
x[i+il=d+x[i+1]*a[i]

Figure 17: Loop transformation examples. Loop blocking (a), loop unrolling (b), and loop fission (c). These examples were

adapted from [2].

[2, 33]) will have to be performed to determine which
reorderings are legal.

These transformations have low potency (they do
not add much obscurity to the program) but their re-
silience is high, in many cases one-way. For example,
when the placement of statements within a basic block
has been randomized, there will be no traces of the orig-
inal order left in the resulting code.

Ordering transformations can be particularly useful
companions to the “Inline-Outline” transformation of
Section 6.3.1. The potency of that transformation can
be enhanced by (1) inlining several procedure calls in
a procedure P, (2) randomizing the order of the state-
ments in P, and (3) outlining contiguous sections of
P’s statements. This way, unrelated statements that
were previously part of several different procedures are
brought together into bogus procedural abstractions.

In certain cases it is also possible to reorder loops,
for example by running them backwards. Such loop re-
versal transformations are common in high-performance
compilers [2].

7 Data Transformations

In this section we will discuss transformations that ob-
scure the data structures used in the source application.
As indicated in Figure 1(e), we classify these transfor-
mations as affecting the storage, encoding, aggregation,
or ordering of the data.

7.1 Storage and Encoding Transformations

In many cases there is a “natural” way to store a par-
ticular data item in a program. For example, to iterate
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through the elements of an array we probably would
choose to allocate a local integer variable of the ap-
propriate size as the iteration variable. Other variable
types might be possible, but they would be less natural
and probably less efficient.

Furthermore, there is also often a “natural” interpre-
tation of the bit-patterns that a particular variable can
hold which is based on the type of the variable. For ex-
ample, we would normally assume that a 16-bit integer
variable storing the bit-pattern "0000000000001100"
would represent the integer value 12. Of course, these
are mere conventions and other interpretations are pos-
sible.

Obfuscating storage transformations attempt to
choose unnatural storage classes for dynamic as well
as static data. Similarly, encoding transformations at-
tempt to choose unnatural encodings for common data
types. Storage and encoding transformations often go
hand-in-hand, but they can sometimes be used in isola-
tion.

7.1.1 Change Encoding

As a simple example of an encoding transforma-
tion we will replace an integer variable i by
i’ = ¢; - i + co, where ¢; and co are constants.
For efficiency, we could choose ¢; to be a power of

two. In the example below, we let ¢; = 8 and ¢; = 3:

int i=1; int i=11;
while (i < 1000) { 7/, while (i<8003) {
<o A[i] ---; :> .- A[(i-3)/8] ---;

i++; i+=8;

} }

Obviously, overflow (and, in case of floating point vari-



ables, accuracy) issues need to be addressed. We
could either determine that because of the range of
the variable? in question no overflow will occur, or we
could change to a larger variable type.

There will be a trade-off between resilience and po-
tency on one hand, and cost on the other. A simple
encoding function such as i’ = ¢; - i + ¢2 in the ex-
ample above, will add little extra execution time but
can be deobfuscated using common compiler analysis
techniques [33, 2].

7.1.2 Promote Variables

There are a number of simple storage transformations
that promote variables from a specialized storage class
to a more general class. Their potency and resilience
are generally low, but used in conjunction with other
transformations they can be quite effective.

For example, in Java, an integer variable can be
promoted to an integer object. The same is true of
the other scalar types which all have corresponding
“packaged” classes. Since Java supports garbage
collection, the objects will be automatically removed
when they are no longer referenced. Here is an example:

int i=1; Int i = new Int(1);

while (i < 9) { T while (i.value < 9) {
cov A[4] -+ j .o« Ali.value] ---;
i++; i.value++;

}

It is also possible to change the lifetime of a variable.
The simplest such transform turns a local variable into
a global one which is then shared between independent
procedure invocations. For example, if procedures P
and @ both reference a local integer variable, and P
and @ cannot both be active at the same time® then the
variable can be made global and shared between them:

void P() { xi;:ﬂi:dcli() {

i =

void Q) { void QO) {
int k; cee koo

¢

) )
This transformation increases the us metric since the
number of global data structures referenced by P and
@ is increased.

7.1.3 Split Variables

Boolean variables and other variables of restricted range
can be split into two or more variables. We will write

4The range can be determined using static analysis techniques
or by querying the user.

5Unless the program contains threads this can be determined
by examining the static call graph.
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a variable V' split into k variables p;,---,pr as V =
[p1,---,pk]- Typically, the potency of this transforma-
tion will grow with k. Unfortunately, so will the cost of
the transformation, so we usually restrict k£ to 2 or 3.

To allow a variable V of type T to be split into two
variables p and q of type U requires us to provide three
pieces of information: (1) a function f(p,q) that maps
the values of p and g into the corresponding value of V,
(2) a function g(V') that maps the value of V into the
corresponding values of p and ¢, and (3) new operations
(corresponding to the primitive operations on values of
type T') cast in terms of operations on p and ¢. In the
remainder of this section we will assume that V is of
type boolean, and p and ¢ are small integer variables.

Figure 18(a) shows a possible choice of representa-
tion for split boolean variables. The table indicates that
if V has been split into p and ¢, and if, at some point
in the program, p = ¢ = 0 or p = ¢ = 1, then that
corresponds to V being False. Similarly, p = 0,g =1
or p=1,q = 0 corresponds to True.

Given this new representation, we have to device
substitutions for the built-in boolean operations (&, |,
~, "). The easiest way is simply to provide a run-time
lookup table for each operator. Tables for & and | are
shown in Figure 18(c) and (d), respectively. Given two
boolean variables Vi = [p,q] and Vo = [r,s], V1&V2 is
computed as AND[2p + ¢, 2r + s].

In Figure 18(e) we show the result of splitting
three boolean variables A=[al,a2], B=[b1,b2], and
C=[c1,c2]. An interesting aspect of our chosen rep-
resentation is that there are several possible ways to
compute the same boolean expression. Statements (3’)
and (4’) in Figure 18(e), for example, look different, al-
though they both assign False to a variable. Similarly,
while statements (5’) and (6’) are completely different,
they both compute A & B.

The potency, resilience, and cost of this transforma-
tion all grow with the number of variables into which
the original variable is split. The resilience can be fur-
ther enhanced by selecting the encoding at run-time. In
other words, the run-time look-up tables of Figure 18(b-
d) are not constructed at compile-time (which would
make them susceptible to static analyses) but by algo-
rithms included in the obfuscated application. This, of
course, would prevent us from using in-line code to com-
pute primitive operations, as done in statement (6’) in
Figure 18(e).

