Reverse-Enginee

5

00000000D0000O0O00O0ODO0O0o00ODO00ODODOOO0D0o0DO000000a

ao o L L 000
o 7 /- _ ___ ___ ___ 1A ___ 1/ 0o oo
oo 77/ “\/ ''\/_ N/ _/ [/ I/ oo o o
g/ /7 /7 /7 /7 /7 /N /7 /7 N_/N\, /1 / oo o0
oo L L oo oo
0/ -\ A !/ / 0d o0
ag /7 /./ -|l-</ _/-) _N\/_ / _°/ N\ __(-<0000D0O
ao/__ /N _/ /N /__/ /7 /_, /_, / // /_/ /0000
ao oo oo
an Web: http://www.ImmortalDescendants.org o0 oo
a0 Author: [yAtEs] o0 oo
o0 Date: 26/Sept/00 o0 oo
o0 Topic: Hooking APIs (VxD) o0 oo
a0 (Part III of III) 0o oo
o0 Level: Advanced o0 oo
ao oo oo
8NN
UoO00o00OOOOOOCDODOoDOOCOODOCOODOOOOOCDODOOOODOOODOC000. O

This is part III of my VxD and the last tutorial I'll do on VxDs to my
knowledge. We're going to look at API hooking, API hooking can be fun as we can
tell an API to do another function after/before it has been executed, example
save tcp/ip packets after it receives them with the winsock!recv API etc.

So how do we hook an API? the basically what happens is we code our extra
routine somewhere, then we modify the DLL in memory by placing a push to our
routine then a RET so that when the API is called it jumps to our code, we can
then restore any bits of code we have wiped over then continue with the API
code.

The basis of my tutorial is to show you how to modify the DLL memory and insert
and restore your own code, so my example with be nothing amazing nor useful. I

am going to make an INT 3 occur after every MessageBoxA... I know your excited

now :)

Ok when we want to hook an API, we must take a look at the APIs code and plan

how we are going to make our modifications, so BPX on MessageBoxA and instead of
pressing F12 lets take a peek at the code :)

Republished - 12™ November 2007 — Robert Yates

Réve_{fse—Engi

USER32 !MessageBoxA

0177:BFF5412E 55 PUSH EBP

0177:BFF5412F 8BEC MOV EBP,ESP
0177:BFF54131 6A00 PUSH 00

0177:BFF54133 FF7514 PUSH DWORD PTR [EBP+14]
0177:BFF54136 FF7510 PUSH DWORD PTR [EBP+10]
0177:BFF54139 FF750C PUSH DWORD PTR [EBP+0C]
0177:BFF5413C FF7508 PUSH DWORD PTR [EBP+08]
0177:BFF5413F E8SDSECFFFF CALL USER32 !MessageBoxExA
0177:BFF54144 5D POP EBP

0177:BFF54145 C21000 RET 0010

after studying the code i decided to do the following

USER32 !MessageBoxA

0177:BFF5412E 55 PUSH EBP

0177:BFF5412F 8BEC MOV EBP,ESP
0177:BFF54131 6A00 PUSH 00

0177:BFF54133 FF7514 PUSH DWORD PTR [EBP+14]
0177:BFF54136 FF7510 PUSH DWORD PTR [EBP+10]
0177:BFF54139 FF750C PUSH DWORD PTR [EBP+0C]
0177:BFF5413C FF7508 PUSH DWORD PTR [EBP+08]
0177:BFF5413F E8DSECFFFF CALL USER32 !MessageBoxExA
0177:BFF54144 XXXXXXXXXX PUSH <our_ routine>
0177:BFF54145 C3 RET

0177:BFF54146 xXXXXXX RET 0010

Now we've decided how to implant our code we should start to code the VxD, to
active the installation of our API hook we will send a control message to our
VxD with the address of the API we are hooking. let me paste my new loader code

Republished - 12™ November 2007 — Robert Yates

Reverse-Engineél

.486P
locals
Jjumps
.Model Flat ,StdCall

Extrn MessageBoxA:PROC
Extrn exitprocess:PROC
Extrn CreateFileA:PROC
Extrn CloseHandle: PROC
Extrn GetModuleHandleA: PROC
Extrn GetProcAddress: PROC
Extrn DeviceIoControl:PROC

.data
filel db "\\.\first.vxd",0

fbox db 'Loader"', 0

ftitle db 'you broke it',0
ftitle2 db 'Loaded',6O

User db 'User32.d11',0
BytesReturned dd 2

handlel dd ?

