gy

00 L L 0000
0o /o /7 /7 00 Doo
o s/ "N/ "N/ _ N/ _/ /] 0o oo
T/ IN N N 00 0O
00 L L 0o 0O o
o0 /N /] /7 000 0Od
/s 7 /- =</ /=) N/ / /) N/ __(-<tdon
oo/ IN_ T NN /T N I\ /7 N D
00 0o 0o
00 Web: http://www.ImmortalDescendants.org 0o oo
N Author: [yAtEs] oo oo
00 Date: 12/Sept/00 00 OO0
N Topic: Creating A Basic VxD 0o oo
[(Part I of III) 0o O od
ad Level: Beginner oo oo
0o 0o oo
D I e A R
0 I
I O

PUBLISHER'S NOTE: The Kit mentioned in this essay can be found here:
wWww.reverse-engineering.info/files/vxdkit.zip

Hi I have decided to write 3 tutorials on VxDs, part 1 on creating a basic
template, part 2 on INT hooking and part 3 on API hooking. VxDs are quiet
simple really *cough* and can be fun to play with, some people don't like the idea

of a VxD and like to use them little as possible, but i say...blah ;)

The VMM is a small protected mode program which has the fine job of holding
your computer together ;) if you disagree with that just try deleting it..

VMM sends out Control Messages to all loaded VxDs when anything interesting
happens so our VxD frame will be based around a Device Control Procedure

to handle these events and react in the appropriate way.

Ok before we start the process of creating all things nice and wonderful

you should get the required 'tools' The Windows98 DDK has just about everything
you could want:- http://www.microsoft.com/hwdev/ddk/install98ddk.htm?

but if you live in the UK and can't wait 2 days to download that 20 meg file

here is a small package with the very basic stuff (wow I'm nice;)

Republished - 12™ November 2007 — Robert Yates

get it at
www.reverse-engineering.info/files/vxdkit.zip (557kb)

Coding a VxD is not like a normal win32 program, all the VxD code must be
put into special pre-defined segments these segments are defined in a .DEF
file and called using macros in the actual source, the segments are different
areas of code/data which we must set-up to tell the compiler if this code/data

is going to be pageable or locked for e.g.

A DEF file will have the following format

NAME
SEGMENTS
EXPORTS

and now the syntax:-

’

VXD <NAME> DYNAMIC (<- if its a static VxD remove the word dynamic)
SEGMENTS

SEGNAME CLASS 'class_ type' segments properties
SEGNAME CLASS 'class type' segments properties
etc

EXPORTS

DDB ID

make much sense?..yer that's what i thought,
ok the VxD name must be in uppercase.

lets look at some class_types

Republished - 12™ November 2007 — Robert Yates

http://www.reverse-engineering.info/files/vxdkit.zip

LCODE - Page-locked code and data, this is data and code which will be
always in memory and never paged to disk, mostly used for
INT code etc, code that must be present at all time

PCODE - Pageable code, this is code that can be paged to disk if
theres a physical memory crisis :)

PDATA - Pageable data

ICODE - Initialisation code, this i1s code that is discarded after the

init® of the VxD

DBOCODE - Debug-only code/data, contains debug query control message
SCODE - static code/data, present in memory even when vxd is unloaded
RCODE - Real-Mode initialisation code and data, blah blah 16bit for real
mode
16ICODE - USEl6 protected-mode initialisation data, contains code that can
be

copied from protected mode to V86
MCODE - Locked message strings.

vmm.inc has some macros defined for creating different segments in your
source code, so the segnames would be as followed:-

SEGNAME MACRO
_LTEXT VxD LOCKED CODE SEG
PTEXT VxD PAGEABLE CODE_SEG
_DBOCODE VxD DEBUG_ONLY CODE_SEG
_ITEXT vxD_INIT CODE_SEG
_LDATA VxD_LOCKED DATA SEG
_IDATA VxD IDATA SEG

_PDATA VxD_PAGEABLE DATA SEG
STEXT VxD STATIC CODE SEG

_ SDATA VxD_ STATIC DATA SEG

_DBODATA VxD DEBUG ONLY DATA SEG
_16ICODE VxD 16BIT INIT SEG
_RCODE VxD REAL INIT SEG

so to define a locked segment in our source file we would have
an LTEXT in our def file then in our source file enter:-

VxD_LOCKED CODE_SEG
CODE HERE

VxD LOCKED CODE SEG ENDs

woo simple eh? anyway the last thing is the exports, you must have
an export to the DDB which i will explain later.

