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Abstract

The 64-Bit technology introduces several new and and com-
plex tasks for software-developers. Even that the hardware
developing industry claims that future software development
should take care about the new introduced compiler systems,
it is necessary to have a deep inside view on how the
new underlaying 64-Bit assembly language works. This paper
describes what 64-Bit means for future software devlopments,
how 64-Bit influences assembly programming and how to port
applications programmed under 32-Bit to 64-Bit. It is heavy
based on the IA architecture and the Windows R© operationsys-
tem.
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I. Introduction

The introduction of the 64-Bit technology leads into several
discussions if this change is really necessary [21]. Some
arguments are to speed up computation time or to make
calculations more precise. These affords lead into hard prob-
lems which have to be solved by upcoming compilers or
operationsystems. Especially the necessary changes of the
operationsystem infrastructure causes heavy problem porting
older 32-Bit applications to 64-Bit compatibility. Examples for
enhanced operatingsystem detection have been described by

Kruse [15]. Since assembly programming is a comfortable task
under 32-Bit systems (e.g. MASM, TASM, NASM, FASM and
others), the question stays on how to port software and which
changes of the architecture affects the current programming
techniques.

II. The 64-Bit Architecture

The new 64-Bit Architecture introduces many innovations.
Some of them are described by Jarp [14]:

• Rich Instruction Set
• Bundled Execution
• Predicated Instructions
• Large Register Files
• Register Stack
• Rotating Registers
• Modulo Scheduled Loops
• Control/Data Speculation
• Cache Control Instructions
• High-precision Floating-Point

Compared to the IA-32 architecture the new IA-64 architecture
allows several advantages for the programmer. One of them
is the clear and explicit programming technique which results
in EPIC (Explicit Parallel Instruction Computing). EPIC is a
Intel R© IA-64 technique. Additional the programmer can code
now more register-based, which means that everything is kept
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in registers as long as possible. The resulting assembly is code
has a clear structure (example by Intel [9]):

.align 32

.section .text

.proc demo
demo:: ld4 r32 = [r32]

mov r55 = r24
add r44 = 32, r10
mov r17 = 3
;;

j_loop:
cmp.le p15,p0 = r32,r0
add r32 = -1,r32
;;

(p15) br.cond.spnt.few j_loop_end
;;
add r55 = r44, r43
fadd f6 = f4, f6
nop.m 0

(p17) ld8 r40 = [r50]
;;

j_loop_end:
(p16) add r50 = r40,r0

nop.f 0
br.ctop.sptk.few j_loop
;;

_done:
br.ret.sptk.few b0
;;

.endp

It is noticeable that Intel R© offers SSE3 with the introduction
of the Prescott processor. These instructions are included
therefore in the ”real” 64-Bit processors of Intel R© too (this
information has been given by Kruse [15]. Kruse got this
information from IDF 2004, San Francisco [8]). From this
integration it is clear, that Prescott is nothing else than a 64-
Bit processor which includes all remaining support but has not
unlocked this support.

The AMD x86-64 differes from the IA-64 structure in impor-
tant details (See figure 1). The developer has...

...access to eight additional GPRs, for a total of
16 GPRs. Furthermore, there are eight new SIMD
registers, added for use in SSE/SSE2 code. So the
number of GPRs and SIMD registers available to
x86-64 programmers will go from eight each to
sixteen each [21].

III. The IA-64 Registers

64-Bit simply designate the number of bits that each of the
processor’s general-purpose registers (GPRs) can hold [21].
This affects the number of instructions on a 64-Bit processor
too.

In general the registers of a 64-Bit CPU are twice as wide as
those in the 32-Bit CPU. As difference the instruction register
(IR) size has the same size for 32-Bit and for 64-Bit processors

Fig. 1. AMD new programming model. Source: [21].

[21] [23] [22] [24]. So using of 64-Bit integer for example
gives additional place to store data. A 64-bit architecture can
(theoretically) address up to 18 million terabytes. Unfortunatly
this can lead into wasting memory. Such problems have to be
optimized in the future and are a problem of future compiler
construction.

