
© Microsoft Corporation 1

Windows Kernel Internals
Overview

David B. Probert, Ph.D.
Windows Kernel Development

Microsoft Corporation

© Microsoft Corporation 2

Contributors
Neill Clift
Adrian Marinescu
Nar Ganapathy
Jake Oshins
Andrew Ritz
Jonathan Schwartz
Mark Lucovsky
Samer Arafeh
Dan Lovinger

Landy Wang
David Solomon
Ben Leis
Brian Andrew
Jason Zions
Gerardo Bermudez
Dragos Sambotin
Arun Kishan
Adrian Oney

© Microsoft Corporation 3

Windows History

• Team formed in November 1988
• Less than 20 people
• Build from the ground up

– Advanced Operating System
– Designed for desktops and servers
– Secure, scalable SMP design
– All new code

• Rigorous discipline – developers wrote very detailed
design docs, reviewed/discussed each others docs and
wrote unit tests

© Microsoft Corporation 4

Goals of the NT System
• Reliability – Nothing should be able to crash the

OS. Anything that crashes the OS is a bug and
we won’t ship until it is fixed

• Security – Built into the design from day one
• Portability – Support more than one processor,

avoid assembler, abstract HW dependencies.
• Extensibility – Ability to extend the OS over time
• Compatibility – Apps must run
• Performance – All of the above are more

important than raw speed!

© Microsoft Corporation 5

Windows Server 2003 Architecture

Services
Alerter

RPC User
Application

Subsystem DLLs

System Processes Applications

Event
Logger

User
Mode

System
Threads

NTDLL.DLL

Environment
SubsystemsService

Controller
InterixWinLogon

Session
Manager Win32

Cache
Manager

Device drivers

Virtual
Memory

Processes
& Threads SecurityPnP/Power

Manager

Executive APIKernel
Mode I/O Manager

File
systems Object management / Executive RTL

Kernel
Hardware Abstraction Layer (HAL)

Hardware interfaces (read/write port, timers,
clocks, DMA, cache control, etc.)

© Microsoft Corporation 6

Windows Executive

• Upper layers of the operating system
• Provides “generic operating system” functions

(“services”)
– Creating and deleting processes and threads
– Memory management
– I/O initiation and completion
– Interprocess communication
– Security

• Almost completely portable C code
• Runs in kernel (“privileged”, ring 0) mode
• Many interfaces to executive services not documented

© Microsoft Corporation 7

Windows Kernel

• Lower layers of the operating system
– Implements processor-dependent functions (x86 vs. Alpha vs.

etc.)
– Also implements many processor-independent functions that are

closely associated with processor-dependent functions
• Main services

– Thread waiting, scheduling & context switching
– Exception and interrupt dispatching
– Operating system synchronization primitives (different for MP vs.

UP)
– A few of these are exposed to user mode

• Not a classic “microkernel”
– shares address space with rest of

kernel components

© Microsoft Corporation 8

HAL - Hardware Abstraction Layer

• Subroutine library for the kernel & device drivers
– Isolates Kernel and Executive from platform-specific

details
– Presents uniform model of I/O hardware interface to

drivers
• HAL abstracts:

– System timers, Cache coherency & flushing
– SMP support, Hardware interrupt priorities
– HAL also implements some functions that appear to

be in the Executive and Kernel

© Microsoft Corporation 9

Kernel Mode Execution

Code is run in kernel mode for one of three reasons:
1. Requests from user mode (system calls)

– Via the system service dispatch mechanism
– Kernel-mode code runs in the context of the requesting thread

2. Interrupts from external devices
– Interrupts (like all traps) are handled in kernel mode
– NT-supplied interrupt dispatcher invokes the interrupt service routine
– ISR runs in the context of the interrupted thread (so-called “arbitrary

thread context”)
– ISR often requests the execution of a “DPC routine”, which also runs in

kernel mode
3. Dedicated kernel-mode threads

– Some threads in the system stay in kernel mode at all times (mostly in
the “System” process)

– Scheduled, preempted, etc., like any other threads

© Microsoft Corporation 10

Processes & Threads

Process
Object

Handle Table

VAD VAD VAD

object

object

Virtual Address Space Descriptors

Access Token

Thread Thread Thread . . .
Access Token

© Microsoft Corporation 11

Each process has its own…

• Virtual address space (including program
global storage, heap storage, threads’ stacks)

processes cannot corrupt each other’s
address space by mistake

• Working set (physical memory “owned” by the
process)

• Access token (includes security identifiers)
• Handle table for Win32 kernel objects
• These are common to all threads in the

process, but separate and protected between
processes

© Microsoft Corporation 12

Each thread has its own…

• Stack (automatic storage, call frames, etc.)
• Instance of a top-level function
• Scheduling state (Wait, Ready, Running, etc.)