Republished - 12™ November 2007 — Robert Yates

\

here is an example DEF file which can be used in all projects, the unused
segments will just create warnings at compile stage.

’

VXD FIRST DYNAMIC

SEGMENTS
_LPTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_LTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_LDATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_DATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
CONST CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TLS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_BSS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_ LMGTABLE CLASS 'MCODE' PRELOAD NONDISCARDABLE TIOPL
_ LMSGDATA CLASS 'MCODE' PRELOAD NONDISCARDABLE TIOPL
_IMSGTABLE CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_IMSGDATA CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_ITEXT CLASS 'ICODE' DISCARDABLE
_IDATA CLASS 'ICODE' DISCARDABLE
_PTEXT CLASS 'PCODE' NONDISCARDABLE
_PMSGTABLE CLASS 'MCODE' NONDISCARDABLE IOPL
_ PMSGDATA CLASS 'MCODE' NONDISCARDABLE IOPL
_ PDATA CLASS 'PDATA' NONDISCARDABLE SHARED
_ STEXT CLASS 'SCODE' RESIDENT
_ SDATA CLASS 'SCODE' RESIDENT
_DBOSTART CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBOCODE CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_ DBODATA CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_16ICODE CLASS 'l6ICODE' PRELOAD DISCARDABLE
_RCODE CLASS 'RCODE'
EXPORTS

FIRST DDB @1

; Template from Iczelion's VxD tutorial set (C) http://win32asm.cjb.net

Skokokokokokokkkokkkk kk sk sk ok sk sk k sk k sk sk ok sk ok sk sk k sk sksk sk sk sk sk sk ok sk sk sk sk k sk kosksksk sk sk sk sk ksk sk ok

The Source File
Skkskosk ok ok sk sk ok Sk sk ko k Sk ok sk sk ke ok Sk sk sk sk ok Sk sk sk k Sk Sk sk sk sk ok Sk sk sk sk ok ok sk sk k sk ok sk sk sk ok sk sk sk sk sk ok sk k

ok lets look at the first bit of a VxD

.386p

include vmm.inc

DECLARE_VIRTUAL_DEVICE FIRST, 1,0, FIRST_Control, UNDEFINED_DEVICE_ID,
UNDEFINED_INIT_ORDER

Begin control dispatch FIRST
End control dispatch FIRST

Republished - 12™ November 2007 — Robert Yates

! .l
i

Réve_ijse—Engi

end

;d doesn't look like asm huh, thats cos in reality VxDs are enough to blow your
head off in pure asm, so they mostly consist of macros in the inc file.

first line is to set 80386 and privileged instructions, next line is the vmm include
with all our macros.

The next line sets up the DDB, the DDB is the Device Descriptor Block and holds
information and pointers to various things about the vxd, the DDB has 22 members but
we only have to fill a few in, you can see its full structure in the inc file listed as

VxD Desc Block. the macro Declare Virtual Device sets up the DDB in the following
format

Declare Virtual Device Name, MajrVer, MinrVer, CtrlProc, DeviceID, InitOrder,
V86Proc, PMProc, RefData

Name - The name of the VxD in uppercase, this macro appends DDB to the name and
that
is the name of the DDB we export in our def file

MajrVer/MinrVer Major and minor version of your vxd
CtrlProc - Teh name of your device control procedure, this should be the
vxd name with