7.1.4 Convert Static to Procedural Data

Static data, particularly character strings, contain much
useful pragmatic information to a reverse engineer. A
simple way of obfuscating a static string is to convert it
into a program that produces the string. The program



g(V) | f(p,q)

p g V |2p+¢q p

0 0| False| 0 VAL[p,q] [[0 1

0 1| True 1 q 001

1 0| True 2 1(1]0

1 1| False 3
(a) (b)
(1) bool A,B,C; 1)
(2) A = True; (2°)
(3) B = False; (3?)
(4) C = False; T 4’)

() (5) C =A & B; i (5%)
(6) C=A & B; (67)
(7) C=A| B; (77)
(8) if (A) ---; (87)
9 if (B) .- 9%)
(10) if (C) --;

anD[A,B] |O 1 2 3 OR[A,B] O 1 2 3
013(0(0|0 03123

B 1{{3]1]2]3 B 11]1]2]2
2110121113 2121211
313[0(0|3 3((0[{1(2]0

(c) (d)

short al,a2,bl,b2,cl,c2;

al=0; a2=1;

b1=0; b2=0;

cl=1; c2=1;

x=AND[2*al+a2,2*b1+b2]; cl=x/2; c2=x%2;
cl=(al =~ a2) & (bl ~ b2); c2=0;
x=0R[2*al+a2,2*b1+b2]; cl=x/2; c2=x%2;

x=2*al+a2; if ((x==1) ||

(x==2)) -

if (b1 ~ b2) -

(10’) if (VAL[c1,c2]) ---;

Figure 18: Variable splitting example. Tables (b-d) are used to compute boolean operations. They are either constructed
by the obfuscator and stored in the as static data in the obfuscated application, or generated at run-time by the obfuscated

application itself.

— which could be a DFA, a Trie traversal, etc. — could
possibly produce other strings as well.

As an example, consider the function G in Figure 19.
This function was constructed to obfuscate the strings
"AAA", "BAAAA", and "CCB". The values produced by
G are G(1)="AAA", G(2)="BAAAA", G(3)=G(5)="CCB",
and G(4)="XCB" (which is not actually used in the pro-
gram). For other argument values, G may or may not
terminate.

Aggregating the computation of all static string data
into just one function is, of course, highly undesirable.
Much higher potency and resilience is achieved if the
G-function was broken up into smaller components that
were embedded into the “normal” control flow of the
source program.

It is interesting to note that we can combine this
technique with the table interpretation transformation
of Section 6.2.5. The intent of that obfuscation is to
convert a section of Java bytecode into code for another
virtual machine. The new code will typically be stored
as static string data in the obfuscated program. For
even higher levels of potency and resilience, however,
the strings could be converted to programs that produce
them, as explained above.

7.2 Aggregation Transformations

In contrast to imperative and functional languages,
object-oriented languages are more data-oriented than
control-oriented. In other words, in an object-oriented
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program, the control is organized around the data struc-
tures, rather than the other way around. This means
that an important part of reverse-engineering an object-
oriented application is trying to restore the program’s
data structures. Conversely, it is important for an ob-
fuscator to try to hide these data structures.

In most object-oriented languages, there are just two
ways to aggregate data: in arrays and in objects. In the
next three sections we will examine ways in which these
data structures can be obfuscated.

7.2.1 Merge Scalar Variables

Two or more scalar variables V; ---Vj can be merged
into one variable Vj;, provided the combined ranges of
Vi - Vi will fit within the precision of Vjs. For exam-
ple, two 32-bit integer variables could be merged into
one 64-bit variable. Arithmetic on the individual vari-
ables would be transformed into arithmetic on Vy;. As
a simple example, consider merging two 32-bit integer
variables X and Y into a 64-bit variable Z. Using the
merging formula

Z(X,Y) =22 .Y +X

we get the arithmetic identities in Figure 20(a). Some
simple examples are given in Figure 20(b).

The resilience of variable merging is quite low. A
deobfuscator only needs to examine the set of arith-
metic operations being applied to a particular variable
in order to guess that it actually consists of two merged



String G (int n) {

int i=0,k;

String S;

while (1) {
L1: if (n==1) {S[i++]="A";k=0;goto L6};
L2: if (n==2) {S[i++]="B";k=-2;goto L6};
L3: if (n==3) {S[i++]="C";goto L9};
L4: if (n==4) {S[i++]="X";goto L9};
L5: if (n==5) {S[i++]="C";goto Li1};

if (n>12) goto L1;

if (k++<=2) {S[i++]="A";goto L6} else goto LS8;

L6:

L8: return S;

L9: S[i++]="C"; goto L10;
L10: S[i++]="B"; goto L8;
L11: S[i++]="C"; goto L12;
L12: goto L10;

Figure 19: A function producing the the strings "AAA", "BAAAA" and "CCB".

ZX+rY) = 22.Y+(r+X) = ZXY)+r
(a) Z(X,Y+r) 222.(Y+7r)+X Z(X,Y) +r-2%2
ZX-rY) = 222.Y4+X-r = Z(X,Y)+(r—1)-X
ZXY-r) = 22.Y.r+X = Z(X,Y)+(r—1)-232.Y
(1) int X=45,Y=95; (1?) long Z=167759086119551045;
(2) X += 5; T.  (29) zZ += 5;
(b) (3) Y += 11; :> (3) Z += 47244640256;
(4) X *= c; (4°) Z += (c-1)*(Z & 4294967295) ;
(5) Y *= d; (57) Z += (d-1)*(Z & 18446744069414584320) ;

Figure 20: Merging two 32-bit variables X and Y into one 64-bit variable Z. Y occupies the top 32 bits of Z, X the bottom 32
bits. If the actual range of either X or Y can be deduced from the program, less intuitive merges could be used. (a) gives rules
for addition and multiplication with X and Y. (b) shows some simple examples. The example could be further obfuscated, for

example by merging (2’) and (3’) into "Z+=47244640261".

variables. We can increase the resilience by introduc-
ing bogus operations that could not correspond to any
reasonable operations on the individual variables. In
the example in Figure 20(b) we could insert operations
that appear to merge Z’s two halves, for example by
rotation: if (PF) Z = rotate(Z,5)".

A variant of this transformation is to merge V; - - - Vj,
into an array V4 = of the appropriate
type. If V7 ---V, are object reference variables, for ex-
ample, then the element type of V4 can be any class
that is higher in the inheritance hierarchy than any of
the types of Vi - - - Vj.
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7.2.2 Restructure Arrays

A number of transformations can be devised for ob-
scuring operations performed on arrays: we can split an
array into several sub-arrays, merge two or more arrays
into one array, fold an array (increasing the number of
dimensions), or flatten an array (decreasing the number
of dimensions).

Figure 21 shows some examples of array restructur-
ing. In statements (1-2) an array A is split up into two
sub-arrays A1 and A2. A1 holds the elements of A that
have even indices, and A2 holds the elements with odd
indices.

Statements (3-4) of Figure 21 show how two integer
arrays B and C can be interleaved into a resulting array
BC. The elements from B and C are evenly spread over



the resulting array.

Statements (6-7) demonstrate how a one-
dimensional array D can be folded into a two-
dimensional array D1.  Statements (8-9), finally,
demonstrate the reverse transformation: a two-
dimensional array E is flattened into a one-dimensional
array E1.