and priority
• Current access mode (user mode or kernel

mode)
• Saved CPU state if it isn’t Running
• Access token (optional -- overrides process’s if

present)

© Microsoft Corporation 13

Windows Past, Present, Future
PAST: Personal computer, 16->32 bits, MSDOS,

Windows 9x code base, desktop focus
– Features, usability, compatibility, platform
– Windows 98

PRESENT: Enterprise computing, 32/64 bits, NT
code base, solid desktop, datacenter
– Reliability, performance, IT Features
– Windows XP, Windows Server 2003

FUTURE: Managed code (.NET Framework)
– Productivity, innovation, empowerment
– Longhorn

© Microsoft Corporation 14

.Net: Making it Simple
Windows API
HWND HWND hwndMainhwndMain = = CreateWindowExCreateWindowEx((

0, "0, "MainWClassMainWClass", "Main Window",", "Main Window",
WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
CW_USEDEFAULT, CW_USEDEFAULT,CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,CW_USEDEFAULT, CW_USEDEFAULT,
(HWND)NULL, (HMENU)NULL, (HWND)NULL, (HMENU)NULL, hInstancehInstance, NULL); , NULL);

ShowWindow(hwndMainShowWindow(hwndMain, SW_SHOWDEFAULT); , SW_SHOWDEFAULT);
UpdateWindow(hwndMainUpdateWindow(hwndMain););

.Net Framework
Window w = new Window();Window w = new Window();
w.Textw.Text = "Main Window";= "Main Window";
w.Showw.Show();();

© Microsoft Corporation 15

.Net: Unify Programming Models

Windows API

.NET Framework

Consistent API availability regardless of
language and programming model

ASP

Stateless,
Code embedded
in HTML pages

MFC/ATL

Subclassing,
Power,

Expressiveness

VB Forms

RAD,
Composition,

Delegation

© Microsoft Corporation 16

.Net: API Organization

System

System.Data System.Xml

System.Web

Globalization
Diagnostics
Configuration
Collections

Resources
Reflection
Net
IO

Threading
Text
ServiceProcess
Security

Design
ADO

SQLTypes
SQL

XPath
XSLT

Runtime
InteropServices
Remoting
Serialization

Serialization

Configuration SessionState
Caching Security

Services
Description
Discovery
Protocols

UI
HtmlControls
WebControls

System.Drawing

Imaging
Drawing2D

Text
Printing

System.Windows.Forms
Design ComponentModel

© Microsoft Corporation 17

.Net: Languages
The Managed Platform is Language Neutral

All languages are first class players
You can leverage your existing skills

Common Language Specification
Set of features guaranteed to be in all languages
C# enforcement: [assembly:CLSCompliant(true)]

We are providing
VB, C++, C#, J#, JScript

Third-parties are building
APL, COBOL, Pascal, Eiffel, Haskell, ML, Oberon,
Perl, Python, Scheme, Smalltalk…

© Microsoft Corporation 18

Unmanaged vs. Managed

Strong namesStrong namesGUIDs
ExceptionsExceptionsHRESULTs
Object basedObject basedInterface based
Type safeType safeType unsafe
Garbage collectionGarbage collectionReference counting
Resilient bindResilient bindImmutable
AssembliesAssembliesType libraries
Type standardType standardBinary standard
Managed CodeUnmanaged Code

© Microsoft Corporation 19

University of Tokyo
Windows Kernel Internals

• Object Manager
• Virtual Memory
• Thread Scheduling
• Synchronization
• I/O Manager
• I/O Security
• Power Management
• NT File System
• Registry
• Lightweight Proc Calls

• Windows Services
• System Bootstrap
• Traps / Ints / Exceptions
• Processes
• Adv. Virtual Memory
• Cache Manager
• User-mode heap
• Win32k.sys
• WoW64
• Common Errors

Lectures

© Microsoft Corporation 20

University of Tokyo
Windows Kernel Internals

Projects
Device Drivers and Registry Hooking

Dragos Sambotin – Polytech. Inst. of Bucharest

Using LPC to build native client/server apps

Adrian Marinescu – University of Bucharest

Threads and Fibers

Arun Kishan – Stanford University

Doing virtual memory experiments from user-mode

Arun Kishan – Stanford University

© Microsoft Corporation 21

Discussion

	Windows Kernel InternalsOverview
	Contributors
	Windows History
	Goals of the NT System
	Windows Executive
	Windows Kernel
	HAL - Hardware Abstraction Layer
	Kernel Mode Execution
	Processes & Threads
	Each process has its own…
	Each thread has its own…
	University of TokyoWindows Kernel Internals
	University of TokyoWindows Kernel Internals
	Discussion