_Control appended

DeviceID - unique identifier

InitOrder - when should your device be loaded? 1st,2nd etc?
V86Proc/PMProc - address of apis to export for use by V86 and protected mode
programs

RefData - Referenced data used by IOS

after all that we have our message control procedure which will contain our control
message handle ;)

ok lets create a source file myvxd.asm

.386p
include vmm.inc

DECLARE VIRTUAL DEVICE FIRST,1,0, FIRST Control,\
UNDEFINED DEVICE ID, UNDEFINED INIT ORDER

Begin control dispatch FIRST
End control dispatch FIRST

end

Republished - 12™ November 2007 — Robert Yates

also myvxd.def, paste the def file from earlier

now compile with the following cmds

ml -c -DMASM6 FIRST.asm
link -vxd FIRST.obj -def:FIRST.def

woo and it compiles with lots of warnings about our unused segments,..so

we have a vxd..not much good thou is it, ;), there are a few more things we

need to do and also create a loader, dynamic VxDs are loaded with CreateFileA,

cos i'm a TASM programmer ;d and only use masm for VxDs i created my loader in TASM
so just to complicate things here is my TASM source for a VxD loader.

.486P
locals
jumps

.Model Flat ,StdCall

Extrn MessageBoxA:PROC
Extrn exitprocess:PROC
Extrn CreateFileA:PROC
Extrn CloseHandle: PROC
Extrn GetModuleHandleA: PROC
Extrn GetProcAddress: PROC
Extrn DeviceIoControl :PROC
.data

filel db "\\.\FIRST.vxd",0
fbox db 'Loader', 0

ftitle db 'you broke it',0
ftitle2 db 'Loaded',O
handlel dd ?

.code
main:

Call CreateFileA,offset filel,0,0,0,0,4000000h,0
cmp eax, -1

je fuxor

mov handlel,eax

Call MessageBoxA,0,offset ftitle2,offset fbox,0
jmp endprog

fuxor:
Call MessageBoxA,0,offset ftitle,offset fbox,0

endprog:
Call CloseHandle,handlel
call exitprocess,0

end main

’

Republished - 12™ November 2007 — Robert Yates

i

ok that should be straight forward enough, once you have it compiled
give it a run with the VxD see what happens.

doesn't work does it, that's because when a VxD is loaded the
w32 deviceloControl is sent and your VxD must return 0 for
DIOC Open message.

so now we must learn to cope with the control messages, remember out
control procedure?

Begin_control_dispatch FIRST
End_control_dispatch FIRST

here we must process the messages, to do this we use the macro Control_Dispatch

Control Dispatch MSG, PROC TO EXECUTE

so now we must add the following code to our control dispatch

Begin control dispatch FIRST
Control Dispatch w32 DeviceIoControl, OnDeviceIoControl
End control dispatch FIRST

w32 DeviceloControl is the message sent to the VxD, OnDeviceloControl is our new
procedure which will handle the message, we must now create a code segment and code
a proc to return 0 to the message, like so:

VxD PAGEABLE CODE_SEG

’

BeginProc OnDeviceIoControl
assume esi:ptr DIOCParams
.if [esi].dwIoControlCode==DIOC Open
XOr eax,eax
.endif
ret
EndProc OnDeviceIoControl

VxD PAGEABLE CODE ENDS

r

Republished - 12™ November 2007 — Robert Yates

Save your source and recompile, now you will find the VxD loads, click ok and it is
unloaded.

full source

.386p

include vmm.inc
include vwin32.inc
include shell.inc

DECLARE VIRTUAL DEVICE FIRST,1,0, FIRST Control,\
UNDEFINED DEVICE ID, UNDEFINED INIT ORDER

Begin control dispatch FIRST

OnDeviceIoControl

Control Dispatch w32 DeviceIoControl,

End control dispatch FIRST

’

VxD_PAGEABLE CODE_SEG

’

BeginProc OnDeviceIoControl
assume esi:ptr DIOCParams

.if [esi].dwIoControlCode==DIOC Open

XOr eax,eax
.endif
ret

EndProc OnDeviceIoControl

’