Array splitting and folding increase the pg data com-
plexity metric. Array merging and flattening, on the
other hand, seem to decrease this measure. While this
may seem to indicate that these transformations have
only marginal or even negative potency, this, in fact, is
deceptive. The problem is that the complexity metrics
of Table 1 fail to capture an important aspect of some
data structure transformations: they introduce struc-
ture where there was originally none or they remove
structure from the original program. This can greatly
increase the obscurity of the program. For example, a
programmer who declares a two-dimensional array does
so for a purpose: the chosen structure somehow maps
cleanly to the data that is being manipulated. If that
array is folded into a one-dimensional structure, a re-
verse engineer will have been deprived of much valuable
pragmatic information.

7.2.3 Modify Inheritance Relations

In current object-oriented language such as Java, the
main modularization and abstraction concept is the
class. Classes are essentially abstract data types
that encapsulate data (instance variables) and control
(methods). We write a class as C = (V, M), where V is
the set of C’s instance variables and M its methods.

In contrast to the traditional notion of abstract data
types, two classes C1 and C5 can be composed by aggre-
gation (C2 has an instance variable of type C4) as well as
by inheritance (C2 extends Cy by adding new methods
and instance variables). Borrowing the notation used
in [27], we write inheritance as C; = C; @ ACs. C; is
said to inherit from (71, its super- or parent class. The @
operator is the function that combines the parent class
with the new properties defined in AC;. The exact se-
mantics of @ depends on the particular programming
language. In languages such as Java, @ is usually inter-
preted as union when applied to the instance variables
and as overriding when applied to methods.

According to metric p,, the complexity of a class
C1 grows with its depth (distance from the root) in
the inheritance hierarchy, and the number of its direct
descendants. There are two basic ways in which we
can increase this complexity: we can split up (factor) a
class (Figure 22(a)) or insert a new, bogus, class (Fig-
ure 22(b)).

A problem with class factoring is its low resilience;
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there is nothing stopping a deobfuscator from simply
merging the factored classes. To prevent this, factoring
and insertion are normally combined as shown in Fig-
ure 22(d). Another way of increasing the resilience of
these types of transformations is to make sure that new
objects are created of all introduced classes.

Figure 22(c) shows a variant of class insertion, called
false refactoring. Refactoring is a (sometimes auto-
matic) technique for restructuring object-oriented pro-
grams whose structure has deteriorated [22]. Refactor-
ing is a two-step process. First, it is detected that two,
apparently independent classes, in fact implement simi-
lar behavior. Secondly, features common to both classes
are moved into a new (possibly abstract) parent class.
False refactoring is a similar operation, only it is per-
formed on two classes C; and Cs that have no common
behavior. If both classes have instance variables of the
same type, these can be moved into the new parent class
C5. C3’s methods can be buggy versions of some of the
methods from C; and Cs.

7.3 Ordering Transformations

In Section 6.4 we argued that (when possible) random-
izing the order in which computations are performed is
a useful obfuscation. Similarly, it is useful to random-
ize the order of declarations in the source application.
Particularly, we randomize the order of methods and
instance variables within classes and formal parameters
within methods. In the latter case, the correspond-
ing actuals will of course have to be reordered as well.
The potency of these transformations is low and the
resilience is one-way.

In many cases it will also be possible to re-
order the elements within an array. Simply put,
we provide an opaque encoding function f(7)
which maps the i:th element in the original ar-
ray into its new position of the reordered array:

int i=1, A[1000]; int i=1, A[1000];
while (i < 1000) { 7, while (i < 1000) {
cov A[4] -+ :> c ALFG)T -

it++; i++;
} }

8 Opaque Values and Predicates

As we have seen, opaque predicates are the major build-
ing block in the design of transformations that obfuscate
control flow. In fact, the quality of most control trans-
formations is directly dependent on the quality of such
predicates.

In Section 6.1 we gave examples of simple opaque
predicates with trivial and weak resilience. This means
that the opaque predicates can be broken (an automatic



1
(2)

int A[9];
Afi] = -+

int B[9],C[19];
B[i] = -+
Clil = --+;

(3)
(4)
(5)

int D[9];
for(i=0;i<=8;i++)
D[i]=2*D[i+1];

(6)
(M

int E[2,2];
for (i=0;i<=2;i++)
for(j=0;1i<=2;i++)
swap(E[1i,3j], E[j,i]);

(8)
(9

0o 1 2 3 4 5 6 7 8 9
[ Ao [ A1 [R2 [Ag [As[As [ Ao [Ar [ As[Ao]

=

(1)
(22)

int A1[4],A2[4];
if ((i%2)==0) A1[i/2]=---
else A2[i/2]=--;

int BC[29];
BC[3*i] = ---;
BC[i/2%3+1+i%2] = ---;

(3”)
(4”)
(5”)

int D1[1,4];
for(j=0;j<=1;j++)
for (k=0;k<=4;k++)

(6”)
(7)

if (k==4)
D1[j,k]=2%#D1[j+1,0];
else

D1[j,k1=2+D1[j,k+11;

(8’) int E1[8];
(97) for(i=0;i<=8;i++)
swap (E[i], E[3*(i%3)+1/31);

0 1 2 3 4

o 1 2 3 4 5 6 7 8 9 A1:|1:)0|A12|A24|A36|t8|
B:[Bo[Bi By [Bs|Ba[Bs [Bo [Br|Bs By A2: [A; [ Ay [ As [ A7 [ ]
¢: [T e TG GG TG T [ [6] Lo g, e e T
0o 1 2 3 4 5 6 7 8 9 '|0|00|11|21|32|43|2|4| [ C1o |
D:[Do | Dy [Dy|Ds[Dy|Ds[Ds |Dr[Dg|Dy] Di: o[Dy|D; Dy |Ds]Ds
2 : 2 1 D5 D6 D7 Dg Dg
E: 0]Eoo | Eos | Eoz 0 1 2 3 4 5 6 7 8
1| E E E
2 E::g E:j E::Z E1:|E010|E071|E0,2|E1,0|E1,1|E1,2|E2’0|E271|E2’2|

Figure 21: Array Restructuring. Array splitting (statements (1-2)), array merging (statements (3-5)), array folding (statements

(6-7)), and array flattening (statements (8-9)).

deobfuscator could determine their value) using local or
global static analysis. Obviously, we generally require a
much higher resistance to attack. Ideally, we would like
to be able to construct opaque predicates that require
worst case exponential time (in the size of the program)
to break but only polynomial time to construct. In
this section we will present two such techniques. The
first one is based on aliasing, the second on lightweight
processes.

8.1 Opaque Constructs Using Objects and Aliases

Inter-procedural static analysis is significantly compli-
cated whenever there is a possibility of aliasing. In fact,
different versions of precise static alias analysis have
been shown to be NP-hard [12] or even undecidable [24].
We can exploit this fact to construct opaque predicates
which are difficult to break. It should be noted that
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there are many fast but imprecise alias analysis algo-
rithms that will detect some aliases some of the time,
but not all aliases all of the time.

The basic idea is to construct a complex dynamic
structure and maintain a set of pointers into this struc-
ture. Opaque predicates can then be designed which
ask questions that can only be answered if an inter-
procedural aliasing analysis has been performed.