As one resulting example Win64 Pointers are eight bytes long,
and not 4 as defined by Win32 systems. Another example is
that the size of LRESULT, WPARAM and LPARAM will all
expand to 64 bits, so message handlers will have to be checked
for inappopriate casts [17]. Under the Intel R© IA-64 structure
the number of available registers have exploded. The assembly
programmer should ignore most of them and can focus on a
few sets of them. As Pietrek describes [19]:

To begin with, the IA-64 has 128 general-purpose
registers, each 64 bits wide. These registers are
conceptually similar to the general-purpose registers
such as EAX on the x86. The IA-64 general-purpose
registers are named with an r, followed by the
register number. Thus, r0 is the first general-purpose
register, and r127 is the last general-purpose regis-
ter. The first 32 general-purpose registers (r0-r31)
are static. That is, any code that refers to one of
these registers will always be referring to the exact
same register in silicon. All of the x86 registers act
this way, and thus can be considered static. Some of
the static registers have predefined meanings, and
are usually referred to some other way than their
r name. The global pointer and the stack pointer
are two of the most important registers that fit this
category. The r12 register is used as the stack pointer
and is thus called the sp register. The r1 register is
the global pointer, and you’ll see it referred to as
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the ”gp” register.

and

In addition to the 32 static general-purpose registers,
the IA-64 also has 96 dynamic general-purpose
registers [...]. Dynamic means that a given register
name doesn’t always refer to the exact same physical
register on the CPU. That is, a register such as
r34 in one function is likely to be assigned to a
completely different physical register than r34 in
another function.

For the dynamic registers he states:

What’s the point of dynamic registers? Everything
about the IA-64 is focused on speed. Keeping values
in registers and out of memory is one way to keep
things running quickly. If a parameter is passed
on the stack, and if that stack location isn’t in
the memory cache, the CPU might waste dozens
of clock cycles just to read the parameter from
the slow main memory. In contrast, registers can
always be accessed in a single clock cycle. The
dynamic registers exist so that each function can
have its own set of up to 96 registers to work
with. Inside a function, registers r32 through r127
are all essentially reserved for just that function.
Hopefully, all of the function’s local variables and
parameters can be stored in these 96 registers. Of
course, a function may not need all 96 registers,
but they are available nonetheless. [...] In addition
to the 128 general-purpose registers, the IA-64 also
has 128 floating-point registers. They’re named f0
through f127 (somebody probably gets paid a lot of
money to come up with these names). The floating-
point registers are 82 bits in length, allowing them
to hold up to a C++ long double. As with the
integer registers, certain floating-point registers have
predefined meanings. For instance, the f0 register is
always set to 0.0, while the f1 register always holds
the value 1.0. [...] The last set of registers you need
to know here are the branch registers. The IA-64
defines eight branch registers, named b0 through b7.
These are 64-bit registers that contain the address
of a code location that the CPU can transfer control
to. On the IA-64, all control transfers take the form
of a branch. The br.call instruction is equivalent to
the x86 CALL; the br.ret instruction is like the x86
RET; and a simple br instruction is like an x86 JMP.

An example on how to do Parameter Passing on the IA-64
has been descibed by Pietrek in another article [20]. An inside
view on the Intel R© 64-Bit architecture has been described in
detail by Jarp [14].

˜ registers assembly indirect
mnemonic access

---------------------------------------------
application ar n
branch b n
control cr n
CPU identification cpuid y
data breakpoint dbr y
instriction breakpoint ibr y
data TLB translation dtr y
floating point f n
general r n
instruction TLB translation itr y
protection key pkr y
performance monitor config pmc y
performance monitor data pmd y
predicate p n
region rr y

Fig. 2. Example for understanding the new registers.

AR0-AR7 equ AR.KR0-AR.KR7 kernel registers
AR8-AR15 RESERVED
AR16 equ AR.RSC register stack

configuration
AR17 equ AR.BSP backing store pointer

(read only)
AR18 equ AR.BSPRESTORE backing store pointer

mem stores
AR19 equ AR.RNAT RSE NaT collection
AR20 RESERVED
AR21 equ AR.FCR IA-32 floating-point

control
AR22,AR23 RESERVED
AR24 equ AR.EFLAG IA-32 EFLAG
AR25 equ AR.CSD IA-32 code segment

descriptor ||
compare and store data

AR26 equ AR.SSD IA-32 stack segment
descriptor

AR27 equ AR.CFLG IA-32 combined CR0 and CR4
AR28 equ AR.FSR IA-32 floating point status
AR29 equ AR.FIR IA-32 floating point instr.
AR30 equ AR.FDR IA-32 floating point data
AR31 RESERVED
AR32 equ AR.CCV compare and exchange

compare value
AR33-AR35 RESERVED
AR36 equ AR.UNAT user NaT collection
AR37-AR39 RESERVED
AR40 equ AR.FPSR floatint point status
AR41-AR43 RESERVED
AR44 equ AR.ITC interval time counter
AR45-AR63 RESERVED / AR48- IGNORED
AR64 equ AR.PFS previous function state
AR65 equ AR.LC loop count
AR66 equ AR.EC epilog count
AR67-AR127 RESERVED / AR112- IGNORED

Fig. 3. Application register example: thinking with names.

