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Windows History

• Team formed in November 1988
• Less than 20 people
• Build from the ground up

– Advanced Operating System
– Designed for desktops and servers
– Secure, scalable SMP design
– All new code

• Rigorous discipline – developers wrote very detailed 
design docs, reviewed/discussed each others docs and 
wrote unit tests
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Goals of the NT System
• Reliability – Nothing should be able to crash the 

OS. Anything that crashes the OS is a bug and 
we won’t ship until it is fixed 

• Security – Built into the design from day one
• Portability – Support more than one processor, 

avoid assembler, abstract HW dependencies. 
• Extensibility – Ability to extend the OS over time
• Compatibility – Apps must run
• Performance – All of the above are more 

important than raw speed!
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Windows Server 2003 Architecture
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Windows Executive

• Upper layers of the operating system
• Provides “generic operating system” functions 

(“services”)
– Creating and deleting processes and threads 
– Memory management
– I/O initiation and completion
– Interprocess communication
– Security

• Almost completely portable C code
• Runs in kernel (“privileged”, ring 0) mode
• Many interfaces to executive services not documented
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Windows Kernel

• Lower layers of the operating system
– Implements processor-dependent functions (x86 vs. Alpha vs. 

etc.)
– Also implements many processor-independent functions that are 

closely associated with processor-dependent functions
• Main services

– Thread waiting, scheduling & context switching
– Exception and interrupt dispatching
– Operating system synchronization primitives (different for MP vs. 

UP)
– A few of these are exposed to user mode

• Not a classic “microkernel”
– shares address space with rest of 

kernel components
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HAL - Hardware Abstraction Layer

• Subroutine library for the kernel & device drivers
– Isolates Kernel and Executive from platform-specific 

details
– Presents uniform model of I/O hardware interface to 

drivers
• HAL abstracts:

– System timers, Cache coherency & flushing
– SMP support, Hardware interrupt priorities
– HAL also implements some functions that appear to 

be in the Executive and Kernel
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Kernel Mode Execution

Code is run in kernel mode for one of three reasons:
1. Requests from user mode (system calls)

– Via the system service dispatch mechanism
– Kernel-mode code runs in the context of the requesting thread

2. Interrupts from external devices
– Interrupts (like all traps) are handled in kernel mode
– NT-supplied interrupt dispatcher invokes the interrupt service routine
– ISR runs in the context of the interrupted thread (so-called “arbitrary 

thread context”)
– ISR often requests the execution of a “DPC routine”, which also runs in 

kernel mode
3. Dedicated kernel-mode threads

– Some threads in the system stay in kernel mode at all times (mostly in 
the “System” process)

– Scheduled, preempted, etc., like any other threads
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Processes & Threads
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Each process has its own…

• Virtual address space (including program 
global storage, heap storage, threads’ stacks)

processes cannot corrupt each other’s 
address space by mistake

• Working set (physical memory “owned” by the 
process)

• Access token (includes security identifiers)
• Handle table for Win32 kernel objects
• These are common to all threads in the 

process, but separate and protected between 
processes
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Each thread has its own…

• Stack (automatic storage, call frames, etc.)
• Instance of a top-level function
• Scheduling state (Wait, Ready, Running, etc.) 

and priority
• Current access mode (user mode or kernel 

mode)
• Saved CPU state if it isn’t Running
• Access token (optional -- overrides process’s if 

present)
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Windows Past, Present, Future
PAST: Personal computer, 16->32 bits, MSDOS, 

Windows 9x code base, desktop focus
– Features, usability, compatibility, platform
– Windows 98

PRESENT: Enterprise computing, 32/64 bits, NT 
code base, solid desktop, datacenter
– Reliability, performance, IT Features
– Windows XP, Windows Server 2003

FUTURE: Managed code (.NET Framework)
– Productivity, innovation, empowerment
– Longhorn
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.Net: Making it Simple
Windows API
HWND HWND hwndMainhwndMain = = CreateWindowExCreateWindowEx((

0, "0, "MainWClassMainWClass", "Main Window",", "Main Window",
WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
CW_USEDEFAULT, CW_USEDEFAULT,CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,CW_USEDEFAULT, CW_USEDEFAULT,
(HWND)NULL, (HMENU)NULL, (HWND)NULL, (HMENU)NULL, hInstancehInstance, NULL); , NULL); 

ShowWindow(hwndMainShowWindow(hwndMain, SW_SHOWDEFAULT); , SW_SHOWDEFAULT); 
UpdateWindow(hwndMainUpdateWindow(hwndMain););

.Net Framework
Window w = new Window();Window w = new Window();
w.Textw.Text = "Main Window";= "Main Window";
w.Showw.Show();();
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.Net: Unify Programming Models

Windows API

.NET Framework

Consistent API availability regardless of
language and programming model
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.Net: API Organization
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.Net: Languages
The Managed Platform is Language Neutral

All languages are first class players
You can leverage your existing skills

Common Language Specification
Set of features guaranteed to be in all languages
C# enforcement: [assembly:CLSCompliant(true)]

We are providing
VB, C++, C#, J#, JScript

Third-parties are building
APL, COBOL, Pascal, Eiffel, Haskell, ML, Oberon, 
Perl, Python, Scheme, Smalltalk…
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Unmanaged vs. Managed

Strong namesStrong namesGUIDs
ExceptionsExceptionsHRESULTs
Object basedObject basedInterface based
Type safeType safeType unsafe
Garbage collectionGarbage collectionReference counting
Resilient bindResilient bindImmutable
AssembliesAssembliesType libraries 
Type standardType standardBinary standard
Managed CodeUnmanaged Code
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University of Tokyo
Windows Kernel Internals

• Object Manager
• Virtual Memory
• Thread Scheduling
• Synchronization
• I/O Manager
• I/O Security
• Power Management
• NT File System
• Registry
• Lightweight Proc Calls

• Windows Services
• System Bootstrap
• Traps / Ints / Exceptions
• Processes
• Adv. Virtual Memory
• Cache Manager
• User-mode heap
• Win32k.sys
• WoW64
• Common Errors

Lectures
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University of Tokyo
Windows Kernel Internals

Projects
Device Drivers and Registry Hooking

Dragos Sambotin – Polytech. Inst. of Bucharest

Using LPC to build native client/server apps

Adrian Marinescu – University of Bucharest

Threads and Fibers

Arun Kishan – Stanford University

Doing virtual memory experiments from user-mode

Arun Kishan – Stanford University
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Discussion
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