Consider the obfuscated method P in Figure 23. In-
terspersed with P’s original code are bogus method calls
and redundant computations guarded by opaque predi-
cates. The method calls manipulate two global pointers
g and h which point into different connected compo-
nents (G and H) of a dynamic structure. The state-
ment "g=g.Move ()" will non-deterministically update g
to point somewhere else within G. The statement h =
h.Insert(new Node)' inserts a new node into H and
updates h to point to some node within H. P (and other



methods that P calls) is given an extra pointer argument
f which also refers to objects within G.

This set-up allows us to construct opaque predicates
like those of statements 4 and 5 of Figure 23. The predi-
cate f==g may be either true or false since £ and g move
around within the same component. Conversely, g==
must be false since g and h refer to nodes within differ-
ent components.

Statements 6-9 in Figure 23 exploit aliasing. The
predicate in statement 7 will be true or false depend-
ing on whether £ and g point to the same or different
objects. The predicate in statement 8 must evaluate to
true since £ and h cannot alias the same object.

8.2 Opaque Constructs Using Threads

Parallel programs are more difficult to analyze stati-
cally than their sequential counterparts. The reason
is their interleaving semantics: n statements in a par-
allel region "'PAR S1; S2; ---; Sp; ENDPAR' can
be executed in n! different ways. In spite of this, some
static analyses over parallel programs can be performed
in polynomial time [15], while others require all n! in-
terleavings to be considered.

In Java, parallel regions are constructed using light-
weight processes known as threads. Java threads have
(from our point of view) two very useful properties: (1)
their scheduling policy is not specified strictly by the
language specification and will hence depend on the im-
plementation, and (2) the actual scheduling of a thread
will depend on asynchronous events generated by user
interaction, network trafic, etc. Combined with the in-
herent interleaving semantics of parallel regions, this
means that threads are very difficult to analyze stati-
cally.

We will use these observations to create opaque pred-
icates that will require worst-case exponential time to
break. The basic idea is very similar to the one used in
Section 8.1: a global data structure V is created and oc-
casionally updated, but kept in a state such that opaque
queries can be made. The difference is that V is up-
dated by concurrently executing threads.

Obviously, V' can be a dynamic data structure such
as the one created in Figure 23. The threads would
randomly move the global pointers g and h around in
their respective components, by asynchronously execut-
ing calls to move and insert. This has the advantage
of combining data races with interleaving and aliasing
effects, for very high degrees of resilience.

In Figure 24 we illustrate these ideas with a much
simpler example where V' is a pair of global integer vari-
ables X and Y. It is based on the well-known fact from
elementary number theory that, for any integers z and

Y, Ty? — 1 # 22,
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thread T {

thread S { int R;
int R; while (1) {
while (1) { R = random(1,C);
R = random(1,C); Y = 7*R#*R;
X = R#*R; sleep(2);
sleep(3); X *= X;
} sleep(5);

} }

}
int X, Y;
const C = sqrt(maxint)/10;
main () {
S.run(); T.run();

it ((Y-1) ==%"¢ [p]

Figure 24: In this example, the predicate at point will
always evaluate to False. Two threads S and T occasionally
wake up to update global variables X and Y with new random
values. Notice that S and T are involved in a data-race on
X, but that this does not matter as long as assignments are
atomic. Regardless of whether S or T wins the race, X will

hold the square of a number.

9 Deobfuscation and Preventive Transformations

Many of our obfuscating transformations (particularly
the control transformations of Section 6.2) can be said
to embed a bogus program within a real program. In
other words, an obfuscated application really consists of
two programs merged into one: a real program which
performs a useful task and a bogus program which com-
putes useless information. The sole purpose of the bo-
gus program is to confuse potential reverse engineers by
hiding the real program behind irrelevant code.

The opaque predicate is the main device the obfus-
cator has at its disposal to prevent the bogus inner pro-
gram from being easily identified and removed. For
example, in Figure 25(a), an obfuscator embeds bogus
code protected by opaque predicates within three state-
ments of a real program. A deobfuscator’s task is to
examine the obfuscated application and automatically
identify and remove the inner bogus program. To ac-
complish this, the deobfuscator must first identify and
then evaluate opaque constructs. This process is illus-
trated in Figure 25(b-d).

Figure 26 shows the anatomy of a semi-automatic
deobfuscation tool. It incorporates a number of tech-
niques that are well known in the reverse engineering
community. In the remainder of this section we will



briefly review some of these techniques and discuss var-
ious counter-measures (so called preventive transforma-
tions) that an obfuscator can employ to make deobfus-
cation more difficult.

9.1 Preventive Transformations

Preventive transformations (Figure 1(g)) are quite dif-
ferent in flavor from control or data transformations.
In contrast to these, their main goal is not to obscure
the program to a human reader. Rather, they are de-
signed to make known automatic deobfuscation tech-
niques more difficult (inherent preventive transforma-
tions), or to explore known problems in current deob-
fuscators or decompilers (targeted preventive transfor-
mations).

9.1.1 Inherent Preventive Transformations

Inherent preventive transformations will generally have
low potency and high resilience. Most importantly,
they will have the ability to boost the resilience of
other transformations. As an example, assume that
we have reordered a for-loop to run backwards, as
suggested in section 6.4. We were able to apply
this transformation only because we could determine
that the loop had no loop-carried data dependencies.
Naturally, there is nothing stopping a deobfuscator
from performing the same analysis and then returning
the loop to forward execution. To prevent this, we can
add a bogus data dependency to the reversed loop:

int B[50];
for(i=1;i<=10;i++) [ for(i=10;i>=1;i--){
A[il=i :> Alil=i;

B[i]+=B[ix*i/2]
}
The resilience this inherent preventive transformation
adds to the loop reordering transformation depends
on the complexity of the bogus dependency and the
state-of-the-art in dependency analysis [33].

9.1.2 Targeted Preventive Transformations

As an example of a targeted preventive transformation,
consider the HoseMocha [16] program. It was designed
specifically to explore a weakness in the Mocha [30] de-
compiler. HoseMocha inserts extra instructions after ev-
ery return-statement in every method in the source
program. This transformation has no effect on the
behavior of the application, but it is enough to make
Mocha crash.
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9.2 Identifying and Evaluating Opaque Constructs

The most difficult part of deobfuscation is identi-
fying and evaluating opaque constructs. Note that
identification and evaluation are distinct activi-
ties. An opaque construct can be local (contained
within a single basic block), global (contained
within a single procedure), or inter-procedural
(distributed  throughout the entire program).
For example, Mf (xxx==(T*xy*y—1)F) ..
is a local opaque predicate, whereas
R=x*x;---;S=T*y*y-1;---;if (R==8%).." is
global. If the computation of R and S were per-
formed in different procedures, the construct would be
inter-procedural. Obviously, identification of a local
opaque predicate is easier than identification of an
inter-procedural one.