MSGb db "MessageBoxA", 0
UHandle dd O

DIOC MSGb equ 5

.code

main:

Call CreateFileA,offset filel,0,0,0,0,4000000h,0
cmp eax, -1

je fuxor
mov handlel,eax

Call GetModuleHandleA,offset User
mov UHandle, eax

Call GetProcAddress,UHandle,Offset MSGb ; get api address and return it to eax
Call DevicelIoControl,handlel,DIOC MSGb,eax,0,0,0,o0ffset BytesReturned,0

Call MessageBoxA,0,offset ftitle2,offset fbox,0
jmp endprog

fuxor:
Call MessageBoxA,0,offset ftitle,offset fbox,0

endprog:
Call CloseHandle,handlel
call exitprocess,0

end main

’

Republished - 12™ November 2007 — Robert Yates

Reverse-Engine

That is our new loader code, you can see we obtain the API address and then send
to the VxD where it will remain in 1lpvInBuffer, the control message we send is
also branded an

ID, this is DIOC MSGb in this case.

now in our VxD we must add the code to handle the deviceio message, here is how
it looks

BeginProc OnDeviceIoControl
assume esi:ptr DIOCParams
.if [esi].dwIoControlCode==DIOC Open
XOr eax,eax
.ELSEIF [esi].dwIoControlCode == DIOC_ MSGb
mov esi, [esi].lpvInBuffer
mov dword ptr [orgMSG],esi
add esi, 1Ch
mov dword ptr [newMSG],esi
call MSG Install
.endif
ret
EndProc OnDeviceIoControl

we also must have a data section

VxD_ LOCKED DATA SEG

’

DIOC MSGb equ 5
orgMSG dd 0
newMSG dd 0

’

VxD_LOCKED DATA ENDS

’

ok now if we look at the new control procedure we can see that after if detects
it has received our DIOC MSGb it extracts the API address from the buffer and
stores it in orgMSG.

We add 1Ch to the API pointer for a return address, after we execute our new
function, the one that we are going to insert into the API(int 3) we need to
jump to the instruction back in the main API routine, hm if that doesn't make
sense look at this.

Republished - 12™ November 2007 — Robert Yates

Réve_fse—Engi

USER32 !MessageBoxA

0177:BFF5412E 55 PUSH EBP <=0rgMSG[BFF5412E]
0177:BFF5412F 8BEC MOV EBP,ESP

0177:BFF54131 6AQ00 PUSH 00

0177:BFF54133 FF7514 PUSH DWORD PTR [EBP+14]
0177:BFF54136 FF7510 PUSH DWORD PTR [EBP+10]
0177:BFF54139 FF750C PUSH DWORD PTR [EBP+0C]
0177:BFF5413C FFE7508 PUSH DWORD PTR [EBP+08]
0177:BFF5413F E8DSECFEFFFF CALL USER32 !MessageBoxExA
0177:BFF54144 XXXXXXXXXX PUSH <our_routine>

0177:BFF54145 C3 RET

0177:BFF54146 XXXXXX RET 0010 <=newMSG [BFF54146]

after our routine is called we jump to [newMSG]

back to the device control procedure, the last bit calls our install procedure
MSG Install.

Now let me show you my install procedure then we can evaluate it

MSG Install Proc
cmp [orgMsG], 0
jz @lskipinstall
mov esi, [orgMSG]

add esi, 1l6h

mov byte ptr [esi], 68h

inc esi

mov dword ptr [esi],offset32 MSG Hook
mov byte ptr [esi+4],0C3h

[
mov byte ptr [esi+5],0C2h
mov byte ptr [esi+6],10h
mov byte ptr [esi+7],00h
@lskipinstall:
ret

MSG Install endp

’

does that look rather confusing? heh nah thought not, you leetoe ;)

we move the address of messageboxA(contained in orgMSG) into esi we check this
for 0, because if it is 0 then something went wrong so we as well skip the
install than crash ourselves. providing the address is ok, we increase it by
16h, this takes us to the point just after 'USER32!MessageBoxExA' line, now we
start coding in hex :) 68h for push then increase by 1 and put the address to
our new proc then increase by 4 because the instruction is 4 byte obviously ;)

Republished - 12™ November 2007 — Robert Yates

Reverse-Engine

now we add the RETs anyway after all this our code would look like
the following:-

USER32 !MessageBoxA

0177:BFF5412E 55 PUSH EBP

0177:BFF5412F 8BEC MOV EBP,ESP
0177:BFF54131 6A00 PUSH 00

0177:BFF54133 FF7514 PUSH DWORD PTR [EBP+14]
0177:BFF54136 FF7510 PUSH DWORD PTR [EBP+10]
0177:BFF54139 FF750C PUSH DWORD PTR [EBP+0C]
0177:BFF5413C FF7508 PUSH DWORD PTR [EBP+08]
0177:BFF5413F ESDSECFFFF CALL USER32 !MessageBoxExA
0177:BFF54144 689DC2E6CE PUSH CEE6C29D
0177:BFF54149 C3 RET

0177:BFF5414A C21000 RET 0010

there you can see our 68 we added followed by the address and our rets.

simple huh, right ok,lets view the MSG Hook routine

BeginProc MSG Hook
pushfd
pushad

int 3

popad

popfd

pop ebp

Jjmp dword ptr [newMSG]
EndProc MSG_Hook

’

hehe ok this is what happens after a call to messageboxa is made, we issue an
int 3 making sure we save and restore registers before/after,

then there is a POP EBP this is very important, if you look back at the original
API code we wipped over this with our code, so we must pop whatever value is on
the stack to ebp or else our ret will return to some weird location,..and
finally we jump to newMSG which you should remember is the RET 0010, if you
haven't a clue what i'm talking about, scroll up and reread what i wrote about
it, and lay off the wodka ;)

hmmm. .hmm.hmmm. .ah ha! ok now we must add an uninstall procedure add this to our
control message handle, not our control device procedure.