IV. Porting Applications for Win64

Since there are hard changes between the architectures of 32-
Bit and 64-Bit there evolve several problems for software
developers in porting their software. We put our focus here
on the new Win64 operationsystem. The Microsoft platform
SDK ships with a pre-beta release of an IA-64 compiler, which
allows it to test compile code for Win64.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted. Reproduction and
distribution without permission is prohibited.

3



The CodeBreakers-Journal, Vol. 1, No. 1 (2004)

Therefore Win64 offers 4 different porting options for existing
applications:

1) 64-bit Full Port
2) Small Address Space with 64-bit Pointers
3) Small Address Space with 32-bit Pointers
4) Win32 Application

A detailed description of all 4 options including all necessary
steps for porting applications from Win32 to Win64 are
described by Intel R© Corporation [13]:

Win64 uses the LLP64 (or P64) uniform data model
in which pointers and long long are 64 bits, but int
and long are 32 bits. To support this data model
and to provide compatibility with the existing Win32
code, new data types have been defined in Win64.
Some of them are fixed precision data types, for
instance INT32 or INT64. Others change size de-
pending on the architecture, for instance INT PTR.

In general simply compiling a Win32 application as Win64
application can cause several compiler errors. To prevent such
a behaviour it is necessary to change for example the Win32
API Calls from:

LONG iVal = GetWindowLong(hWnd, GWL_HINSTANCE);

to

LONG_PTR iVal = GetWindowLongPtr(hWnd, GWLP_HINSTANCE);

The problem is here that four of the existing Win32 APIs that
are used to set or get polymorphic window class data items
have been changed [13]:

• Get/SetClassLong changed to Get/SetClassLongPtr
• Get/SetWindowLong changed to Get/SetWindowLongPtr

Concerning all those problems it is necessary to adapt the
source code in a massive way:

#if defined(_WIN32)
// stuff related to Win32

#if !defined(_WIN64)
// Win32 without Win64 (regular Win32)

#else /* is _WIN64 also */
// Win64 variant of Win32

#endif /* _WIN64 ? */
#elif defined(__unix) ||
// various UNIXes

#else /* some other OS */
#error Unhandled OS;
#endif

Problems and solutions for adapting source code have been
given by Chen [2].

V. Programming and Assembly under 64-Bit

One important change for the 64-Bit programmer is the Global
Pointer and it’s support code which has no equivalent on 32-
Bit systems [18]. The Global Pointer is a preassigned value
which makes it possible to access data within a load module.
On the IA64, each instruction is 41 bits in length. The Global
Pointer concept has been described by Pietrek [18].

VI. Assembly Optimization

Optimizing assembly code for 64-Bit has been described by
Fletcher [7] using the example of the bubble sort algorithm:

void bubblesort(int count, int array[]) {
for(int pass = 1; pass < count; pass++) {

for(int i = 0; i < count-1; i++) {
if(array[i] > array[i+1]) {

int hold = array[i];
array[i] = array[i+1];
array[i+1] = hold;

}
}

}
}

After cleaning up some name mangling the Intel R© C++
Compiler produces the following assembly code [7]:

.proc bubblesort
bubblesort:
{ .mii
cmp4.ge.unc p9,p0=1,r32 //0: 20 7
mov r20=ar.lc //0: 19 2
add r19=1,r0 //0: 20 6
}
{ .mmb
add r16=4,r33 //0: 21 31
add r18=-1,r32 //0: 21 32
(p9) br.cond.dpnt .b1_1 ;; //0: 20 8
// Block 2: lentry Pred: 0 3 Succ: 3 7
// Freq 5.0e+001, Prob 0.50
}
.b1_2:
{ .mii
add r19=1,r19 //0: 20 15
cmp4.ge.unc p8,p0=r0,r18 //0: 21 13
sxt4 r17=r18 //0: 21 27
}
{ .mmb
mov r9=r16 //0: 20 12
mov r3=r33 //0: 20 11
(p8) br.cond.dpnt .b1_3 ;; //0: 21 14
// Block 7: prolog Pred: 2
// Succ: 17 Freq 5.0e+002, Prob 1.00
}
{ .mmi
add r11=-1,r17 ;; //0: 0 28
nop.m 0
sxt4 r10=r11 ;; //1: 0 29
}
{ .mii
nop.m 0
mov ar.lc=r10 //2: 0 30
nop.i 0 ;;
// Block 17: lentry lexit ltail collapsed Pred: 7 17
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// Succ: 17 3 Freq 2.5e+003, Prob 0.80
}
.b1_17:
{ .mmi
ld4 r8=[r9] //0: 22 46
ld4 r2=[r3] //0: 22 45
nop.i 0 ;;
}
{ .mii
cmp4.le.unc p0,p6=r2,r8 //1: 22 54
nop.i 0
nop.i 0 ;;
}
{ .mmi
(p6) st4 [r3]=r8 //2: 24 52
(p6) st4 [r9]=r2 //2: 25 53
add r9=4,r9 //2: 21 50
}
{ .mib
nop.m 0
add r3=4,r3 //2: 21 49
br.cloop.sptk .b1_17 ;; //2: 21 51
// Block 3: lexit epilog ltail Pred: 2 17 Succ: 2 1
// Freq 5.0e+001, Prob 0.80
}
.b1_3:
{ .mib
cmp4.lt.unc p7,p0=r19,r32 //0: 20 16
nop.i 0
(p7) br.cond.dptk .b1_2 ;; //0: 20 17
// Block 1: exit epilog Pred: 0 3 Succ:
// Freq 1.0e+000, Prob 1.00
}
.b1_1:
{ .mib
nop.m 0
mov ar.lc=r20 //0: 29 9
br.ret.sptk.many b0 ;; //0: 29 10
}
.endp