9.3 Identification by Pattern Matching

A deobfuscator can use knowledge of the strategies em-
ployed by known obfuscators to identify opaque pred-
icates. A designer of a deobfuscator could exam-
ine an obfuscator (either by decompiling it or sim-
ply by examining the obfuscated code it generates)
and construct pattern-matching rules that can iden-
tify commonly used opaque predicates. This method
will work best for simple local predicates, such as
x*x == (T*y*y—1)"1 or random(1,5) < 0.

To thwart attempts at pattern matching, the obfus-
cator should avoid using canned opaque constructs. It
is also important to choose opaque constructs that are
syntactically similar to the constructs used in the real
application.

9.4 Identification by Program Slicing

The basic premise of this paper is that a program-
mer will find the obfuscated version of a program more
difficult to understand and reverse engineer than the
original one. The main reasons are that in the obfus-
cated program (a) live “real” code will be interspersed
with dead bogus code and (b) logically related pieces
of code will have been broken up and dispersed over
the program. Program slicing tools can be used by a
reverse engineer to counter these obfuscations. Such
tools can interactively aid the engineer to decompose a
program into manageable chunks called slices. A slice
of a program P with respect to a point p and a vari-
able v consists of all the statements of P that could
have contributed to v’s value at p. Hence, a program
slicer would be able to extract from the obfuscated pro-
gram the statements of the algorithm that computes an
opaque variable v, even if the obfuscator has dispersed
these statements over the entire program.



There are several strategies available to an obfusca-
tor to make slicing a less useful identification tool:

Add parameter aliases A parameter alias is two for-
mal parameters (or a formal parameter and a global
variable) that refer to the same memory location.
The cost of precise inter-procedural slicing grows
with the number of potential aliases in a program,
which in turn grows exponentially with the number
of formal parameters [13]. Hence, if the obfusca-
tor adds aliased dummy parameters to a program
it will either substantially slow down the slicer (if
precise slices are required), or force the slicer to
produce imprecise slices (if fast slicing is required).

Add variable dependencies Popular slicing tools
such as Unravel [17] work well for small slices,
but will sometimes require excessive time to
compute larger ones. For example, when working
on a 4000 line C program Unravel in some cases
required over 30 minutes to compute a slice.
To force this behavior, the obfuscator should
attempt to increase slice sizes, by adding bogus
variable dependencies. In the example below, we
have increased the size of the slice computing
x by adding two statements which apparently
contribute to x’s value, but which, in fact, do not.

main() {
main() { T int x=1;
int x=1; i if (PF) x++;
X =X * 3; x=x + V0
} X =x % 3;

9.5 Statistical Analysis

A deobfuscator can instrument an obfuscated program
to analyze the outcome of all predicates. We will call
any deobfuscation method that examines the run-time
characteristics of an obfuscated application in this way
Statistical Analysis. The deobfuscator would alert the
reverse engineer to any predicate that always returns
the same truth value over a large number of test runs,
since they may turn out to be an opaque P (PF) pred-
icate. The deobfuscator could not blindly replace such
predicates with True (False), since this would be too
dangerous. Many applications will contain “real” pred-
icates that check for conditions that only happen under
exceptional circumstances, and to the deobfuscator they
will appear to behave identically to an opaque predi-
cate. As an example, consider if (Leap Year) ---.
Statistical analysis can also be used for evaluation.
When a potential opaque predicate (PT, say) in a pro-
gram M has been identified, we guess its value (True),
and make a version M’ of the obfuscated program where
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the opaque predicate has been replaced by the guessed
value. We then run M and M’ in parallel on the same
input, and compare to see that they produce identical
output. If the outputs are the same, we can conclude
that the predicate was part of the bogus, not the real,
application:

& Input ﬁ

program M; program M’;
if (PT).-. if (True) ---
;ﬁ& M. end M’.
Output Output’
<§;& Ident- AQE;

ical?

Obviously, we have to make sure that our chosen in-
puts adequately cover all paths in the program. Again,
if the program contains paths that are rarely taken
(if (Leap Year) ---") this will be difficult. Further-
more, generating large numbers of correct input/output
data is very difficult, particularly when internal struc-
ture of the application is unknown, or the input is en-
tered (as is often the case with Java programs) through
a complex graphical user interface.

To prevent identification by statistical analysis, the
obfuscator may choose to favor transformations that
insert P’ predicates (such as the one shown in Fig-
ure 10(b)) over those that insert PT or P¥ predicates.

Another possible counter-measure against statistical
analysis is to design opaque predicates in such a
way that several predicates have to be cracked at
the same time. One way of doing this is to let the
opaque predicates have side-effects. In the example
below the obfuscator has determined (through some
sort of static flow analysis) that statements S; and
S2 must always execute the same number of times.
The statements are obfuscated by introducing opaque
predicates which are calls to functions Q; and Q2. Q;
and Q2 increment and decrement a global variable k:

int k=0;
bool Q(x) {
k+=231; return (PT)}
{ bool Q2 (x) {
Si; k-=231; return (PJ)}

Sa; {
} if (@ (3)T) Si;
if (Qa(k)) Sa;
}
If the deobfuscator tries to replace one (but not both)
predicates with True, k will overflow. As a result, the



deobfuscated program will terminate with an error
condition.

9.6 Evaluation by Data-Flow Analysis

Deobfuscation is similar to many types of code op-
timization. Removing "if (False) ---'is dead code
elimination and moving identical code from if-statement
branches (e.g. S1 and 5] in Figure 25) is code hoisting,
both common code optimization techniques.

When an opaque construct has been identi-
fied we can attempt to evaluate it. In sim-
ple cases constant propagation using a reach-

ing definition data-flow analysis can be sufficient:
rx=5 HEE .;y:? O if (X*x==(7*y*y—1)) .o .-l.

9.7 Evaluation by Theorem Proving

If data-flow analysis is not powerful enough to break the
opaque predicate, a deobfuscator can attempt to use a
theorem prover. Whether this is doable or not depends
on the power of state-of-the-art theorem provers (which
is difficult to ascertain) and the complexity of the theo-
rem that needs to be proven. Certainly, theorems that
can be proved by induction (such as z?(z + 1) = 0
(mod 4)), are well within reach of current theorem
provers.

To make things more difficult, we can use theorems
which are know to be difficult to prove, or for which
no known proof exists. In the example below the deob-
fuscator will have to prove that the bogus loop always
terminates in order to determine that Sy is live code:

{

St
{ 7- n = random(1,2°32);
S1; i do
Sa2; n = ((n%2)!=0)73%n+1:n/2
} while (n>1);
Sa;

This is known as the Collatz problem. A conjecture
says that the loop will always terminate. Although
there is no known proof of this conjecture, the code is
known to terminate for all numbers up to 7-10'. Thus
this obfuscation is safe (the original and obfuscated
code behave identically), but difficult to deobfuscate.

9.8 Deobfuscation and Partial Evaluation

Deobfuscation also bears a striking resemblance to par-
tial evaluation [14]. A partial evaluator splits a program
into two parts: the static part which can be precom-
puted by the partial evaluator, and the dynamic part
which is executed at runtime. The dynamic part would
correspond to our original, unobfuscated, program. The
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static part would correspond to our bogus inner pro-
gram, which, if it were identified, could be evaluated
and removed at deobfuscation time.