Republished - 12™ November 2007 — Robert Yates

Control Dispatch Sys Dynamic Device Exit,OnDeviceDestroy

’

now the destroy proc is as follows

’

BeginProc OnDeviceDestroy

call

clc

ret
EndProc OnDeviceDestroy

r

MSG Uninstall

blah blah simple enough, now the MSG Uninstall

’

MSG Uninstall Proc

@lskipuninstall:

MSG Uninstall endp

’

mov
add
mov
mov
mov
mov

ret

esi,1l6h

byte
byte
byte
byte

ptr
ptr
ptr
ptr

[
[
[
[

esi, [orgMsSG]

esi]l, 5Dh

esi+1l],0C2h
esi+2],10h
esi+3],00h

I bet you could probably figure this out, it gets the API address and rewrites

the original bytes back.

and that's pretty much it, I'll paste full source now.

Republished - 12™ November 2007 — Robert Yates

HE MessageBoxA API HOOK

rrrr BOOM BOOM

HE i'm the old skool rocker
1 [yAtEs]

rrrrirg

Frriri i i g

Frrrrr i i i

A A A A A A A A A A A A A A A A A A A
.386p

include vmm.inc
include vwin32.inc
include shell.inc

DECLARE VIRTUAL DEVICE FIRST,1,0, FIRST Control,\
UNDEFINED DEVICE ID, UNDEFINED INIT ORDER

Begin control dispatch FIRST

Control Dispatch Sys Dynamic Device Exit,OnDeviceDestroy
Control Dispatch w32 DeviceIoControl, OnDeviceIoControl

End control dispatch FIRST

’

VxD_LOCKED DATA SEG

’

DIOC MSGb equ 5

orgMsSG dd 0
newMSG dd 0

VxD_LOCKED DATA ENDS

’

’

VxD_LOCKED CODE_SEG

r

BeginProc OnDeviceIoControl
assume esi:ptr DIOCParams

.1f [esi].dwIoControlCode==DIOC Open

XOr eax,eax

Republished - 12™ November 2007 — Robert Yates

.ELSEIF [esi].dwIoControlCode
mov esi, [esi].lpvInBuffer
mov dword ptr [orgMSG],esi
add esi,1Ch
mov dword ptr [newMSG],esi

call MSG Install

.endif

ret
EndProc OnDeviceIoControl

DIOC_MSGb

[esi],offset32 MSG Hook

MSG Install Proc
cmp [orgMSG], 0O
jz @lskipinstall
mov esi, [orgMSG]
add esi,16h
mov byte ptr [esi], 68h
inc esi
mov dword ptr
mov byte ptr [esi+4],0C3h
mov byte ptr [esi+5],0C2h
mov byte ptr [esi+6],10h
mov byte ptr [esi+7],00h
@lskipinstall:
ret
MSG Install endp

BeginProc OnDeviceDestroy
call
clc
ret
EndProc OnDeviceDestroy

BeginProc MSG Hook
pushfd
pushad

int 3
popad
popfd

pop ebp
Jmp dword ptr [newMSG]

EndProc MSG Hook

MSG Uninstall

Republished - 12™ November 2007 — Robert Yates

MSG Uninstall Proc

; cmp [orgMsSG], 0O
; jz @lskipuninstall
int 3

mov esi, [orgMSsSG]

add esi, 1l6h
mov byte ptr [esi], 5Dh
mov byte ptr [esi+1],0C2h
[
[

mov byte ptr [esi+2],10h
mov byte ptr [esi+3],00h
@lskipuninstall:
ret
MSG Uninstall endp
VxD LOCKED CODE ENDS
end
TADA!!!, that was easier to write that i thought, i bet its harder to understand
thou ;d

anyway give it a go, you really have to plan how you insert your new code etc,
lots of int 3s to debug your code i.e. checking you have your code in the right
place.

you can download my working version from the url provided at the top of the
document.

If you clear all break points and set i3here on, now load the vxd, after any msg
box you will get an int 3 break, also when you click ok to shutdown the msgbox
you will get one...amazing or what.

ok thats it ;) if you ever need any help just email me and I'll sort you out.
email your

"you got that wrong"

"i liked this"

"you should of done this"
and

"OMG!! HELP!!"'s

Republished - 12™ November 2007 — Robert Yates

Réverse—Engi

to Jamesluton@hotmail.com

thanks to Defiler for some information ;)

[yAtEs]
"Keep it locked, keep it hardcore. Roots 'n' phuture. Peace."

Republished - 12™ November 2007 — Robert Yates