Optimizing the code above needs several steps. One of such
steps is eliminating instructions where three instructions can
be eliminated when 2 assumptions can be made. For example

cmp4.ge.unc p9,p0=1,r32 //0: 20 7
(p9) br.cond.dpnt .b1_1 ;; //0: 20 8
mov r20=ar.lc //0: 19 2

can be optimized to

add r19=1,r0 //0: 20 6
add r16=4,r33 //0: 21 31
add r18=-1,r32 //0: 21 32

Using a bundle the above code results in the following
template. It is important here that m and i is used for the
bundle template.

{ .mmi
add r19=1,r0 //0: 20 6
add r16=4,r33 //0: 21 31
add r18=-1,r32 ;; //0: 21 32
}

One of the next steps should be the finding of outer loops
which is described by Fletcher [7] in detail. A explicit de-
tailed description of the assembly language for the Itanium
architecture is provided by Intel R© Corporation [10] [12] [11].

VII. Problems of IA-64

Since the IA-64 is not using an absolute addressing mode the
global variables are accessed through the r1 register which
synonym is the Global Pointer (See section (V)). The addl
instruction provided by the IA-64 architecture allows only
adding constants up to 22 bit. This results in a maximum size
of 4 MB of global variables [3]. For solving this problem the
Intel R© C++ Compiler optimzes the code (See section (VI)).
The IA-64 compiler solves this problem by splitting global
variables into two categories, ”small” and ”large” where the
difference between small and large can be set via compiler
settings. This results into a difference how assembly code
looks like. The small variable would look like [3]:

addl r30 = -205584, gp;;
// r30 -> global variable

ld4 r30 = [r30]
// load a DWORD from the global variable

whereas the large variant result into the following larger code
snippet where the variable itself is allocated in a separate
section of the file and a pointer to the variable is placed into
the ”small” globals variables section of the module [3]:

addl r30 = -205584, gp;;
// r30 -> global variable forwarder

ld8 r30 = [r30];;
// r30 -> global variable

ld4 r30 = [r30]
// load a DWORD from the global variable

Such difference between small and large global variables needs
a explicit definition of variables even in C++ code. Using
extern BYTE b[]; will results in that the compiler uses
the large global variables concept to be on the save side. This
results in larger compiled code and possible inefficiency of the
code. Additionaly the programmer should take care if he de-
fines a short global variable when it’s is large. The programmer
has to take care about this difference when using same defini-
tions within different headers. Using extern BYTE b; in
one file and extern BYTE b[256]; in another one will
result for sure in some confusion [3].

Another problem has been described by Chen [4]. The IA-64
introduces another possible bad consequence of a mismatched
function signature.
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One example of such a bogous code is [5] [4] [25] [6]:

void MyCritSectProc(LPVOID /*nParameter*/)
{ ... }

hMyThread = CreateThread(NULL, 0,
(LPTHREAD_START_ROUTINE) MyCritSectProc,
NULL, 0, &MyThreadID);

Another example by Microsoft R© MSDN misdeclares both: the
return value and the input parameter. The result is a crash on
Win64 [1]. More examples are described by Chen [4].

VIII. Conclusions and Future Work

64-Bit is a necessary evolution in processor architecture.
Nevertheless the problems of porting software from 32-Bit
to 64-Bit will cause problems under Win64. As well the
differences between the Intel R© and the AMD R© Architectures
seem to result in software adaption problems which have been
described before in the mid eighties of the last century. It
seems to me more important than before to stay in touch with
assembly code since the different approaches of compilers
and vendors produce not always good and reliable code.
Future work should focus on detailed compiler analysis to
pinpoint the absolute differences in resulting assembly code
and in evaluation of the performance of the different compiler
dependant assembly codes which has been done by Loughran
before for Win32 environments [16].
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