Like all other static inter-procedural analysis meth-
ods, partial evaluation is sensitive to aliasing. Hence,
the same preventive transformations that were dis-
cussed in relation to slicing also applies to partial eval-
uation.

10 Obfuscation Algorithms

Given the obfuscator architecture of Section 3, the def-
inition of obfuscation quality in Section 5, and the dis-
cussion of various obfuscating transformations in Sec-
tions 6 to 9, we are now in a position to present more
detailed algorithms.

The top-level loop of an obfuscation tool will have
this general structure:

WHILE NOT Done(A4) DO
S := SelectCode(A);

T := SelectTransform(S);
A := Apply(T,S);
END;

SelectCode returns the next source code object® to be
obfuscated. SelectTransform returns the transforma-
tion which should be used to obfuscate the particular
source code object. Apply applies the transformation
to the source code object and updates the application
accordingly. Done determines when the required level
of obfuscation has been attained. The complexity of
these functions will depend on the sophistication of the
obfuscation tool. At the simplistic end of the scale,
SelectCode and SelectTransform could simply return
random source code object/transformations, and Done
could terminate the loop when the size of the applica-
tion exceeds a certain limit. Normally, such behavior is
insufficient.

Algorithm 1 gives a description of a code obfuscation
tool with a much more sophisticated selection and ter-
mination behavior. The algorithm makes use of several
data structures which are constructed by Algorithms 5,
6, and 7:

P, For each source code object S, P(S) is the set
of language constructs the programmer used in S.
P,(S) is used to find appropriate obfuscating trans-
formations for S.

A For each source code object S, A(S) = {T; —
Vi, -+, Tn = V,} is a mapping from transforma-
tions 7; to values V;, describing how appropriate

In the following, the term source code object will refer to the
classes, methods, basic blocks, etc. that make up an application,
as well as the application itself.



it would be to apply 7; to S. The idea is that
certain transformations may be inappropriate for a
particular source code object S, because they in-
troduce new code which is “unnatural” to S. The
new code would look out of place in S and hence
would be easy to spot for a reverse engineer. The
higher the appropriateness value V; the better the
code introduced by transformation 7; will fit in.

I For each source code object S, I(.9) is the obfuscation
priority of S. I(S) describes how important it is
to obfuscate the contents of S. If S contains an
important trade secret then I(.S) will be high, if it
contains mainly “bread-and-butter” code I(S) will
be low.

R For each routine M, R(M) is the execution time rank
of M. R(M) = 1 if more time is spent executing
M than any other routine.

The primary input to Algorithm 1 is an application 4
and a set of obfuscating transformations {71, 72, -}.
The algorithm also requires information regarding each
transformation, particularly three quality functions
Tres(S), Tpot(S), and Teost(S) (similar to their name-
sakes in Section 5, but returning numerical values) and
a function P;:

Tres(S) returns a measure of the resilience of transfor-
mation 7 when applied to source code object S,
i.e. how well 7 will withstand an attack from an
automatic deobfuscator.

Toot(S) returns a measure of the potency of transfor-
mation 7 when applied to source code object S,
i.e. how much more difficult S will be for a human
to understand after having been obfuscated by 7.

Teost(S) returns a measure of the execution time and
space penalty added by 7 to S.

P, maps each transformation 7 to the set of language
constructs that 7 will add to the application.

Points 1 to 3 of Algorithm 1 load the application to be
obfuscated, and builds appropriate internal data struc-
tures. Point 4 builds P,(S), A(S), I(S), and R(M).
Point 5 applies obfuscating transformations until the re-
quired obfuscation level has been attained or until the
maximum execution time penalty is exceeded. Point 6,
finally, rewrites the new application A’.

ALGORITHM 1 (CODE OBFUSCATION)
input: a) An application A made up of source
code or object code files Cy,Co, - - -.

b) The standard libraries L, La,--- de-
fined by the language.

c) A set of obfuscating transformations
{Ti, T2, -}

d) A mapping P; which, for each transfor-
mation 7 gives the set of language con-
structs that 7 will add to the applica-
tion.

e) Three functions Tres(S), Tpot(S), and
Teost(S) expressing the quality of a
transformation 7 with respect to a
source code object S.

f) A set of input data I = {I;,I>,---} to
A.

g) Two numeric values AcceptCost>0 and
ReqObf>O0. AcceptCost is a mea-
sure of the maximum extra execution
time/space penalty the user will accept.
ReqObf is a measure of the amount of
obfuscation required by the user.

output: An obfuscated application A" made up
of source code or object code files.

1. Load the application Ci,Cs, -+ to be obfuscated.
The obfuscator could either

(a) load source code files, in which case the obfus-
cator would have to contain a complete com-
piler front-end performing lexical, syntactic,
and semantic analysis,” or

(b) load object code files. If the object code re-
tains most or all of the information in the
source code (as is the case with Java class
files), this method is preferable.

2. Load library code files Lj, Ls,--- referenced di-
rectly or indirectly by the application.

3. Build an internal representation of the application.
The choice of internal representation depends on
the structure of the source language and the com-
plexity of the transformations the obfuscator im-
plements. A typical set of data structures might
include:

(a) A control-flow graph for each routine in 4.
(b) A call-graph for the routines in 4.

(c) An inheritance graph for the classes in 4.

7A less powerful obfuscator that restricts itself to purely syn-
tactic transformations could manage without semantic analysis.
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4. Construct mappings R(M) and P,(S) (using Al-
gorithm 5), I(S) (using Algorithm 6), and A(S)
(using Algorithm 7).

5. Apply the obfuscating transformations to the
application. At each step we select a source
code object S to be obfuscated and a suit-
able transformation 7 to apply to S. The
process terminates when the required obfus-
cation level has been reached or the accept-

able execution time cost has been exceeded.
REPEAT

S := SelectCode(]);
T := SelectTransform(S,A);
Apply T to S and update relevant data
structures from point 3;
UNTIL Done(ReqObf, AcceptCost, S, T, I)

6. Reconstitute the obfuscated source code objects
into a new obfuscated application, A’.

O

ALGORITHM 2 (SelectCode)

input: The obfuscation priority mapping I as
computed by Algorithm 6.
output: A source code object S.

I maps each source code object S to I(S), which is
a measure of how important it is to obfuscate S. To
select the next source code object to obfuscate, we can
treat I as a priority queue. In other words, we select S

so that I(.9) is maximized. O
ALGORITHM 3 (SelectTransform)
input: a) A source code object S.
b) The appropriateness mapping A as
computed by Algorithm 7.
output: A transformation 7.