VxD PAGEABLE CODE ENDS

’

end

Republished - 12™ November 2007 — Robert Yates

VXD FIRST DYNAMIC

SEGMENTS
_LPTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_ LTEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_ LDATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TEXT CLASS 'LCODE' PRELOAD NONDISCARDABLE
_DATA CLASS 'LCODE' PRELOAD NONDISCARDABLE
CONST CLASS 'LCODE' PRELOAD NONDISCARDABLE
_TLS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_BSS CLASS 'LCODE' PRELOAD NONDISCARDABLE
_ LMGTABLE CLASS 'MCODE' PRELOAD NONDISCARDABLE TIOPL
_ LMSGDATA CLASS 'MCODE' PRELOAD NONDISCARDABLE IOPL
_IMSGTABLE CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_IMSGDATA CLASS 'MCODE' PRELOAD DISCARDABLE IOPL
_ITEXT CLASS 'ICODE' DISCARDABLE
_IDATA CLASS 'ICODE' DISCARDABLE
_PTEXT CLASS 'PCODE' NONDISCARDABLE
_ PMSGTABLE CLASS 'MCODE' NONDISCARDABLE IOPL
_ PMSGDATA CLASS 'MCODE' NONDISCARDABLE IOPL
_PDATA CLASS 'PDATA' NONDISCARDABLE SHARED
_ STEXT CLASS 'SCODE' RESIDENT
_ SDATA CLASS 'SCODE' RESIDENT
_DBOSTART CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBOCODE CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_DBODATA CLASS 'DBOCODE' PRELOAD NONDISCARDABLE CONFORMING
_16ICODE CLASS '16ICODE' PRELOAD DISCARDABLE
_RCODE CLASS 'RCODE'
EXPORTS

FIRST DDB @1

and that is a basic dynamic VxD template, which is what i wanted to show
you, but you probably think that's a bit boring so lets make a blue screen
when to VxD is loaded.

We need to call a new procedure when the VxD is loaded so lets use the

Sys Dynamic Device Init control message and a data segment is also required, I'll just
paste the source it should be self explained, the only you may not know is the parameters
for the VxD services.

Republished - 12™ November 2007 — Robert Yates

.386p

include vmm.inc
include vwin32.inc
include shell.inc

DECLARE VIRTUAL DEVICE FIRST,1,0, FIRST Control,\
UNDEFINED DEVICE ID, UNDEFINED INIT ORDER

Begin control dispatch FIRST
Control Dispatch Sys Dynamic Device Init, BlueScreen
Control Dispatch w32 DeviceIoControl, OnDeviceIoControl
End control dispatch FIRST

’

VxD PAGEABLE DATA SEG

’

pmsg db 'Error fault at 31337:0xVXDCODE',O0
ptitle db 'Warning',O

’

VxD_ PAGEABLE DATA ENDS

’

’

VxD_PAGEABLE CODE_SEG

’

BeginProc OnDeviceIoControl
assume esi:ptr DIOCParams
.if [esi].dwIoControlCode==DIOC Open
XOr eax,eax
.endif
ret
EndProc OnDeviceIoControl

BeginProc BlueScreen

mov edi,offset ptitle

mov ecx,offset pmsg

mov eax,MB OK

VMMCall Get Sys VM Handle
VxDCall SHELL sysmodal Message
clc

ret
EndProc BlueScreen

r

VxD PAGEABLE CODE ENDS

’

end

Republished - 12™ November 2007 — Robert Yates

compile and run, OOoh amazing huh?, that's it then, till next time when we look at
Interrupt hooking.

special greetz to Iczelion,Defiler,{sMaEgLe}, risc,Noodlespa
any problems or mistakes feel free to contact me and i shall assist ;)

[yAtEs]
"Keep it locked, keep it hardcore. Roots 'n' phuture. Peace."

Republished - 12™ November 2007 — Robert Yates