Any number of heuristics can be used to select the most
suitable transformation to apply to a particular source
code object S. However, there are two important
issues to consider. Firstly, the chosen transformation
must blend in naturally with the rest of the code in
S. This can be handled by favoring transformations
with a high appropriateness value in A(S). Secondly,
we want to favor transformations which yield a high
"bang-for-the-buck’, i.e. high levels of obfuscation with
low execution time penalty. This is accomplished by
selecting transformations that maximize potency and
resilience, and minimize cost. These heuristics are
captured by the following code, where wi,ws,ws; are
implementation-defined constants:

Return a transform 7, such that
T =V e A(S), and

w1 Tpot (S)+wa Tres (S)+wsV
Teost (S)

is maximized;
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ALGORITHM 4 (Done)

input: a) ReqObf, the remaining level of obfusca-
tion.
b) AcceptCost, the remaining acceptable
execution time penalty.
¢) A source code object S.
d) A transformation 7.
e) The obfuscation priority mapping I.
output: a) An updated ReqObf.
b) An updated AcceptCost.
¢) An updated obfuscation priority map-
ping I.
d) A boolean return value which is TRUE

if the termination condition has been
reached.

The Done function serves two purposes. It updates
the priority queue I to reflect the fact that the source
code object S has been obfuscated, and should receive
a reduced priority value. The reduction is based on a
combination of the resilience and potency of the trans-
formation. Done also updates ReqObf and AcceptCost,
and determines whether the termination condition has
been reached. w;,ws,ws,ws are implementation-defined
constants:

I(S) := I(S) — (w1 Tpot(S) + w2Tres(S)) ;
ReqObf := ReqObf - (w3Tpot(S) + waTres(S));
AcceptCost := AcceptCost - %Ost(S);

RETURN AcceptCost<0 OR ReqO0bf<0;

O

ALGORITHM 5 (PRAGMATIC INFORMATION)

input: a) An application A.
b) A set of input data I = {I;,I5,---} to
A.
output: a) A mapping R(M) which, for every rou-
tine M in A, gives the execution time
rank of M.
b) A mapping P,(S), which, for every

source code object S in A, gives the set

of language constructs used in S.
Compute pragmatic information. This information will
be used to choose the right type of transformation for
each particular source code object.

1. Compute dynamic pragmatic information. ILe.
run the application under a profiler on the in-
put data set I provided by the user. Compute
R(M) (the execution time rank of M) for each rou-
tine/basic block, indicating where the application
spends most of its time.

2. Compute static pragmatic information Pg(S).
Ps(S) provides statistics on the kinds of lan-



guage constructs the programmer used in S.
FOR S := each source code object in 4 DO

O := The set of operators that S uses;

C := The set of high-level language
constructs (WHILE statements,
exceptions, threads, etc.) that S uses;

L := The set of library classes/routines
that S references;

P,(S):=0UCUL;

END FOR

ALGORITHM 6 (OBFUSCATION PRIORITY)

input: a) An application A.
b) R(M), the rank of M.
output: A mapping I(S) which, for each source

code object S in A, gives the obfusca-
tion priority of S.
I(S) can be provided explicitly by the user, or it can
be computed using a heuristic based on the statistical
data gathered in Algorithm 5. Possible heuristics
might be:

1. For any routine M in A, let I(M) be inversely pro-
portional to the rank of M, R(M). Le. the idea is
that “if much time is spent executing a routine M,
then M is probably an important procedure that
should be heavily obfuscated.”

2. Let I(S) be the complexity of S, as defined by
one of the software complexity metrics in Table 1.
Again, the (possibly flawed) intuition is that com-
plex code is more likely to contain important trade
secrets than simple code.

ALGORITHM 7 (OBFUSCATION APPROPRIATENESS)

input: a) An application A.

b) A mapping P; which, for each transfor-
mation 7, gives the set of language con-
structs 7 will add to the application.

c¢) A mapping P;(S) which, for each source

code object S in A, gives the set of lan-
guage constructs used in S.
A mapping A(S) which, for each source
code object S in A and each transfor-
mation 7, gives the appropriateness of
T with respect to S.

Compute the appropriateness set A(S) for each source

code object S. The mapping is based primarily on the

static pragmatic information computed in Algorithm 5.

output:
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FOR S := each source code object in 4 DO
FOR 7 := each transformation DO
V' := degree of similarity between
P(T) and P,(S);
A(S) :=AS)U{T » V};
END FOR
END FOR

11 Summary and Discussion

The main contribution of this paper is the insight that it
may under many circumstances be acceptable for an ob-
fuscated program to behave differently than the original
one. In particular, most of our obfuscating transforma-
tions make the target program slower or larger than the
original. In special cases we even allow the target pro-
gram to have different side-effects than the original, or
not to terminate when the original program terminates
with an error condition. Our only requirement is that
the observable behavior (the behavior as experienced by
a user) of the two programs should be identical.
Allowing such weak equivalence between original and
obfuscated program is a novel and very exciting idea. It
is our belief that the current paper only identifies some
of the more obvious transformations, and that there is
great potential for much future research. In particular,
we would like to see the following areas investigated:

1. New obfuscating transformations should be identi-
fied.

2. The interaction and ordering between different
transformations should be studied. This is similar
to work in code optimization, where the ordering
of a sequence of optimizing transformations has al-
ways been a difficult problem.

3. The relationship between potency and cost should
be studied. For a particular kind of code we would
like to know which transformations would give the
best “bang-for-the-buck”, i.e. the highest potency
at the lowest execution overhead.

For an overview of all the transformations that have
been discussed in the paper, see Tables 2 and 3. For
an overview of the opaque constructs that have been
suggested, see Table 4.

11.1 The Power of Obfuscation

Encryption and program obfuscation bear a striking re-
semblance to each other. Not only do both try to hide
information from prying eyes, they also purport to do
so for a limited time only. An encrypted document has
a limited shelf-life: it is safe only for as long as the



OBFUSCATION QUALITY
TARGET OPERATION TRANSFORMATION PoTENCY | RESILIENCE | CosTt METRICS | SECTION
Scramble Identifiers medium one-way free 5.5
Layout
Change Formatting low one-way free 5.5
Remove Comments high one-way free 5.5
Insert Dead or Irrelevant 1,142,143 6.2.1
Control Compu- Code _ Depends on the quality of
tations Extenq Loop Condition the opaque predicate and the 1,042,143 6.2.2
Reducible to Non- | nesting depth at which the B1,042,43 6.2.3
Reducible construct is inserted.
Add Redundant Operands 1 6.2.6
Remove Programming Id- | medium strong T I 6.2.4
ioms
Table Interpretation high strong costly U1 6.2.5
Parallelize Code high strong costly L1, b2 6.2.7
Inline Method medium one-way free B 6.3.1
Aggre- Outline Statements medium strong free 1 6.3.1
; Interleave Methods Depends on the quality of L1525 45 6.3.2
gation .
the opaque predicate.
Clone Methods [T 6.3.3
Block loop low weak free 1,102 6.3.4
Unroll Loop low weak cheap B 6.3.4
Loop Fission low weak free M1, 442 6.3.4
Reorder Statements low one-way free 6.4
Ordering
Reorder Loops low one-way free 6.4
Reorder Expression low one-way free 6.4
Change Encoding Depends on the complexity of I 7.1.1
Data Storage the encoding function.
& Promote Scalar to Object | low strong free 7.1.2
Encoding Change Variable Lifetime | low strong free Ha 7.1.2
Split Variable Depends on the number of 1 7.1.3
variables into which the orig-
inal variable is split.
Convert Static to Proce- | Depends on the complexity of B2 7.14
dural Data the generated function.
Merge Scalar Variables low weak free “1 7.2.1
Aggre-
gation Factor Class medium | { free 1 iy 7.2.3
Insert Bogus Class medium | } free 1 7.2.3
Refactor Class medium | { free 1 iy 7.2.3
Split Array 1 weak free L1542, 6 7.2.2
Merge Arrays 1 weak free N 7.2.2
Fold Array T weak cheap 1o, e 3 | 7.2.2
Flatten Array T weak free 7.2.2
. Reorder Methods & In- | low one-way free 7.3
Ordering .
stance Variables
Reorder Arrays low weak free 7.3

Table 2: Table of Transformations (Part A). A { in any of the quality columns indicates that the measure is dependent on
circumstances which are discussed indepth in the corresponding section. The METRICS column lists the complexity measures
affected by each transformation. See Table 1 for descriptions of the measures.
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OBFUSCATION QUALITY
TARGET OPERATION TRANSFORMATION PoTENCY | RESILIENCE | CosTt METRICS | SECTION
HoseMocha low trivial free 1 9
Preven- Targeted
tive Add Aliased Formals to | medium strong free L1 s 9.4
Inherent Prevent Slicing
Add Variable Dependen- | Depends on the quality of “1 9.4
cies to Prevent Slicing the opaque predicate.
Add Bogus Data Depen- | medium weak cheap 1 9.1.1
dencies
Use Opaque Predicates | medium weak free B 9.5
with Side-Effects
Make Opaque Predicates | ] ] 1 9.5
using Difficult Theorems
Table 3: Table of Transformations (Part B).
QUALITY
OPAQUE CONSTRUCT RESILIENCE | Cost SECTION
Created from calls to library | trivial Depends on the cost of the li- | 6.1.1
functions. brary function.
Created from local (intra-basic | trivial free ... cheap 6.1.1
block) information.
Created from global (inter-basic | weak free ... cheap 6.1.1
block) information.
Created from inter-procedural | full cheap ... costly 8.1
and aliasing information
Created from process interaction | full cheap ... costly 8.2
and scheduling

Table 4: Table of opaque constructs.

encryption algorithm itself withstands attack, and for
as long as advances in hardware speed do not allow
messages for the chosen key-length to be routinely de-
crypted. The same is true for an obfuscated application;
it remains secret only for as long as sufficiently powerful
deobfuscators have yet to be built.

For evolving applications this will not be a problem,
as long as the time between releases is shorter than
the time it takes for the deobfuscator to catch up with
the obfuscator. If this is the case, then by the time
an application can be automatically deobfuscated it is
already outdated and of no interest to a competitor.

However, if an application contains trade secrets that
can be assumed to survive several releases, then these
should be protected by means other than obfuscation.
Partial server-side execution (Figure 2(b)) seems the ob-
vious choice, but has the drawback that the application
will execute slowly or (when the network connection is
down) not at all.
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11.2 Other Uses of Obfuscation

It is interesting to note that there may be potential
applications of obfuscation other than the obvious one
we have been discussing. One possibility is to use ob-
fuscation in order to trace software pirates. The idea
is simple: A vendor creates a new obfuscated version
of his application for every new customer® and keeps a
record of to whom each version was sold. This is prob-
ably only reasonable if the application is being sold and
distributed over the net. If the vendor finds out that his
application is being pirated, all he needs to do is to get a
copy of the pirated version, compare it against the data
base, and see who bought the original application.’

8We can generate different obfuscated versions of the same
application by introducing an element of randomness into the
SelectTransform algorithm (Algorithm 3). Different seeds to the
random number generator will produce different versions.

91t is, in fact, not necessary to store a copy of every obfuscated
version sold. It suffices to keep the random number seed that was




Software pirates could themselves make (illicit) use
of obfuscation. Since the Java obfuscator we outlined
in Figure 6 works at the bytecode level, there is noth-
ing stopping a pirate from obfuscating a legally bought
Java application. The obfuscated version could then be
resold. When faced with litigation the pirate could ar-
gue that he is, in fact, not reselling the application that
he originally bought (after all, the code is completely
different!), but rather a legally reengineered version.
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Figure 22: Modifications of the inheritance hierarchy. Root is the root of the inheritance tree (Object in Java). Triangles
represent subtrees. There is an arrow from class C1 to C> if C5 inherits from C;. The two basic operations, class factoring
and class insertion, are shown in (a) and (b), respectively. After factoring class C, all references to C' in the program should
be replaced by Ci. Factoring and insertion are normally combined. This is done in (d), where the original class C is first split
into Ci and C>, and then an extra child is created for C.
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Node g, h;
method P(---,Node f) {
/¥ 1 %/ g = g.Move();
h = h.Move();
/¥ 2 */ h = h.Insert(new Node);

/* 3 x/ x.R(---., f.Move());

N

/* 6 */ f.Token=False;
g.Token=True;
]
e

/% T %/ if (£.Token)’

/* 8 */ f.Token=True;
h.Token=False;
* ] . T
/* 9 %/ if (f.Token)

Figure 23: Opaque predicates constructed from objects and aliases. We construct a dynamic structure made from Nodes.
Each Node has a boolean field Token and two pointer fields (represented by black dots) which can point to other nodes. The
structure is designed to consist of two connected components, G and H. There are two global pointers, g and h, pointing into
G and H, respectively.

{ { {
it (PY) if (P7) [51];
if (P

else else ;
{ Si§ S{; else
51 T ;
(a if (Q ) if (True) if (True) -
B zll :ﬁ 2‘; :,Z [5];
else else
. 1
X SPUE 85185 ° s;bug (54
} it (RF) if (False) . t
bug . bug . if (False)
S ’ S ’ Sbug’

%) 5] =

Figure 25: Obfuscation vs. deobfuscation. (a) shows an original program consisting of three statements Si—_3 being obfuscated.
The real program statements have been boxed for clarity. The unboxed code represents the bogus “program-within-the-
program”. In (b) a deobfuscator identifies “constant” opaque predicates (i.e. predicates that always evaluate to the same
result) and replaces them with their computed value. In (c) the obfuscator determines that statements S1 and S in fact are
identical, and hoists the common code from the conditional. In (d) the deobfuscator applies some final simplifications, and
returns the program to its original form.
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Figure 26: Architecture of a Java deobfuscation tool. The main input to the tool is an application made up of a set of
obfuscated Java class files. The reverse engineer may also provide files of input data to allow statistical execution information
to be gathered. The tool is likely to require extensive user interaction. Most theorem provers, for example, need guidance

to find profitable proof strategies. The output of the tool is a set of deobfuscated class files which can be converted to Java
source by a decompiler.
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